
LyS Research Group, Departamento de Computación

MIOPIA-SD

Sistema de Mineŕıa de Opiniones en
Múltiples Idiomas mediante Análisis

Sintáctico de Dependencias

User manual

David Vilares Calvo

Miguel A. Alonso Pardo

Carlos Gómez Rodŕıguez

October 10, 2014

Contents 2

Contents

1 Introduction 3

2 Terms and conditions 3

3 Installing the library 3

3.1 Dependencies and resources . 4

3.2 Other requirements . 5

4 The MIOPIA library 5

5 Creating a natural language processing pipeline for web text classification 6

5.1 Preprocessor . 7

5.2 Lexical processor . 8

5.3 Parser . 9

6 The unsupervised system 9

6.1 Creating an unsupervised model . 10

6.2 Running an unsupervised model . 10

7 The supervised system 11

7.1 The MIOPIA data format . 11

7.2 Training a supervised system . 13

7.3 Running a supervised system . 17

8 Available examples and executables 18

9 Acknowledgements 19

3 Installing the library 3

1 Introduction

MIOPIA-SD (Sistema de Mineŕıa de Opiniones en Múltiples Idiomas mediante Análisis

Sintáctico de Dependencias) is a library which provides you the capabilities for analysing

the perception of the public with respect to a product, service, event or a celebrity, given a

collection of related messages.

This manual is a guide to describe how to install and exploit this software, including

how to run the supervised and unsupervised models and the corresponding input formats.

Thus, is a practical-oriented manual, where the theory of the models is not included. The

user should be familiar with supervised an unsupervised learning approaches for sentiment

analysis. He also should be familiar with the basics of language programming in Python and

the paradigm of Oriented Object Programming.

MIOPIA-SD has a web page (miopia.grupolys.org) where an online demo and an api

are available too. It is important to point out that this page will allow access to MIOPIA-SD

as well as improvements and versions of MIOPIA developed after the writing of this manual.

Therefore, there may be differences between the results obtained by running MIOPIA-SD

and those obtained by accesssing the web page.

2 Terms and conditions

This system is free software: you can redistribute it and/or modify it under the terms of the

GNU General Public License as published by the Free Software Foundation, either version 3

of the License, or (at your option) any later version.

This program is distributed in the hope that it will be useful, but WITHOUT ANY

WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS

FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details.

You should have received a copy of the GNU General Public License along with MIOPIA.

If not, see ¡http://www.gnu.org/licenses/¿.

3 Installing the library

MIOPIA is a library for Sentiment Analysis purposes written in Python, so it can be used as

long as the user has installed a Python language interpreter. However, the configuration files

included with MIOPIA are intended for UNIX systems and the package provided with the

3 Installing the library 4

guide is intended for UNIX platforms too. The user is responsible to adapt them to other

platforms, such as Windows.

3.1 Dependencies and resources

The system requirements and their dependencies can be found in the README.txt file,

although they are also detailed below these lines:

� You should have installed a Python interpreter (version 2.7.*).

� You are required to install Setuptools (which is needed to install MIOPIA). It can be

downloaded from https://pypi.python.org/pypi/setuptools.

� You should download and install the Natural Language Toolkit (NLTK) from http:

//nltk.org/install.html and the nltk data from http://nltk.org/data.html (in

particular, the tokenizer module). Do not modify their default location.

� MaltParser version 1.7.* is required to run the parsers provided by MIOPIA. It can

be downloaded from http://www.maltparser.org/. Install it in the desired directory

(e.g. /opt/maltparser/maltparser-1.7.2/).

� The WEKA data mining software is needed to be able to train and run a supervised

model. It can be downloaded from http://www.cs.waikato.ac.nz/ml/weka/. Both

3.6.* and 3.7.* (developer) versions are valid. Install it in your desired directory (e.g.

/opt/weka/weka-3-7-10/).

