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Abstract

Parsing efficiency is crucial when building practical natural language systems. This paper
introduces an efficient context-free parsing algorithm based on dynamic programming techniques?,
and focuses on its practical application to natural languages interfaces. Our analyzer takes a general
class of context-free grammars as drivers, using the same user interface applied by the standard
generators of parsers in UNIX, which facilitates its use in relation to another context-free analyzers.

To assure computational efficiency, we consider the concept of non-deterministic push-down
transducer as operational model simulating all possible computations at worst in cubic time and
space complexity. So, the essential feature of our context-free parser is that we do not interpret the
grammars, but we first compile them. In addition, we solve the problem of the optimal sharing of
computations during the parse process introducing very simple techniques of dynamic programming.

Another important question relies on the treatment of parse forest construction. In effect, the
parse is represented by a sequence of rules to be used in a left-to-right reduction of the input sentence
to the start symbol of the grammar, which allow us to gracefully solve the problem of the optimal
sharing of the output syntactic structure.

The new system has been baptized ICE, after Incremental Context-Free Environment. In
an empirical comparison, ICE appears to be superior to the others context-free analyzers and
comparable to the standard generators of deterministic parsers, when the input string is not
ambiguous.

Incremental facilities provided by ICE will not be commented in the present work. This aspect
of the tool will be explained separately in a next paper because its complexity.

Key Words and Phrases: Context-Free Parsing, Dynamic Programming, Dynamic Frames, Earley
Parsing, Parse Forest, Push-Down Automata.

1 Introduction

At the outbreak, interest in non-deterministic parsing was due to the fact that it is the context-
free backbone of some natural language analyzers. In effect, several of them start with a
purely context-free parsing phase which generates all possible parses as some kind of sharing
structure. Later, in a second phase, a more elaborate analyzer that takes into account the finer
grammatical structure is applied in order to filter out undesirable parses. So, we can benefit
from the experience accumulated along the years in parsing technology.

In the present work, the problem is stated in the context of the application of deterministic
techniques to generate very efficient non-deterministic parsers, as proposed by Lang in [8].
Essentially, we consider a simple variation of Earley’s dynamic programming construction [4],
where in order to solve the problems derived from grammatical constraints, we extend it to
push-down transducers (PDTs), separating the execution strategy from the implementation of
the push-down automaton (PDA) interpreter. So, we can obtain a family of general context-
free parallel parsers for each family of deterministic context-free push-down ones, simulating
all possible computations of any PDT, at worst in cubic time. However, the method is linear
in a large class of grammars.

Lthis work was partially supported by the Eureka Software Factory project, and integrally developed at INRIA, Institut National
de Recherche en Informatique et en Automatique, Rocquencourt, France.



In section 2 of this paper, we present and justify the implementation of our general context-
free parser. Section 3 is a study of the formal efficiency properties of the algorithm. In section 4,
we give an extensive range of comparative tests between ICE and the best known deterministic
and non-deterministic parsers. Finally, section 5 reports a short conclusion about the work
presented.

2 Context-Free Parsing

The following is an informal overview of parsing by dynamic programming interpretation of
PDAs, such as it is implemented in ICE. Our aim is to parse sentences in the language £(G)
generated by a context-free grammar G = (N, X, P, S) according to its syntax, where N is the
set of non-terminals, ¥ the set of terminal symbols, P the rules and S the start symbol. The
empty string will be represented by e.

2.1 The operational model

The operational model of our parser is a classic PDT, in general non-deterministic. To represent
it, we assume a formal definition taken from Lang in [8] that can fit most usual PDT construction
techniques. It is defined as a 8-tuple 7g = (Q, %, A, 11,6, go, Zo, Qf), where: Q is the set of
states, ¥ the set of input word symbols, A the set of stack symbols, II the set of output symbols,
¢o the initial state, Z, the initial stack symbol, and Q; the set of final states. In relation to ¢,
it is a finite set of transitions of the form 7 = é(p, X,a) 3 (¢,Y,u) with p,q € Q; a € X U {e};
X,Y € AU {e}, and u € II*.

To represent the state of a PDT in a moment of the parse process, we define a configuration
as a b-tuple (p, Xa, ax,u), where p is the current state, Xa the stack contents with X on the
top, ax the remaining input where the symbol a is the next to be shifted, z € ¥*, and u is
the already produced output. The application of a transition 7 = §(p, X,a) 3 (¢,Y,v) results
in a new configuration (¢, Ya,z,uv) where the terminal symbol @ has been scanned, X has
been popped, Y has been pushed, and v has been concatenated to the existing output u. So,
for example, if the terminal symbol @ is ¢ in the transition, no input symbol is scanned. It X
is € then no stack symbol is popped from the stack. In a similar manner, if Y is ¢ then no
stack symbol is pushed on the stack. We can distinguish, in particular, two special types of
configuration:

o [nitial configurations, from which the computation process starts. They are of the form
(go,e,x,¢€), where & represents the total input string.

o Final configurations, that are the result of a successful computation process. We can
always assume that they are of the form (gy,e,e,w), where ¢5 € Q.

