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Abstract

At the outbreak, interest in non-deterministic parsing was due to the fact that it is the context-free
backbone of some natural language analyzers. In effect, several of them start with a purely context-free
parsing phase which generates all possible parses as some kind of sharing structure usually called shared
forest. Later, in a second phase, a more elaborate analyzer that takes into account the finer grammatical
structure of the language is applied in order to filter out undesirable parses. That implies the existence
of a disambiguation process, from which a single tree is to be chosen in the resulting shared forest. In
this paper!, we study the structure of these forests with respect to optimality of syntactic sharing, in
relation to the parsing schema used to produce them and to the number of computations to be applied
during the parse process.

Key Words and Phrases: Context-Free Parsing, Dynamic Programming, Dynamic Frames, Earley
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1 Introduction

Using context-free grammars for the description of natural language has regained much attention
in theoretical linguistics in last years [3]. Grammars of this type are well suited to computational
use and it seems feasible that by using them, systems of the future could have natural language
components which are both computational efficient and linguistically elegant, in contrast to the
heuristic approach of many older systems. We are not suggesting that there is a context-free
grammar for a given natural language. It is probably more appropriate to view the grammar as a
convenient control structure for directing the analysis of the input string. The overall analysis is
motivated by a linguistic model which is not context-free, but which can frequently make use of
structures determined by the context-free grammar.

Another area where general context-free parsing techniques has been considered is speech
recognition [8]. Here, the input language can only be approximately defined, and individual inputs
can very widely from the norm. Thus, the goal is to find a parse which most closely matches the
input. Ambiguity arises, since each unit of the input can be considered to be a distorted version
of any of several possible sounds with various probabilities.

At this point, given a sentence in a language defined by a context-free grammar, the parsing
process consists in building a tree structure, the parse forest, that shows how this sentence can
be constructed according to the grammatical rules of the language. In the case of grammars
being the context-free backbone of some natural language, the number of possible parse trees
may become very large when the size of sentence increases, and may even be infinite for cyclic
grammars®. Since, it is often desirable to consider all possible parse trees for semantic processing,
it is convenient to merge as much as possible parse trees into a single structure that allows them
to share common parts. This sharing save on the space needed to represent the trees, and also on
the later processing of these trees since it may allows to share between two trees the processing
of some common parts.

1this work was partially supported by the ESF project, Eureka Software Factory project, and by the autonomous Government of
Galicia under project XUGA10501A93.
2which seem of little linguistic usefulness [10], except may be for analyzing ill-formed sentences [6, 12].



In this paper, we shall call shared forests such data structures used to represent simultaneously
all parse trees for a given sentence. At this point, several questions may be asked in relation with
shared forests:

e How to construct them during the parsing process ?

e How good is the sharing of tree fragments between ambiguous parses, and how can it be
improved ?

e What is the appropriate data structure to improve sharing and reduce time and space
complexity ?

o [s there a relation between the coding of parse trees in the shared forest and the parsing
schema used ?

These questions are of importance in practical systems because the answers impact both the
performance and the implementation techniques. For example good sharing may allow a better
factorization of the computation that filters parse trees with the secondary features of the language.
The representation needed for good sharing or low space complexity may be incompatible with the
needs of other components of the system. These components may also make assumptions about
this representation that are incompatible with some parsing schemata.

1.1 Previous work

In relation to context-free parsing, we chose to work in the context of the application of
deterministic techniques to generate very efficient non-deterministic parsers, as proposed by
Lang in [4]. Essentially, Lang considers a simple variation of Earley’s dynamic programming
construction [2]. In order to solve the problems derived from grammatical constraints, the author
extends Earley’s classic algorithm to push-down transducers (PDTs), separating the execution
strategy from the implementation of the push-down automaton (PDA) interpreter. So, Lang
obtains a family of general context-free parallel parsers for each family of deterministic context-
free push-down ones, simulating all possible computations of any PDT, at worst in cubic time?®.
In addition, this work allows us to consider a general framework that encompasses all forms of
chart parsing and shared forest building in a unique formalism. That is, Lang provides a uniform
framework to comparing parsers. In this context, the same author proposes to represent a parse
as the string of the context-free grammar rules used in a leftmost reduction of the parsed sentence,
rather than as a parse tree.

