Approximate Pattern Matching in Shared-Forest

M. Vilares, F.J. Ribadas, and V.M. Darriba

Computer Science Department, Campus de Elviiia s/n, 15071 A Coruila, Spain
vilaresQudc.es ribadas@mail2.udc.es darriba@mail2.udc.es
WWW home page: http://www.dc.fi.udc.es/~vilares

Abstract. We present a proposal intended to demonstrate the appli-
cability of tabulation techniques to pattern recognition problems, when
dealing with structures sharing some common parts. This work is moti-
vated by the study of information retrieval for textual databases, using
pattern matching as a basis for querying data.

1 Introduction

One critical aspect of an information system that determines its effectiveness
is indexing, that is, the representation of concepts to get a well formed data
structure for search. Once this has been done, the system must define a strat-
egy in order to translate a query statement to the database and determine the
information to be returned to the user.

Until recently, indexing was accomplished by creating a bibliographic citation
in a structured file that references the original text. This approach allows a
reduction in time and space bounds, although the ability to find information on
a particular subject is limited by the system which creates index terms for that
subject. At present, the significant reduction in cost processing has propitiated
the notion of total document indexing, for which all words in a document are
potential index descriptors. This reduction saves the indexer from entering index
terms that are identical to words in the document, but does not facilitate the
finding of relevant information for the user.

In effect, the words used in a query do not always reflect the value of the
concepts being presented. It is the combination of these words and their semantic
implications that contain the value of these concepts which leads us to more
sophisticated index representations, such as context-free grammars [1] [2]. This
information is inherent in the document and query. So, matching becomes a
possible mechanism for extracting a common pattern from multiple data and
we could use it to locate information of linguistic interest in natural language
processing. Some related work about using syntax structures in IR can be found
in Smeaton et al. [3] [4] [5]-

However, the language intended to represent the document can often only
be approximately defined, and therefore ambiguity arises. Since it is desirable
to consider all possible parses for semantic processing, it is convenient to merge
parse trees as much as possible into a single structure that allows them to share
common parts. Although in the case of the query, language ambiguity could

probably be eliminated, queries could vary widely from indexes and an approx-
imate matching strategy becomes necessary. At this point, our aim is to exploit
structural sharing during the matching process in order to improve performances.

2 The Editing Distance

Given trees, T and Ty, we define an edit operation as a pair a — b, a €
labels(T1) U {e}, b € labels(T>) U {e}, (a,b) # (e,€), where e represents
the empty string. We can delete a node (a — ¢), insert a node (¢ — b), and
change a node (a — b). Each edit operation has an associated cost, y(a — b),
that we extend to a sequence S of edit operations sy, s2, ..., s, in the form

~v(S) = lel (7(s;)). The distance between T} and T is defined by the metric:

0(T1,T>) = min{v(S), S editing sequence taking T} to T>}

Given a postorder traversal, as shown in Fig. 2, to name each node i of a tree
T by T[i], a mapping from Ty to T5 is a triple (M, T1,T3), where M is a set of
integer pairs (i, j) satisfying, for each 1 < 1,42 <|T1 | and 1 < j1,j2 <| T» |:

= Z iﬁ'jl = jg
[1] is to the left of Th[i2] iff T2[j1] is to the left of To[j2]
Ti[i1] is an ancestor of T [iz] iff T2[j1] is an ancestor of Tx[j2]

which corresponds, in each case, to one-to-one assignation, sibling order preser-
vation and ancestor order preservation. The cost, v(M), of a mapping (M, Ty, T»)
is computed from relabeling, deleting and inserting operations, as follows:

vM)= D" (Tl = Tof]) + Y A(Tili] = &) + > v(e = Ta[j])
(i,5)eM i€D jET

where D and 7 are, respectively, the nodes in T} and 75 not touched by any line
in M. Tai [6] proves, given trees T; and T5, that

0(T1,T3) = min{y(M), M mapping from T} to T5}

which allows us to focus on edit sequences that are a mapping. We show, in
the leftmost diagram of Fig. 1, an example of mapping between two trees. The
rightmost diagram includes a sequence of edit operations not constituting a

mapping.

