On Pattern-Matching as Query Facility

M. Vilares!, F.J. Ribadas!, and J. Grafa?

! Department of Informatics, University of Vigo
Campus As Lagoas s/n, 32004 Ourense, Spain
http://grupocole.org
? Department of Computer Science, University of A Corufia
Campus de Elvina s/n, 15071 A Coruna, Spain
{vilares,grana}@udc.es, ribadas@uvigo.es

Abstract. Pattern-matching can be used to develop query languages for
information retrieval/extraction tasks. The operational basis is simple,
since documents and queries can be represented using the same kind
of structure, documents or fragments that satisfy the query and which
would be those that are closest to its structural representation. In
this sense, pattern-matching makes it possible to combine a variety of
structural constraints in flexible ways, allowing the query to be defined
approximately, or even omitting some structural details.

Our goal is to analyze how the lack of structural information in queries
may degrade performance, and to illustrate the relation between the
computational work and the effort applied by the user to describe these
queries.

1 Introduction

Representing documents and queries as structures is a natural way to introduce
pattern-matching as an operational model for a query language [2]. In relation
to other approaches, this one provides the flexibility to access different views of
the database, since it is not always evident how to do this using techniques based
on classic indexing methods. This capacity can be used to adapt a formal query
model to practical user queries, in order to design query languages that are closer
to natural ones, where the level of precision is not easy, or even impossible, to
define.

In the context considered, pattern-matching can be studied from two different
points of view: comparing structures that can only be approximately defined [7],
or introducing wvariable length don’t care (VLDC) technology in order to omit
structural details [8]. In the first case, pattern-matching can be applied to deal
with queries that can only be approximately defined, which often occurs. In
the second case, the technique can be applied to deal with lack of information
in queries, either because it is unavailable to the user, or simply because
the user wants to reduce his own workload. Both strategies can correspond
to complementary phases in the definition of a query considering interactive
expansion [1] and, from the point of view of the user, they make it possible to

control the level of detail in the retrieval/extraction process [6]. Whatever the
choice, it impacts on both system performance and implementation techniques.

A subject of additional interest is the exploitation of sharing between target
structures with common nodes, which may lead to an increase in computational
efficiency in approximate pattern-matching [4, 5]. In effect, although in the case
of the query language ambiguity could probably be eliminated, imprecision in
the language intended to represent the document produces ambiguity. Since
it is desirable to consider all possible interpretations for semantic processing,
it is convenient to merge structures as much as possible, sharing common
parts. This could be applied to a variety of problems, such as natural language
processing, where ambiguity and structural sharing are common [3]. Another case
is molecular evolution, with many examples indicating that gene duplication with
fusion has occurred extensively in the past. This provides an as yet unexplored
route to the evolution of new functions from existing proteins.

Our aim in this paper is to look for both theoretical foundations and practical
constraints in the existing relationship between structural and computational
complexity in dealing with query languages based on pattern-matching, and to
focus on the treatment of structural sharing. In this way, we hope to bring to
light some of the factors governing the mechanisms behind the practice, and
their impact on costs from the user’s choices in query processing.

2 The editing distance

Given P, a pattern tree, and D, a data tree, we define an edit operation as a
pair a — b, a € labels(P) U {e}, b € labels(D) U {e}, (a,b) # (¢,¢), where
€ represents the empty string. We can delete a node (a — €), insert a node
(¢ = b), and change a node (a — b). Each edit operation has a cost, v(a — b),
that we extend to a sequence S of edit operations sy, s2, ..., 8, in the form
~v(S) = ZLill (v(s;)). The distance between P and D is defined by the metric:

0(P, D) = min{7(S), S editing sequence taking P to D}

Given an inverse postorder traversal, as is shown in Fig. 1, to name each node ¢
of a tree T by T'[i], a mapping from P to D is a triple (M, P, D), where M is a set
of integer pairs (i, j) satisfying, for each 1 <ij,iy <| P | and 1 < j1,52 <| D |:

11 = 12 iff j1 = jo
Pli1] is to the left of P[ia] iff D[j1] is to the left of D[j2]
Pli1] is an ancestor of P[iz] iff D[j1] is an ancestor of D[j]

which corresponds to one-to-one assignation, sibling order preservation and
ancestor order preservation. The cost, v(M), of a mapping (M, P, D) is computed
from relabeling, deleting and inserting operations, as follows:

