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Abstract

We present a novel unsupervised approach
for multilingual sentiment analysis driven
by compositional syntax-based rules. On
the one hand, we exploit some of the
main advantages of unsupervised algo-
rithms: (1) the interpretability of their out-
put, in contrast with most supervised mod-
els, which behave as a black box and (2)
their robustness across different corpora
and domains. On the other hand, by intro-
ducing the concept of compositional op-
erations and exploiting syntactic informa-
tion in the form of universal dependen-
cies, we tackle one of their main draw-
backs: their rigidity on data that are dif-
ferently structured depending on the lan-
guage. Experiments show an improvement
both over existing unsupervised methods,
and over state-of-the-art supervised mod-
els when evaluating outside their corpus of
origin. The system is freely available1.

1 Introduction

Semantic composition is a natural process for hu-
mans when understanding the sentiment of an
opinion. In the sentence‘He is not very handsome,
but he has something that I really like’, humans
have the ability to infer that the word‘very’ em-
phasizes‘handsome’, ‘not’ affects the whole ex-
pression‘very handsome’, and‘but’ decreases the
relevance of‘He is not very handsome’and in-
creases the one of‘he has something that I really
like’. Based on this, a human could justify a posi-
tive overall sentiment on that sentence.

Our main contribution is the introduction of the
first universal and unsupervised model for compo-
sitional sentiment analysis (SA) driven by syntax-

1http://grupolys.org/software/UUUSA/

based rules. We introduce a formalism for com-
positional operations, allowing the creation of ar-
bitrarily complex rules to tackle relevant phenom-
ena forSA, for any language and syntactic depen-
dency annotation. A set of practical universal op-
erations is evaluated on different corpora and lan-
guages. The model outperforms existing unsu-
pervised approaches, and state-of-the-art compo-
sitional supervised models (Socher et al., 2013) on
domain-transfer settings, and shows that the oper-
ations can be shared across languages, as they are
defined using part-of-speech (PoS) tags and de-
pendency types under the universal guidelines of
(Petrov et al., 2011; McDonald et al., 2013).

2 Related work

A naı̈ve approach to emulate the comprehension
of the meaning of multiword phrases forSA con-
sists in usingn-grams withn > 1 (Pang et al.,
2002). The approach is limited by the curse of di-
mensionality, although crawling data from the tar-
get domain can help to reduce that problem (Kir-
itchenko et al., 2014). Joshi and Penstein-Rosé
(2009) went one step forward and proposed gen-
eralized dependency triplets as features for sub-
jectivity detection, capturing non-local relations.
Socher et al. (2012) modeled a recursive neural
network that learns compositional vector represen-
tations for phrases and sentences of arbitrary syn-
tactic type and length. Socher et al. (2013) pre-
sented an improved recursive deep model forSA

over dependency trees, and trained it on a senti-
ment treebank tagged using Amazon Mechanical
Turk, pushing the state of the art up to 85.4% on
the Pang and Lee (2005) dataset. Kalchbrenner et
al. (2014) showed how convolutional neural net-
works (CNN) can be used for semantic modeling
of sentences. The model implicitly captures local
and non-local relations without the need of a parse

http://arxiv.org/abs/1606.05545v1


tree. It can be adapted for any language, as far as
enough data is available. Severyn and Moschitti
(2015) showed the effectiveness of aCNN in a Se-
mEval SA shared task (Rosenthal et al., 2015), al-
though crawling tens of millions of messages was
first required to achieve state-of-the-art results.

In spite of being powerful and accurate, super-
vised approaches also present drawbacks. Firstly,
they behave as a black box. Secondly, they do not
perform so well on domain transfer applications
(Aue and Gamon, 2005; Pang and Lee, 2008).
Finally, feature and hyper-parameter engineering
can be time and resource costly options.

When these limitations need to be addressed,
unsupervised (rule-based) approaches are useful.
In this line, Turney (2002) proposed an unsuper-
vised learning algorithm to calculate the semantic
orientation (SO) of a word. Taboada et al. (2011)
presented a lexical rule-based approach to handle
relevant linguistic phenomena such as intensifica-
tion, negation,‘but’ clauses andirrealis. Thelwall
et al. (2012) released SentiStrength, a multilingual
unsupervised system for micro-textSA that han-
dles negation and intensification, among other web
linguistic phenomena. Regarding syntax-based
approaches, the few described in the literature are
language-dependent. Jia et al. (2009) define a set
of syntax-based rules for handling negation in En-
glish. Vilares et al. (2015a) propose a syntacticSA

method, but limited to Spanish reviews and An-
cora trees (Taulé et al., 2008).