3 The Zhang and Shasha’s Algorithm

We have based our work in the Zhang and Shasha’s tree pattern matching algo-
rithm, introduced in [8] and extended with advanced matching features in [9]. A
major characteristic of this algorithm is its bottom-up oriented approach. Given
the I_keyroots(T), the set of all nodes in T which have a left sibling plus the root,

a~ " a a Ta
b ¢ d b c d b ¢ d\ b vt:/d
e~ e e
f g.... .9
Fig. 1. An example on mappings
acjlo T[1.8] T[6.9]
RN .
by c5 dy b ¢ h i d
NG NG AN N
€ f g h |8 e f g] h i
1 2 4 6 ‘ ‘
j j
7

Fig. 2. The forest distance using a postorder numbering

root(T'), of T'; the algorithm proceeds through the nodes determining mappings
from all leaf 1 keyroots first, then all 1_keyroots at the next higher level, and so
on to the root.

We introduce 1(i) (resp. anc(i)) as the leftmost leaf descendant of the subtree
rooted at T; (resp. the ancestors of T;) in a tree T, and Ti..j] as the ordered
sub-forest of T' induced by the nodes numbered i to j inclusive. In particular,
we have T[l()..i] which is the tree rooted at T[i], as shown in Fig. 2, where the
set of I_keyroots is indicated by arrows. We also define the forest edition distance
as a generalization of §, in the form

£.A(T1[i1.i2], To[j1.-ga]) = 6(Ti[i1..52], Ta[j1.-jo])

that we shall denote f_d(i1..i2, j1..j2) when the context is clear. Intuitively, this
new concept computes the distance between two nodes, Ti[i2] and T5[j2], in the
context of their left siblings in the corresponding trees, while the corresponding
tree distance, §(T1[i2], T2[jz]), is computed only from their descendants.

Formally, we compute ¢t_d(T7,T5) applying the formulas that follow, for nodes
i1 € anc(i) and j; € anc(j), as illustrated in Fig. 3, taking into account the
different cases:

(£d(l(in).s -1, 1(j1).j) +y(T1fi] —),

{fd(l(h) 4 l(]l) J=1) +o(=T, }

fd(1(é1)..5 — 1, 1(j1)..7 — 1) + v(T1[5] = T2[4])
iff (i) = I(i1) and l(]) =1(j)
£.d(1(41)..4,1(41).-5) = <

£4(1(¢1)..% — 1, 1(j1)--5) + y(Th[i] — €),

{ -d(l(i1).4, 1(j1)-.d — 1) + v(e = T2[j]), }
d(l(31)..1(2) — 1, 1(41).-1(F) — 1) + t_d(3,)

\ otherwise

Now, to compute the distance between 17 and T>, it will be sufficient to take
into account that

t-d(T1, T>) = £.d(l(root(T}))..root(T1), l(root(T3))..root(T>))
The time complexity of this algorithm is, in the worst case:
O(| Ty || T> | min(depth(T7), leaves(T}))min(depth(77), leaves(T5)))

where | Ty | (resp. | T> |) is the number of nodes in the pattern tree T; (resp.
in the data tree T), leaves(77) (resp. leaves(T2)) is the number of leaves in Ty
(resp. in T»), and depth(T}) (resp. depth(T3)) is the depth of 77 (resp. of T5).

/\'1 nll -, m

/.\il /.\jl
R el R BN trecl)
Talliy) - 1] N T,[IG,) ..|g;ai] ‘ -
A - N T S R Io>-|1 NI
P CONN A — W
t L t
T | treedist(ij) = forestdist(l(i) .. i, 1() - j)

forestdist(I(iy) .. 10)-1,1G) - 1G)-1) 6 #1(1) or 10)#1G.)
1 1

Fig. 3. The forest distance in Zhang and Shasha’s algorithm

4 Relating Parsing and Approximate Tree Matching

The major question of Zhang and Shasha’s algorithm [8], is the tree distance
algorithm itself. However, parsing and tree-to-tree correction are topologically
related and it is necessary to understand the mechanisms that cause the phe-
nomenon of tree duplication to get the best performance.

A major factor to take into account is the syntactic representation used. We
chose to work in the parsing context described for ICE [7]. Here, authors represent
a parse as the chain of the context-free rules used in a leftmost reduction of the
input sentence, rather than as a tree. When the sentence has distinct parses,
the set of all possible parse chains is represented in finite shared form by a
context-free grammar that generates that possibly infinite set.

This difference with most other parsers is only apparent, since context-free
grammars can be represented by AND-OR graphs that in our case are precisely
the shared-forest graph. In this graph, AND-nodes correspond to the usual parse-
tree nodes, while OR-nodes correspond to ambiguities. Sharing of structures is
represented by nodes accessed by more than one other node, and it may cor-
respond to sharing of a complete subtree, but also to sharing of a part of the
descendants of a given node.