At this point, the current paper is a natural continuation of the work developed by Billot and
Lang in [1]. So, experimenting with several compilation schemata has shown that sophistication
may have a negative effect on the efficiency of all-path parsing. In effect, sophisticated PDT
construction techniques tend to multiply the number of special cases, thereby increasing the code
size of the chart parser, but also preventing sharing of locally identical subcomputations because
of differences in context analysis. This in turn results in lesser sharing in the parse forest.

However, the same work has shown the necessity to formalize the concept of dynamic frame,
as presented by Villemonte de la Clergerie in [17]. In essence, the idea consists in disregard the
general context-free parsing method applied to obtain the syntactic forest, and to treat the sharing
problem from the point of view of the practical representation for the data structures used in the
implementation of the parser. The final goal is to explode the existing relationship between sharing
of structures and sharing of computations, simply condensing the representation of the first ones.
Following this way, the same author of this paper described in [13] a method to efficiently built

3the method is linear in a large class of grammars.



non-deterministic LALR(1) automata, and in [13, 15] the corresponding interpretor, which is the
starting point for this work.

1.2 A simple road map

In section 2 of this paper, we give a very formal description of general context-free parsing based
on the compilation paradigm. This section is essential to understand the consideration of this
paper. Section 3 is the kernel of this work and it describes, the criteria to design and efficient
general context-free parser, justifying from a practical point of view tactical decisions in order to
get more sharing quality. To illustrate this discussion we shall use G, the pico-grammar of English*
taken from [11], which is given by the productions:

(0) ¢ — 5+ (1) S>NPVP  (2) S—SPP (3) NP—n
(4) NP—detn () NP— NPPP (6) PP— prep NP (7) VP — v NP

whose LR(0) finite state machine is shown in figure 1. In section 4, we give an extensive range of
tests in relation to quality in syntactic sharing. Finally, section 5 is a conclusion about the work
presented.

2 Context-Free Parsing

Though much research has been devoted to this subject in the past, most of the practically usable
work has commented on deterministic push-down parsing which is clearly inadequate for natural
language applications and does not generalize to more complex formalisms®. On the other hand,
there has been little formal investigation of general context-free parsing, though many practical
systems have been implemented based on some variant of Earley’s algorithm.

In this sense, our contribution [13, 14, 15] has been to develop a formal model which can
describe these variants in a uniform way and encompasses the construction of parse forests. We
use a non-deterministic PDA as a virtual parsing machine which we can simulate with an Earley-
like construction; variations on Earley’s algorithm®. This uniform framework has been used to
compare experimentally parsing schemata w.r.t. parser size, parsing speed and size of shared
forest. This is a very important question, since the choice of a formalism is essential with respect
to computational tractability if we intend to use it for mechanical processing of natural languages,
as it is especially the case for interactive systems such as natural language interfaces.

That follows is a formal overview of parsing by dynamic programming interpretation of
PDAs. Our aim is to parse sentences in the language £(G) generated by a context-free grammar
G =(N,X,P,S), where N is the set of non-terminals, ¥ the set of terminal symbols, P the rules
and S the start symbol. The empty string will be represented by ¢.

2.1 The operational model

The operational model of our parser is a classic PDT, in general non-deterministic. To represent it,
we assume a formal definition that can fit most usual PDT construction techniques. It is defined
as a 8-tuple 7g = (Q, X, A, 11,6, qo, Zo, Qf), where: Q is the set of states, ¥ the set of input word
symbols, A the set of stack symbols, Il the set of output symbols, ¢o the initial state, Zy the initial

“which can be considered as a very simple context-free backbone of English.

5techniques to treat general context-free parsing may be applied to other linguistic formalisms as tree adjoining grammars (TAGS),
by encoding them into definite clause programs (DCPs). Here, the parse forest in context-free parsing case is the proof forest in the
Horn case. Such proof forests may be obtained by the same techniques that we use for context-free parsing [14].

8 which suffers from an inefficiency hardly tolerable in natural language parsing.



Figure 1: The LR(0) machine for the G grammar
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stack symbol, and Q; the set of final states. In relation to ¢, it is a finite set of transitions of the
form 7 = 6(p, X, a) 3 (¢,Y,u) with p,g € Q;a € XU {e}; X,V € AU {e}, and u € TI*.

