Pattern Matching as a Dynamic Facility to get
Aboutness

M. Vilares F.J. Ribadas V.M. Darriba

Abstract

The goal of our work is to reduce the cost of evaluating queries in
sophisticated retrieval systems. Our aim is to support the use of user-
defined multiple views of the documents by applying retrieval techniques
based on pattern-matching. One view can contain all the structure explicitly,
while another can contain only part of the structure visible. Preliminary
experimental results show that query evaluation time can be reduced by more
than half with little impact on space complexity.

1 Introduction

The notion of aboutness is fundamental to information retrieval (IR). It appears
in questions related to the definition of a document about the representation of an
information need, and can be used to determine whether a term is a generalization
of another term, in which case the information carried by the last is said to be about
the information carried by the former. In most of actual IR systems, information is
carried by a fixed set of relationship types over an underlying set of terms. These
relationships, called indexes, are often based on a simple bibliographic citation that
references the original text, and not always reflect the value of the concepts being
presented. This leads us to considerate more sophisticated index formalisms, such
as context-free grammars [2], better adapted to encapsulate the essence of these
concepts. This information is inherent in the document and query. So, using context-
free grammars as indexing model, matching becomes a natural way to evaluate
queries in IR systems.

However, the correct indexing does not guarantee by itself an adequate
exploitation for IR formalisms, that should be considered with respect to their
applicability. In this sense, the operational model should also provide the flexibility
necessary to access different views of the text, with a well-founded theoretical
background.

M. Vilares, F.J. Ribadas and V.M. Darriba are with the Computer Science Department,
University of A Corula. Campus de Elvifia s/n, 15071 A Coruiia, Spain. E-mail: {vilares,
ribadas, darriba}@dc.fi.udc.es

This work has been partially supported by projects XUGA 20402B97 of the Autonomous
Government of Galicia, project PGIDT99X110502B of Spanish Government and project 1FD97-
0047-C04-02 by the EU.

Finally, speed is fundamental in the success of IR systems. Sophisticated retrieval
implies expensive strategies, compounding the problem of providing answers quickly
and efficiently. This depends on the capacity to exploit the output of a document
analyzer in a domain where the language intended to represent the text can only
be approximately defined, and ambiguity arises. Our aim is to reconcile practical
IR and efficient context-free parsing in a dynamic programming frame using pattern
matching as basis to get aboutness, and taking advantage of structural sharing in
ambiguous parsing.

2 The parsing model

We chose ICE [5] as parsing model. The kernel of our proposal is an extended push-
down transducer (pDT), formally a 8-tuple Tg = (Q, 3, A, 11, 4, qo, Zo, Qf), where:
Q is the set of states, X the set of input word symbols, A the set of stack symbols,
IT the set of output symbols, ¢y the initial state, Z; the initial stack symbol, and
Q; the set of final states. In relation to ¢, it is a finite set of transitions of the form
T=0(p,X,a) > (¢,Y,u) with p,g € Q; a € XU {e}; X,Y € AU {e}, and u € IT*.

The parser proceeds by building items, compact representations of the PDT stacks.
New items are produced by applying transitions to existing ones, until no new
application is possible. We associate a set of items S}, called itemset, for the
symbol w; at the position 7 in the input string of length n, wi ,. An item is of the
form [p, X, S}, S{’], where p is a PDT state, X is a stack symbol, S}’ is the back
pointer to the itemset associated to the input symbol w; at which we began to look
for that configuration of the automaton, and S}’ is the current itemset. These items,
called S!, provide an optimal treatment of sharing of computations and syntactic
structures for non-deterministic inputs [5]. A merit ordering guarantees fairness and
completeness.

We represent a parse as the chain of the context-free rules used in a leftmost
reduction of the input sentence, whose non-terminals are items. The output
grammar is then represented in finite shared form by an AND-OR graph that in
our case is precisely the shared-forest [5]. Formally, given 7 = 6(p, X, a) 3 (¢, Y, u),
the transitional formalism works as follows:

(lg,e, 5, 5], €)

3)])
([pa Y7 S;”,S}’_’i_l],a) 4.

