Approximate VLDC Pattern Matching
in Shared-Forest

M. Vilares!, F.J. Ribadas?, and V.M. Darriba?

! Departamento de Computacién, Universidad de La Corufia
Campus de Elvifia s/n, 15071 La Corufia, Spain
vilares@udc.es
http://coleweb.dc.fi.udc.es/

% Escuela Superior de Ingenierfa Informatica, Universidad de Vigo
Edificio Politécnico, As Lagoas, 32004 Orense, Spain
ribadas@uvigo.es, darriba@uvigo.es

(© Springer-Verlag

Abstract. We present a matching-based proposal intended to deal with
querying for structured text databases. Our approach extends approxi-
mate VLDC matching techniques by allowing a query to exploit sharing
of common parts between patterns used to index the document.

1 Introduction

Any effort in the development of effective retrieval methods is based on find-
ing a related representation for documents and requests. The main objective is
to determine a limited number of index terms for the major concepts in the
document,.

Until recently, indexing was accomplished by creating a bibliographic citation
in a structured file that references the original text. This approach allows a
reduction in time and space bounds, although the ability to find information on
a particular subject is limited by the system which creates index terms for that
subject. At present, the significant reduction in cost processing has propitiated
the notion of total document indexing, for which all words in a document are
potential index descriptors. This reduction saves the indexer from entering index
terms that are identical to words in the document, but does not facilitate the
finding of relevant information for the user.

In effect, the words used in a query do not always reflect the value of the
concepts being presented. It is the combination of these words and their semantic
implications that contain the value of these concepts which leads us to more
sophisticated index representations, such as syntactic structures and context-free
grammars [2] [3]. This information is inherent in the document and query. So,
matching becomes a possible mechanism for extracting a common pattern from
multiple data and we could use it to locate information of linguistic interest in

natural language processing. Some related work about using syntactic structures
and matching techniques in IR can be found in Smeaton et al. [4] [5] [6].

However, the language intended to represent the document can often only
be approximately defined, and therefore ambiguity arises. Since it is desirable
to consider all possible parses for semantic processing, it is convenient to merge
parse trees as much as possible into a single structure that allows them to share
common parts. Although in the case of the query, language ambiguity could
probably be eliminated, queries could vary widely from indexes or some struc-
tural details are unknown, and an approximate matching strategy in the presence
of variable length don’t cares (VLDC) becomes necessary [10].

Previous works do not provide a mechanism to fully exploit structural sharing
in VLDC matching. Our aim is to cover the lack of proposals in this domain.

2 The editing distance

Given P, a pattern tree, and D, a data tree, we define an edit operation as a
pair a — b, a € labels(P) U {e}, b € labels(D) U {e}, (a,b) # (¢,¢), where
€ represents the empty string. We can delete a node (a — €), insert a node
(¢ — b), and change a node (a — b). Each edit operation has an associated cost,
v(a — b), that we extend to a sequence S of edit operations s1, s2, ..., s, in
the form (S) = E‘ii‘l (7(s;)). The distance between P and D is defined by the
metric:

6(P,D) = min{~v(S), S editing sequence taking P to D}

Given an inverse postorder traversal, as it is shown in Fig. 1, to name each node ¢
of a tree T by T'[i], a mapping from P to D is a triple (M, P, D), where M is a set
of integer pairs (4, j) satisfying, for each 1 <i1,i2 <| P | and 1 < j1,j2 <| D |:

7;1 = 7:2 iﬁ'jl = j2

Pliy] is to the left of P[ia] iff D[j1]is to the left of D[js]

Pliy] is an ancestor of P[is] iff D[j1] is an ancestor of D|[j]

which corresponds, in each case, to one-to-one assignation, sibling order preser-
vation and ancestor order preservation. The cost, v(M), of a mapping (M, P, D)
is computed from relabeling, deleting and inserting operations, as follows:

y(M)= Y y(Pli] = D)) + D v(Pli] =€) + Y v(e = D[j])

(i,j)eM i€D jeT

where D and 7 are, respectively, the nodes in P and D not touched by any line
in M. Tai proves, given trees P and D, that

0(P,D) = min{y(M), M mapping from P to D}

which allows us to focus on edit sequences being a mapping. We show in Fig. 2
one example of mapping between two trees, and a sequence of edit operations

not constituting a mapping. We also introduce r_keyroots(T) as the set of all
nodes in a tree T which have a right sibling plus the root, root(T), of T. We
shall proceed through the nodes determining mappings from all leaf r_keyroots
first, then all r keyroots at the next higher level, and so on to the root. The set
of r_keyroots(T') is indicated by arrows in Fig. 1.