(M) = Y y(Pli] > Dl + D v(Plil =€) + Y v(e - D))

(i,j)eM €D JET

where D and 7 are, respectively, the nodes in P and D not touched by any line
in M. Tai proves, given trees P and D, that

6(P,D) = min{y(M), M mapping from P to D}

which allows us to focus on edit sequences which are a mapping. We show
in Fig. 2 one example of mapping between two trees, and a sequence of edit
operations which do not constitute a mapping. We also introduce r_keyroots(T)
as the set of all nodes in a tree T' which have a right sibling plus the root, root(T),
of T. We proceed through the nodes, first determining mappings from all leaf
r_keyroots, then all r_keyroots at the next higher level, and so on to the root. The
set of r_keyroots(T) is indicated by arrows in Fig. 1. In dealing with approximate
VLDC pattern-matching, different strategies are then applicable. Following Zhang
et al. in [8], we introduce two different definitions for VLDC matching;:

— The vLDC substitutes part of a path from the root to a leaf of the data tree.
We represent such a substitution, shown in Fig. 2, by a vertical bar ”|”, and
call it a path-VLDC.

— The vLDC matches part of such a path and all the subtrees emanating from
the nodes of that path, except possibly at the lowest node of that path. At
the lowest node, the VLDC symbol can substitute a set of leftmost subtrees
and a set of rightmost subtrees. We call this an umbrella-VLDC, and represent
it by a circumflex “A”, as shown in Fig. 2.

Da 4, T[1.8] T[1.4]
Dby Dey /(1\4 e f ¢ d d
| AN
Qe f goh) g‘] h/\ h o
8 7 5 3

i i
! |
j j
1

Fig. 1. The forest distance using an inverse postorder numbering

We now capture the use of VLDC symbols. Given a data tree D and a
substitution s on P, we redefine: §(P,D) = minses{d(P,D,s)}, where S is
the set of all possible vLDC-substitutions, and §(P, D, s) is the distance 6(P, D),
being P the result of applying the substitution s to P.

3 Pattern-matching and parsing

Parsing and tree-to-tree correction are related and we need to understand the
mechanisms that lead to the tree duplication in order to gain efficiency.

Correct Incorrect
Mapping without VLDC Mapping with a Path-VLDC Mapping with an Umbrella-VLDC

Fig. 2. Examples of mappings

3.1 Factors of interaction

The first factor is the syntactic representation used. We represent a parse in finite
shared form as the chain of the context-free rules used in a leftmost reduction of
the input sentence [3]. The resulting grammar is equivalent to an AND-OR graph,
whose AND-nodes are the usual parse-tree nodes, while OR-nodes are ambiguities.
Sharing of structures is represented by nodes accessed by more than one other
node and it may correspond to sharing of a complete tree, but also to sharing
of a part of the descendants of a given node, as shown in Fig. 3.

. |
SN | Wy i &T .
/ \ oy %V% || T

L
\¥

Classic forest representation without sharing.

AND-OR representation with sharing, AND-OR representation with sharing,
for a bottom-up parsing. for a top-down parsing.
RULE n, : @ —»>aB¥dp %////% Shared nodes using a bottom+up parser, with AND-OR graphs.

RULE N, : d—+>aB%dpP

Shared nodes using a top-down parser, with AND-OR graphs.

Fig. 3. How shared forests are built using an AND-OR formalism

Another factor is the parsing scheme applied. So, bottom-up parsing may
share only the rightmost constituents, while top-down parsing may only share
the leftmost ones. This depends on the type of search used to build the forest.
Breadth first search results in bottom-up constructions and depth first search
results in top-down ones, as is also shown in Fig. 3. Here, one major observation
we noted is that Zhang et al. consider a postorder traversal, computing the forest
distance by left-recursion on this search. So, we would need to consider a top-
down parser to avoid redundant computations. However, these parsers are not
computationally efficient, and a bottom-up approach requires a rightmost search
of tree constituents. This implies redefining the original finding strategy.