1 5(0p, X, 5%, 5,0
4 ([p,s,S;-”,S;”],a) > T4

)])
2. &(lp, X, 5¥,57,0)

? 2

> 3(lp, X, 8¥,S%T,a) 5 (I, Iy =)
5 5
if and only if

1. Y=X, 2. Y=a 3 YeN,
4. Y =¢, Vg € Q such that 3d(¢q, X,¢) > (p, X, ¢)

respectively, where we have considered:
7~_d = Sd([qa‘sa Siwa S]w]a a’) > ([Qaga Slwa S';w]a I3 — I4I5)

-[1 = [paYaSzwaSzw]a I2 = [anas;ljas;U]a I3 = [Q167‘S’lwaséw]
I4 = [Q:XaSlw’S;U]i I5 = [p’g’S‘;.”,S;w]

and . -
6:It x ZU{e} — {It Udg} x II”
§q:Ttx DU {e} — It

where It is the set of parse items and d, is the set of dynamic transitions. Succinctly,
we can describe the preceding cases as follows:

1. A goto action from the state p to state ¢ under transition X in the PDT.
2. A push of @ € ¥ from state p. The new item belongs to the next itemset S} ;.
3. A push of non-terminal Y from state p.

4. A pop action from state p, where ¢ is an ancestor of state p under transition
X in the PDT. In this case, we do not generate a new item, but a dynamic
transition T4 to treat the absence of information about the rest of the stack.
This transition is applicable not only to the configuration resulting of the
first one, but also on those to be generated and sharing the same syntactic
structure.

The time complexity (resp. space complexity) is, in the worst case, O(n?) (resp.
O(n?)) for inputs w; ,. This complexity is linear for deterministic inputs, which
favours the performances, since ambiguities often have a local behavior.

3 The editing distance

Given P, a pattern tree, and D, a data tree, we define an edit operation as a pair
a — b, a € labels(P)U{e}, b € labels(D) U {e}, (a,b) # (g,¢), where ¢ represents
the empty string. We can delete a node (@ — ¢), insert a node (¢ — b), and change a
node (a — b). Each edit operation has an associated cost, y(a — b), that we extend
to a sequence S of edit operations s;, S3, ..., s, in the form ~(S) = Zﬁ'l (7(s4))-
The distance between P and D is defined by the metric:

d(P, D) = min{~(S), S editing sequence taking P to D}

Given an inverse postorder traversal, as shown in Fig. 1, to name each node 7 of a
tree T by T[i], a mapping from P to D is a triple (M, P, D), where M is a set of
integer pairs (i, j) satisfying, for each 1 <4y,49 <| P | and 1 < j;,75, <| D [:

i =l iff j1 =2
Pliy] is to the left of Pliy] iff DJjy] is to the left of D|js]
Pliy] is an ancestor of P[iy] iff D[j;] is an ancestor of D[js]

which corresponds, in each case, to one-to-one assignation, sibling order preservation
and ancestor order preservation. The cost, y(M), of a mapping (M, P,D) is
computed from relabeling, deleting and inserting operations, as follows:

v(M) = 3 y(Pli] = D[j]) + Y y(Pli] =€) + 3_v(e = D)

(4,5)eM i€D JjeET

where D and Z are, respectively, the nodes in P and D not touched by any line in
M. Tai proves, given trees P and D, that

d(P, D) = min{y(M), M mapping from P to D}

which allows us to focus on edit sequences being a mapping. We show in Fig. 2
one example of mapping between two trees, and a sequence of edit operations not
constituting a mapping. We also introduce r_keyroots(T) as the set of all nodes in a
tree T which have a right sibling plus the root, root(T'), of T. We shall proceed
through the nodes determining mappings from all leaf r_keyroots first, then all
r_keyroots at the next higher level, and so on to the root. The set of r_keyroots(T)
is indicated by arrows in Fig. 1.