Qa 10 T[1.8] T[1.4]
E>b9 E>C6 d 4 e f ¢ d d
NN V2N "\
e f gvh i, g h h
8 7 5 3

—_— —.

i
j
1
Fig. 1. The forest distance using an inverse postorder numbering

In dealing with approximate VLDC pattern matching, some structural details
can be omitted in the target tree and different strategies are then applicable.
Following Zhang et al. in [10] we introduce two different definitions to VLDC
matching:

— The vLDC substitutes for part of a path from the root to a leaf of the data
tree. We represent such a substitution, shown in Fig. 2, by a vertical bar ”|”,
and call it a path-VLDC.

— The VLDC matches part of such a path and all the subtrees emanating from
the nodes of that path, except possibly at the lowest node of that path.
At the lowest node, the VLDC symbol can substitute for a set of leftmost
subtrees and a set of rightmost subtrees. We call this an umbrella-vLDC, and
represent it by a circumflex “A”, as shown in Fig. 2.

To formalize the consideration of pattern trees with VLDC’s requires the capture
of the notion of VLDC-substitution for nodes in the target tree P labeled | or A
as previously introduced. So, given a data tree D and a substitution s on P, we
redefine:

0(P,D) = minses{6(P, D, s)}

where S is the set of all possible VLDC-substitutions, and §(P, D, s) is the distance
0(P, D), being P the result of apply the substitution s to P. As a consequence,
no cost is induced by vVLDC-substitutions.

3 Approximate vLDC tree matching

The major question of Zhang et al. in [9] [10], is the tree distance algorithm
itself. However, parsing and tree-to-tree correction are topologically related and,

Correct Incorrect
Mapping without VLDC Mapping with a Path-VLDC Mapping with an Umbrella-VLDC

Fig. 2. An example on mappings

to get the best performance, it is necessary to understand the mechanisms that
cause the phenomenon of tree duplication.

A major factor to take into account is the syntactic representation used. We
choose to work in the parsing context described for ICE [8]. Here, authors rep-
resent a parse as the chain of the context-free rules used in a leftmost reduction
of the input sentence, rather than as a tree. When the sentence has distinct
parses, the set of all possible parse chains is represented in finite shared form by
a context-free grammar that generates that possibly infinite set.

This difference with most other parsers is only apparent, since context-free
grammars can be represented by AND-OR graphs that in our case are precisely
the shared-forest graph [1]. In this graph, AND-nodes correspond to the usual
parse-tree nodes, while OR-nodes correspond to ambiguities. Sharing of struc-
tures is represented by nodes accessed by more than one other node and it may
correspond to sharing of a complete subtree, but also sharing of a part of the de-
scendants of a given node. This allows us to gain in sharing efficiency in relation
to classic representations, as shown in Fig. 3.

ST) T
%\/% i \ \\U"z

r=-r--nil nil--+---
|
|

Classic forest representation without sharing. 1 %
7

AND-OR representation with sharing, AND-OR representation with sharing,
for a bottom-up parsing. for a top-down parsing.
RULE n, : Y, 2 i i -
L P—>aBNdP ///////% Shared nodes using a bottom-up parser, with AND-OR graphs.

RULE N, p—->aBY%d

&\\\\§ Shared nodes using a top-down parser, with AND-OR graphs.

Fig. 3. How shared forest are built using an AND-OR formalism

It is also important the parsing scheme applied. So, bottom-up parsing may
share only the rightmost constituents, while top-down parsing may only share
the leftmost ones. This relies to the type of search used to built the forest.
Breadth first search results on bottom-up constructions and depth first search
results on top-down ones, as it is also shown in Fig. 3.

At this level, one major observation we noted is that Zhang et al. consider
a postorder traversal, computing the forest distance by left-recursion on this
search. As a consequence, we would need to consider a top-down parsing archi-
tecture to avoid redundant computations. However, top-down parsers are not
computationally efficient, and a bottom-up approach, as is the case of ICE, re-
quires a rightmost search of tree constituents. This implies redefining the archi-
tecture of the original matching strategy.