To represent the state of a PDT in a moment of the parse process, we define a configuration
as a 4-tuple (p, Xa,ax,u), where p is the current state, Xa the stack contents with X on the
top, ax the remaining input where the symbol @ is the next to be shifted, € ¥*, and u is the
already produced output. The application of a transition 7 = 6(p, X, a) 3 (¢, Y, v) results in a new
configuration (¢, Ye«, z,uv) where the terminal symbol a has been scanned, X has been popped,
Y has been pushed, and v has been concatenated to the existing output u. So, for example, if
the terminal symbol a is ¢ in the transition, no input symbol is scanned. If X is ¢ then no stack
symbol is popped from the stack. In a similar manner, if Y is ¢ then no stack symbol is pushed
on the stack.

The described framework is called ST by the dependence of the formalism of transitions on the
total parse stack, which reduces the possibility of sharing computations, a fundamental problem
in ambiguous parsing. We shall now reduce this dependence considering the notion of dynamic
frame.

2.2 The concept of dynamic frame

In our context, a dynamic programming interpretation of a PDT is the systematic exploration of
a space of elements called items. This search space is a condensed representation of all possible
computations of the PDT. It is important to guarantee that all useful parts of that space are
actually explored (cf. fairness, completeness), and that useless or redundant parts are ignored
as much as possible (cf. admissibility). It is also necessary to assure that the representation of
configurations by items is compatible with the formalism of transitions. To formalize this idea,
we introduce the concept of dynamic frame establishing the conditions over which correctness

and completeness of computations with items are verified in relation to ST. So, given a PDT
To = (Q, %, A1, 6, go, 7o, Qf), we define a dynamic frame as a pair (R, Op) where:

e R is an equivalence relation on the stacks, whose classes are named items. We denote:

— The class of ¢ as €.



— The set of items as Itz », or simply IZ when the context is clear.
e Op is an operator of the form:

Op: 6 — {It*xXU{e}— Itt x1I*}
7 ~ Op(r): [t" x LU {e} — [t" x II*

verifying the following conditions:

— Compatibility: all computation in ST must have its corresponding counterpart in the
dynamic frame.

— Completeness: all final configuration in ST has its corresponding counterpart in the
dynamic frame.

— Correctness: all final configuration in the dynamic frame has its corresponding
counterpart in S7.

where n and m depend on the nature of the transition. More exactly, they represent
respectively the number of items over which we apply the transition, and the number of
items resulting of this application.

Dynamic frames were originally introduced by Villemonte de la Clergerie in [17] to formalize the
notion of item in relation to the use of logical push-down automata’ for constructing efficient
and complete definite clause programs compilers. The consideration to our particular case was
proposed by the same author of this paper in [13, 14].

In practice, only two dynamic frames are considered: S! and S%. Both of them construct items
from the notion of mode. A mode is a 4-tuple (p, X, S¥, S¥), where p is the current state in our
PDT, X the last recognized symbol from state p, S;” a pointer to the position ¢ in the input string
w containing the first token derived from the symbol X, and S¥ is a pointer to the position j
of the token currently analized. The only difference between S' and S? consists in the number
of modes considered. So, S' considers an item as an structure composed by an only mode while
S? considers items constructed by two modes in the form [(p, X, S, S¥), (¢,Y, Sy, Si’)], where
the final configuration of the PDT is given by the first mode. This implies, in essence, that S!
represents the current configuration of the PDT by the top of the stack while S? uses also the
preceding element in the stack.

2.3 The syntactic formalism

An apparently major difference with most other parsers is that we represent a parse as the chain
of the context-free grammar rules used in a leftmost reduction of the parsed sentence, rather than
as a parse tree. When the sentence has several distinct parses, the set of all possible parse chains
is represented in finite shared form by a context-free grammar that generates that possibly infinite
set. However, this difference is only appearance.

In effect, context-free grammars can be represented by AND-OR graphs that in our case are
precisely the shared-forest graph. More exactly, OR-nodes are represented by the non-terminal
categories, and AND-nodes are represented by the rules of the grammars. There are also leaf-
nodes corresponding to the terminal categories. The OR-node corresponding to a non-terminal X
has exiting arcs leading to each AND-node n representing a rule that defines X. If there is only
such arc, that is represented by placing n immediately under X. The sons of an AND-node are the

7 essentially, PDAs that store atoms and substitutions on their stack, and use unification to apply transitions. They are due to
Lang [5], which obtains an exponential reduction in complexity over the traditional resolution methods.



grammatical categories found in the right-hand-side of the rule, in that order. The convention for
orienting the arcs is that they leave a node from below and reach a node from above.