3.2 The forest edition distance

We introduce (i) (resp. anc(z)) as the rightmost leaf descendent of the subtree
rooted at T'[i] (resp. the ancestors of T'[¢]) in a tree T', and T'[i..j] as the ordered
sub-forest of T induced by the nodes numbered i to j, inclusive, as is shown
in Fig. 1. In particular, we have T[r(i)..i] as the tree rooted at T'[i]. We now
define the forest edition distance between a target tree P and a data tree D, as
a generalization of §, in the form

f_d(P[Sl ..SQ], D[tl ..tQ]) = 5(P[81 ..SQ], D[tl..tz])

that we denote f_d(s;..s2,t;..t2) when the context is clear. Intuitively, this
concept computes the distance between two nodes, P[sz] and D[t2], in the
context of their left siblings in the corresponding trees, while the tree distance,
0(P[s2], D[t2]), is computed only from their descendants. To be precise, we can
compute the editing distance t_d(P, D) applying the formulae that follow, for
nodes i € anc(s) and j € anc(t), assuming P[s] is not an incomplete structure:

(fd(r(z)..s — 1,7(j)..t) + v(P[s] — ¢€),
min fd(r(é)..s,r(j)-.t — 1) + y(e — DIt]),
fd(r(s)..s — 1,
r(j)-t—1) + 7(P[s] = DIt])

£A(r(i).5,7(j)t) = ¢ iff r(s) = r(z) and r(t) = r(j)

{f_d(r(i)..s —1,7(5)--t) + y(P[s] = ¢), }
min ¢ £d(r()..s,r(5)..t — 1) + v(e — DIt]),
£d(r(i)..r(s) — L,r(4)..r(t) — 1) + t_d(s,t)

\ otherwise

When PJ[s] € {|, A}, formulae must be adapted, we first assume P[s] is “|”:

f.d(r(é)..s — 1, r(4)..t) + v(P[s] = ¢€),
i_cdlgrgi;..s, r()1(5 ; 1)) + 'yEs [—>] D[t]),[)
. . . d(r(¢)..s =1, r(j)..t — 1) + v(P[s] — DI|t]),
f.d(r()..s,7(j).-t) = min (o, DI (). _Jl) N Znintk{t_d(s,tk)
- t—d(¢, tk)}:
1 S k S nt

For the case where P[s] is “A”, the formulae are the following:

fd(r(é)..s — 1, r(4)..t) + y(P[s] = ¢€),

£d(r(i)..s, r(j).t — 1) + v(e — DI[t]),
£.d(r(3)..s,7(j)..t) = min{ fd(r(i)..s—1, r(j).t—1) + v(P[s] = D[t]),

ming, {t_d(s,tx)}, 1<k<mn,

ming, {s_fd(r(é)..s — 1,7(j)..tx)}, 1<k <m

where D[ty], 1 < k < ny, are children of D[t]. If D[t] is a leaf, that is ¢t = r(j),
then only the first three expressions are present. We define the suffix forest
distance between Fp and Fp, forests in the pattern P and the data tree D
respectively, as sf.d(Fp, Fp) = ming, {f-d(Fp,Fp)}, where Fp is a sub-forest

of Fp with some consecutive complete subtrees removed from the left, all of
them having the same parent. From a computational point of view, it can be
proved that

'min{f_d(r(i)..s, 9), }
f-d(r(%)..s, r(j)..t)
iff r(t) = r(j)

sf£d(r(i)..s,r(j)..t) = <

{ sf£d(r(?)..s — 1, 7(j)..t) + v(P[s] — ¢), }
min { sf.d(r(7)..s, r(j)..t — 1) + v(e = D[f]),
sf.d(r(2)..r(s) — 1, r(j)..r(t) — 1) + t_d(s,t)

L otherwise

To compute t-d(P,D) it is sufficient to take into account that t_-d(P,D) =
f_d(root(P)..r(root(P)),root(D)..r(root(D))). Time bound is O(| P || D |
min(depth(P),leaves(P))min(depth(D),leaves(D))) in the worst case, where
| T | is the number of nodes in a tree T. We talk about elementary operations
to refer to each one of these minimum values computed.

4 Pattern-matching and shared forest

Let P be a labeled ordered tree where some structural details have been omitted,
and D an AND-OR graph. We identify P with a query and D with a part of
the syntactic representation for a database with a certain degree of ambiguity.
Let P[s] be the current node in the inverse postorder for P, and i € anc(s) a
r keyroot. Given an OR-node D[k] we can distinguish two situations, depending
on the situation of this OR-node and the situation of the r_keyroots of D.