� Installing textblob is required to use the part-of-speech tagger for English language

included with MIOPIA. http://textblob.readthedocs.org/en/dev/ and sudo pip-

install -U textblob-aptagger on your command line.

After downloading and installing all these dependencies, unzip the file miopia-1.0.0.tar.gz

included with this guide. Inside the miopia-1.0.0/miopia/ directory you will find a file

named miopia-1.0.0 conf.yaml. If you have followed our suggestions about where to install

the WEKA and MaltParser jar’s, you do not need to edit this file. In other case, adapt

the path weka and path maltparser entries to indicate the paths where you have located the

WEKA and MaltParser jar’s. Next, use the command line as follows:

cd miopia-1.0.0 # Change to the miopia-1.0.0 directory

4 The MIOPIA library 5

sudo python setup.py install # It will install MIOPIA in the default directory for Python

libraries: /usr/local/lib/python2.7/dist-packages/

Now MIOPIA should be installed in your computer and available to use from any Python

program. The configuration file, miopia-1.0.0 conf.yaml, will be located inside the /etc/

folder.

3.2 Other requirements

� CPU and memory requirements depends on the complexity of the model that the user

plans to build. The memory requirements of the unsupervised model are strongly

determined by the dependency parser (Java software). In this respect, any machine

able to run a Java Runtime Environment should be capable to run this kind of model.

On the other hand, the memory bottle neck of the supervised models mainly relies on

the vector space (also called feature space), which depends on the number of features

that are used to feed a particular model.

� MIOPIA is intended to work with different encodings. However, in order to avoid

problems, we encourage to the users to employ utf-8 encoding for all their files. If they

present a different encoding, change it before starting to work with them.

4 The MIOPIA library

MIOPIA contains a number of packages with different purposes. A detailed description for

each class and method can be found in the API documentation provided with the code. The

list below these lines describes the most relevant functionalities and classes of the library:

� adapter : A wrapper to represent instances according to the WEKA data format (ARFF

format, see http://www.cs.waikato.ac.nz/ml/weka/arff.html for the details.).

� analyzer : This package contains the functionalities responsible of analysing the content

of the texts.

– SentimentAnalyzer : A rule-based classifier which is able to obtain the semantic

orientation of a text. A detailed explanation of this system is provided in Section 6.

The analyzer evaluates the SentimentDependencyGraph’s provided by the parser

package and determines the semantic orientation based on linguistic rules.

5 Creating a natural language processing pipeline for web text classification 6

– analyzer.counter : This sub-package provides the capabilities to create different

instances able to collect different features present in a text. It includes counters

for: n-grams, generalised n-grams, dependency triplets or generalised dependency

triplets, among other ones.

� classifier : The package is a wrapper for different classification strategies. In particular,

it contains a wrapper for the AttributeSelectedClassifier available in WEKA, called

MetaStrategy, which make possible to train a WEKA classifier, by firstly applying a

feature selection filter (e.g. information gain or chi-squared). MIOPIA supports at the

moment up to four different classifiers: Naives Bayes, J48, LibLinear and SMO.

� parser : The package is responsible of: (1) loading/running the parser models using

MaltParser, (2) reading/writting file in ConLL-X format and (3) creating instances

of the SentimentDependencyGraph class that will be analysed by the supervised and

unsupervised systems.

� preparator : This package contains the classes that allow to carry out the natural lan-

guage pipeline, including sentence and word tokenisation, and interacts with the tagger

to obtain the part-of-speech tags of each term of the text.

� preprocessor : It provides the capabilities to carry out an ad-hoc preprocessing to web

texts, including preprocesors such as: EmoticonPreprocessor for smileys, HashTag-

Preprocessor and TwitterUserNamePreprocessor for Twitter slang (hashtags and user-

names) or a URLPreprocessor to normalise links.

� tagger : This package make possible to train a tagger based on the Brill implementation

provided by the NLTK.