In brief, most unsupervised approaches are
language-dependent, and those that can manage
multilinguality, such as SentiStrength, cannot ap-
ply semantic composition.

3 Unsupervised Compositional SA

3.1 Dependency graphs

Let w=w1, ..., wn be a sentence, where each word
occurrencewi ∈ W is assigned a PoS tagti ∈ T .

Definition 1. A dependency treefor w is an edge-
labeled directed treeT = (V,E) where V =
{0, 1, 2, . . . , n} is the set of nodes andE = V ×
D × V is the set of labeled arcs. Each arc, of the
form (i, d, j), corresponds to a syntacticdepen-
dencybetween the wordswi andwj ; wherei is the
index of thehead or parent word, j is the index
of thedependentor child word andd is thede-
pendency typerepresenting the kind of syntactic
relation between them. Following standard prac-
tice, we use node0 as a dummy root node that acts

as the head of the syntactic root(s) of the sentence.

We will write i
d
−→ j as shorthand for(i, d, j) ∈

E and we will omit the dependency types when
they are not relevant. Given a dependency tree
T = (V,E), and a nodei ∈ V , we define a set
of functions to obtain the context of nodei:

• ancestorT (i, δ) = {k ∈ V : there is a path
of lengthδ from k to i in T}, i.e., the single-
ton set containing theδth ancestor ofi (or the
empty set if there is no such node),

• childrenT (i) = {k ∈ V | i → k}, i.e., the
set of children of nodei,

• lm-branchT (i, d) = min{k ∈ V | i
d
−→ k},

i.e., the set containing the leftmost among the
children ofi whose dependencies are labeled
d (or the empty set if there is no such node).

3.2 Operations for compositional SA

Our compositionalSA system will associate anSO

valueσi to each nodei in the dependency tree of a
sentence, representing theSOof the subtree rooted
at i. The system will use a set of compositional
operations to propagate changes to the semantic
orientations of the nodes in the tree. Once all the
relevant operations have been executed, theSO of
the sentence will be stored asσ0, i.e., the semantic
orientation of the root node.

A compositional operation is triggered when a
node in the tree matches a given condition (related
to its associated PoS tag, dependency type and/or
word form); and it is applied to a scope of one
or more nodes calculated from the trigger node by
ascending a number of levels in the tree and then
applying a scope function. More formally, we de-
fine our operations as follows:

Definition 2. Given a dependency treeT (V,E),
a compositional operation is a tuple o =
(τ, C, δ, π, S) such that:

• τ : R → R is a transformation function to
apply on theSO (σ) of nodes,

• C : V → {true, false} is a predicate that
determines whether a node in the tree will
trigger the operation,

• δ ∈ N is a number of levels that we need to
ascend in the tree to calculate the scope ofo,

• π is a priority that will be used to break ties
when several operations coincide on a given
node, and



• S is a scope calculation function that will be
used to determine the nodes affected by the
operation.

In practice, our system definesC(i) by means
of sets of words, tags and/or dependency types
such that the operation will be triggered ifwi, ti
and/or the head dependency ofi are in those sets.
Compositional operations whereC(i) is defined
using universal tags and dependency types only
are universal and can be used across languages.

We propose two options for the transformation
functionτ :

• shiftα(x) =

{

x− α if x > 0
x+ α if x < 0

whereα is

the shifting factor andα, x ∈ R.

• weightingβ(x) = x× (1+ β) whereβ is the
weighting factor andβ, x ∈ R.

The scope calculation function,S, allows us to
calculate the nodes ofT whoseSO is affected by
the transformationτ . For this purpose, if the op-
eration was triggered by a nodei, we applyS to
ancestorT (i, δ), i.e., theδth ancestor ofi (if it ex-
ists), which we call thedestination nodeof the
operation. The proposed scopes are as follows (see
also Figure 1):

• dest (destination node): The transforma-
tion τ is applied directly to theSO of
ancestorT (i, δ) (see Figure 1.a).