4.1 Sharing into a same r_keyroot

Let D[t'] and D[t"] be the nodes we are dealing with in parallel for two
branches labeled D[k'] and D[k"] of the OR-node r(D[k]). We have that j €
anc(t') N anc(t"), that is, the tree rooted at the r keyroot D[j] includes the OR
alternatives D[k'] and D[k"]. Such a situation is shown in Fig. 4. Here, the lightly
shaded part refers to nodes whose distance has been computed in the inverse
postorder before the OR-node D[k]. The heavily shaded part represents a shared
structure. The notation “e e e” expresses the fact that we descend along the
rightmost branch of the corresponding tree.

We assume that nodes D[r(t') — 1] and D[r(t") — 1] are the same, that
is, their corresponding subtrees are shared. So, D[r(t')] (resp. D[r(t")]) is the
following node in DI[k'] (resp. D[k"]) to deal with once the distance for the
shared structure has been computed. Our aim is to compute the value for
fd(r(i)..s, r(j)..t), t € {t', t"}, proving that we can translate parse sharing
to sharing in computations for these distances. Since we have assumed there is a
shared structure between D[r(t)] and D[r(j)], we conclude that r(j) # r(£) and
the values for f.d(r(i)..s, 7(j)..t), t € {t', t"} are given by:

£d(r(i)..s — 1, r(5)-1) + ~(P[s] = ¢),

£d(r(i)..s,r(j)..t) = min { £d(r(i)..s, r(G)..t — 1) + ~(e — D[f)),
£.A(r(3)..r(s) — 1, r(j)..r() — 1) + t_d(s,t)

where € {t', t"}. We can interpret these three alternatives as follows:

1. The values for f d(r(i)..s—1, r(j)..t), £ € {t', t"} have been computed by the
approximate matching algorithm in a previous step. So, in this case, parse
sharing has no consequences for the natural computation of the distances.

2. Two cases are possible in relation to the nature of nodes DI[f], t € {t, t"'}:

— If both nodes are leaves, then r(f) = {. We have then that D[t' — 1] =
D[r(t')—1] = D[r(t")—1] = D[t" —1], and the values f d(r(i)..s, r(j)..t—
1), t € {t', t"} are also the same.

— Otherwise, following the inverse postorder, we would arrive at the
rightmost leaves of D[t'] and DI[t"], where we could apply the reasoning
considered in the previous case.

3. Values for the distances f.d(r(s)..r(i) — 1, r(j)..r(f) — 1), t € {t', t"} are
identical, given that nodes D[r() — 1], t € {t', t"} are shared by the parser.

o6l
’7 : "’L---rnll

DIr()]

R .

: DIk,

DLk P D[r(t')=1]

P[Kr]ml RE
Loy | st
T oy

ror [E—
: ”.mrm\ o nil
3 D[t : _B_[t_']

Fig. 4. Sharing into a same r_keyroot

A similar reasoning can be applied to computing the values for s_f d, avoiding
redundant computations.

4.2 Sharing between different r_keyroots

We have that j' € anc(t') and j"” € anc(t"), with j' # j", are two r_keyroots,
with an OR node D[k] being a common ancestor of these two nodes. We suppose
that the r keyroots are in different branches, namely, there exists a r_keyroot,
D[j'] (resp. D[j"]), in the branch labeled D[k'] (resp. D[k"]).

Our aim is to compute the value for distances f d(r(i)..s, r(j)..t), where pairs
(G,%) arein {(j', t'), (5",t")}. Formally, we have that these values are given by:

((fd(r(¢)..s — 1, TEA)..f) + v(P[s] = ¢),

fd(r(i)..s, r(3)..t —1) + v(e — DI{)]),

min { f-d(r(4)..s — 1,Ar(A)..t —1) + y(P[s] = D[ﬂ),
f.d(¢, D[r(3)].t —1) + ming, {t-d(s,tx) —

td(b i} 1<k<n

iff P[s] =
£.d(r(i)..s — 1, r(j)..5) + v(P[s] = ¢),
£.d(r(3)..s, ().t — 1) + y(e = DIf]),

{ min ¢ f.d(r(¢)..s — 1, r(j).t — 1) + ~(P[s] = DI[f)),

ming {t_d(s, k), 1<k<mn,

ming, {s£d(r(¢)..s — l,r(j)..fk), 1<k<mn
£d(r(i).s,r()-4) = { | i Pls] = A

fd(r(s)..s — 1, rEA)..E) + y(P[s] =€),
min ¢ £d(r(i)..s, r(G)-£ —1) + (e = D)),
s t

otherwise

ii;'r(s) = r(i) and r(£) = r(j)

fd(r(s)..s —1, rgj)..f) + y(P[s] = ¢),
min ¢ fd(r(%)..s, r(§)..t — 1) X + (e —)AD[ﬂ),
£d(r@@).r(s) =1, r(3)-r() — 1) + t_d(s,?)

