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Abstract

An incremental parsing algorithm based on dynamic
programming techniques is described'. The analyzer
takes the automaton generated from a general class
of context-free grammars as driver, and any finite
string as input. Given an input string that has been
modified, the algorithm cuts out the parts of the old
analysis that had been generated by the parts of the
nput that has changed. What remains are the parts
of the analysis that were generated by the stable part
of the input. The new system has been baptized ICE,
after Incremental Context-Free Environment. In an
empirical comparison, ICE appears to be superior to
the other contexrt-free analyzers and comparable to
standard deterministic parsers, when the input string
1s not ambiguous.
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1 Introduction

Reasons to achieve incremental parsing are well
known. For example, in the context of incremental
program development, several consecutive corrections
of the input are usually made. Therefore incremental
parsing can be used to make the overall parsing
process efficient. In this paper, we try to reconcile, in
practice, general context-free parsing and incremental
treatment.

1.1 Previous work
In relation to context-free parsing, we chose to

work in the context of the application of deterministic
techniques to generate very efficient non-deterministic
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parsers, as proposed by Lang in [11, 12]. Essentially,
Lang considers a simple variation of Earley’s dynamic
programming construction [6]. In order to solve the
problems derived from grammatical constraints, the
author extends Farley’s classic algorithm to push-
down transducers (PDTs), separating the execution
strategy from the implementation of the push-down
automaton (PDA) interpreter. So, Lang obtains a
family of general context-free parallel parsers for each
family of deterministic context-free push-down ones,
simulating all possible computations of any PDT, at
worst in cubic time. However, the method is linear in
a large class of grammars.

In relation to incremental parsing, the classic
literature [1, 4, 7, 9] does not consider the case of
context-free grammars. So, we have studied the state
of the art in the deterministic case and compared
the adaptability of the different methods to dynamic
programming techniques. Finally, the algorithm we
developed is closer to the bottom-up algorithm of
Ghezzi and Mandrioli in [7] than to the top-down one
of Jalili and Gallier in [9]. The reason for that is
the natural predisposition of Earley-like algorithms to
incremental bottom-up approaches. Effectively, most
of the additional structures required for this class of
incrementality, are provided at no expense by the item
concept in Earley’s method, essentially a structure
representing the state of the parsing process for a
branch of the parse forest, at each point in the scan.

1.2 A simple road map

In section 2 of this paper, we discuss how we
have implemented an efficient general context-free
parser based on the algorithm reported by Lang
in [11]. In section 3, we describe the incremental
algorithm considered in the ICE system, justifying
tactical decisions from a practical point of view and
differentiating two cases: total and partial recovery,
with respect to the nature of the modified shared



parse forest. In section 4, we give an extensive
range of comparative tests between ICE and the best
deterministic and non-deterministic parsers. Section 5
is a conclusion about the work presented. Finally,
appendices A and B review from a practical point of
view all the theoretical results previously explained in
relation with standard and incremental parsing.

2 Context-Free Parsing

The following is an informal overview of parsing by
dynamic programming interpretation of PDAs, such
as it is implemented in ICE. Qur aim is to parse
sentences in the language £(G) generated by a context-
free grammar G = (N, X, P, S), where N is the set of
non-terminals, Y the set of terminal symbols, P the
rules and S the start symbol. The empty string will
be represented by €.

2.1 The recognizer

We assume that, using a standard technique,
we produce a PDA from the grammar §G. In
practice, we chose a LALR(1) recognizer, possibly
non-deterministic, for the language £(G). This choice
will be justified later in the paper.

Formally, we shall assume for PDAs a formal
definition taken from Lang in [11], that can fit
most usual construction techniques. So, a PDA is
represented by a 7T-tuple A = (Q,X, A, 6, q0,Z0,9y)
where: @ is the set of states, ¥ the set of input
symbols, A the set of stack symbols, ¢o the initial
state, Zp the initial stack symbol, Q; the set of final
states, and é a finite set of transitions of the form
p X avr— qY with pjg € Q a € ¥U{e} and
X, Y e Au{e}.