• lm-branchd (branch of d): The affected
nodes arelm-branchT (ancestorT (i, δ), d)
(see Figure 1.b).

• rcn (n right children): τ affects the
SO of the n smallest indexes of{j ∈
childrenT (ancestorT (i, δ)) | j > i} (see
Figure 1.c).

• lcn (n left children): The transformation
affects the n largest elements of{j ∈
childrenT (ancestorT (i, δ)) | j < i} (see
Figure 1.d).

• subjr (first subjective right branch):
The affected node is min{j ∈
childrenT (ancestorT (i, δ)) | j > i ∧ σj 6=
0} (see Figure 1.e).

• subjl (first subjective left branch):
The affected node is max{j ∈
childrenT (ancestorT (i, δ)) | j < i ∧ σj 6=
0} (see Figure 1.f).

Compositional operations can be defined for
any language or dependency annotation criterion.
While it is possible to add rules for language-
specific phenomena if needed (see§ 3.3), in this
paper we focus on universal rules to obtain a truly
multilingual system.2

3.3 An algorithm for unsupervised SA

To execute the operations and calculate theSO of
each node in the dependency tree of the sentence,
we start by initializing theSO of each word using
a subjective lexicon, as traditional unsupervised
approaches do (Turney, 2002). Some options to
obtain multilingual subjectivity lexica are Sen-
tiStrength (subjective data for up to 34 languages)
or the Chen and Skiena (2014) approach, which
introduced a method for building sentiment lexi-
cons for 136 languages. Our implementation sup-
ports the lexicon format of SentiStrength, which
can be plugged directly into the system. Addi-
tionally, we provide the option to create different
dictionary entries depending on PoS tags to avoid
conflicts between homonymous words (e.g.‘I’m
fine’ versus‘They gave me a fine’).

Then, we traverse the parse tree in postorder,
applying Algorithm 1 to update semantic orienta-
tions when visiting each nodei. In this algorithm,
O is the set of compositional operations defined
in our system,Ai is a priority queue of the com-
positional operations to be applied at nodei (be-
causei is their destination node); andQi is another
priority queue of compositional operations to be
queued for upper levels at nodei (as i is not yet
their destination node).⊕ defines the operation to
merge two priority queues,push insertso in a pri-
ority queue andpop pulls the operation with the
highest priority (ties are broken by giving prefer-
ence to the operation that was queued earlier).

At a practical level, the set of compositional op-
erations are specified using a simpleXML file:

• <forms>: Indicates the tokens to be taken
into account for the conditionC that triggers
the operation. Regular expressions are sup-
ported.

2Apart from universal dependencies and PoS tags, the
only extra information used by our rules is a short list of nega-
tion words, intensifiers, adversative conjunctions and words
introducing conditionals (like the English “if” or “would”).
While this information is language-specific, it is standardly
included in multilingual sentiment lexica which are available
for many languages (§ 3.3), so it does not prevent our system
from working on a wide set of languages without any adapta-
tion.
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Figure 1: Graphical representation of the proposed set of influence scopes S.© indicates the node that
triggers an operationo, � the nodes to which it is applied.

Algorithm 1 Compute SO of a node
1: procedure COMPUTE(i,O ,T )
2: Ai ← []
3: Qi ← []

⊲ Enqueue operations triggered by nodei:
4: for o = (τ, C, δ, π, S) in O do
5: if C(i) then
6: if δ > 0 then
7: push((τ, C, δ, π, S), Qi)
8: else
9: push((τ, C, δ, π, S), Ai)

⊲ Enqueue operations coming from child nodes:
10: for c in childrenT (i) do
11: for o = (τ, C, δ, π, S) in Qc do
12: if δ − 1 = 0 then
13: push((τ, C, δ − 1, π, S), Ai)
14: else
15: push(τ, C, δ − 1, π, S), Qi)

⊲ Execute operations that have reached their destination
node:

16: while Ai is not empty do
17: o = (τ, C, δ, π, S)← pop(Ai)
18: for j in S(i) do
19: σj ← τ (σj)

⊲ Join the SOs for nodei and its children:
20: σi ← σi +

∑
c∈childrenT (i) σc

• <dependency>: Indicates the dependency
types taken into account forC.