9a 4 T[1.8] T[L.4]
Ob,9c, d, e f ¢ d d
INZBN N\ N
De f gE>h) g h h

8 7 5 3

i
|
i
1
Figure 1: The forest distance using an inverse postorder numbering

In dealing with approximate VLDC pattern matching, some structural details can
be omitted in the target tree and different strategies are then applicable. Following
Zhang et al. in [7] we introduce two different definitions to vLDC matching:

e The vLDC substitutes for part of a path from the root to a leaf of the data
tree. We represent such a substitution, shown in Fig. 2, by a vertical bar ”|”,
and call it a path-vLDC.

e The vLDC matches part of such a path and all the subtrees emanating from
the nodes of that path, except possibly at the lowest node of that path. At
the lowest node, the vLDC symbol can substitute for a set of leftmost subtrees
and a set of rightmost subtrees. We call this an umbrella-vLDC, and represent
it by a circumflex “A”, such it is shown in Fig. 2.

To formalize the consideration of pattern trees with VLDC’s requires the capture
of the notion of vLDC-substitution for nodes in the target tree P labeled | or A
as previously introduced. So, given a data tree D and a substitution s on P, we
redefine:

d(P, D) = minyes{6(P, D, s)}

where S is the set of all possible vLDC-substitutions, and § (P, D, s) is the distance
d(P, D), being P the result of apply the substitution s to P. As a consequence, no
cost is induced by vLDC-substitutions.

Correct Incorrect
Mapping without VLDC Mapping with a Path-VLDC Mapping with an Umbrella-VLDC

Figure 2: An example on mappings

4 Approximate VLDC tree matching

The major question of Zhang et al. in [7], is the tree distance algorithm itself.
However, parsing and tree-to-tree correction are topologically related and, to get
the best performance, it is necessary to understand the mechanisms that cause the
phenomenon of tree duplication.

A major factor to take into account is the syntactic representation used. We
choice to work in the parsing context described for ICE [5]. Here, authors represent
a parse as the chain of the context-free rules used in a leftmost reduction of the
input sentence, rather than as a tree. When the sentence has distinct parses, the
set of all possible parse chains is represented in finite shared form by a context-free
grammar that generates that possibly infinite set.

This difference with most other parsers is only appearance, since context-free
grammars can be represented by AND-OR graphs that in our case are precisely the
shared-forest graph [1]. In this graph, AND-nodes correspond to the usual parse-
tree nodes, while OR-nodes correspond to ambiguities. Sharing of structures is
represented by nodes accessed by more than one other node and it may correspond
to sharing of a complete subtree, but also sharing of a part of the descendants
of a given node. This allows us to gain in sharing efficiency in relation to classic
representations, such it is shown in Fig. 3.

(0]

ffffff

nil
%Y r%//]
v

P
s -
v Ny Y
TN T | | L,
upvlapt?[svzapf/r%%/;
7 . .
Classic forest representation without sharing. M %/// Vi 9 ///%
7 77
AND-OR representation with sharing, AND-OR representation with sharing,
for a bottom-up parsing. for a top-down parsing.
RULE n, : d—>afBVdp /{//////%2 Shared nodes using a bottom-up parser, with AND-OR graphs.

RULE N, : p—>aBY%dpP

&\\\x\% Shared nodes using a top-down parser, with AND-OR graphs.
Figure 3: How shared forest are built using an AND-OR formalism

It is also important the parsing scheme applied. So, bottom-up parsing may share
only the rightmost constituents, while top-down parsing may only share the leftmost
ones. This relies to the type of search used to built the forest. Breadth first search
results on bottom-up constructions and depth first search results on top-down ones,
as it is also shown in Fig. 3.

At this level, one major observation we noted is that Zhang et al. consider a
postorder traversal, computing the forest distance by left-recursion on this search.

As a consequence, we would need to consider a top-down parsing architecture to
avoid redundant computations. However, top-down parsers are not computationally
efficient, and a bottom-up approach, as is the case of ICE, requires a rightmost
search of tree constituents. This implies redefining the architecture of the original
matching strategy.