The described framework is called ST by the dependence of the formalism of transitions on
the total parse stack, which reduces the possibility of sharing computations, a fundamental
problem in ambiguous parsing. We shall now reduce this dependence considering the notion of
dynamic frame.

2.2 The concept of dynamic frame

In our context, a dynamic programming interpretation of a PDT is the systematic exploration of
a space of elements called items. This search space is a condensed representation of all possible



computations of the PDT. It is important to guarantee that all useful parts of that space are
actually explored (cf. fairness, completeness), and that useless or redundant parts are ignored
as much as possible (cf. admissibility). It is also necessary to assure that the representation of
configurations by items is compatible with the formalism of transitions. To formalize this idea,
we introduce the concept of dynamic frame establishing the conditions over which correctness
and completeness of computations with items are verified in relation to S7.

Definition 2.1 Let 7g = (Q, X, AL, 6, g0, Zo, Qf) be a PDT. We define a dynamic frame as
a pair (R, Op) where:

o R is an equivalence relation on the stacks, whose classes are named items. We denote:

— The class of ¢ as €.

— The set of items as Iz, », or simply It when the context is clear.

e Op is an operator of the form:

Op: & — {Itt xXU{e} = Itt x II*}
7~ Op(r): [t" x XU {e} — It x II*

verifying the following conditions:

— Compatibility: all computation in ST must have its corresponding counterpart in the
dynamic frame.

— Completeness: all final configuration in ST has its corresponding counterpart in the
dynamic frame.

— Correctness: all final configuration in the dynamic frame has ils corresponding
counterpart in ST.

where n and m depend on the nature of the transition. More exactly, they represent
respectively the number of items over which we apply the transition, and the number of
items resulting of this application.

Dynamic frames were originally introduced by Villemonte de la Clergerie in [14] to formalize
the notion of item in relation to the use of logical push-down automata® for constructing efficient
and complete definite clause programs compilers. The consideration to our particular case was
proposed by the same author of this paper in [13].

In practice, only two dynamic frames are considered: S' and S?. Both of them construct
items from the notion of mode. A mode is a 4-tuple (p, X, S}, S}'), where p is the current
state in our PDT, X the last recognized symbol from state p, S}’ a pointer, called back-pointer,
to the position ¢ in the input string w containing the first token derived from the symbol X,
and S¥ is a pointer to the position j of the token currently analized. The only difference
between S and S? consists in the number of modes considered. So, S! considers an item as
an structure composed by an only mode while S? considers items constructed by two modes in
the form [(p, X, S, 5¥)(¢, Y, S¢, Si)]. This implies, in essence, that S' represents the current

2 essentially, PDAs that store atoms and substitutions on their stack, and use unification to apply transitions. They are due to
Lang [9], which obtains an exponential reduction in complexity over the traditional resolution methods.



configuration of the PDT by the top of the stack while S? uses also the preceding element in
the stack.

At this point, the choice of a particular dynamic frame is central to assure a good sharing
computation process, essential to guarantee efficiency in a non-deterministic context. In relation
to this, S? cannot be considered as optimal because the continuous dependence on the context
represented by the second mode of the items. This is the reason for which we have adopted S*
as dynamic frame.

2.3 The parser

We assume that, using a standard technique, we produce from the grammar G a LALR(1)
recognizer, possibly non-deterministic, for the language £(G).

The algorithm proceeds by building a collection of items. We associates a set of items S}*,
habitually called itemset, for each word symbol w; at the position 7 in the input string of length
n, Wy .n-

New items are produced by applying transitions to existing ones, until no new application is
possible. An item represents the current stack configuration in the form [p, X, S}, 5], where
p is the current state in our extended LALR(1) automaton, X the last recognized symbol from
state p, S} the itemset containing the first token derived from the symbol X, and S}’ the
current itemset. From a technical point of view, this implies that we work in a dynamic frame
S in opposition to the classic one ST, where no compact representation is considered. That
is an important point, since the more compact are the representations, the more successful
will be the sharing of computations, and later of syntactic structures. Given a transition
7 =8(p, X,a) 3 (q,Y,u) in ST, we translate it to S! in the form of a transition Op(r) given
by:

L 8([p, X, 57, 8a) > (lg..5, 57, ) if V=X
2. 4([p, X, 57, 5¢,a) > (Ip,Y, 5S¢, 554l Iy—a) if Y=a
3. o([p. X, 57, 57],a) > (Ip,Y, 57,57, Li—=15L) if YeN
4. 6([p.e, 57,57 a) 3 dallg,e, 57,51, a) 5 ([g,¢€, 5", 571, Is = Li;) if YV =e
Vg € Q such that: 36(¢, X,e) 3 (p, X, ¢)
where:
§: It x DU {e} — {ItU &} x II* ba: Tt x DU {e} — Tt

and

Iy=[p,Y, 5,55, L=I[pY, 5" S L=IpX,S} S
13:[%575’;0’52@] ]4:[(]’)(,5’;“’5}“] ]5:[p7575;u752w]

with It the set of all items developed in the parsing process and 54 is called the set of dynamic
transitions.