Fa 4 T[1.8] T[1.4]
Bb,oc, d, e f ¢ d d
A NIVAN N N\

De f g~h . g h h
8 7 5 3

—_—

i
i
1
Fig. 4. The forest distance using an inverse postorder numbering

In this context, sharing of a tail of sons in a node of the resulting forest is
possible. More exactly, bottom-up parsing may share only the rightmost con-
stituents, while top-down parsing may only share the leftmost ones. This relates
to the type of search used to build the forest. Breadth first search results in
bottom-up constructions and depth first search results in top-down ones, as is
shown in Fig. 5.

At this level, one major observation we noted is that Zhang and Shasha
consider a postorder traversal, computing the forest distance by left-recursion
on this search. As a consequence, we would need to consider a top-down pars-
ing architecture to avoid redundant computations. However, top-down parsers
are not computationally efficient, and a bottom-up approach, as is the case of
ICE, requires a rightmost search of tree constituents. This implies redefining the
architecture of the original matching strategy.

To accomplish this change, nodes in a tree T will be first numbered consid-
ering an inverse postorder traversal, as is shown in Fig. 4. We also introduce

¢ , O]

B nil--+--+
i

/B,N %\ : nz/%yz / \ i%g\\ n,
“ % s pod RN

/ ey
Classic forest representation without sharing. L %%\ﬁ / N Vz§\\\ n,

D
D

k

AND-OR representation with sharing, AND-OR representation with sharing,
for a bottom-up parsing. for a top-down parsing.
RULE n, i d—aBY%d 2 i i -
, P Bnop ///////% Shared nodes using a bottom-up parser, with AND-OR graphs.

RULE N, > a B%3 P

m Shared nodes using a top-down parser, with AND-OR graphs.

Fig. 5. How shared forest are built using an AND-OR formalism

r_keyroots(T), indicated by arrows in Fig. 4, as the set of all nodes in a tree T
which have a right sibling plus the root, r00t(T), of T. And also we define (%)
as the rightmost leaf descendant of the subtree rooted at T; in a tree 7.

From here, the alternative construction for the forest edition distance is anal-
ogous to the original algorithm, as shown in Fig. 6. For a better understanding
we shall present the computations used with the inverse postorder. Given trees
T, and T3, and nodes i1 € anc(i) and j; € anc(j), we have then that:

(fd(r(in).i—1, 7(j1)-4) +y(Tuli] = ¢),
in ¢ £d(r(i1).4, r(j1).5 —1) + (e = T2[j]),

fd(r(in).i —1, r(j1)..j — 1) + y(T1[i] = T2[])
iff r(i) = r(¢1) and r(i) = r(j1)
fd(r(iy).i,r(j1).-7) =<
£A(r(ir)-d — 1, 7(j1)-d) (Tl > €),
{f—d(T(il)--i, r(j1)-j —1) + (e = Ta[j)), }
fd(r(i)..r(@) — 1, r(j1)..r(4) — 1) + t-d(s, j)

\ otherwise

To compute t-d(Ty,T») it will be sufficient to take into account that

t-d(T1, T») = f-d(root(T})..r(root(11)), root(Tz)..r (root(T3)))

Lastly, time and space bounds are the same as in the classic Zhang and Shasha’s
algorithm.

5 Approximate Matching in Shared Forest

We now offer a simple explanation of how both environments, parsing and ap-
proximate tree matching, can be efficiently integrated in practice.

To start with, let 77 be a labeled ordered tree, and 75 an AND-OR graph,
both of them built using our parsing frame. We shall identify 77 with a query
and T, with a part of the syntactic representation for a textual database with
a certain degree of ambiguity. The presence of OR nodes in 7> has two main

o1 //.\\]-1
tree() ;’fr’éé(i’):ff”/‘;, ,,,,, e
T, [y - 1)1 b i Tz[r(i}) - r()-1]
i (0]) :' i ii r()-
,,,,,,,,,,, 0 1 A) S)
1 1 t

treedist(i j) = forestdist(r(i) .. i, r(j) .. j)
r(i) # r(i1) or r(j) # r(jl) forestdist(r(il) . r(i)-1, r(jl) . 1()-1)

Fig. 6. The forest distance in our proposal

implications in our work: Firstly, there will exist situations where we must handle
simultaneous values for some forest distances and, secondly, the parser may share
some structures among the descendants of the different branches in an OR node.
We shall now present the manner in which we calculate the distance between a
pattern tree and the set of trees that are represented within the AND-OR graph,
and how to take advantage of the shared structures created by the parser. The
time complexity of this algorithm will be, in the worst case:

O(| T1 || T> | min(depth(T}1), leaves(T}))min(depth(T2), leaves(T3)))

where now | Ty | is the maximum number of nodes for a tree in T», leaves(T3) is
the maximum number of leaves for a tree in Ty, and depth(75) is the maximum
depth for a tree in T5.