5 Creating a natural language processing pipeline for web text

classification

Before creating either a supervised or an unsupervised model, it will be required to instantiate

some Natural Language Processing (NLP) tools which will serve as the starting point to

analyse the texts. They are described below these lines.

5 Creating a natural language processing pipeline for web text classification 7

5.1 Preprocessor

To create a naive preprocessor in MIOPIA you just need to import:

from miopia.preprocessor.PreProcessor import PreProcessor

and instantiate and object as follows:

preprocessor_es = PreProcessor() #for Spanish, PreProcessor(lang=’es’) is also valid.

preprocessor_en = PreProcessor(lang=’en’) #for English.

This will provide a preprocessor with capabilities such as: identification of composed words (

according to path referred at the parameter path composedwords of the filemiopia-1.0.0 conf.yaml),

replacement of frequent abbreviations, (according to path referred at the parameter path abbreviations

of the file miopia-1.0.0 conf.yaml) or unification of different number representations. Com-

posed and frequent abbreviations can be also specified via parameters. For example:

cw_dict = {’menos que’: ’menos_que’}

ab_dict = {’x’: ’por’}

preprocessor_es = PreProcessor(composite_words=cw_dict,

abbreviations=ab_dict,

lang="es"))

It is possible to create more complex preprocessors to handle different web phenomena, in-

cluding: URL’s, emoticons or the slang of particular social networks (such as usernames

or hashtags in Twitter). MIOPIA preprocessors are implemented according to the Decora-

tor pattern design. Thus, to instantiate a preprocessor able to manage the particularities

described above these lines, we will need to write the following piece of code:

decorated_preprocessor_es = URLPreProcessor(

EmoticonPreProcessor(

HashTagProcessor(

TwitterUserNameProcessor(

PreProcessor(composite_words=cw_dict,

abbreviations=ab_dict,

lang="es")))))

Some of these preprocessors have different configuration options. Read the API documenta-

tion provided with the code for a detailed explanation.

5 Creating a natural language processing pipeline for web text classification 8

5.2 Lexical processor

Before obtaining the syntactic structure of the texts via dependency parsing, we need to

process them by applying tokenisation and part-of-speech tagging.

Sentence and word tokenisation

MIOPIA relies on the tokenizers provided by the NLTK to split texts into sentences and

sentences into words. To obtain the sentences of a given text, you can use the following code:

#Sentence tokeniser for Spanish language

sentence_tokenizer_es = nltk.data.load(’tokenizers/punkt/spanish.pickle’)

#Sentence tokeniser for English language

sentence_tokenizer_en = nltk.data.load(’tokenizers/punkt/english.pickle’)

To obtain the words of a particular sentence, we encourage to the users to instantiate the

following tokenisers:

#Word tokeniser for Spanish language

tokenizer_es = PunktWordTokenizer()

#Recommended word tokeniser for English language

tokeniser_en = TreebankWordTokenizer()

Users can rely on other tokenisers provided by the NLTK software (as long as they implement

the same interface), although it may drop the performance of the next steps of the NLP

pipeline.

Part-of-speech tagging

We provide a trained tagger (serialised) for Spanish language within MIOPIA. It can be

loaded as follows:

tagger_es = pickle.load(open(

ConfigurationManager().getParameter(

"path_pickle_taggers")+"spanish_brill.pickle",’r’))

Users must rely on this tagger to create the unsupervised classifier (see Section 6), since some

of the rules need of the tag set provided by this PoS-tagger. This tagger provides the same

set of features that employs the parser for Spanish language included within MIOPIA.