\ otherwise

The situation, shown in the first case of Fig. 5, makes possible r(s) = r(i)
and 7(f) = 7(j). We can assume that a tail of sons is shared by nodes
D[t], t € {t', t"}, as well as that this tail is proper given that, otherwise, our
parser guarantees that the nodes DI[t], € {t', ¢} are also shared. Taking into
account that we identify syntactic structures and computations, we conclude that
the distances f-d(r(i)..s, r(j)..t), with (,#) € {(j', t'), (”,#")} do not depend
on previous computations over the shared tail. This sharing has no effect on the
computation, although it does affect the computation of distances for nodes in
the rightmost branch of the tree immediately to the left of the shared tail of
sons, denoted by a double dotted line in the second case of Fig. 5.

The computation of the forest distance when r(#) # r(j), is shown in the
second case of Fig. 5. In relation to each one of the three alternative values used
to compute the minimum, we have that:

1. The values for f.d(r(i)..s — 1, r(j)..t), (j,1) € {(j', t'), (”,t")} have been
computed by the approximate matching algorithm in a previous step and
parse sharing does not affect the computation for distances.

2. We distinguish two cases in relation to the nature of nodes D[f], ¢ € {(t, t"):

— If both nodes are leaves, then r(f) = {. We have then that D[t' — 1] =
Dr(t") — 1] = D[r(t") — 1] = D[t" — 1], and therefore the values for

distances f-d(r(i)..s, r(j)..t — 1) with (j,), € {(4', t'), (5",t")}, are also
the same.

— Otherwise, following the inverse postorder, we arrive at the rightmost
leaves of D[t'] and D[t"], where we can apply the reasoning considered
in the previous case.

3. Values for the distances f.d(r(i)..r(s) — 1, r(f)..r(f) — 1)
identical, given that the trees rooted by nodes D[r() — 1
shared by the parser.

, te{t, t"} are
|, te{t, t"} are

As in the case of sharing in a same r_keyroot, a similar reasoning can be applied
to compute the values for s_f d, avoiding redundant computations.

5 Experimental results

To deal with approximate pattern-matching as a query facility, we are interested
in both considering the point of view of the user, which determines the choice
of one or other vLDC symbol, and in showing the influence of this choice on
the overall computational cost. We also estimate the impact of sharing on the
process described. This is of interest, because user queries can vary widely from
the norm. Thus, the goal is to find a pattern which most closely matches the
user query. Ambiguity arises, since this query can be considered to be a distorted
version of any of several possible patterns. So, sharing saves on the space needed
to represent these structures, and also on their later processing.

: DT . : DIK]
' r o | o
:D[k"’]r il r : ol :D[k’]r il !
----- i o ni (R Rl
I bur, L o,
r !—m\ r r - r..r...rn” r r"'
T " : e il - : D[j" u : .r...r”nll
F]>F‘ il : (P[S?.rl]nn F rl; i oo
O s - D[r(” ! D[t : L il
-~ Powo- St - PLo D[r{j=DIr(e)]
e ro bk DIr(™)FIr)]
’ o il 55t
Coownr b
(first case) (second case)

Fig. 5. Sharing between different r_keyroots

In order to interpret the practical results, we need a formal environment. So,
we define a set of properties which are of interest in an approximate pattern-
matching algorithm. The first property is the abstraction, a ratio between the
number of nodes participating in the substitutions of VLDC symbols related to
the total number of nodes in the data tree. Intuitively, the abstraction measures
the entity of the regions covered by vVLDC symbols. If we consider that greater

levels of abstraction in the query means a smaller effort of the user to express
it, we have a simple criterion to reflect this effort.