Let T7[é] be the current node in the inverse postorder for T; and i; € anc(i) a
r keyroot. Given an OR node T»[k] we can distinguish two situations, depending
on the situation of this OR node and the situation of the r_keyroots of T.

5.1 Sharing into a same r_keyroot

Let T5[j'] and T5[j"] be the nodes we are dealing with in parallel for two
branches labeled Tz[k'] and T3[k""] of the OR node T»[k]. We have that j; €
anc(j') Nanc(j"), that is, the tree rooted at the r_keyroot T»[j1] includes the OR
alternatives Th[k'] and T»[k"].

Such a situation is shown in Fig. 7 using a classic representation and the AND-
OR. graphs. Here, lightly shaded part refers to nodes whose distance have been
computed in the inverse postorder before the OR node T[k]. The heavily shaded
part represents a shared structure. The notation “e e @” in figures representing
AND-OR, graphs, expresses the fact that we descend along the rightmost branch
of the corresponding tree.

We shall assume that nodes T»[r(j') — 1] and T»[r(j") — 1] are the same, that
is, their corresponding subtrees are shared. So, T»[r(j')] (resp. Ta[r(j")]) is the
following node in T5[k'] (resp. T»[k"']) to be dealt with once the distance for the
shared structure has been computed.

At this point, our aim is to compute the value for fd(r(i1)..i, r(j1)..),
j € {j', 7"}, proving that we can translate parse sharing into sharing on com-
putations for these distances.

il
r il
| R AL
TZ[Jl] e
R =il
' T, [K] i
T (k] R (D5
il © Feergeeeenil
oo R
TWE[rG)-1] T q'anr(k')]
- T (k)]
oL ror
, coenil il
T Ir(k] LIKD TGl r in[lj”] szTanj’]

Fig. 7. Sharing into a same r_keyroot

Formally, the values for f-d(r(i1)..3, r(j1)-.3), J € {j', 7"} are given by:

((Lde(i)ai— 1 GO (T),
min < f.d(r(é1)..%, r(j1)..J—1) + (e = T»[j]),
fd(r(i)-2—1, r(j1).J— 1) + v(T1[{] = T>[3])
iff r(2) = r(i1) and r(§) = r(1)
£d(r(iy)-i,r(41).3) = §

£.d(r(i).i— 1, r(j1).) + Y(Tu[i] — ¢),
min { £.d(r(i)..i, r(j1).j — 1) + (e = Tu[f), }
f.d(r(i1).r(i) =1, r(j1)..r(G) — 1) + t-d(5,J)

\ otherwise

where j € {j', j"}. Here, r(j1) # r(j), since we have assumed there is a shared
structure between T3[r(j)] and T»[r(j1)]. So, we can focus on the alternative
computation, where:

1. The values for f-d(r(i1)..i — 1, r(j1)-J), j € {j', 7"} have been computed by
the approximate matching algorithm in a previous step. So, in this case, parse
sharing has not consequences on the natural computation for the distances.

2. Two cases are possible in relation to the nature of nodes T»[j], j € {j', 7"},
these are:
— If both nodes are leaves, then r(j) = j. As a consequence, we have that

Tolj' = 1] = Tolr(j') = 1] = To[r(j") = 1] = To[j" ~ 1]

and the values f-d(r(i1)..3, r(j1)--j— 1), j € {j’, "'} are also the same.
— Otherwise, following the inverse postorder, we would arrive at the right-
most leaves of T5[j'] and T3[j"], where we could apply the reasoning
considered in the previous case.
3. Values for the distances f_d(r(i1)..r(i) — 1, 7(j1)-r(§) — 1),] € {j', 7"} are
identical, given that nodes T»[r(j) —1], j € {j', 7"} are shared by the parser.