To accomplish this change, we introduce (i) (resp. anc(i)) as the rightmost leaf
descendent of the subtree rooted at T[i] (resp. the ancestors of T[i]) in a tree T,
and T'i..j] as the ordered sub-forest of T" induced by the nodes numbered i to j
inclusive, as it is shown in Fig. 1. In particular, we have T[r(i)..i] is the tree rooted
at T[i]. We now define the forest edition distance between a target tree P and a
data tree D, as a generalization of ¢, in the form

£.d(P[s1..8], D[t1..ts]) = 6(P]s1..52], D[t1..ta)])

that we shall denote f.d(s;..s9,%1..t2) when the context is clear. Intuitively, this
concept computes the distance between two nodes, P|[sy] and D[ts], in the context of
their left siblings in the corresponding trees, while the tree distance, 0(P[sy], D]ts]),
is computed only from their descendants.

To be precise, given a pattern tree P and a data tree D, we can compute the
editing distance t_d(P, D) applying the formulae that follow [4], for nodes i € anc(s)
and j € anc(t), assuming P[s] is not an incomplete structure:

(£d(r@i)..s —1,r(j)..t) + ~(P[s] = e),
. fd(r(@@)..s,r(§).t —1) + ~(— D[t]),
Y £d(r(i).s - 1,
_ ()t —1) _+ (Pls] = Dt))
£d(r(i)..s,7(j).t) = { ETE) =7 andr(t)=r()
£d(r@)..s — 1,7(j)..t) + ~(P[s] =€),
min { £4(r(i)..5,7(j).t — 1) + (e = D[t]),
fd(r@@)..r(s) = 1,r(H).rt) —1) + td(s,t)
| otherwise
When P[s] is either “|” or “A” formulae must be adapted, we first assume P|s] is
“‘”:
fd(r(@)..s — 1, r(j)..t) + (P[s] — e),
et e,
. . . d(r(z)..s—1, r t—1) + s| = DIt]),
£d(r(3)..s,7(j).-t) = minq Fa0s pir(i ¢ —J1) + ?nintk (t-d(s, tr)
- t—d(¢a tk)};
1<k<my
For the case where P[s] is “A”, formulae are the following:
fd(r(i)..s — 1, r(4).-t) + ~(P[s] — e),
fd(r(i)..s, r(§)..t — 1) + (e = DJt]),
£d(r(i)..s,7(j)..t) = min{ fd(r(i)..s — 1, r(j)..t — 1) + ~(P[s] = D[t)),
ming, {t-d(s,)}, 1<k <ny,
ming, {sf.d(r(i)..s — 1,7(j)..tx)}, 1<k <n

where Dlti], 1 < k < ny, are children of DJ[t]. If D[t] is a leaf, that is t = r(j),
then only the first three expressions are present. We define the suffix forest distance

between Fp and Fp, forests in the pattern P and the data tree D respectively,
denoted s_f-d(Fp, Fp), as the distance between Fp and Fp, where Fp is a sub-forest
of Fp with some consecutive complete subtrees removed from the left all having the
same parent. Formally we have that

s-f.d(Fp, Fp) = ming, {.d(Fp, Fp)}

From a computational point of view, it can be proved that

i 00 o))
£d(r(7)..s, r(j).-t)
iff r(t) =r(j)

s£d(r(2)..5,7(7)-2) = 4 s £A(r(i).s — 1, 7(j).-4) + (P8 = o),
min { s-fd(r(3)..s, r(j).t —1) + (e = D[{]), }
sfd(r().r(s) — 1, r(j).r(#) — 1) + td(s,t)

| otherwise

To compute ¢_d(P, D) it will be sufficient to take into account that
t_d(P, D) = f_-d(root(P)..r(root(P)),root(D)..r(root(D)))

Time bound is O(| P || D | min(depth(P),leaves(P))min(depth(D), leaves(D))) in
the worst, case, where | P | (resp. | D |) is the number of nodes in the pattern tree
P (resp. in the data tree D).

5 Approximate VLDC matching in shared forest

To start with, let P be a labeled ordered tree where some structural details has been
omitted, and D an AND-OR graph, both of them built using our parsing frame. We
shall identify P with a query and D with a part of the syntactic representation for a
textual database with a certain degree of ambiguity. The presence of OR nodes in D
has two main implications in our work: Firstly, there will exist situations where we
must handle simultaneous values for some forest distances and, secondly, the parser
may share some structures among the descendants of the different branches in an
OR node. We shall now present the manner we calculate the distance between a
pattern tree and the set of trees that are represented within the AND-OR graph, and
how to take advantage of the shared structures created by the parser.