A characteristic of the AND-OR graph representing a grammar is that all nodes have different
labels. Conversely, any labeled AND-OR graph such that all node labels are different may be
translated into a context-free grammar such that AND-node labels are rule names, OR-node
labels represent non-terminal categories, and leaf-node labels represent terminal categories. As an
example, we show a modification of the pico-grammar of English in figure 2, using an AND-OR
graph.

Figure 2: A representation of the pico-grammar of English using AND-OR graphs

2.4 The parser

We assume that using a standard technique we produce a recognizer for the language £(G) based
on a PDA, possibly non-deterministic, from the context-free grammar G.

The algorithm proceeds by building a collection of items. We associates a set of items S},
habitually called itemset, for each word symbol w; at the position ¢ in the input string of length n,
w1, ,. New items are produced by applying transitions to existing ones, until no new application is
possible. However, generation of items is dependent on the type of dynamic frame. So, in S? the
process is exactly the same applied on ST. The reason is simple, transitions on the PDT depend
on the first, and also perhaps the second element in the stack, but this information is always
available in S%. Analytically, given a transition 7 = §(p, X,a) > (¢, Y, u) in ST, we translate it to
5% in the form of a transition Op(7) given by:

Lo8([(p, X, 82,88),(r, 2,87, S, a) 3 ([(q,6,88,88), (p, X, S¢,SP)],  e) if Y=X
2. 8([(p, X, S2,82),(r Z, 8¢, 8),a) > ([(p,Y,S¥,84:), (0, X, 54,89, Ip—a) if Y=a
3. 6([(p, X, 8¢, 8),(r, 2,5¢, 59, a) 3 ([(p,Y,S¢,S¥),(r,2,5¢.5)], L —DL) if YEN
4. &([(p,e,S¥,S¥),(q,Y,S¥,S¥)],a) > ([(q,eSk,Sw) (r,Z,8°,S¥)], Iz— L) if Y =¢
[(Q:YS}cD:S;J))’(TaZaSZJ)aS}cD)]
where:
§:Tt x TU{e} — I
and
Iy = [(p’Y’Sw:SZw+1 (7, ZaS}baSzw)] L =[(p.Y, 5", S}"), (p:X’S;U’S}cﬂ)]
L ={(p XaS;HaSzw) (r,Z, S;D’Sw)] Is =(q,¢, S}cﬂuszw) (T,Z,S;J’,S}f)]
Iy = [(Q:YS}cHaS;D):(raZaS;DaS}:)] Is = [(q:EaS}CD:SZ'U):(raZaS;UaS}cD)]

with [t the set of all items developed in the parsing process, and Il is given by a set of context-free
rules directly built from items. Succinctly, we can describe the preceding cases as follows:



1. Corresponds to a goto action from the state p to state ¢ under transition X.
Corresponds to a push of terminal a from state p. The new item belongs to the itemset S} ,.

Corresponds to a push of non-terminal Y from state p.

L S

Corresponds to a pop action from state p, where ¢ is an ancestor of state p under transition
X in the automaton. At this point, we must remark that the item I can already exists or to
be generated. In this sense, we use the term of items to see again to refer them. Intuitively,
we can recover the configuration resulting from the application of pop actions using the
information represented by the second mode of the item in the top of the stack in our PDT.

In relation to S%, S! considers a more compact representation for the stack. That is an
important point, since the more compact are these representations, the more successful will be
the sharing of computations, and later of syntactic structures. Given a transition 7 = é(p, X, a) 3
(g,Y,u) in ST, we translate it to S! in the form of a transition Op(7) given by:

L 8(p, X, S¢,5¢],a) 3 ([g,e, ¥, S, ) if V=
2. d(lp, X,S¥,S¥)0) 3 (In,Y 5", %), h—a) if Y=a
3. 8([p, X, Sy, S¢],a) > ([pY, S, 5¢], L —5L) if Y
4. 6([})’5’5}:”’5;”]’(1 = 6d([Q:E:S;VUaSZ'U]aa) = ([QJE:S;VUaS;'U]a IS - 1415) if V=¢
Vq € Q such that: 3 6(¢q, X,¢) 3 (p, X, ¢)
with: ) ) )
i1t x DU {e} — {1t Uy} x II* i Tt x S U{e} — Tt
and

Io=1[p,Y,S¢,S¢q] Li=[p,Y,S¢,S¢] I.=I[p, X, S, S¥]

g It A g} L Bt}

Is =[q,¢,5",S¥] Iy =q,X,S",5¢] Is=[p,e, S}, S}]

I B R}

where 8, is called the set of dynamic transitions.