Succinctly, we describe the behavior of our
recognizer. Let the PDA be in a configuration
(p, X, ax), where p is the current state, X« is the
stack contents with X on the top, az is the remaining
input where the symbol a is the next to be shifted,
x € X*. The application of a transition p X a+—q Y
results in a new configuration (¢,Y«,z) where the
terminal symbol a has been scanned, X has been
popped, and Y has been pushed. If the terminal
symbol a is ¢ in the transition, no input symbol is
scanned. If X is € then no stack symbol is popped
from the stack. In a similar manner, if Y is ¢ then no
stack symbol is pushed on the stack.

Of course, in the case of ambiguous recognizing,
several such transitions can be applied. As a
consequence, the recognizer has to manage a set of

parallel stacks in an efficient manner. In this context,
the algorithm proceeds by building a collection of
items, essentially compact representations of the
recognizer stacks in order to guarantee a good level
of sharing of the computational process.

New items are produced by applying transitions to
existing ones, until no new application is possible. The
algorithm associates a set of items S}, , usually called
itemset, for each input symbol w; at the position 7 in
the input string of length n, wy ,. We shall also use
the notation S}, when the context is clear.

An item is of the form [p, X, S}, S}’], where p is
a PDA state, X is a stack symbol, S}’ is the back
pointer to the itemset associated to the input symbol
w; at which we began to look for that configuration
of the automaton, and S}’ is the current itemset.
To simplify notations, we shall call these attributes
Lstate, I.symbol, I.back and I.current respectively, for
an item /.

In relation to fairness and completeness, an
equitable selection order must be established in the
treatment of items. We use a technique of merit
ordering. 1In essence, we process the items in an
itemset in order, performing none or some transitions
on each one depending on the form of the item. These
operations may add more items to the current itemset
and may also put items in the itemset corresponding
to the following token to be analyzed from the input
string. To ignore redundant items we use a simple
subsumption relation based on the equality.

2.2 The shared forest constructor

An apparently major difference with most other
parsers is that we represent a parse as the chain of
the context-free grammar rules used in a leftmost
reduction of the parsed sentence, rather than as a
parse tree, following the work of Lang in [11, 12].
When the sentence has several distinct parses, the
set of all possible parse chains is represented in finite
shared form by a context-free grammar that generates
that possibly infinite set. However, this difference is
only appearance, as proved by Billot and Lang in [2].

In effect, context-free grammars can be represented
by AND-OR graphs that in our case are precisely
the shared-forest graph. In this graph, AND-
nodes correspond to the usual parse-tree nodes, while
Sharing of

structures is represented by nodes accessed by more

OR-nodes correspond to ambiguities.

than one other node and it may correspond to
sharing of a complete subtree, but also sharing of a
part of the descendants of a given node, in fact, a
consequence of the binary nature of the transition



protocol precedingly described. This feature allows
us to obtain a cubic space complexity for the shared
forest in the worst case, whichever it is the form of the
grammar.

More formally, the output of this parser will be
a sequence of rules of a context-free grammar to be
used in a left-to-right reduction of the input sentence,
which is equivalent to producing a parse forest. To
generate it, items are used as non-terminals of an
output grammar G, = (N,,X,, P, S,), where N, is
the set of all items, X, the set of input symbols
of the original grammar G, and the rules in P, are
constructed together with their left-hand-side item I
by the parsing algorithm. We generate a rule for the
output grammar each time a reduce or a shift action
from the grammar defining the language is applied on
the stack as shown in figure 1. In both cases, the left-
hand-side of this rule is the new item describing the
resulting configuration. In relation to the right-hand-
side, it is composed by the token recognized in the
case of a shift and by the items popped from the stack
in that action, in the case of a reduction. The start
symbol S, is the last item produced by a successful
computation.