To accomplish this change, we introduce r(¢) (resp. anc(z)) as the rightmost
leaf descendent of the subtree rooted at T'[i] (resp. the ancestors of T'[i]) in a tree
T, and TTi..j] as the ordered sub-forest of T induced by the nodes numbered ¢
to j inclusive, as it is shown in Fig. 1. In particular, we have T'[r(¢)..i] is the tree
rooted at T'[i]. We now define the forest edition distance between a target tree
P and a data tree D, as a generalization of 4, in the form

f_d(P[Sl..Sz],D[tl..tg]) = (5(P[81..82],D[t1..t2])

that we shall denote f_d(s;..82,%1..t2) when the context is clear. Intuitively, this
concept computes the distance between two nodes, P[s;] and Dl[ts], in the con-
text of their left siblings in the corresponding trees, while the tree distance,
0(P[sz2], D[t2]), is computed only from their descendants.

To be precise, given a pattern tree P and a data tree D, we can compute
the editing distance t_d(P, D) applying the formulae that follow [7], for nodes
i € anc(s) and j € anc(t), assuming P[s] is not an incomplete structure:

(fd (r(3)..s — 1, r(j)..t) + y(P[s] =€),
min { fd (r(3)..s, r(j)-t —1) + v(e — DI[t]), }
fd (r(3)..s — 1, r(j)..t — 1) + y(P[s] — DI[t])
iff r(s) = r(¢) and r(t) = r(j)
£d(r(i)..s,r(j)..t) = <

{ fd (r(3)..s — 1, r(j)..t) + (P[s] = €), }
fd (r(4)..s, r(j)-t —1) + v(e = DI[t]),
fd (r(z)..r(s) =1, r(j)..r(t) — 1) + t_d(s,t)

\ otherwise

When PJs] is either “|” or “A” formulae must be adapted and the process is
illustrated in Fig. 4. We first assume P[s] is “|”:

fd(r(s)..s — 1, 7(j)..t) + v(P[s] — ¢),
£d(r(i)..s, ().t —1) + v(e — D[t]),
(r(@)..s = 1, r(j)-t = 1) + y(P[s] = D[t]),
(¢, DIr(i)l-—1) + miny, {t-d(s, t) —

For the case where P[s] is “A”, formulae are the following:

fd(r(é)..s — 1, r(j).-t) + y(P[s] = ¢),

fd(r(2)..s, r(j).t — 1) + v(e — DIt]),
£.d(r(7)..s,7(j)..t) = min] fd(r(@)..s — 1, r(j).4t —1) + v(P[s] — DI[t]),

ming, {t_d(s,tr)} 1<k<mny,

ming, {s_fd(r(¢)..s —1,7(j)..tx)} 1<k<my

where D[tx], 1 < k < ny, are children of D[t]. If D[t] is a leaf, that is t = r(j),
then only the first three expressions are present. We define the suffiz forest
distance between Fp and Fp, forests in the pattern P and the data tree D
respectively, denoted s_f d(Fp, Fp), as the distance between Fp and Fp, where
Fp is a sub-forest of Fip with some consecutive complete subtrees removed from
the left all having the same parent. Formally we have that

S_f_d(Fp, FD) = minpD {f_d(FP, FD)}

From a computational point of view, it can be proved that

[min { £.4(r(i)..s, ¢), }
f_d(r(%)..s, r(j)..t)
i 7(1) = ()

s£d(r(i)..s,7(j)..t) = {

{ sf£.d(r(z)..s — 1, r(j)..t) + Y(P[s] = ¢), }
min { sf.d(r(7)..s, r(j)..t — 1) + v(e = D[f]),
sf.d(r(3)..r(s) — 1, r(j)..r(t) — 1) + t_d(s,t)

L otherwise

To compute t-d(P, D) it will be sufficient to take into account that
t-d(P, D) = f_d(root(P)..r(root(P)), root(D)..r(root(D)))

Time bound is O(| P|x|D|x min(depth(P),leaves(P))x min(depth(D),leaves(D)))
in the worst case, where |P| (resp. |D|) is the number of nodes in the pattern
tree P (resp. in the data tree D).

4 Approximate vLDC matching in shared forest

To start with, let P be a labeled ordered tree where some structural details has
been omitted, and D an AND-OR graph, both of them built using our parsing
frame. We shall identify P with a query and D with a part of the syntactic
representation for a textual database with a certain degree of ambiguity. The
presence of OR nodes in D has two main implications in our work: Firstly, there
will exist situations where we must handle simultaneous values for some forest
distances and, secondly, the parser may share some structures among the descen-
dants of the different branches in an OrR node. We shall now present the manner
we calculate the distance between a pattern tree and the set of trees that are
represented within the AND-OR graph, and how to take advantage of the shared
structures created by the parser.