Let P[s] be the current node in the inverse postorder for P, and i € anc(s) a
r_keyroot. Given an OR node D[k| we can distinguish two situations, depending on
the situation of this OrR node and the situation of the r_keyroots of D.

5.1 Sharing into a same r_keyroot

Let D[t'] and D[t"] be the nodes we are dealing with for two branches labeled D[£’|
and D[k"] of the OR node r(DI[k]). We have that j € anc(t') N anc(t"), that is, the
tree rooted at the r_keyroot D[j] includes the OR alternatives D[k'] and D[K"].

This situation is shown in Fig. 4 using a classic representation and the AND-OR
graphs. Here, the lightly shaded part refers to nodes whose distance have been
computed in the inverse postorder before the OR node D[k]. The heavily shaded
part represents a shared structure. The notation “e e @” in figures representing
AND-OR graphs, expresses the fact that we descend along the rightmost branch of
the corresponding tree.

We shall assume that nodes D[r(t') — 1] and D[r(¢") — 1] are the same, that is,
their corresponding subtrees are shared. So, D[r(t')] (resp. D[r(t")]) is the following
node in D[] (resp. D[k"]) to deal with once the distance for the shared structure
has been computed.

At this point, our aim is to compute the value for f.d(r(3)..s, r(j)..t), t € {t', t"},
proving that we can translate parse sharing on sharing on computations for these
distances.

DU
’7 nil
_ A DIr()
-
DIK] DIK]
DIk~ el DIK] -
ey | e
DIHE')-1 D[r(t)l] o S I - : D[’({‘ H
v \ NI T g
. ¢ D[] : D[t]
D[r(k)] D[r(k)] D[r()]

Figure 4: Sharing into a same r_keyroot

Since we have assumed there is a shared structure between D[r(¢)] and D[r(j)], we
conclude that 7(j) # r(t) and the values for f.d(r()..s, r(j)..t), t € {t/, t"} are
given by:

f.d(r(@)..s — 1, r(j)..t) + v(P[s] = e),
£.d(r(i)..s,7(j)..1) = min{ £d(r(i).s, r(j)-£-1) + ~(e — D[f]), }
f.d(r(@)..r(s) =1, r(§).r@E) —=1) + td(s,i)

where ¢ € {t', t"}. We can interpret this three alternatives as follows:

1. The values for f d(r(i)..s — 1, r(j)..t), t € {#', t"} have been computed by the
approximate matching algorlthm in a previous step. So, in this case, parse
sharing has not consequences on the natural computation for the distances.

2. Two cases are possible in relation to the nature of nodes D[], # € {t/, "},
these are:

e If both nodes are leaves, then r(ﬂ = t. As a consequence, we also have
that D[t' — 1] = D[r(t') — 1] = D[r(t") — 1] = D[t" — 1], and the values
fd(r@@)..s, r(j)..t —1), t € {t', t"} are also the same.

e Otherwise, following the inverse postorder, we would arrive at the

rightmost leaves of D[t'] and DI[t"], where we could apply the reasoning
considered in the previous case.

3. Values for the distances f.d(r(s)..r(i) — 1, r(j)..r(t) = 1), t € {t', t"} are
identical, given that nodes D[r(f) — 1], £ € {t', t"} are shared by the parser.

A similar reasoning can be applied to compute the values for s fd, avoiding
redundant computations.

5.2 Sharing between different r_keyroots

We have that j' € anc(t') and j"” € anc(t"), with j" # j", are two r_keyroots. We also
have an OR node D[k| being a common ancestor of these two nodes. We suppose
that the r_keyroots are in different branches, that is, there exists a r_keyroot, D][j']
(resp. D[j"]), in the branch labeled D[k'] (resp. DI[k"]).