6 The unsupervised system 9

With respect to the English system, it is needed to instantiate an object of the class Percep-

tronTwitTagger. This class is just a wrapper for a PerceptronTagger provided by the library

textblob aptagger, that you should have installed, as indicated in Section 3. The tagger uses

the Penn Treebank tagset and it is compatible with the parser provided by MIOPIA for

English language too:

from miopia.tagger.PerceptronTwitTagger import PerceptronTwitTagger

tagger_en = PerceptronTwitTagger()

Creating the lexical processor

Once we have instantiate the tokenisers and the part-of-speech tagger, we can create the

instance of the LexicalProcessor that will be used by our sentiment classifiers.

lexical_processor = LexicalProcessor(sentence_tokenizer_es,

tokenizer_es,

tagger_es) #For Spanish

5.3 Parser

The Parser class acts as a Python wrapper for the MaltParser models. MIOPIA already

includes a trained parser both for Spanish and English, so users don’t need to train any

dependency parser, just use the following code to have access to the parsers:

parser_es = Parser(lang=’es’) #For Spanish

parser_en = Parser(lang=’en’) #For English

6 The unsupervised system

Unsupervised systems involve the use of dictionaries where different kinds of words are tagged

with their semantic orientation (SO). To classify polarity, these methods obtain the words

present in a text and aggregate their SO in a given way. In contrast with machine learning ap-

proaches, semantic-based methods are more domain independent, although their performance

can still vary from one domain to another.

MIOPIA provides a unsupervised system based on syntactic rules and it is only available

for Spanish at the moment. Next section describe how to create a model following these

approach and how to run them.

6 The unsupervised system 10

6.1 Creating an unsupervised model

After creating the NLP tools, it is possible to instantiate an object of the class Sentiment-

Analyzer :

from miopia.analyzer.Dictionary import Dictionary

from miopia.analyzer.SentimentAnalyzer import SentimentAnalyzer

from miopia.analyzer.AnalyzerConfiguration import AnalyzerConfiguration

#We create the dictionary:

#It gives access to the dictionaries included with MIOPIA

dictionary = Dictionary()

sentiment_analyzer = SentimentAnalyzer(parser_es,

dictionary,

AnalyzerConfiguration(final_sentences_weight=1.),

preprocessor_es,

lexical_processor)

The class AnalyzerConfiguration manages the parameters to weight the relevance of different

phenomena, such as negation, adversative subordinate clauses or the relevance of the final

sentences of a message. For a detailed explanation, consult the API documentation provided

with MIOPIA.

6.2 Running an unsupervised model

After creating the unsupervised classifier, we are ready to obtain the semantic orientation

of a particular text. The SentimentAnalyzer class provides two main methods to obtain its

semantic orientation:

� analyze(self,text): It receives a string text as a parameter. This text will be prepro-

cessed, tagged and parsed to then finally obtain the results.

-*- coding: utf-8 -*-

...

text = "Esta máquina es muy barata, pero pésima".decode(’utf-8’)

graphs,sentiment_info = sentiment_analyzer.analyze(running_example)

7 The supervised system 11

� analyze from conll(self,path to parsed text): Since the parsing step is the bottle neck of

the system, MIOPIA allows to analyze a parsed text in CoNLL format. We encourage

to the users to employ this method when they are performing experiments to set up

the optimal configuration of the classifier.

path_file = "/tmp/example.conll"

graphs,sentiment_info = sentiment_analyzer.analyze_from_conll(path_file)

In both cases, we obtain as a result a tuple containing: (1) a list of SentimentDependen-

cyGraph (one dependency graph for each sentence) and (2) a SentimentInfo object, which

contain the semantic orientation, among other information. To obtain the semantic orienta-

tion of the text:

sentiment_info.get_so()

7 The supervised system

Machine learning solutions involve building classifiers from a collection of annotated texts,

where each text is usually represented as a bag-of-words. It is also common to include some

linguistic-related processing for preparing features, such as lemmatisation, stemming or stop

word removal. Classifiers of this kind perform well in the domain where they have been

trained, but their accuracy drops markedly in other areas, because they are highly domain

dependent.

MIOPIA provides the capabilities to extract a number of features, based on rich linguistic

knowledge, from different kinds of texts. It also allows to train and run a supervised classifier,

based on the WEKA data mining software. Users are responsible to obtain the corpus which

will serve them to feed their models.