• <postags>: Indicates the PoS tags that
must match to trigger the rule.

• <rule>: Defines the operation to be exe-
cuted when the rule is triggered.

• <levelsup>: Defines the number of levels
from i to spread before applyingo.

• <priority>: Defines the priority ofo in
case than more than one operation needs to
be applied overi (a larger number implies a
bigger priority).

4 NLP tools for universal unsupervised
SA

The following resources serve us as the starting
point to carry out state-of-the-art universal, unsu-
pervised and syntactic sentiment analysis.

The system by Gimpel et al. (2011) is used for
tokenizing. Although initially intended for En-
glish tweets, we have observed that it also per-
forms robustly for many other language families
(Romance, Slavic, etc.).

For part-of-speech tagging we rely on the free
distribution of the Toutanova and Manning (2000)
tagger. Dependency parsers are built using Malt-
Parser (Nivre et al., 2007) and MaltOptimizer
(Ballesteros and Nivre, 2012). We trained a set
of taggers and parsers for different languages us-
ing the universal tag and dependency sets (Petrov
et al., 2011; McDonald et al., 2013). Table 1
shows their performance under standard metrics.
The tagging3 and parsing4 models are also avail-
able.

5 Defining compositional operations

We presented above a formalism to define arbi-
trarily complex compositional operations for un-
supervisedSA over a dependency tree. In this sec-
tion, we show the definition of the most important
rules that we used to evaluate our system. In prac-
tical terms, this implies studying how syntactic
constructions that modify the sentiment of an ex-

3http://grupolys.org/software/TAGGERS/universal-tag-
sets/monolingual/

4http://www.grupolys.org/software/PARSERS/universal-
tag-sets/monolingual/



Language Tagger Parser
Acc. Acc. unk LAS UAS

English 98.12 91.81 89.36 91.02
Spanish 96.05 84.15 80.60 84.75
German 95.13 91.89 78.27 84.03
Italian 97.83 92.07 84.40 87.54
French 95.89 87.18 79.29 84.47

Portuguese 97.72 93.44 84.88 87.39
Indonesian 95.67 93.19 77.69 84.47

Table 1: Performance of the taggers and parsers
provided together with our system on the corre-
sponding McDonald et al. (2013) test set.

pression are represented in the annotation formal-
ism used for the training of the dependency parser,
in this case, Universal Dependencies. We are us-
ing examples following those universal guidelines,
since they are available for more than 40 lan-
guages and, as shown in§ 6, the same rules can
be competitive across different languages.

5.1 Intensification

Intensification amplifies or diminishes the senti-
ment of a word or phrase. Simple cases of this
phenomenon can be‘I have huge problems’ or
‘This is a bit dissapointing’. Traditional lexicon-
based methods handle most of these cases with
simple heuristics (e.g. amplifying or diminishing
the sentiment of the word following an intensifier).
However, ambiguous cases might appear where
such lexical heuristics are not sufficient. For ex-
ample, ‘huge’ can be a subjective adjective in-
troducing its ownSO (e.g. ‘The house is huge’),
but also an amplifier when it modifies a subjective
noun or adjective (e.g.‘I have huge problems’,
where it makes‘problems’more negative).

Universal compositional operations overcome
this problem without the need of any heuristic.
A dependency tree already shows the behavior
of a word within a sentence thanks to its depen-
dency type, and it shows the role of a word in-
dependently of the language. Figure 2 shows
graphically how universal dependencies represent
the cases discussed above these lines. Formally,
the operation for these forms of intensification
is: (weightingβ, w ∈ intensifiers∧ t ∈ {ADV,ADJ}∧
d ∈ {advmod,amod,nmod}, 1, 3,
dest ∪ lm-branchacomp), with the value ofβ de-
pending on the strength of the intensifier as given
by the sentiment lexicon.

subjective node

intensi er

   [ADJ]

advmod,

amod,

nmod acomp

really

[ADV]

The

is

house huge

[ADJ]

acomp

is

It
huge

[ADJ]

acomp
problem

a

  non-intensi er

         [ADJ]

acomp

intensi er

   [ADV]

scope 

is

house huge

[ADJ]

acomp

The

a)

b)

c)

Figure 2: Skeleton for intensification composi-
tional operations (2.a, 2.c) and one case without
intensification (2.b), together with examples anno-
tated with universal dependencies.