Our aim is to compute the value for distances f.d(r(i)..s, 7(j)..t), where pairs
(j, %) are in {(5', t'), (j",t")}. Formally, we have that these values are given by:

(((£.d(r(i)..s — 1, T‘EA)..'&) + 7(P[s] — &),
£4(r(i)..s, (). — 1) + ~(e = D[f),
min 4 £d(r(7)..s — 1,A7'(A t—1) + ~(P[s]— D[t]),
fd(¢, D[r(3)]..t = 1) + ming, {t_d(s,tx)
- t—d(¢a fk)}a
L 1<k<n
iff P[s] =]
(£d(r(7)..s — 1, r()..ﬂ + ~(P[s] =€),
£d(r(i)..s, 7(3)--f = 1) + (e = D[{)),
min< fd(r(i)..s =1, r(j)..t —1) + (P[s] = D[{]),
min;, {t_d(,tAk.),) 1<k <ny,
£d(r(i)..s, T(j)ﬂ — iﬁp[;] rin/l\ik{s_f_d r(i)..s — 1,7().-tr), 1<k<n
f.d(r(@)..s — 1, r()..t) + y(P[s] = ¢),
min { £.d(r(d)..s, ().t — 1) + (e = D[{]), }
fd(r(@)..s — 1, r(§)..t=1) + ~(P[s] = D[f])
otherwise

fd(r(@)..s —1, rgj)..f) + 7(P[s] =€),
i { fd(r(4)..s, r(§)..t — 1) + (e — D[{)), }
£.d(r@).r(s) =1, r(G).r@#) —1) + td(s,t)
otherwise

\

The situation, shown in the first case of Fig. 5, makes possible r(s) = (i) and
r(t) = r(j). In this first case, we can assume that a tail of sons is shared by nodes
D[], t € {', t"}. We can also assume that this tail is proper given that, otherwise,
our parser guarantees that the nodes D[t], £ € {t/, "} are also shared. Taking
into account our parsing strategy, we conclude that the structural sharing has no
consequences on the calculus, although it will have effects on the computation of
distances for nodes in the rightmost branch of the tree immediately to the left of
the shared tail of sons, which is denoted by a double pointed line in the first case of
Fig. 5.

IR B DIr(")] SR - o)
(First Case) (Second Case)

Figure 5: Sharing between different r_keyroots

We consider now the second case, which is shown in the right-hand side of Fig. 5.
This case is similar to the situation showed in the previous section, sharing into
a same r_keyroot. Here we have again three alternative values to compute the
minimum, and we can make similar considerations about how the parser shared
structures affect the computation for the distances.

6 A practical example

In order to illustrate our previous work, we return to the discussion about parse
sharing into a same r_keyroot. We shall consider a simple example: the language of
arithmetical expressions. We consider a non-deterministic grammar, Gy, generating
the language; and the input sentence a; + a2 + a3 + a4, from which we shall build the
parse shared data forest. We show in Fig. 6 a part of this parse shared data forest
and the pattern tree used in this example.

/‘\ _________________________________
L o0 & oy &
/4’-\3 S DIt]+ o #
| N
= 3 ‘5«4) ® ?7)
=Y &
Pattern Tree Data Tree

Figure 6: An example on sharing into a same r_keyroot

As in the general case, D[t'] and DI[t"] are the nodes we are dealing with. Lightly
shaded parts refer to nodes whose distance have been computed in the inverse
postorder before the OR node D[k], that is, the forest D[r(j)..r(k) —1]. The heavily
shaded parts represent a shared structure, which corresponds to the two forests
D[r(k)..r([t]) = 1] with k& € {k',k"} and { € {¢',¢"}.

In relation with the concrete computation of the editing distance, Fig. 7 shows a
set, of tables with the values of the induced forest distances for the r_keyroot j using
our pattern tree. These distances have been computed using a discrete metric for
the cost associated to the edit operations: the delete and insert operations cost is
one unit; the change operation cost is one if the two labels are different, and zero
otherwise.

Each row in the tables corresponds with each of the induced subforests that can
be built in the pattern tree starting in the node “ay”. The same explanation is
applicable to the columns, there is one column for each induced subforest in the
data tree starting in “a,”. In the leftmost table we show the values for the common
part of the computations. This table has two parts, the first storing the distances
for the common forest prior to the OR-node. The second one, in boldface, shows the
columns of values associated to the shared structure. The other two tables in the
right-hand side of the figure store the distances computed for the nodes in the two
alternatives of the OR-node following the shared subtree.