5.2 Sharing between different r_keyroots

We have that ji € anc(j') and ji' € anc(j"), with j; # ji, are two r_keyroots.
We also have an OR node T3[k] being a common ancestor of these two nodes.
We suppose that the r_keyroots are in different branches, that is, there exists a
r keyroot, T5[j;] (resp. T2[j1]), in the branch labeled T5[k'] (resp. Ta[k"]).

Our aim now is to compute the value for distances f-d(r(i1)..i, r(j1)--j), where
pairs (j1,j) are in {(j1, 7), (41,5")} Formally, we have that these values are
given by:

r(in).d, r(§1).-J—1) + (e = T2[j]),
r(i1).4—1, r(j1)..J — 1) + v(T1[¢] = T2[3])
iff (i) = r(41) and r(§) = r(j1)

({ fd(r(i).-i — 1, r(G1)-J) + y(Ti[7] — €), }
min < f_d(
f.d(

£.d(r(ir)-4,7(j1)-J) = <

£d(r(i).i — 1, r(G1)-) + (Ti[i] — e),
min { £d(r(i1).i, rGi)-j— 1) + (e = T2[i]), }
£d(r(ir)..r(d) — 1, r(G1).r(G) — 1) + td(3,5)

\ otherwise

The situation, shown in Fig. 8, makes possible r(i) = r(i1) and r(j) = r(j1)-
In this first case, we can assume that a tail of sons is shared by nodes T[j], j €
{j', j"}. We can also assume that this tail is proper given that, otherwise, our
parser guarantees that the nodes T»[j], j € {j’, j''} are also shared.

Taking into account our parsing strategy, which identifies syntactic structures
and computations, we conclude that the distances f.d(r(i1)..i, r(j1)..J), with
(1,]) € {(41, 7),;(47,5")} do not depend on previous computations over the
shared tail, such as is shown in the left-hand-side of Fig. 8. So, this sharing has
no consequences on the calculus, although it will have effects on the computation
of distances for nodes in the rightmost branch of the tree immediately to the left
of the shared tail of sons, which is denoted by a double pointed line in Fig. 8, as
we shall show immediately.

We consider now the second case, that is, the computation of the forest
distance when r(j1) # r(j), as is shown in Fig. 9. Here, in relation to each of the
three alternative values to compute the minimum, we have that:

10

%K o
BIKD Rk 5“_1_n_.| T”Eﬁ'}'lm

LGOI D)

Fig. 8. Sharing between different r_keyroots (first case)

1. The values for fd(r(i1)..i — 1, r(§1)--), G1,3) € {1,), (G1,5")} have
been computed by the approximate matching algorithm in a previous step
and parse sharing does not affect the computation for distances.

2. We distinguish two cases in relation to the nature of nodes T5[j], j € {(j', j")-
We shall apply the same reasoning considered when we had an only r_keyroot:

— If both nodes are leaves, then r(j) = j. As a consequence, we have that

Tz[jl - 1] = T2[T(j,) - 1] = TQ[T(j”) — 1] — Tz[j" _ 1]

and therefore the values for distances f-d(r(i1)..i, (j1).-j—1) with (j1,J), €
(G4,), (it 4")}, are also the same.

— Otherwise, following the inverse postorder, we arrive at the rightmost
leaves of T»[j'] and T>[j"], where we can apply the reasoning considered
in the previous case.

T [r(]

Fig. 9. Sharing between different r_keyroots (second case)

3. Values for the distances f.d(r(i1)..r(i) — 1, 7(j1)..rG) — 1), j € {j', j"} are
identical, given that the trees rooted by nodes Tx[r(3) — 1], j € {j’, j
shared by the parser.

6 Experimental Results

We consider the language of arithmetical expressions to illustrate the discussion,
comparing our proposal with Tai [6], and Zhang and Shasha’s algorithm [8].
We consider two deterministic grammars, Gr, and Gg, representing respectively
the left and right associative versions for the arithmetic operators; and a non-
deterministic one Gn. We assume that parsers are built using ICE [7], and tests
have been applied on data inputs of the form a; +as+...+a;+a;41, with ¢ even,
representing the number of addition operators. In the non-deterministic case,
these programs have a number of ambiguous parses which grows exponentially
with 4. This number is:
20\ 1 ...
Co=Ci =1 and Ci:(i)i-‘r_17lfz>1

As our pattern, we have used deterministic parse trees from inputs of the form
a1 +bi+a3+bs+...+bi_1 +a;_1+ bz’+1 + @iy, where bj 75 aj—1, for all
je{L,3,...i—1,i+1}.