5.1.1 ‘But’ clauses

Compositional operations can also be defined to
manage more challenging cases, such as clauses
introduced by‘but’ , considered as a special case
of intensification by authors such as Brooke et al.
(2009) or Vilares et al. (2015a). It is assumed
that the main clause connected by‘but’ becomes
less relevant for the reader (e.g.‘It is expen-
sive,but I love it’). Figure 3 shows our proposed
composition operation for this clause, formally:
(weightingβ , w ∈ {but} ∧ t ∈ {CONJ} ∧ d ∈
{cc}, 1, 1, subjl ) with β = −0.25. Note that the
priority of this operation (π = 1) is smaller than
that of intensification (π = 3), since we first need
to process intensifiers, which are local phenom-
ena, before resolving adversatives, which have a
larger scope.

love

itI

cc

i

  but

[CONJ]

subjl

is

It expensive ,

cc

  but

[CONJ]

Figure 3: Skeleton for‘but’ compositional opera-
tion illustrated with one example according to uni-
versal dependencies.



5.2 Negation

Negation is one of the most challenging phenom-
ena to handle inSA, since its semantic scope can
be non-local (e.g.‘I do not plan to make you suf-
fer’). Existing unsupervised lexical approaches
are limited to consider a snippet to guess the scope
of negation. Thus, it is likely that they consider as
a part of the scope terms that should not be negated
from a semantic point of view. Dependency types
help us to determine which nodes should act as
negation and which should be its scope of influ-
ence. For brevity, we only illustrate some relevant
negation cases and instructional examples in Fig-
ure 4. Formally, the proposed compositional oper-
ation to tackle most forms of negation under uni-
versal guidelines is:(shiftα, w ∈ negations∧ t ∈
U ∧ d ∈ {neg}, 1, 2, dest ∪ lm-branchattr ∪
lm-branchacomp ∪ subjr), whereU represents
the universal tag set. The priority of negation
(π = 2) is between those of intensification and
‘but’ clauses because its scope can be non-local,
but it does not go beyond an adversative conjuc-
tion.

subjective node

negation

is

awesomeThis

hate

I do   n't it

  n't

negneg

objective node

negation

neg

scope

neg

a)

b)

Figure 4: Skeleton for negation compositional op-
erations illustrated together with one example.

5.3 Irrealis

Irrealis denotes linguistic phenomena used to refer
to non-factual actions, such as conditional, sub-
junctive or desiderative sentences (e.g.‘He would
have diedif he hadn’t gone to the doctor’). It is a
very complex phenomenon to deal with, and sys-
tems are usually unable to tackle this issue or they
simply define rules to ignore sentences containing
a list of irrealis stop-words (Taboada et al., 2011).
We do not address this phenomenon in detail in
this study, but only propose a rule to deal with‘if ’
constructions (e.g.‘if I die [...]’ or ‘if you are

happy [...]’, considering that the phrase that con-
tains it should be ignored from the final compu-
tation. Formally: (weightingβ, w ∈ {if} ∧ t ∈
U ∧ d ∈ {mark}, 2, 3, dest ∪ subjr). Its graphical
representation would be very similar to intensifi-
cation (see Figures 1 a) and e)).

5.4 Discussion

Figure 5 represents an analysis of our introductory
sentence‘He is not very handsome, but he has
something that I really like’, showing how com-
positional operations accurately capture semantic
composition.

It is hard to measure the coverage of our rules
and the potential of these universal compositional
operations, since it is possible to define arbitrarily
complex operations for as many relevant linguis-
tic phenomena as wished. In this line, Poria et
al. (2014) define a set of English sentic patterns
to determine how sentiment flows from concept to
concept in a variety of situations (e.g. relations of
complementation, direct nominal objects, relative
clauses, . . . ) over a dependency tree following the
De Marneffe and Manning (2008) guidelines.