Figure 1: Node generation in ICE
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We shall build a push-down transducer (PDT) from
our PDA A = (Q,X,A,6,q0,Zo,Qf) augmenting it
with a component II representing the set of output
symbols?, and considering transitions in § of the form
p X a— qVY uwith pj¢g € Q; a € XU {e}
X, Y € AU {e}, and u € II*. We shall denote a PDT
as a 8-tuple 7g = (Q,X, A, 11, 6, q0, Zo, Qf). Given a
transition 7 = 8(p, X, a) 3 (¢,Y, u), we translate it to
items of the following form:

L o(p, X, S, S¢a) 3 (lg,e, 5, S¢),€)
2. (E([an: S}VU:SZU)]:G) > ([paYa Szwa zw+1]:a)
3. 8([p, X, 8¢, 5¢],a) > (I, 11 — Iz)

4. 5

8([p,e, S¥, S, a) 4

2in our case, rules of a context-free grammar.

if an only if

1. Y=X
2. Y=a
3. YEN
4. Y =¢, Yq € Q such that 3 é(q, X,2) 3 (p, X, ¢)

respectively. Where we have considered:

7~—d = Sd([Q;E;SZJ):Siw]:a) E ([qJEaS;HaS}'D]aI?) - 1415)
L=1[pY 5" 5], L=I[pXS}, 5]
13:[q7675;0752w]1 I4:[q:XaSlwaS}vu]

I5 == [paeas}basiw]
and

§:Tt x LU {e} — {It U by} x I*
b : Tt x DU {e} — Tt

with I the set of all items developed in the parsing
process and 64 is called the set of dynamic transitions.
Succinctly, we can describe the preceding cases as
follows:

1. Corresponds to a goto action from the state p
to state ¢ under transition X in the LALR(1)
automaton.

2. Corresponds to a push of terminal a from state p.
w

The new item belongs to the next itemset Si% ;.
3. Corresponds to a push of non-terminal Y from
state p.

4. Corresponds to a pop action from state p, where
q is an ancestor of state p under transition X in
the LALR(1) automaton. In this case, we do not
generate a new item, but a dynamic transition
T4 to treat the absence of information about the
rest of the stack. This transition is applicable not
only to the configuration resulting of the first one,
but also on those to be generated and sharing the
same syntactic structure, as shown in figure 2.

The concept of dynamic transition is due to
Villemonte de la Clergerie [16] who applied it
in the context of the generation of efficient and
complete definite clause programs compilers.

At this point, items are not only elements of the
computation process, but also non-terminals of the
output grammar. That allows us to identify items
with nodes in the resulting parse forest. So, given
an item I we shall denote by I.forest the value of a
pointer to the set of rules in the output context-free
grammar whose left-hand-side is 1.



Figure 2: Dynamic transitions in ICE
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2.3 The choice of the deterministic kernel

The choice of the deterministic parsing scheme
to be the kernel of ICE depends in fine on: the
grammar used, the corpus of sentences to be analyzed,
and a balance between computational and sharing
efficiency, and parser size. As a consequence, the
problem is a practical one and the best basis to decide,
experimental. In this sense, the results achieved by
Billot and Lang in [2], and earlier by Bouckaert,
Pirotte and Snelling in [3] show, on an experimental
basis, that techniques close to straightforward bottom-
up methods, such as LALR(1l), are the most
appropriate.

From an intuitive point of view, that conclusion
was expected. Effectively, those algorithms combine
certain characteristics making them good candidates
for a non-deterministic approach:

e A very large deterministic domain. In this
direction, it should be good to remember that
user often write grammars sufficiently close to
deterministic ones. This phenomenon, called local
determinism, has already been observed by Lang
in [11]. Therefore, the use of the above parallel
parsing techniques allows an important economy
in time and space.

e An efficient treatment of the sharing problem of
computations and structures:

— The consideration of some determinization
techniques such as the classic LR(k) ones,
in principle the best, has as a consequence
the distortion of the initial grammar due to
the application of a predictive technique in
the generation of the parser in relation to
the lookahead facility. This leads to the well
known state splitting phenomenon. Sharing
of syntactic structures can then be affected.