The description of the transitions 1.,2. and 3. is the same preceding considered in S?. In
relation to the transition numbered 4., it corresponds to a pop action from state p, where ¢ is an
ancestor of state p under transition X in the automaton. In this case, we do not generate a new
item, but a dynamic transition 7; to treat the absence of information about the rest of the stack.

It is important to comment the behavior of the algorithm face to a pop action, the last case
represented. In effect, given that our compact representation of the stack is its top, we must
consider a protocol to treat the absence of information about the rest of the stack. The solution
relies to the concept of dynamic transition. Briefly, it consists in generating a new transition
from that implying the pop action. This new transition must be built in such a manner that it is
applicable not only to the configuration resulting of the first one, but also on those to be generated
and sharing the same syntactic structure. A detailed explanation about this is given by the same
author of this paper in [13, 15].

At this point, items are not only elements of the computation process, but also non-terminals
of the output grammar. That allows us to identify items with nodes in the resulting parse forest,
since this output grammar will be our syntactic formalism to represent the resulting shared forest.

In relation to fairness and completeness, an equitable selection order must be established to
treat items. We use a technique of merit ordering. In essence, we process the items in an itemset in
order, performing none or some transitions on each one depending on the form of the item. These
operations may add more states to the current itemset and may also put states in the itemset
corresponding to the following token to be analyzed from the input string. To ignore redundant
items we put in place a simple subsumption relation based in the equality.



3 Sharing Forests

We shall now display the mechanisms that cause the phenomenon of tree duplication. As a
consequence, we shall also find criteria to avoid duplication of computations during the parsing
process since nodes in the parse forest are items in the computation process. That is, it will be
very simple to establish a criterion to decide the quality of the syntactic sharing: The number of
generated items. To illustrate the following discussion, we shall analyze the ambiguous sentence
7 saw a man with a telescope”, using the pico-grammar of English.

Figure 3: How shared forest are built using an AND-OR formalism

rule used first son  second son last son last son second son first son rule used

Bottom-up parse tree Top-down parse tree

3.1 Dependence on the syntactic formalism

In our formalism, when the sentence has several distinct parses, the set of all possible parse strings
is represented in finite shared form by a context-free grammar that generates that possibly infinite
set. This technique is interesting by a lot of reasons:

o The syntactic data structures are the same used in the computation process. That allows us:

— To establish a simple relationship between sharing of computations and syntactic sharing.

— Given that, from a syntactic point of view, actions on the PDA depend on the first
and possibly second elements in the stack; the output grammar is a 2-form one. As a
consequence, we obtain two interesting features that are not usual in other context-free
parsing algorithms:

* Time complexity for the parser is O(n®), where n is the length of the sentence.
This result is achieved without requiring that the language grammar be in Chomsky
Normal Form.

* Sharing of a tail of sons in a node of the resulting forest is possible. More exactly,
bottom-up parsing may share only the rightmost constituents, while top-down parsing
may only share the leftmost ones. The reason is simple and relies to the type of search
used to built the forest. Breadth first search results on bottom-up constructions and
depth first search results on top-down ones, as it is shown in figure 3.

e We can simply represent a possible infinite set of trees.

In definitive, syntactic sharing quality seems to be better using a descriptive formalism based
on AND-OR graphs to represent shared forest. To show that from a practical point of view, it
is sufficient to study the shared forest represented in figure 4. In effect, the syntactic formalism
used to represent these forest is not the classic, which allows us to share the tail of sons indicated
by an icon with an airplane. This would not be possible using a classic representation because in
this case sharing is only applicable to proper nodes, as it is shown in figure 5.

At this point, it is important to remark that in our examples, we have only considered bottom-
up approaches. A reason to do it is that, in general, the consideration of S' will be only possible



Figure 4: ICE representation, using a LALR(1) kernel in S?
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when the parsing algorithm representing the kernel of the system assures that it can complete the
absence of information represented by the second mode of the S?. This is not the case of top-down
parsers®, where the algorithm cannot ignore the information given by the second mode because
their predictive behavior, which does not allow to the parser to recover during pop transitions all
the information previously predicted. For a more detailed explanation about that, the reader can
consult [13].