6 Experimental results

We compare our algorithm with respect to existing
approaches on three languages: English, Spanish
and German. The availability of corpora and other
unsupervisedSA systems for English and Spanish
enables us to perform a richer comparison than in
the case of German, where we only have anad-hoc
corpus.

We compare our algorithm with respect to two
of the most popular and widely used unsupervised
systems: (1)SO-CAL (Taboada et al., 2011), a
language-dependent system available for English
and Spanish guided by lexical rules at the mor-
phological level, and (2) SentiStrength, a multilin-
gual system that does not apply any PoS tagging
or parsing step in order to be able to do multilin-
gual analysis, relying instead on a set of subjec-
tivity lexica, snippet-based rules and treatment of
non-grammatical phenomena (e.g. character repli-
cation). Additionally, for the Spanish evaluation,
we also took into account the system developed
by Vilares et al. (2015a), an unsupervised syntax-
based approach available for Spanish but, in con-
trast to ours, heavily language-dependent.

For comparison against state-of-the-art super-
vised approaches, we consider the deep recursive
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Figure 5: Analysis of a sentence applying universal unsupervised prediction. For the sake of clarity, the
real post-order traversal is not illustrated. Instead we show an (in this case) equivalent computation by
applying all operations with a given priority,π, at the same time, irrespective of the node. Semantic ori-
entation, intensification and negation values are extracted from the dictionaries of Taboada et al. (2011).
Phase a) shows how the intensification is computed on the branches rooted at‘handsome’and ‘like’ .
Phase b) shows how the negation shifts the semantic orientation of the attribute (again, the branch rooted
at ‘handsome’). Phase c) illustrates how the clause‘but’ diminishes the semantic orientation of the main
sentence, in particular the semantic orientation of the attribute, the first left subjective branch of its head.
Elements that are not playing a role in a specific phase appeardimmed. One of the interesting points
in this example comes from illustrating how three differentphenomena involving the same branch (the
attribute‘handsome’) are addressed properly thanks to the assignedπ.



neural network presented by Socher et al. (2013),
trained on a movie sentiment treebank (English).
To the best of our knowledge, there are no seman-
tic compositional supervised methods for Spanish
and German.

Accuracy is used as the evaluation metric for
two reasons: (1) it is adequate for measuring the
performance of classifiers when the chosen cor-
pora are balanced and (2) the selected systems for
comparison also report their results using this met-
ric.

6.1 Resources

We selected the following standard English cor-
pora for evaluation:

• Taboada and Grieve (2004) corpus: A
general-domain collection of 400 long re-
views (200 positive, 200 negative) about ho-
tels, movies, computers or music among
other topics, extracted from epinions.com.

• Pang and Lee (2004) corpus: A corpus of
2 000 long movie reviews (1 000 positive,
1 000 negative).

• Pang and Lee (2005) corpus: A corpus of
short movie reviews (sentences). In partic-
ular, we used the test split used by Socher et
al. (2013), removing the neutral ones, as they
did, for the binary classification task (total:
1 821 subjective sentences).

To show the universal capabilities of our sys-
tem we include an evaluation for Spanish using the
corpus presented by Brooke et al. (2009) (200 pos-
itive and 200 negative long reviews from ciao.es).
For German, we rely on a dataset of 2 000 re-
views (1 000 positive and 1 000 negative reviews)
extracted from Amazon.

As subjectivity lexica, we use the same dic-
tionaries used bySO-CAL for both English and
Spanish. For German, we use the German Sen-
tiStrength dictionaries (Momtazi, 2012) instead,
as Brooke et al. (2009) dictionaries are not avail-
able for languages other than Spanish or English.

6.2 Comparison to unsupervised approaches

Table 2 compares the performance of our model
with respect to SentiStrength5 and SO-CAL on

5We used the default configuration, which already applies
many optimizations. We set the length of the snippet between
a negator and its scope to 3, based on empirical evaluation,
and applied the configuration to compute sentiment on long
reviews.

the Taboada and Grieve (2004) corpus. With re-
spect toSO-CAL, results show that our handling of
negation and intensification provides better results
(outperforming SO-CAL by 3.25 percent points
overall). With respect to SentiStrength, our sys-
tem achieves better performance on long reviews.