— In the case of LALR(1) parsers, not only
the necessary tests to implement lookahead
facility are easier to perform, but the state
splitting phenomenon remains reasonable.
That allows us to assure a good sharing of
computation and parsing structures.

3 Incremental Parsing

The goal of the incremental context-free parser is
to recover stable parts of a shared forest between
consecutive parsing steps, at no cost in space and time.
In particular, we have to guarantee the same level of
sharing in the resulting parse forest, as in standard
parsing.

In the context of the recovery process, we shall
define stable items between the initial parsing of
w1, and the parsing of the modified input string
T1 n+k, k € [-n,00), as those items that represent
a stable configuration of the PDT that would be
reconstructed if we had redone an entire parse of the
modified input string up to that point. More formally,
an item [}’ = [p, X, Sy, S}"] is stable if and only if
there exists an item I, = [p, X, S}, S5 ]. We shall
denote it as I} = I . In this case, items [}’ and
Iy, would represent equivalent trees of their shared
forest. Henceforth, we shall also denote C the relation
of inclusion induced by = in the sets of items.

From a practical point of view, we shall only
consider the case of recovery on the basis of complete
itemsets®. This is equivalent to the recovery of all
the OR-descendants of a node in a shared forest.
Eventually, there will be no recovery of trivial nodes
in an itemset. FEven if this does not guarantee
that all superfluous computations will be avoided, it
allows to notably reduce the comparison between stack
configurations corresponding to the original and the
modified input string. At this point, our experience
has shown that the incremental treatment is not
interesting from a practical point of view when only
a part of an itemset is stable, as it is usually the
case when the input grammar has a lot of ambiguities
generating crossed forests.

3.1 An informal
problem

description of the

To begin with, we consider the case of a single
modification. So, we assume 1 n4x, k € [—n,0)

3that is, shift actions are checkpoints in the parsing process.



is a modified input string from wi_,, where z is of the
form: 1 p4k = W1 - Wp UL - Uy Wegnyr - - Wy With

up ; € X7 d |ul= k,ifk>0
h=lul|—k @ TU 1= 0, otherwise

where we call SY°, a point of modification relative to w
and z. That is, we are assuming that our modification
is the substitution* of Weyl. o4k DY U1 ;.

By dynamic programming construction, items in
Sy ,_, correspond to the stable part of the parsing
process®, while items in S¥ S% - - - S)' correspond to the
part of the parsing process which is new. Finally, items
in S{ .y , correspond to the part of the parsing
process that will eventually be recovered.

Figure 3: Practical incremental recovery of shared
forests in ICE
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3.2 Practical incremental recovery

As shown in figure 3, we shall now consider two
different cases depending on the nature of the recovery
of complete itemsets.

e Total recovery. The idea is to detect when
the parsing process becomes independent of the
modification.

e Partial recovery. In this case, recovery applies to
all trees of the shared forest corresponding to a
part of the remaining input.

4for deletion we take u = ¢ and k < 0, for insertion we
assume | u |= k with k& > 0 and for substitution we consider
k=0.

55’;“ can be recovered when the lookahead has not changed.

3.2.1 Total recovery

We now have to establish a condition under which
total recovery is possible from a given input position
1. To do that, it is sufficient to find a condition capable
to assure that all future pop transitions do not depend
on the modification, as shown in figure 4 below, with
a pop transition XY +— 7 that does not depend on
the modification SY .S} at the point Sp’. This is
because pop transitions are the only ones depending
on the past of the parsing process.

Figure 4: A pop transition XY +— Z totally recovering
a modification
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Therefore a sufficient condition for S} to allow
total recovery from that itemset is that, for each item
I € S, such that:

(3

1. I is the argument in a pop transition from a valid
suffix of wy_ ;.

2. All pop transition taking I as argument, implies
a return to an itemset Sy, t <7 — 1.

I is stable, and ¢ < £ the point of modification relative
to w and z.