S I I e B B B A)

Rl < - - < < N N <

SR T N I O

A A S S A A A A A

6 | 7] 8] 9 |10 11] 12 | 13 | 14

5 | 6 | 7| 8| 9 |10]11|12] 13

4 |5 |6 | 7| 8 9 | 10 | 11 | 12

=T =T = = — 3 | 4|5 |6 7 8 9 | 10| 11

3 | @ |+ g 0 4 | 3| 4|5 6| 7| 8|9 |10

< & & & & 3 4 3 4 5 6 7 8 9

S, S, S, S, S, 4 5 4 5 6 7 8 7 8

) A Q 8] 8] §] 4 5 4 5 6 7 8 5 2

0 1 2 13 4 5 [t] [[[[[[[J]

Plag..as] || 1 1 2 | 3 3 4
Plas..S] 2 2 1] 2 3 3

Plag..+] 3 3 2 |1 2 3 — T = =T 1T =1 =1 =1T=
Plag.az] || 4 | 4 | 3 | 2 2 3 O I e I I O T I]
Plasz..S] 5 5 4 3 3 2 < < < <+ < < < < <
Plas..S] 6 6 5 | 4 4 3 e e
Plas..A] 6 6 5 | 4 4 3 i S S IS SO S S I
: T o1 6 7] 8 | 9 |10] 1112] 13 | 14

| [[x@[[[k 1] clalslel e lioliil il
4 5 |16 | 7| 8 9 | 10 | 11 | 12

3 | 4|56 7 8 9 | 10 | 11

4 | 3| 4|5 | 6 7 8 9 | 10

3 | 4| 3| 4 5 6 7 8 9

4 5 | 4| 3| 4 5 6 7 8

4 5 | 4 | 3| 4 5 6 3 0
[t] [[[[[[[3§]

Figure 7: Forest distances matrix for the example r_keyroot

We center our example in the computations when we are dealing with P[s] = as,
that is, the index s points to the node labeled “a3” in our pattern tree P. We are
computing distances for the induced subforest starting at the node labeled “as” and
ending in the node labeled “a3”, which corresponds to the distances stored in the
row P[as..as]. Following the explanation in a previous section about sharing into a
same r_keyroot, we need three values to compute the distances f_d(r(i)..s, 7(j)..f).
These are:

1. The value f d(r(i)..s — 1, r(j)..f). These distances have been computed in a
previous step of the algorithm, when we were dealing with the node P[s — 1]
in the pattern tree. In our example of Fig. 7, this means taking the values
stored in the row Plas..+| of the columns labeled ' and ¢". For ¢ we must
take the distance value 3 and add to it the cost y(“as” — ¢) = 1. For " we
add v(“as” — €) =1 to the value 3.

2. The value f_d(r(i)..s, 7(j)..£ —1). In our example, since #' and ¢’ are both
leaves, we have that r(f) = {, and those two distances correspond to values
associated to the last node in the shared structure. In Fig. 7, this means taking
the value from the row Play..a3] of the column labeled r(# — 1), that is, from

the last column of the sub-matrix associated to the shared structure. We take
the value 3 from the row P[ay..a3] from this column, for #'. We add to it the
cost y(e = “4+”) =1 and for ¢ we add y(e = “+”7) = 1.

3. The value f_d(r(i)..r(s) — 1, r(j)..7(f) — 1). In this case, the indexes r(#') — 1
and r(t") — 1 refer to the same node, which is the root of the shared structure.
So, in our example we have that the index r(s) — 1 points to the node labeled
“4+” in the pattern tree. This means that we have to take the distances stored
in the Play..+] row of the column labeled () — 1 in Fig. 7.

The distances t_d(s,ﬂ have been computed in a previou step and are stored
in the t_d matrix; for ¢’ this value is 1 and for ¢” it is 1. We add each one of
those values with the forest distance strored in the P[ay..+] row of the column
labeled r(#) — 1, that is 3.

Finally, following the algorithm, we must obtain the minimum of the three
values computed for ¢ and t", getting that f_d(r(i)..s, r(j).t') = 4 and
f-d(r(i)..s, r(j)..t") = 4, and storing these values in the corresponding forest
distance tables.