Table 3 compares these three unsupervised sys-
tems on the Pang and Lee (2004) corpus, showing
the robustness of our approach across different do-
mains. Our system again performs better thanSO-
CAL for negation and intensification (although it
does not behave as well when dealing with irrealis,
probably due to the need of more complex com-
positional operations to handle this phenomenon),
and also better than SentiStrength on long movie
reviews.

Rules SentiStrength SO-CAL Our system
Baseline N/A 65.50 65.00
+negation N/A 67.75 71.75
+intensification 66.00 69.25 74.25
+irrealis N/A 71.00 73.75

Table 2: Accuracy (%) on the Taboada and Grieve
(2004) corpus. We only provide one column
for SentiStrength since we are using the standard
configuration for English (which already includes
negation and intensification functionalities).

Rules SentiStrength SO-CAL Our system
Baseline N/A 68.05 67.77
+negation N/A 70.10 71.85
+intensification 56.90 73.47 74.00
+irrealis N/A 74.95 74.10

Table 3: Accuracy (%) on Pang and Lee (2004)
test set.

Table 4 compares the performance of our uni-
versal approach on a different language (Spanish)
with respect to: Spanish SentiStrength (Vilares et
al., 2015b), the SpanishSO-CAL (Brooke et al.,
2009) and a syntactic language-dependent system
inspired on the latter (Vilares et al., 2015a). We
used exactly the same set of compositional opera-
tions as used for English (only changing the list of
word forms for negation, intensification and‘but’
clauses, as explained in§3.2). Our universal sys-
tem again outperforms SentiStrength andSO-CAL

in its Spanish version. The system also obtains re-
sults very similar to the ones reported by Vilares et
al. (2015a), even though their system is language-
dependent and the set of rules is fixed and written
specifically for Spanish.



Rules SentiStrength SO-CAL Our system Vilares et al. (2015a)
Baseline N/A N/A 63.00 61.80
+negation N/A N/A 71.00 N/A
+intensification 73.00 N/A 74.25 75.75
+irrealis N/A 74.50 75.75 N/A

Table 4: Accuracy (%) on the Spanish Brooke et al. (2009) testset.

In order to check the validity of our approach
for languages other than English and Spanish, we
have considered the case of German. It is worth
noting that the authors of this article have no no-
tions of German at all. In spite of this, we have
been able to create a state-of-the-art unsupervised
SA system by integrating an existing sentiment
lexicon into the framework that we propose in this
article.

We use the German SentiStrength system
(Momtazi, 2012) for comparison. The use of
the German SentiStrength dictionary allows us to
show how our system is robust when using differ-
ent lexica. Experimental results show an accuracy
of 72.75% on the Amazon review dataset when
all rules are included, while SentiStrength reports
69.95%. Again, adding first negation (72.05%)
and then intensification (72.85%) as composi-
tional operations produced relevant improvements
over our baseline (69.85%). The results are com-
parable to those obtained for other languages, us-
ing a dataset of comparable size, reinforcing the
robustness of our approach across different do-
mains, languages, and base dictionaries.

6.3 Comparison to supervised approaches

Supervised systems are usually unbeatable on the
test portion of the corpus with which they have
been trained. However, in real applications, a suf-
ficiently large training corpus matching the target
texts in terms of genre, style, length, etc. is often
not available; and the performance of supervised
systems has proven controversial on domain trans-
fer applications (Aue and Gamon, 2005).

Table 5 compares our universal unsupervised
system to Socher et al. (2013) on a number of cor-
pora: (1) the collection used in the evaluation of
the Socher et al. system (Pang and Lee, 2005),
(2) a corpus of the same domain, i.e., movies
(Pang and Lee, 2004), and (3) the Taboada and
Grieve (2004) collection. Socher et al.’s system
provides sentence-level polarity classification with
five possible outputs:very positive, positive, neu-
tral, negative, very negative. Since the Pang and

Corpora Socher et al. (2013)Our system
Origin corpus of Socher et al. (2013) model
Pang and Lee (2005) 85.40 75.01
Other corpora
Taboada and Grieve (2004) 62.00 73.75
Pang and Lee (2004) 63.80 74.10