More formally, we call items verifying conditions
1 and 2 gaps,,. or gapsy when the context is clear.
This concept is similar to the essential parse sequences
proposed by Celentano in [4], which favored these non
trivial stack configurations having a shift as possible
action to perform, for LR parsers.

Observe that the concept of gapsy’ does not include
those items in the same itemset S}’ representing
trivial nodes from which the only possible actions
to perform are empty reductions followed by a
shift.  Even if this does not guarantee that all
superfluous computations will be avoided, it allows
to notably reduce the comparison tests between stack
configurations corresponding to the original and the
modified input string.



In practice, the sets gaps;® are computed by
considering the basis of S}, that is, those items
that were introduced into S}’ by a push transition
corresponding to a shift action of the PDT. From
each one of those items, we put into gapsy the first
descendant in the stack forest in S}” ; representing a
non-trivial node, as is shown in figure 5.

Figure 5: How ICE computes gaps from the stacks
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Once we have computed the gaps, we can give
a sufficient condition for total recovery: Given
Z1 ntk, k € [-n,00) a modified input string from
wi. , and SP a point of modification relative to w and
z, verifying

Al e[f+ h+1,n), such that
L. gapsy C gaps;, (resp. gapsy = gapsy,,)

2. VI € gapsy,,, Lback < ¢

then, from the point of view of the recognizer S}’ C
Sg,, Yt € [l,n) (resp. Sy =55, Vt € [I,n)).

Effectively, if the set of possible pop transitions is
the same in two parsing process and the not yet parsed
substring is also the same, then the future is identical.

This result can be extended to the case of several
simultaneous modifications of the input string, in a
single recovery process. To do that, we define the
notion of a totally recovered point of modification
relative to w and x, as a point in the recovery process
such that the corresponding modification has been
totally recovered. Then the condition becomes: Given
Z1 ntk, k € [-n,00) a modified input string from
w1y, and SZ“m m contiguous points of modification
relative to w and z, verifying

i e[l,m], L €[l;i+ h; + 1,441), such that
1. gapsy’ T gaps;,, (resp. gapsy’ = gapsy,,)
2. VI € gapsy,, I.back < ¥;

3. Vijel,i—1], SE”J_ has been totally recovered

then, from the point of view of the recognizer S}’ C

Se, Yte [l biyq) (vesp. S =85, Vte [l,4iy1)).

In the case of the parser, we must find in addition
the scope of the modifications in the original forest, a
simple task given that the nodes affected by changes
in its structure are those common with the new parse
forest having at least a changed descendant in relation
to the new development, that is, those common items
capable to be accessed in the continuation of the
parsing process in the case no incremental treatment
was applied. To update one of these nodes it will be
sufficient to find its stable descendants in the parse
forest which have been effectively recomputed and to
replace them by the original corresponding structure
in the recovered parse forest.

Figure 6: How ICE extends total recovery to the
parser
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Taking into account that we only recover complete
itemsets, this phenomenon is limited to those items
representing stable trivial nodes for which their
ancestors in the parse forest are not computed in
the same itemset S;’, where they are included. We
call these items overgaps,, or more simply overgaps;’
when the context is clear®.

At this point, to extent total recovery to the
parser, we must perform for all I € overgaps}’ the
assignments IV.forest := I®.forest, where I and
I” represent in each case the same node in the parse
forest, that is I = I”. This process is illustrated in

figure 6.

Sthe reason for which we have chosen the name overgaps is
that these items are built from the gaps of the corresponding
itemset.



3.2.2 Partial recovery

We start by considering the case of a single
modification, and we now have to establish a condition
under which partial recovery is possible from itemset
S;’ to itemset Si’. To do that, it is sufficient to
find a condition under which pop transitions would
not depend on the modification for itemset Sy t
itemset Sy, as it is shown in figure 7. We assume
no additional modification in the substring w;_;.