7.1 The MIOPIA data format

To train and run the MIOPIA supervised classifiers, users need to be familiar with the

MIOPIA data format. It consist of a tabular file, preceded of a header. The header of the

format, indicates the path to the directory where are stored the parsed files. It also considers

the possibility of indicating the path of a directory which contains files with metainformation

7 The supervised system 12

about the text, although miopia-1.0.0 does not provide functionalities for mananing metadata-

based features. Finally, it contains the token DATA, which indicates the beginning of the

data set. The form of the header is as follows:

BASE_PATH_PARSED_FILES path_to_the_directory_of_parsed_files

BASE_PATH_METADATA_FILES path_to_the_directory_with_the_metadata_files

DATA

The content of the data set must be represented with a tabular format. Each row represents

an instance of the data, where each column indicates:

1. The file identifier.

2. The category of the files. A ‘?’, if the MIOPIA data file represents the test set.

3. The raw text.

4. The path to the relative path of the parsed text file in the directory of the parsed files.

A ‘ ’ if no BASE PATH PARSED FILES provided.

5. The name of the relative path of the metadata information about the text. At the

moment, users should fill it always with a ‘ ’.

A simple example of the content of a MIOPIA data file could be (without including the paths

to the parsed files):

BASE_PATH_PARSED_FILES

BASE_PATH_METADATA_FILES

DATA

file1\tP\tI like you\t_\t_

file2\tP\tThe camera of that mobile is amazing\t_\t_

file3\tN\tThree people died in an accident\t_\t_

The same example, but providing the paths to the parsed files:

BASE_PATH_PARSED_FILES /tmp/parsed-dir/

BASE_PATH_METADATA_FILES

DATA

file1\tP\tI like you\tP/file1.conll\t_

7 The supervised system 13

file2\tP\tThe camera of that mobile is amazing\tP/file2.conll\t_

file3\tN\tThree people died in an accident\tN/file3.conll\t_

7.2 Training a supervised system

To train a supervised classifier, we need to instantiate the NLP tools explained in Section

5. This is the starting point to be able to run the Counter’s, i.e. the objects responsible

of counting a particular kind of feature present in a text. The API documentation lists all

the different counters provided by MIOPIA. This user manual poses below these lines how

to instantiate different counters, to be able to train complex models:

� NGramCounter : MIOPIA supports features based on n-grams of words. It also pro-

vides the capabilities to create generalised n-grams, features where the n element is

abstracted to reduce feature sparsity. The following generalisations, also known as

back-off, are available: word, lemma, part-of-speech tag, psychometric properties or

none (to completely remove a element). The constructor of any NGramCounter is as

follows:

def __init__(self,ftc, preprocessor, lexical_processor, back_off,

stop_words=set([]), lowercase=True):

where:

– ftc: It represents an instance of the FeatureTypeConfiguration. See the API docu-

mentation for a detailed explanation.

– preprocessor : See Section 5 to know how to instantiate this kind of object.

– lexical processor : The Section 5 explains how to obtain an instance of the Lexical-

Processor class.

– back off. The class is responsible of obtaining the generalisations. The example

below these lines shows how to create an object of this kind.

– stop words: A set of words that should be ignored when counting features.

#Creating unigram (psychometric) counter

psychometric_key = ’-’.join([FeatureLevelBackOff.TYPE_BACK_OFF_PSYCHOMETRIC])

u_psychometric_counter = NGramCounter(FeatureTypeConfiguration(

7 The supervised system 14

n_gram_back_off= psychometric_key,

n_gram=1),

preprocessor,

lexical_processor,

BackOff(dictionary),

set([]))

#Creating a bigram (lemma, part-of-speech) counter

lemma_postag_key = ’-’.join([FeatureLevelBackOff.TYPE_BACK_OFF_LEMMA,

FeatureLevelBackOff.TYPE_BACK_OFF_FINE_TAG])

b_lemma_postag_counter = NGramCounter(FeatureTypeConfiguration(

n_gram_back_off= lemma_postag_key,

n_gram=2),

preprocessor,

lexical_processor,

BackOff(dictionary),

set([]))