Figure 5: Classic representation, using a L{{}LR(I) kernel in S?
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3.2 Dependence on the parsing scheme

We shall now turn our attention to the properties relying to the parsing process itself. In particular,
the existence of different syntactic contexrts when analyzing a given input. Formally, given a PDT
To = (Q, %, A1, 6, qo, 70, Qy), w1, an input string, and ¢ a stack corresponding to the analysis
of wy 4, © < n; we say that w; 1 is analyzed in a left syntactic context €.

From an intuitive point of view, the left syntactic context represents the information
accumulated by the system during the preceding parse. This information strongly determines
which will be the continuation of the parsing process, since the current state of our virtual machine
depends on it. As a consequence, if we parse a same input in different left syntactic contexts?,
the resulting forest will depend on those and sharing will not be guaranteed. To illustrate this
when the kernel is an extended LALR(1) automaton, the reader can easily verify in figure 1 that
the production PP — prep NP can be analyzed in two different syntactic contexts represented by
the states numbered 3 and 12. We can translate that in a lost of efficiency in relation to syntactic
sharing whichever it is the syntactic formalism considered in each case. So, for example, using an

8also called predictive parsers.
9as it is the case when ambiguities arise.



Figure 6: ICE representation, using a LALR(1) kernel in S*
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AND-OR graph representation we obtain the shared forest represented in figure 6 considering a
S1 dynamic frame. Consequently, the quality of the syntactic sharing is better when the kernel is
an algorithm of simple precedence, as it is shown in figure 7, since here the concept of state cannot
differentiate between irrelevant syntactic contexts. In this last case, we can share the previous
node, but also its father in the forest indicated by an icon representing a black hand.

Figure 7: ICE representation, using simple precedence in S! or S?
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At this point, it is clear that sharing of computations and sharing of structures is guaranteed
when the left syntactic context is the same for several parsing process working on a same input
string. This has a practical interest when analyzing a natural language. In effect, usually
ambiguities are local in the sense that we can unify them in a same node of the parse forest.
At this moment, the left context is the same and sharing is total between the trees affected by
that ambiguity as it is represented in figure 8. In our example, this unification is only possible
once we have reduced the two possible analysis for the ambiguous node S.

Figure 8: Cases to be considered in syntactic sharing
Local ambiguity Local sharing during context-free transitions

] shared nodes \ /

[ unshared nodes Py

However, it is possible that sharing will be feasible even on different contexts, for certain
transitions in the automaton. A particular interesting case is represented by push and horizontal
transitions'®, that is, those depending only on the top of the stack. In this sense, given a PDA

10which do not change the stack configuration.

10



A= (Q,%,A,6,q0,7%0,Q;) and &y, &, two different stacks, we say that there is a context-free
derivation in n steps from &g to &, when:

o There exists a sequence ¢;_,_y verifying that &_1 |- &, Vi € {1,...,n}.
o Vie{l,...,n}, 3 & not empty, such that & = £'&.

and we shall denote it as foﬂZ .

Taking again into account that nodes in the resulting shared forest are items in the parsing
process, we can conclude that forest building does not depend on the syntactic context during
context-free derivations. From a practical point of view, this situation corresponds to the existence
of some common son between the alternatives for an ambiguous node, as it is represented in
figure 8. That allows us to locally sharing computations and syntactic structures while the sentence
actually being analyzed is not dependent on the context. This is, for example, the case of those
nodes indicated by icons representing a hand with a pencil in figure 6.

In relation with the preceding discussion, one essential guideline to achieve better sharing is
to try to recognize every grammar rule in only one place of the generated chart parser code, even
at the cost of increasing non-determinism. So, we can guarantee that sharing will be effective
as much as possible, since the number and the extension of different left syntactic contexts
will be minimized and therefore sharing quality will be maximized. This is a simple idea on
which we base the formalization of the sharing problem on ambiguous parsing. More exactly, if

A=(9,%,A,6,q0, %0,Qf) is a PDA, then we have that

3¢, de]- CdE & Yk, de]= Cdk

Intuitively, this implies that both push and horizontal transitions are only dependent on the top
of the stack, that is, on the last performed parsing action. In essence, this result introduces the
origin of the different behavior exhibit, in relation to syntactic sharing, by parsing algorithms
based on a same approach to produce the parse tree'!, but considerating different determinization
techniques. In effect, most of these, as the classic LR(k) ones, has as consequence the deformation
of the initial grammar by virtue of the application of a predictive technique in the generation of
the parser'?. In fact, we are talking about the known state splitting phenomenon of LR(k) parsers
that can introduce different syntactic contexts, since some grammar rules can be recognized in
several schemes in the PDT. Such a deformation has habitually as origin some of the following
two ones:

e The use of lookahead techniques, as in the case of the LR(k) algorithms, when & > 1.