The second property is the effort, the number of elementary operations
applied, which measures the computational effort. The third property is the
performance, defined as the ratio between the number of the VLDC operations
contributing to the final distance, and the total number of VLDC operations
actually computed. This allows us to estimate the actual exploitation of the
computations involving VLDC symbols. Finally, to measure the quality of the
pattern-matching process, we consider the ratio between the distance obtained
by the algorithm and the number of nodes in the data tree. To perform the tests,
we have considered shared forest obtained from the parsing of sentences of the
form ”John gives the cake to (the friend of)} Mary”, for value of i = 7, using
the following non-deterministic grammar of English:

(1) S — NPVP (5) NP — det noun PP
(2) VP — verb NP PP (6) NP — det noun PP PP
(3) NP — noun (7) PP — prep NP

(4) NP — det noun

Given that the grammar contains a rule “NP — det noun PP PP’ these
sentences have a number of ambiguous parses which grows exponentially with 1.
This allow us to evaluate our proposal in a strongly ambiguous context, in spite
of the simplicity of the grammar. As patterns, we have used a set of deterministic
parse trees. To start with, we have considered a deterministic parse tree for the
sentence ”John gives the cake to (the friend of > Mary”. We then generate new
pattern trees by means of the inclusion of VLDC nodes in such a way that the
vagueness of the resulting patterns increases, as shown in Fig. 6. To show the
difference between the VLDC symbols, we have considered two different sets of
patterns, one including only ”A” symbols and another with only ”|” symbols.

S

S nil
=T NP, VP
P YF No’T Vt‘erb ‘ ‘
T i
Noun veB NP PP o B NPy PP
AN John gives pet Noun Prep |
‘ ,‘ emm ’—nll ’—nll ’—ni\ NP T
John gives Dt‘et Noun Prep/ NP T . the cake o // nil S
the cake to,” . | Det . Noun N
Det Noun PP nil nil ﬁnfll /
[| PN \Ehe friend Pre m/l,/:: e
\ the friend Mo N g_l Y b
- Pifep///\\]) G-ktimes™ "/ Aﬁl —
1 o ~— 7 \ -
(5 — k) times “Noun A | \ ’, Noun A\ | ‘ /,
- Lo’ fried [_ M-
\ friend /pr i ot
S : S ONP
ktimes (k=0..5) ktimes (k=0 ..5) i
Noun Noun nil
Mary Mary

Fig. 6. Pattern trees, classic and AND-OR graph, used in our tests

The experimental results are shown in Figs. 7, 8 and 9. In all cases, we
represent the level of abstraction in the patterns used on the X-axis. As expected,

abstraction values increase as long as the pattern tree includes more vLDC
symbols. It should also be noticed that the abstraction we get with patterns
using only “|” vLDC is much more reduced than in patterns that include “A”
nodes. This a consequence of the kind of VLDC substitutions performed in the |”
nodes, that includes only a sub-path of nodes, but not complete subtrees. All
tests illustrated reflect evidence an important reduction in the computational
cost due to structural sharing.

7e+06 T — - T
Umbrella with sharing --=---
Umbrella without sharing a8
8 Path with sharing --e-
6e+06 - o a Path without sharing ---e-- +
T ®
k] =}
8
g Ser0s B, 1
© =t
>
s o
€ 4e+06 [B 4
Q
£
K]
@ Sl
5 3e+06 [o 1
2 T,
E N
3 e
£ 2e+06 - ©° 4
5
& oo e
1e+06 - B SR q
AL ST TR e
0
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

Abstraction (VLDC nodes / data tree nodes)

Fig. 7. Tests on effort

In Fig. 7, we show the effort values obtained for different patterns with an
increasing degree of abstraction. In our example, the tests show a reduction in
the effort when the abstraction increases. This is due to the fact that patterns
with a greater abstraction have fewer nodes than more precise ones. In the
case of patterns with only “|” vLDC symbols, the effort is smaller, because the
algorithm does not need to compute the s_f-d values. As a consequence, the use
of “A” symbols always increases the effort, with approximately twice the number
of elementary operations being needed to compute the final distance. From an
intuitive point of view, these results indicate that the computational effort is in
inverse correspondence to the description effort applied by the user to express
the query, which seems natural.

In Fig 8, we can see that the highest performance is given for patterns with
only “|” vLDC symbols. This behavior is again derived from the fact that in
those patterns there is no need to compute s_f -d values. Although the number
of VLDC operations used may be less, the total number of VLDC computations
is much smaller than in the case of “A” patterns, since the algorithm does not
have to compute s_f-d’s. Intuitively, this is due to the fact that vagueness in the
description of the query favours the pattern-matching process since structural
constraints are relaxed.