Figure 7: A pop transition XY +— Z independent of
the modification
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Therefore a sufficient condition for S} to allow
partial recovery from that itemset to some itemset S}’
is that for each item I € S} ; such that:

1. I is the argument in a pop transition from a valid
suffix of wy_ ;.

2. All pop transition taking I as argument, imply a
return to an itemset S}, ¢ < i — 1.

there does not exist a pop transition in 5" ; taking I
as argument”.

It is important to remark that the above condition
does not imply the stability of the item I. This is
because it does not take into account the past of the
parsing process represented by the back pointer, as
was the case in total recovery. More formally, an
item I}V = [p, X, S}, S}’ is weakly stable if and only if
there exists an item I, = [p, X, S5y, Sy,]. We shall
denote it as I} = I . In this case, items [}’ and
I, would not necessarily represent equivalent trees of
their shared forest. We shall denote < the relation of
inclusion induced by = in the sets of items.

Taking into account the definition of gapsy’, we
conclude that there is no pop transition in S}" , taking
I € gapsy’ as argument.

7in practice, the realization of this test just necessitates to

store the minimun value of j; when applying pop transitions
after S7¥.

More formally, we can assure that given
Z1 ntk, k € [-n,00) a modified input string from
wy_p, and S“’ om contiguous points of modification
relative to w and z, verifying that

die[l,m], [,jE[l+h; +1,441), such that

1. gapsy < gapsy, (resp. gaps}® = gapsﬁl)

2. S} is the first itemset applying a pop on gaps}’

then, from the point of view of the recognizer, S}’ C

Se,, Yte[l,j—1] (resp. Sy =55, Yt €[l,j—1]).
To extend this result to the parse forest, it is sufficient
to perform for all I € overgaps}’ the assignments

IV forest .= I®.forest, where IV = [”.
3.3 Complexity bounds

We assume 1.4k, k € [-n,00) is amodified input
string from wy_,, and SZ“m m contiguous points of
modification relative to w and z. In this context, the
application of our incremental test takes a time O(n®)
and a space @(n?), in the worst case. The reasons for
this are:

1. The number of items in S} is O(1), as it is proved
by Lang in [11]. Therefore, the number of items in
gapsy’ is also O(!), in the worst case. The result
is the same for the number of items in overgapsy’ .

2. As a consequence, time complexity for the test
gaps}’ T gaps%, is O(I*). On the other hand, we
need a space O(l) to store gapsy’.

3. From that, we have that in the worst case, the
consideration of the incremental mode takes a
time (’)( 1=, +ﬁ +1l2) < O(ZR,1%) = O(n?) and
a space O( 1=, +h +1l) <Ok = O(n?)

We can characterize the class of grammars which the
algorithm do in time O(n). For some grammars,
called bounded item grammars, the number of items
in a given itemset cannot grow indefinitely. In
this case, the number of items is O(k) with &
constant, whichever it is the considered itemset. As a
consequence, the test for incrementality takes a time
(’)(Ef’zl_i_ﬁi_i_lkz) < O(Z7, k%) = O(n), and a space
OS5 i n41k) < O(Zgk) = O(n). At this point,
we must remark that the complexity bounds for the
standard parser [11] are exactly the same.



4 Experimental Results

We use the syntax of complete Pascal to show
the efficiency of ICE, comparing it with YACC [10],
the standard deterministic parser generator of UNIX
and SDF [8],
deterministic parser generator which is based on
Tomita’s algorithm [14].  We have also compared
ICE with an implementation of the classic Earley’s
algorithm proposed by Vilares in [15]. Results are

one of the most efficient non-

Figure 8: Performances on non-ambiguous Pascal
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shown in figures 8, 9 for the standard parser, and
figures 10, 11 for the incremental parser, where:

1. All tests have been performed using the same
input programs for each one of the parsers and
the time needed to ”print” parse trees was not
measured.