In the deterministic case, patterns are built from the left-associative (resp.
right-associative) interpretation for Gy, (resp. Ggr), which allows us to evalu-
ate the impact of traversal orientation in the performance. So, Fig. 10 proves
the adaptation of our proposal (resp. Zhang and Shasha’s algorithm) to left-
recursive (resp. right-recursive) derivations, which corroborates our conclusions.
These tests also show the independence of Tai’s algorithm from the grammar
rules topology. This is due to the fact that mapping between two nodes is not
computed from the mapping between their descendents, but from their ances-
tors, where structural sharing is not allowed by the parser. As a consequence,
Tai’s approach does not benefit from the dynamic programming architecture.

In the non-deterministic case, patterns are built from the left-associative
interpretation of the query, which is not relevant given that rules in Gy are sym-
metrical. Here, we evaluate the gain in efficiency due to sharing of computations
in a dynamic frame, as is also shown in Fig. 10.

7 Conclusions

Most classic approaches for dealing with tree-to-tree correction have been pro-
posed in the context of dynamic programming algorithms. In turn, tabulation
techniques are becoming a common way of dealing with highly redundant com-
putations occurring, for instance, in natural language processing. However, no
previous work has been developed in order to profit from this characteristic in
the tree matching domain.

12

2e+09 T T y T T 8000 T T
Using Sharing —=— - Tai'salgorithm (withG_L and G_R) —=—
1.86+00 | Without Sharing —s— le+08 Z&S swith G_R and our proposal with G L —=—
Number of Ambiguities - 7000 - Z&S'swith G_L and our proposal with G_R b
1.6e+09 | le+07 g
2 eom0 f
1.4e+09 | { 1e+06 ?33 3
8 S O 5000
S 1200 | 1 100000 ‘:; e
% 1e+09 < & 4000
g 10000 s 5
8e+08 - g o L
E {0 £ 5
6e+08 |- 3
2 {100 § 2000 |
4e+08 2
26408 | 110 1000 - M
0 I . 1 0 .
0 2 4 6 8 10 12 14 16 18 0 5 10 15 20
Valueof i for Ci. Valueof i for Ci.

Fig. 10. Results on approximate tree matching

In this paper, we have proved that tree matching can be adapted to deal with
shared forest in the context of information retrieval. To do this, the impact of
the parsing strategy on the resulting shared structure should be studied. This
allows formal justification of the type of traversal used to visit nodes during the
matching, obtaining the maximum advantage from parse sharing.

References

1. Kilpelainen, P., Mannila, H.: Grammatical Tree Matching. Lecture Notes in Com-
puter Science 644 (1992) 159-171.

2. Kilpelainen, P.: Tree Matching Problems with Applications to Structured Text
Databases. Ph.D. Thesis, Department of Computer Science, University of Helsinki,
1992. Helsinki, Finland

3. Smeaton, Alan F. : Incorporating Syntactic Information into a Document Retrieval
Strategy: An Investigation. Proc. the 9" Annual International ACM SIGIR Confer-
ence on Research and Development in Information Retrieval, 103-113, 1986.

4. Smeaton, A.F. and van Rijsbergen, C.J.: Experiments on Incorporating Syntactic
Processing of User Queries into a Document Retrieval Strategy. Proc. of the 11¢%
International ACM-SIGIR, Conference on Research and Development in Information
Retrieval, pp. 31-54. Grenoble, France, 1988.

5. Smeaton, A.F and O’Donell, R. anf Kelley,F.: Indexing Structures Derived from
Syntax in TREC-3: System Description. Proc. of 3¢ Text REtrieval Conference
(TREC-3), D.K. Harman (ed.), NIST Special Publication, 1994.

6. Tai, Kuo-Chung.: Syntactic error correction in programming languages. IEEE Trans-
actions on Software Engineering 4(5) (1978) 414-425.

7. Vilares, M., Dion, B.A.: Efficient incremental parsing for context-free languages.
Proc. of the 5" TEEE International Conference on Computer Languages (1994) 241
252, Toulouse, France.

8. Zhang, K., Shasha, D.: Simple fast algorithms for the editing distance between trees
and related problems. SIAM Journal on Computing (1989) 18 1245-1262.

9. Zhang, K. and Shasha, D. and Wang, J.T.L. Approximate Tree Matching in the
Presence of Variable Length Don’t Cares. Journal of Algorithms, pages 33-66, vol
16 (1), 1994