e The differentiation of the recognition of a symbol in function of the rule context in which
it has been performed. This is typically the case for LR(0) approaches and all algorithms
taking as basis the CFSM*'?, such as LALR(k) and SLR(k) methods. This is also one of the
causes of state splitting in LR(k), when k& > 1.

In this sense, from the point of view of the sharing quality, pure bottom-up techniques as simple
precedence are more efficient. In effect, it takes only into account grammatical features. The
reverse of the coin is represented by its more restrictive deterministic domain, which we can
translate into an inefficiency in the treatment of the local determinism phenomenon. Thus, as we
have before commented, ambiguities have usually a local behavior and during most of the time
deterministic parsing would be possible.

11 fundamentally bottom-up and top-down methods.

12in the case of the LR(k) algorithms this implies the generation of the corresponding finite state machine that differences the
syntactic contexts in function of the state where the parsing process is.

13that is, the Characteristic Finite State Machine of the LR(0) parsers.
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3.3 Dependence on the dynamic frame

We shall now disregard the general context-free parsing method applied to obtain the forest,
and we shall treat the problem from the point of view of the stack representation used during
the parsing process. More exactly, we shall turn our attention to the two most commonly used
dynamic frames, denoted ST and S2.

Intuitively, it is not difficult to predict the consequences of the use of a given dynamic frame. In
effect, items in S* will permit a better sharing of structures, since they contains only one mode!*
and therefore the length of the context-free derivations can be longer. In relation to this, 52
cannot be considered as optimal because the continuous dependence on the context represented
by the second mode of the items. We can illustrate this situation in our example, considering the
particular case of extended LALR(1) automata. So, in figure 6 we can share the node indicated
by an icon representing a hand with a pencil, while in figure 4 this is not possible. The reason
is that the first one corresponds to an analyze in S and the second one to an analyze in S?. To
justify this behavior it is sufficient to consider which are the configurations of the stack in the
LALR(1) automaton once we have scanned the substring "I saw ¢ man with a telescope”, to later
apply in sequence the reductions corresponding to the rules:

(4) NP — det n
(6) PP — prep NP

The reader can see such a configurations in figure 9, where it is easily verifiable that in the case
of use S', all pop actions can be shared during the reduction of the rule numbered (4). This is
not the case in S2, because the dependence on the second mode of the items.

Figure 9: Sharing stack configurations in S* and S?

Sharing of stack configurations in S* Sharing of stack configurations in S 2

n 2

[» 2] =
) TN

d 6 det 6 det 6

et prep 12 prep 3
N ) )

| prep 12| | prep 3 | prep 12 prep 3

\ / NP 8 NP 8

NP 8
4‘ \% 4
o~
/ \ v v 4
|NP O| |S 0| NP 0 S 0

... after the scanning of "I saw a man with a telescope"

At this point, the only problem to solve is to find the conditions under which we can consider
St or S? as dynamic frame. In effect, given that in ST actions depend on the first and perhaps

14in essence, the top of the corresponding stack in S7.
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also the second element in the stack, compatibility, completeness and correctness are assured in
all cases when we work in S?. However, we have seen that the best possibilities do not correspond
to S2, but to S'. So, we can summarize the advantages of S compared to S? in three points, all
of them related to the use of a more complex structure in S*:

e Better space complexity.
e Higher subsumption possibilities.
o Better sharing efficiency.

As a consequence, our initial problem can be reduced to verify the conditions under which S* can
be considered, in other cases S? will be the most adequate dynamic frame.

It is also important to remark that although the systematic use of S* guarantees the best sharing
quality for a given parsing algorithm, this does not necessarily imply that the resulting forests are
always prefectly shared, but only that the computations are reduced to the strictly necessary from
the point of view of the parsing algorithm. In our example, this kind of phenomena is located
in figure 6 where it is not possible to share those nodes representing the reduction of rule (6),
because they are in different syntactic contexts in the LALR(1) automaton. If we try to share
them, using such an operational formalism, the result is not a reduction of the computations, but
the augmentation in the complexity of that computation process.