Table 5: Accuracy (%) on different corpora for
Socher et al. (2013) and our system. On the
Pang and Lee 2005 (Pang and Lee, 2005) collec-
tion, our detailed results taking into account differ-
ent compositional operations were: 73.75 (base-
line), 74.13 (+negation), 74.68 (+intensification)
and 75.01 (+irrealis)

Lee (2004) and Taboada and Grieve (2004) cor-
pora are collections of long reviews, we needed to
collect the global sentiment of the text. We count
the number of outputs of each class (very positive
andvery negativecount double,positiveandneg-
ativecount one andneutralcounts zero). We take
the majority class, and in the case of a tie, it is
classified as negative.6

The experimental results show that our ap-
proach obtains better results on corpora (2) and
(3). It is worth mentioning that our unsupervised
compositional approach outperformed the super-
vised model not only on an out-of-domain corpus,
but also on another dataset of the same domain
(movies) as the one where the neural network was
trained and evaluated. This reinforces the useful-
ness of an unsupervised approach for applications
that need to analyze a number of texts coming
from different domains, styles or dates, but there is
a lack of labeled data to train supervised classifiers
for all of them. As expected, Socher et al. (2013)
is unbeatable for an unsupervised approach on the
test set of the corpus where it was trained. How-
ever, our unsupervised algorithm also performs
very robustly on this dataset.

6These criteria were selected empirically. Assigning the
positive class in the case of a tie was also tested, as well as not
doubling thevery positiveandvery negativeoutput, but these
settings produced similar or worse results with the (Socheret
al., 2013) system.



7 Conclusions and future work

In this article, we have described, implemented
and evaluated a novel model for universal and un-
supervised sentiment analysis driven by a set of
syntactic rules for semantic composition. Existing
unsupervised approaches are purely lexical, their
rules are heavily dependent on the language con-
cerned or they do not consider any kind of natu-
ral language processing step in order to be able to
handle different languages, using shallow rules in-
stead.

To overcome these limitations, we introduce
from a theoretical and practical point of view the
concept of compositional operations, to define ar-
bitrarily complex semantic relations between dif-
ferent nodes of a dependency tree. Universal part-
of-speech tagging and dependency parsing guide-
lines make it feasible to create multilingual senti-
ment analysis compositional operations that effec-
tively address semantic composition over natural
language sentences. The system is not restricted
to any corpus or language, and by simply adapting
or defining new operations it can be adapted to any
other PoS tag or dependency annotation criteria.

We have compared our universal unsupervised
model with state-of-the-art unsupervised and su-
pervised approaches. Experimental results show:
(1) that our algorithm outperforms two of the most
commonly used unsupervised systems, (2) the uni-
versality of the model’s compositional operations
across different languages and (3) the usefulness
of our approach on domain-transfer applications,
especially with respect to supervised models.

As future work, we plan to design algorithms
for the automatic extraction of compositional op-
erations that capture the semantic relations be-
tween tree nodes. We would also like to col-
lect corpora to extend our evaluation to more lan-
guages, since collections that are directly available
on the web are scarcer than expected. Addition-
ally, the concept of compositional operations is
not limited to genericSA and could be adapted for
other tasks such as universal aspect extraction. Fi-
nally, we plan to adapt the Poria et al. (2014) sentic
patterns as compositional operations, so they can
be handled universally.
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dependency features for opinion mining. InPro-
ceedings of the ACL-IJCNLP 2009 Conference Short
Papers, ACLShort ’09, pages 313–316, Strouds-
burg, PA, USA. Association for Computational Lin-
guistics.



N. Kalchbrenner, E. Grefenstette, and P. Blunsom.
2014. A Convolutional Neural Network for Mod-
elling Sentences. InThe 52nd Annual Meeting of
the Association for Computational Linguistics. Pro-
ceedings of the Conference. Volume 1: Long Papers,
pages 655–665, Baltimore, Maryland, USA. ACL.

S. Kiritchenko, X. Zhu, and S. M. Mohammad. 2014.
Sentiment Analysis of Short Informal Texts.Jour-
nal of Artificial Intelligence Research, 50(1):723–
762, may.

R. McDonald, J. Nivre, Y. Quirmbach-brundage,
Y. Goldberg, D Das, K. Ganchev, K. Hall, S. Petrov,
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