2. We don’t include garbage collection time, and in
order to avoid errors of UNIX standard clocks
we have considered the middle time of twenty
different runs for each example.

3. We include the time corresponding to lexical
analysis, since it is not possible in SDF to
differentiate that from parsing. In all other cases,
LEX [13] has been used to generate the lexical
analyzer.

4. All the measurements have been performed
on a Sun SPARCstation 2, weakly loaded.

The ambiguous version of Pascal includes the
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Figure 9: Performances on ambiguous Pascal
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dangling else and the ambiguity for the arithmetic
expressions. To illustrate non-determinism, we
measure the time needed to parse programs of
the form:

program P (input, output);
var a,b : integer;
begin
a = b{+b}’

end.

where : is the number of +’s. As the grammar
contains a rule ”Expression ::= Expression +
Expression”, these programs have a number of
ambiguous parses which grows exponentially with
i. This number is:

1 if

Ci= <2.’>.1 if
7 1+1

i=0,1

1> 1

. SDF works on an extended LR(0) machine, and

ICE uses an extended LALR(1) one. So, the
ambiguous Pascal grammar used for SDF has
357 shift/reduce conflict, while that used for ICE

contains only 305.

. Given that in both, SDF and ICE, mapping

between concrete and abstract syntax is fixed, we
have generated in the case of YACC, a simple
recognizer.



Figure 10: Incrementality on ambiguous Pascal

Figure 11: Incrementality on ambiguous Pascal
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7. To illustrate incrementality in the general
context-free case, we analize programs of the
form:

program P (input, output);
var a,b: integer;
begin
a:=(b+b)+b{+(b+0b)+b}

end.

to obtain

program P (input, output);
var a, b : integer;
begin
a:=b+b{+b+ b}

end.

by substitution of expressions (b+ b) by b, where
! > 0. Results are given in figure 11, in relation
to the number of tokens modified in the original
program, and in figure 10 in relation to the time
needed to reparse them.

8. ICE and SDF have been written in Le_Lisp [5],
while YACC is written in C.

5 Summary and Conclusions

In conclusion, we have developed a practical and
efficient implementation of the class of context-free
parsers introduced by Lang in [11]. The efficiency

2 80 O % modified tokens L le+14
[J]
x
[=] L
570 4+  number of ambiguities | 1e+12
T‘_§
€ 60 | le+l0
g O
50 O | 1le+08
40 O + | 1le+06
O
30 - + | 10000
| +
20 o O + | 100
= 8
10 + 1 £
0 0 5
I I I I I I I

o
=
o
N
[}

.10
value of 1 for Ci

of these parsers is due to a compromise between the
sharing of computations and the sharing of resulting
forests. The best results has been obtained by using
an LALR(1) automaton as the basis for the parser.
These non-deterministic parsers were then extended
to allow an incremental treatment, and the validity
of this approach has been proved on examples where
the number of ambiguities stays reasonably small, as
is the case in practice.

Furthermore, the parser generator we have
developed is compatible with YACC [10], which
permits to freely use all the input that were developed
for this generator.
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A An example for the standard parser

The first example, without incremental treatment,
is intended to familiarize the reader with our
constructions. To illustrate the discussion, we shall
assume the grammar IE given by the productions:

0) ®—95 4 () S—=Sas (2) S—=b
(3) S—cdFE (4) S—a (5) S—e¢
(6) F—e

whose LR(0) finite state machine is represented in
figure 12.

We shall consider as input strings w = baacde 4 and
z = bacde , for which itemsets corresponding to their
parsing process are shown in table 1. We only include
in those tables items corresponding to the recognition
of a syntactic category in the original grammar IE.

Parse forests corresponding to both input strings
w and z can be respectively seen in figure 13 and
figure 14. In order to facilitate understanding, we have
included in each node corresponding to the reduction
of a non-terminal in the original input grammar IE,
the number of the considered rule. Patterns will be
used later to illustrate incremental treatment.