7 Experimental results

We use the language of arithmetical expressions considering the non-deterministic
grammar, G, and two deterministic grammars, Gy and G, representing respectively
the left and right associative versions for the arithmetic operators. With the non-
deterministic grammar we show the gain in efficiency due to the use of sharing
structures. And the deterministic grammars will be used to compare our proposal
with Zhang et al. [7].

To simplify the explanation, we focus on matching phenomena assuming that
parsers are built using ICE [5]. Lexical information is common in all cases, and tests
have been applied on target inputs of the form a; + as + ...+ a; + a;41, with ¢ even,
representing the number of addition operators. These programs have a number of
ambiguous parses which grows exponentially with ¢. This number is:

) 1
C():Cl:l and CZ:<21>—,1fZ>1
? 1+ 1

As pattern, we have used deterministic parse trees of the form

N —
| A-"/-i-N/ah"‘i-'- Ay
/\/_K‘-\a4 i-1
a, + a ©°

In the deterministic case, patterns are built from the left-associative (resp. right-
associative) interpretation for G, (resp. Gg), which allows us to evaluate the impact
of traversal orientation in the performance. So, the rightmost diagram in Fig. 8
proves the adaptation of our proposal (resp. Zhang et al. algorithm) to left-recursive
(resp. right-recursive) derivations, which corroborates our conclusions.

In the non-deterministic case, patterns are built from the left-associative

interpretation of the query, which is not relevant given that rules in Gy are
symmetrical. Here, we evaluate the gain in efficiency due to sharing of computations

in

Number of elementary operations

8

a dynamic frame, such as is shown in the leftmost diagram of Fig. 8.

Non-deterministic grammar Deterministic grammars
6e+08 —— ; ; 200000 . . - ; ; ;
With sharing —e— Zhangeta. withG_R —*—
Without sharing —e— 180000 F Zhangetd. withG_L —=—
5e+08 |- Number of Ambiguities " . Our proposal withG_R —=—
g 160000 - Our proposal with G_L —»—
g B 1000/
4e+08 ’; g—
fé’ %\ 120000 ~
3e+08 < & 100000
5 &
o] o 80000
£ %
2e+08 | E °© |
z o
£
1e+08 | 2 A0
20000 1
0 - e ‘ ‘ 0]
2 3 4 5 6 7 8 9 10 11 2 3 4 5 6 7 8 9 10 11
Valueof i for Ci Vaueof i for Ci.

Figure 8: Results on approximate VLDC matching

Conclusions

Any practical approach to IR is based on two assumptions: a common representation
for documents and requests, and simplifying assumptions for the retrieval functions.
Approximate VLDC pattern matching enables one to extract information from
complicated sentences in the database, and experimental results seem to corroborate
the practical interest.

References

[1]

S. Billot and B. Lang. The structure of shared forest in ambiguous parsing. In Proc.
27th Annual Meeting of the ACL, 1989.

P. Kilpelainen and H. Mannila. Grammatical tree matching. Lecture Notes in
Computer Science, 644:159-171, 1992.

K.-C. Tai. Syntactic error correction in programming languages. IEEE Transactions
on Software Engineering, SE-4(5):414-425, 1978.

M. Vilares, D. Cabrero, and F. Ribadas. Approximate matching in shared forest. In
S. F. . P. Sabatier, editor, Sizth Int. Workshop on Natural Language Understanding
and Logic Programming, pages 59-72, Las Cruces, New Mexico, 1999.

M. Vilares and B. A. Dion. Efficient incremental parsing for context-free languages.
In Proc. of the 5** IEEE International Conference on Computer Languages, pages
241-252, Toulouse, France, 1994.

K. Zhang and D. Shasha. Simple fast algorithms for the editing distance between trees
and related problems. In SIAM Journal on Computing, volume 18, pages 1245-1262.
1989.

K. Zhang, D. Shasha, and J. T. L. Wang. Approximate tree matching in the presence
of variable length don’t cares. Journal of Algorithms, 16(1):33-66, Jan. 1994.