Let P[s] be the current node in the inverse postorder for P, and i € anc(s) a
r keyroot. Given an OR node D[k] we can distinguish two situations, depending
on the situation of this OR node and the situation of the r_keyroots of D.

t tree(t) |

»! 2l
Ctrees), ‘ Ctredy U \
3 0 i P[r(i) . 1(s)-1] : i o i D[r(j) . r(t)-1]
o o, r(i) T IO r()
* 'S ? 'y

tree_dist(s,s) = forestdist(r(s) .. s, r(t) .. t)

r(s) Zr(i) or r(t) Zr() forest_dist(r(i) .. r(s)-1, r(j) .. r(t)-1)

Fig. 4. The forest distance in our proposal

4.1 Sharing into a same r_keyroot

Let D[t'] and D[t"] be the nodes we are dealing with in parallel for two branches
labeled D[k'] and DI[k"] of the OrR node r(D[k]). We have that j € anc(t') N
anc(t'"), that is, the tree rooted at the r_keyroot D[j] includes the OR alternatives
D[k'] and D[k"].

Such a situation is shown in Fig. 5 using a classic representation and the AND-
OR graphs. Here, the lightly shaded part refers to nodes whose distance have been
computed in the inverse postorder before the OR node D[k]. The heavily shaded
part represents a shared structure. The notation “e e ¢” in figures representing
AND-OR, graphs, expresses the fact that we descend along the rightmost branch
of the corresponding tree.

We shall assume that nodes D[r(t') — 1] and D[r(t") — 1] are the same, that
is, their corresponding subtrees are shared. So, D[r(t')] (resp. D[r(t")]) is the
following node in D[k'] (resp. D[k"]) to deal with once the distance for the shared
structure has been computed.

At this point, our aim is to compute the value for f.d(r(i)..s, r(j)..t), t €
{t', t"}, proving that we can translate parse sharing on sharing on computations
for these distances.

Since we have assumed there is a shared structure between D[r(#)] and D[r(j)],
we conclude that r(j) # r(t) and the values for fd(r()..s, r(j)..t), t € {t', t"}
are given by:

nil
, el
R TR0 %1 I I S ot
e gy
r r r"'r""
: ..’.;..rniln : “_.F'”F”"
BIr k™) Birkl DIrC) P o]
Fig. 5. Sharing into a same r_keyroot
. £.A(r(i)..s — 1, 7(4)..F) + y(P[s] = ¢),
£.d(r(:)..s,7(j)..t) = min < £d(r(i)..s, r(4)..£ - 1) + (e = DI[f]),

£.A(r(i)..r(s) — 1, r(j)..r(d) — 1) + t_d(s,?)
where £ € {t', t"}. We can interpret this three alternatives as follows:

1. The values for f-d(r(i)..s—1, r(j)..t), € {#', t"} have been computed by the
approximate matching algorithm in a previous step. So, in this case, parse
sharing has not consequences on the natural computation for the distances.

2. Two cases are possible in relation to the nature of nodes D[], t € {t', t"'},
these are:

— If both nodes are leaves, then r(ﬂ = {. As a consequence, we also have
that

D[t' —1] = D[r(t') — 1] = D[r(t") — 1] = D[t" — 1]

and the values f.d(r(i)..s, r(j)..t — 1), t € {t/, "'} are also the same.

— Otherwise, following the inverse postorder, we would arrive at the right-
most leaves of D[t'] and D[t"], where we could apply the reasoning con-
sidered in the previous case.

3. Values for the distances f.d(r(s)..r(i) — 1, r(j)..r(f) = 1), t € {t/, t"} are
identical, given that nodes D[r() — 1], £ € {t', t"} are shared by the parser.

A similar reasoning can be applied to compute the values for s_fd, avoiding
redundant computations.

4.2 Sharing between different r _keyroots

We have that j' € anc(t') and j"” € anc(t"), with j' # j", are two r_keyroots.
We also have an OR node D[k] being a common ancestor of these two nodes.
We suppose that the r_keyroots are in different branches, that is, there exists a
r_keyroot, D[j'] (resp. D[j"]), in the branch labeled D[%'] (resp. D[k"]).