� DependencyTripletsCounter : It counts triplets present in a dependency graph. As

the NGramCounter, generalisation functionalities are available. The constructor is as

follows:

def __init__(self, ftc, back_off,stop_words=set([])):

t_lemma_postag_counter = DependencyTripletsCounter(FeatureTypeConfiguration(

back_off_head=FeatureLevelBackOff.TYPE_BACK_OFF_FINE_LEMMA,

back_off_dependent = FeatureLevelBackOff.TYPE_BACK_OFF_FINE_TAG,

add_dependency_type = False),

BackOff(dictionary))

� AbstractedLexiconCounter : Counters of this kind are intended to create input features

for the classifier using external knowledge via dictionaries.

7 The supervised system 15

def __init__(self, ftc, preprocessor, lexical_processor,

dict_lexicon,lowercase=True):

The lowercase option just ignores capitalised characters. The dict lexicon parameter

should be a nailed dictionary able to manage long expressions. For example:

dict_lexicon ={’mal’: [Negative_term,

{pagado: [Negative term],

uso: [Negative term]}

]

}

MIOPIA will take only into account the longest match.

Afterwards, instantiating an object of the AbstractedLexiconCounter is similar to in-

stantiate an NGramCounter :

abs_counter= AbstractedLexiconsCounter(FeatureTypeConfiguration(),

preprocessor, lexical_processor,

dict_lexicon)

Once we have created the counters, they must be wrapped up into the corresponding Adapter

instance:

PATH_WEKA = "/opt/weka/weka-3-7-10/weka.jar"

#Adapters support both binary and total occurrence weighting factors

u_psychometric_adapter = NGramAdapter(PATH_WEKA,

u_psychometric_counter,

Adapter.BINARY_WEIGHTING_FACTOR)

b_lemma_postag_adapter = NGramAdapter(PATH_WEKA,

b_lemma_postag_counter,

Adapter.BINARY_WEIGHTING_FACTOR)

t_lemma_postag_adapter = DependencyTripletsAdapter(PATH_WEKA,

t_lemma_postag_counter,

Adapter.BINARY_WEIGHTING_FACTOR)

7 The supervised system 16

abs_adapter = AbstractedLexiconsAdapter(PATH_WEKA,

abs_counter,

Adapter.BINARY_WEIGHTING_FACTOR)

It is possible to combine different counters, using the CompositeAdapter, in order to build

more complex models.

composite_counter = CompositeAuxiliaryCounter(FeatureTypeConfiguration())

composite_adapter = CompositeAdapter(PATH_WEKA, composite_counter)

composite_adapter.add(u_psychometric_adapter)

composite_adapter.add(b_lemma_postag_adapter)

composite_adapter.add(t_lemma_postag_adapter)

composite_adapter.add(abs_adapter)

Next step consist of transforming our MIOPIA data file to the ARFF format, using the

Adapter method to arff.

PATH_TRAINING_MIOPIA = "/tmp/training.miopia"

PATH_TRAINING_ARFF = "/tmp/training.arff"

composite_adapter.to_arff(PATH_TRAINING_MIOPIA,PATH_TRAINING_ARFF)

Now we are ready to create and train our strategy for the supervised classifier.

PATH_WEKA_MODEL = "/tmp/weka.model" #The file where will be stored the WEKA model

PATH_OUTPUT_RESULTS = "/tmp/output.results" # File where our trained model

will print the evaluation

over the training set

evaluator = InformationGainAttributeEvaluator()

search_method = RankerSearchMethod(0)

strategy = MetaStrategy(evaluator, search_method,

ClassifierWeka.NAIVE_BAYES, PATH_WEKA)

strategy.train(PATH_WEKA_MODEL,

PATH_OUTPUT_RESULTS,

PATH_TRAINING_ARFF)

7 The supervised system 17

And our strategy should be trained. Time to train the model will depend on the complexity

of the selected classifier and the feature space.