Summing it up, the choice of a particular dynamic frame is central to assure a good sharing
computation process, essential to guarantee efficiency in a non-deterministic context. In practice,
the situations justifying the consideration of S? instead of S! limit us to the case of the use of
predictive parsers.

4 Experimental Results

Once introduced the essence of the problem of syntactic sharing, our goal is now to prove the
veracity of this reasoning, in practice. We use the syntax of ambiguous arithmetic expressions
to show efficiency of the parsing process in relation to the dynamic framework considered. This
is not an example of natural language, but at this point of the discussion it is clear that to put
into evidence the behavior face to sharing properties, a small context-free grammar with a high
density of ambiguities is the most appropriate.

Results are shown in table 1 for the number of computations in the parsing process and in
table 2 for the statistics in relation to sharing of these computations. The grammar is given by
the following productions:

0) S=S+S (1) S=5%«8 (2) S—=(S) (3) S— number
In relation to the nature of the tests, we must take into account some points:

1. All tests have been performed using an extended LALR(1) parser generated by ICE [13, 14,
15, 16], which has 17 shift /reduce conflicts.

2. All tests have been performed using the same input programs.

3. Test programs are of the form:

b{+b}’
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where ¢ is the number of +’s. As the grammar contains a rule S — S + S, these programs
have a number of ambiguous parses which grows exponentially with ¢. This number is:

1 if i=0,1
C;, = 2 1 o -
(i) ) if 2>1

All tests have shown the better behavior of S* face to other dynamic frames as S? and S7.

Table 1: Statistics on the number of items generated by ICE

Ambiguities | 0 | 2 5 14 | 42 | 132 | 429 | 1.430e +3 | 4.862¢ +3 | 1.6796e + 4
ST items 8 | 14 | 21 | 29 | 38 | 48 59 71 84 98
S? items 8 | 14 | 22 | 32 | 44 | 58 74 92 112 134
ST items 8 | 16 | 28 | 44 | 64 | 88 116 | 148 184 224
Ambiguities | 5.8786e +4 | 2.08012¢ +5 | 7.429¢ +5 | 2.67444e + 6 | 9.694845¢ + 6
ST items 113 129 146 164 183
S? items 158 184 212 242 274
ST items 268 316 368 424 484
Ambiguities | 3.535767e + 7 | 1.2964479¢ + 8 | 4.776387¢ +8 | 1.76726319%¢ + 9
St items 203 224 246 293
S? items 308 344 382 464
ST items 548 616 688 844

Table 2: Statistics on the number of stacks configurations shared by ICE

Ambiguities | 0 | 2 | 5 | 14 | 42 | 132 | 429 | 1.430e+ 3 | 4.862¢ +3 | 1.6796e + 4

ST items ol2]7115]26 40 [57 |71 100 126
S? items o216 12]2 |30 |42 |56 72 90
Ambiguities | 5.8786e +4 | 2.08012e +5 | 7.429¢ +5 | 2.67444e + 6 | 9.694845¢ + 6
ST items 155 187 222 260 301
S? items 110 132 156 182 210
Ambiguities | 3.535767¢ + 7 | 1.2964479 + 8 | 4.776387¢ + 8 | 1.76726319¢ + 9
ST items 345 392 422 551
S? items 240 272 306 380

5 Summary and Conclusions

In practice, the published general context-free parsing algorithms do not always give shared forest
with a maximum sharing. This may result in forest that are larger or more complex. However this
characteristic does not invalidate their presentation. In effect, we have shown that the efficiency in
context-free parsing is due to a compromise between the sharing of computations and the sharing
of resulting forests.

More exactly, the described work exposes close connection between parsing process, the kind
of syntactic data structure and the general parsing framework, in order to get computational
efficiency. So, the best results have been obtained by using a dynamic frame S', where we can
compact the stack representations as much as possible, and bottom-up parsers with a moderate
state splitting phenomenon. However, we cannot always use S' as dynamic frame. In particular,
S? would not be considered when the kernel for the parser is a top-down one. This represent an
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additional drawback in relation to the classic one for top-down algorithms: Working through the
input from left to right, this class of methods consider many useless alternatives when predicting
how the parse might continue. For a large grammar with a high level of ambiguities, as it is the case
of context-free backbones for natural languages, this slow down the parsing process considerably.
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