Our aim now is to compute the value for distances f-d(r(i)..s, r(j)..t), where
pairs (j,#) are in {(j', t'), (j",#")}. Formally, we have that these values are
given by:

((£d(r(i)..s =1, r()--F) +7(P[s] = e),

fd(r(i)..s, r(G)-t—1) +~(e — D[i]),

min { f-d(r(%)..s — 1,Ar(A) £—1) 4+ y(P[s] = D[ﬂ
f.d(¢, D[r(3)].t —1) + mlntk{t _d(s,x) —

t-d(¢,tx)} 1<k<n;

iff P[s] =|
£d(r(i)..s — 1, r(j).-8) +7(P[s] = &),
fd(r(z)..s, r(§)--t —1) +7(e — DIf]),

{ min ¢ £d(r(i)..s = 1, r(j).t — 1) +7(P[s] = DIi]),

min;, {t_d(s,), 1<k<mny

min;, {s£d(r(i)..s — 1,r(§).f), 1<k<m
£d(r(i)..s,r(§)..t) = | M Pls] =

fd(r(i).s =1, r().H) +(Pls] =),
min ¢ £d(r(i)..s, r(j).-£—1) +~(e — D[i]),
fd(r(i)..s — 1, r(3)..£ — 1) + y(P[s] = D[f])

otherwise

\

iff r(s) = r(4) and r(f) = r(j)

£d(r(3)..s — 1, r(j)-.t) + y(P[s] =€),
min ¢ £.d(r(i)..s, ().t — 1) + (e —)AD[ﬂ),
£.d(r().. ()= 1, r(§)-r(f) — 1) + t-d(s,)

\ otherwise

The situation, shown in Fig. 6, makes possible r(s) = r(i) and r(f) = r(j
In this first case, we can assume that a tail of sons is shared by nodes D[f], # 6
{t', t"}. We can also assume that this tail is proper given that, otherwise, our
parser guarantees that the nodes D[f], £ € {t', t"} are also shared.

Taking into account our parsing strategy, which identifies syntactic struc-
tures and computatlons we conclude that the distances f.d(r(i)..s, r(j)..t), with

G,%) € {(j', t), (5,t")} do not depend on previous computations over the

shared tail, as is shown in the left-hand-side of Fig. 6. So, this sharing has no
consequences on the calculus, although it will have effects on the computation
of distances for nodes in the rightmost branch of the tree immediately to the left
of the shared tail of sons, which is denoted by a double pointed line in Fig. 6, as
we shall shown immediately.

We consider now the second case, that is, the computation of the forest
distance when r(#) # 7(j), such as is shown in Fig. 7. Here, in relation to each
one of the three alternative values to compute the minimum, we have that:

1. The values for f.d(r(i)..s — 1, r(j G,8) € {(5', t'), (4,¢")} have been
computed by the approximate matchlng algorlthm in a previous step and
parse sharing does not affect the computation for distances.

I

EE—T]
LDyl DI ()]
DIr()-Dlr(t)]

D[r(*)] Dr(]

Fig. 6. Sharing between different r _keyroots (first case)

2. We distinguish two cases in relation to the nature of nodes D[f], t € {(¢, t").

We shall apply the same reasoning considered when we had an only r_keyroot:

— If both nodes are leaves, then 7(f) = {. As a consequence, we also have
that

D[t' — 1] = D[r(t") — 1] = D[r(t") — 1] = D[t" — 1]

and therefore the values for distances f-d(r(i)..s, r(j)..t —1) with (j,#), €
{(', t"), (§",¢")}, are also the same.

— Otherwise, following the inverse postorder, we arrive to the rightmost
leaves of D[t'] and D[t"], where we can apply the reasoning considered
in the previous case.

o
nil
oy
r N nil

nil o il
D[t "] L bt

DIrG BIrG)]

Fig. 7. Sharing between different r_keyroots (second case)

3. Values for the distances f_d(r(i)..r(s) — 1, r(f)..r(f)A— 1), fAG {t', t""} are
identical, given that the trees rooted by nodes D[r(t) — 1], t € {t', t"} are
shared by the parser.

As in the case of sharing on a same r_keyroot, a similar reasoning can be
applied to compute the values for s_f_d, avoiding redundant computations.