7.3 Running a supervised system

To successfully run a trained classifier, we need to know the ARFF header employed to train

the model, to then be able to create compatible test sets. MIOPIA provides the method

arff header from arff file for this purpose.

arff_header = composite_adapter.arff_header_from_arff_file(PATH_TRAINING_ARFF)

We then transform our test data (stored in a MIOPIA data file) to the ARFF format, using

as parameters the arff header and a boolean set to True (to indicate that is a test set).

PATH_TEST_MIOPIA = "/tmp/test.miopia"

PATH_TEST_ARFF = "/tmp/test.arff"

d_position_id = composite_adapter.to_arff(PATH_TEST_MIOPIA

PATH_TEST_ARFF, arff_header, True)

This methods returns a dictionary (named d position id in the example above this line),

which associate each position in the ARFF file, with the corresponding text identifier.

We then associate the trained strategy with an instance of a SimpleClassifier which acts as

a wrapper for handling different strategies and formating the results:

classifier = SimpleClassifier(strategy)

We can now classify our test set represented in ARFF format:

PATH_WEKA_RESULTS = "/tmp/classifications.results"

classifications = classifier.classify(PATH_TEST_ARFF,PATH_WEKA_RESULTS,

d_position_id)

Finally, it is possible to write the results in a file, PATH QREL RESULTS, following a key-

value format:

PATH_QREL_RESULTS = "/tmp/classifications.qrel"

classifier.to_key_value_format(classifications, PATH_QREL_RESULTS)

8 Available examples and executables 18

8 Available examples and executables

The MIOPIA package provides a number of examples (executables) inside the demo folder:

� demo unsupervised analyzer.py: This script creates an unsupervised sentiment classi-

fier. It shows how to instantiate the natural language resources required by this kind

of classifier. The classifier is then used to obtain the sentiment of both raw and parsed

texts in CoNLL-X format, based on an dummy set provided with the MIOPIA package.

� demo supervised analyzer es.py: The script shows how to create and run a supervised

classifier for Spanish language. In addition to the natural language pipeline, this kind of

classifier relies on instances responsible of counting features to then feed the classifier.

The model of the script is fed by words, psychometric properties and part-of-speech

tags. The MIOPIA data format is used to train and evaluate the model.

� demo supervised analyzer en.py: This script is similar to demo supervised analyzer es.py,

but intended for English language. The difference of the script relies on how to instan-

tiate resources for English.

These three examples contain a number of global variables:

� PATH TRAINING ARFF: The path where the training set will be stored in the ARFF

format.

� PATH TEST ARFF: The path where the test set will be stored in the ARFF format.

� PATH OUTPUT RESULTS: The path where the output results for the evaluation over

the training set will be printed.

� PATH RANKING FILE FEATURES: It indicates the file where it will be stored the

ranking of the most relevant features according to the feature selection filter.

� PATH WEKA MODEL: The path where the trained WEKA model will be stored.

� PATH TRAINING MIOPIA FILE: The path where the training set, represented in

MIOPIA data format, will be stored.

� PATH TEST MIOPIA FILE: The path where the test set, represented in MIOPIA

data format, will be stored.

9 Acknowledgements 19

� PATH WEKA RESULTS: The path where the results of the test set will be printed,

following the WEKA output format.

� PATH QREL RESULTS: The path where the results of the test set will be printed,

following a key-value format.

9 Acknowledgements

Research reported in this article has been partially funded by Ministerio de Economı́a y Com-

petitividad and FEDER (Grant TIN2010-18552-C03-02), Xunta de Galicia (Grants CN2012/008,

CN2012/319) and Ministerio de Educación, Cultura y Deporte (FPU13/01180).