Figure 12: The LR(0) machine for the IE grammar
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Table 1: Ttemsets for w = baacde 4 and z = bacde

Se” $ Sq 8

Sy St

(wi=b) Iy =[0,b5 5] (z1) Iy =10,5, 55,57
I =10,5,5¢, 5] Ii =10,5,5§,57]

Sy

(w2 =a) I =[4,a, St S¥]
If =1[6,5,55,55]
I3 =10,5,5¢, 53]

S5 S3

(ws =a) I§ =1[6,a,5¢,5%] (z2) I§ =I[4,a, 57,53
If E[gaa 52 aSS]
I3 =[4,a, 5%, 5Y)
I} =[6,S,S%, 5%
I} =10, S, Sy, S%]

Sy S3

(we=¢) I3 =1[6,¢,5,5¢ (za) I3 =16,¢,55,5%]

Sg’ S

(ws =d) Iy =[3,d,S¢,5¥]) (za) I§ =]3,d,5%,57]

S¢’ Sg

(we =€) I = [5,e,55,5¢] (zs5) 15 = [5,€e, S¢,S%]
IY =[5E, 5, 58] Iy =[5,E,57,5¢]
I3 =1[6,5,55,5¢] I3 =6, 5,53, 5%]
I5=[0,5,55,5¢] I3 =0,S,53,5%]
I =[6,85,55,S¢]

S Sg

(wr =)  I{ =[4,4,5¢,5¥] (z6) I§ =[4,4,5E, 53]

B An example for the incremental
parser

Gaps for both input strings w = baacde - and
z = bacde - in relation to the grammar IE are shown
in table 2.

Table 2: Gaps for w = baacde 4 and z = bacde -

gapsy’ =10 gapst =0
gapsy = {11}

gapsy = {13, 122} gapss = {111}
gapsy = {17, I3} gapsi = {I5}
gapsy = {I3} gapsi = {15}
gapsg’ = {I5} gaps? = {I3}
gaps¥ = {I5} gaps§ = {13}

B.1 Total recovery

To illustrate total recovery, we shall first consider
the original input string z = bacde 4 and the modified
one w = baacde - taking IE as input grammar. That
is, we shall here assume that:

e The only point of modification relative to z and
w is ST.

e The modification consists in the insertion of the
string w1, = u1.1 = @, immediately after the
first b character.

e h=|u|—-k=0.

Given that the lookahead of the point of
modification has not changed, we have that:

{ SE =Sy
=57

which corresponds to node I in figure 13 and
figure 14.

From gaps3 and gapsy, = gapsy, we obtain that
gaps; C gapssy. We conclude that Sy C Sy, Vi €
[2,6]. From the viewpoint of the parse, we recover
all the AND-OR graph represented in figure 14. To
facilitate the task, the recovered graph has been

painted in figure 13, using the same pattern.
B.2 Partial recovery

We now consider:

e z = bacde - is a modified input string from
w = baacde -, whose only point of modification

is ST.



e The modification consists in the deletion of the
first a character.

e h=|u|-k=1

As in the total recovery case, the lookahead of the
point of modification has not changed, and we have

that:
{ SE = Sy
P=sy

which corresponds to node I in figure 13 and
figure 14.

Figure 13: AND-OR graph for the input w = baacde -

Given that £+ h + 1 = 3, we shall firstly compare
the gaps from Sy and Sj, = S7, to obtain that
gapsy £ gapsy, reason for which we shall continue
to successively compare gapsy with gapsi and gapsy
with gapsj. In this case, we shall have gaps¥ = gaps?,
and therefore we can assure that S¥ = S¥, given that

the first itemset applying a pop transition on gapsy is
Sy

Intuitively, we have recovered all the development
corresponding to nodes labeled by I and I3 in
figure 13. To facilitate its location, it has been painted
using the same pattern in figure 14.

Figure 14: AND-OR graph for the input & = bacde 4
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