5 Experimental results

We take a simple example to illustrate our discussion: the language of arithmeti-
cal expressions. We compare our proposal with Zhang et al. [10], considering two
deterministic grammars, Gr, and Gg, representing respectively the left and right
associative versions for the arithmetic operators; and one non-deterministic one
Gn. To simplify the explanation, we focus on matching phenomena assuming
that parsers are built using ICE [8]. Lexical information is common in all cases,
and tests have been applied on target inputs of the form a1 + a2 +...+a; +a;41,
with 4 even, representing the number of addition operators. These programs have
a number of ambiguous parses which grows exponentially with 4. This number
is:

) 1
C()ZCl:]. and Cl=(27)7/) /L'J,-—]_, lfl>1

As pattern, we have used deterministic parse trees of the form

| =135
| /__/_v'_\a+ a, Qiyy
A i1
a3
Q t &

In the deterministic case, patterns are built from the left-associative (resp.
right-associative) interpretation for G, (resp. Ggr), which allows us to evaluate the
impact of traversal orientation in the performance. So, the rightmost diagram in
Fig. 8 proves the adaptation of our proposal (resp. Zhang et al. algorithm) to left-
recursive (resp. right-recursive) derivations, which corroborates our conclusions.

In the non-deterministic case, patterns are built from the left-associative
interpretation of the query, which is not relevant given that rules in Gy are sym-
metrical. Here, we evaluate the gain in efficiency due to sharing of computations
in a dynamic frame, such as is shown in the leftmost diagram of Fig. 8.

6 Conclusions

Approximate tree matching can be adapted to deal with shared data forest and
incomplete pattern trees, to give rise to approximate VLDC pattern matching. In
practice, this approach can reduce the cost of evaluating queries in sophisticated
retrieval systems, where retrieval functions based on classic pattern matching
cannot reach optimal results because it is impossible to estimate the exact rep-
resentation of documents or requests and additional simplifying assumptions are
necessary.

Number of elementary operations

Non-deterministic grammar Deterministic grammars
. 200000

180000 |- Z&S with G and our proposal with G —x—
7&S with Ggand our proposal with G —a—

6e+08

With sharing —e—
Without sharing —e—
Number of Ambiguities

o
&

%
>
&

10000 160000 -
140000 -
4e+08

4 1000 120000

100000 -

w
&

e
>
&

00 80000
2408 |- 60000 |

Number of Ambiguities
Number of Elementary Operations

40000 -
le+08

20000

0

2 3 4 5 6 7
Value of i for Ci Value of i for Ci.

Fig. 8. Results on approximate VLDC matching

References

9.

. Billot, S., Lang, B.: The structure of shared forest in ambiguous parsing. Proc. of

27" Annual Meeting of the ACL, 1989.

. Kilpelainen, P., Mannila, H.: Grammatical Tree Matching. Lecture Notes in Com-

puter Science 644 (1992) 159-171.

. Kilpelainen, P.: Tree Matching Problems with Applications to Structured Text

Databases. Ph.D. Thesis, Department of Computer Science, University of Helsinki,
1992. Helsinki, Finland

. Smeaton, Alan F. : Incorporating Syntactic Information into a Document Retrieval

Strategy: An Investigation. Proc. the 9" Annual International ACM SIGIR Con-
ference on Research and Development in Information Retrieval, 103-113, 1986.

. Smeaton, A.F. and van Rijsbergen, C.J.: Experiments on Incorporating Syntactic

Processing of User Queries into a Document Retrieval Strategy. Proc. of the 11"

International ACM-SIGIR Conference on Research and Development in Information
Retrieval, pp. 31-54. Grenoble, France, 1988.

. Smeaton, A.F, O’Donell, R. and Kelley,F.: Indexing Structures Derived from Syntax

in TREC-3: System Description. Proc. of 3" Text REtrieval Conference (TREC-3),
D.K. Harman (ed.), NIST Special Publication, 1994.

. Vilares, M., Cabrero, D., Ribadas F.J.: Approximate matching in shared forest.

Proc. of Sizth International Workshop on Natural Language Understanding and
Logic Programming pp. 59-72, Las Cruces, NM (USA), 1999.

. Vilares, M., Dion, B.A.: Efficient incremental parsing for context-free languages.

Proc. of the 5" IEEE International Conference on Computer Languages (1994)
241-252, Toulouse, France.

Zhang, K., Shasha, D.: Simple fast algorithms for the editing distance between trees
and related problems. STAM Journal on Computing (1989) 18 1245-1262.

10. Zhang, K. and Shasha, D. and Wang, J.T.L. Approximate Tree Matching in the

Presence of Variable Length Don’t Cares. Journal of Algorithms, pages 33-66, vol
16 (1), 1994