Finally, in Fig. 9, we show the influence of the different kinds of patterns on
the final distance obtained by the algorithm in our tests. The most interesting

0.00022

' Umbrellé with sha}ing -
kd Umbrella without sharing
0.0002 - o Path with sharing - 7
o e Path without sharing --e--
A 000018 [P —
9 P
S .
T 0.00016 [. B
= .
3 L.
E 000014 | % 1
S e
S .
Q 0.00012 - bl
a
>
2 00001 |
@
]
2 8e-05 - 1
8 —
é [e BT B
kS o
S 4e-05 - -0 —
¢ o000 o°
2e-05 bl
a8 a8
0
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

Abstraction (VLDC nodes / data tree nodes)

Fig. 8. Tests on performance

feature of these results is the behavior when the pattern has only “|” vLDC
symbols. In this case, as the pattern gets less specific, so the distance increases.
The reason is that, when the “|” pattern becomes more general, there are fewer
nodes specified in the pattern, and, in the best mapping, it is necessary to
include insert operations for those nodes. In patterns with “A” vLDC symbols,
the vLDC substitutions cover these inserted nodes, making the distance zero.
From an intuitive point of view, this means that “|” patterns are more inflexible
than patterns with “A“, and more sensitive to the data tree topology. So, this
characteristic means that the behaviour of the “|“ substitutions must be taken
into account when building patterns that include this symbol

0.6 0 T T T
s Umbrella only —--m--
s Pathonly —-e--
2 ost o g
° E
2 K
o -
3
g 04 ks 1
© .
S B
3 .
2 ;
£ 03 . 4
s o
@
8 .
2
g 02 4
2
h=l
13
=
® RS
o 01 AN —
4 ~
0 L L h L L L L - L
0 0.1 0.2 03 0.4 05 0.6 0.7 0.8

Abstraction (VLDC nodes / data tree nodes)

Fig. 9. Tests on quality

6 Conclusions

Practical information retrieval /extraction systems often focuses on systems for
which the priority is the recall, to the detriment of precision. This gap is justified
by efficiency gains assuming that if the system is too slow it will be intolerable
to use, regardless of its ability to identify relevant documents, which may
degrade the performance seriously. In this sense, proposals based on approximate
pattern-matching technology allow to modulate both the complexity in the query
description and computational effort, providing a valid starting point to estimate
the impact of these factors in the quality of the answer.

Acknowledgments

This work has been partially supported by the Spanish Government
under projects TIC2000-0370-C02-01 and HP2001-0044, and the Autonomous
Government of Galicia under project PGIDT01PXI10506PN.

References

1. Efthimis N. Efthimiadis. Interactive query expansion: a user-based evaluation in a
relevance feedback environment. Journal of the American Society for Information
Science, 51(11):989-1003, 2000.

2. P. Kilpeldinen and H. Mannila. Query primitives for tree-structured data. Lecture
Notes in Computer Science, 807:213-225, 1994.

3. M. Vilares. Efficient Incremental Parsing for Context-Free Languages. PhD thesis,
University of Nice. ISBN 2-7261-0768-0, France, 1992.

4. M. Vilares, F.J. Ribadas, and V.M. Darriba. Approximate pattern matching in
shared-forest. Lecture Notes in Artificial Intelligence, 1873:322-333, 2000.

5. M. Vilares, F.J. Ribadas, and V.M. Darriba. Approximate VLDC pattern matching
in shared-forest. Lecture Notes in Artificial Intelligence, 2004:483-494, 2001.

6. J.T.L. Wang, X. Wang, D. Shasha, B.A. Shapiro, K. Zhang, Q. Ma, and Z. Weinberg.
An approximate search engine for structural databases. SIGMOD Record, 29(2):584—
584, 2000.

7. K. Zhang and D. Shasha. Simple fast algorithms for the editing distance between
trees and related problems. SIAM Journal on Computing, 18(6):1245-1262, 1989.

8. K. Zhang, D. Shasha, and J.T.L. Wang. Approximate tree matching in the presence
of variable length don’t cares. Journal of Algorithms, 16(1):33—66, January 1994.