It is important to comment the behavior of the algorithm face to a pop action, the last case
represented. In effect, given that our compact representation of the stack is its top, we must
consider a protocol to treat the absence of information about the rest of the stack. The solution
relies to the concept of dynamic transition. Briefly, it consists in generating a new transition
from that implying the pop action. This new transition must be built in such a manner that
it is applicable not only to the configuration resulting of the first one, but also on those to be
generated and sharing the same syntactic structure.



In relation to fairness and completeness, an equitable selection order must be established to
treat the items. We use a technique of merit ordering [7]. In essence, we process the items in
an itemset in order, performing none or some transitions on each one depending on the form
of the item. These operations may add more states to the current itemset and may also put
states in the itemset corresponding to the following token to be analyzed from the input string.
To ignore redundant items we put in place a simple subsumption relation based in the equality.

2.4 The shared forest

A major difference with other analyzers is that we represent a parse as the string of the context-
free grammar rules used in a leftmost reduction of the parsed sentence, rather than as a parse
tree. When the sentence has several distinct parses, the set of all possible parse strings is
represented in finite shared form by a context-free grammar that generates that possibly infinite
set.

However, this difference is only appearance. In effect, context-free grammars can be
represented by AND-OR graphs that in our case are precisely the shared-forest graph.
To generate it, items are used as non-terminals of an output contex-free grammar G, =
(No, X0, Py, S,), where N, is the set of all items, ¥, the set of input symbols of the original
grammar® G, and the rules in P, are constructed together with their left-hand-side item I by
the algorithm. More exactly, we generate a rule for the output grammar each time a reduce or
a shift action from the grammar defining the language is applied on the stack. In both cases,
the left-hand-side of this rule is the new item describing the resulting configuration. In relation
to the right-hand-side, it is composed by the token recognized in the case of a shift and by the
items popped from the stack in that action and the number of the reduced rule in the original
grammar, in the case of a reduction. So, the start symbol S, derives of the last item produced
by a successful computation.

In this graph, AND-nodes correspond to the usual parse-tree nodes, while OR-nodes
correspond to ambiguities. Sharing of structures is represented by nodes accessed by more
than one other node and it may correspond to sharing of a complete subtree, but also sharing
of a part of the descendants of a given node, in fact, a consequence of the binary nature of
the transition protocol preceding described. This feature allows us to obtain a cubic space
complexity for the shared forest in the worst case, whichever it is the form of the grammar.

2.5 The choice of the kernel

The choice of the deterministic parsing scheme to be the kernel of ICE depends in fine on: the
grammar used, the corpus of sentences to be analyzed, and a balance between computational
and sharing efficiency, and parser size. As a consequence, the problem is a practical one and
the best basis to decide, experimental. In this sense, the results achieved by Billot and Lang
in [1], and earlier by Bouckaert, Pirotte and Snelling in [2] show, on an experimental basis,
that techniques close to straightforward bottom-up methods, such as LALR(1), are the most
appropriate.

From an intuitive point of view, that conclusion was expected. Effectively, those algorithms
combine certain characteristics making them good candidates for a non-deterministic approach:

o A very large deterministic domain. In this direction, it should be good to remember
that user often write grammars sufficiently close to deterministic ones. This phenomenon,

3for readability in the graphic representation of the shared forest, we shall also consider as terminals, the integers corresponding
to rule numbers of the input language grammar G.



called local determinism, has already been observed by Lang in [8]. Therefore, the use of
the above parallel parsing techniques allows an important economy in time and space.

o An efficient treatment of the sharing problem of computations and structures:

— The consideration of efficient determinization techniques such as the classic LR(k)
ones, in principle the best, has as a consequence the distortion of the initial grammar
due to the application of a predictive technique in the generation of the parser
in relation to the lookahead facility. This leads to the well known state splitting
phenomenon. Sharing of syntactic structures can then be affected.

— In the case of LALR(1) parsers, not only the necessary tests to implement lookahead
facility are easier to perform, but the state splitting phenomenon remains reasonable.
That allows us to assure a good sharing of computation and parsing structures.

3 Time and Space Bounds

The time bounds for the parser are the same as those of the recognizer. So, our algorithm is
in general, a O(n®) recognizer, where n represents the length of the current input string w;_,.
The reasons for this are the following:

e The number of items in any itemset S} is O(i), because the ranges of Q and A are
bounded, while only the back-pointer depends on i, and it is bounded by n.

e In consequence, the maximum number of items is given by

(n+1)(n+2)
2

| 1E][< B, | SF |= Al Q]

which implies that the space bounds are in the worst case O(n?), for the recognizer.

In the case of the parser, space bounds are cubic. To justify that, we shall prove that the
maximum number of rules generated is O(n’). Given that from an item I = [p, A, S}, S¥]
and an applicable transition 7 = é(p, A,a) 3 (¢, B, x), the parser produces exactly one output
rule except in the case of a pop transition, it will be sufficient to do it for this particular
case. So, let’s assume that B = ¢, then the number of rules created is equal to the number
of existing items of the form [¢,C, S/, S¥], 0 <[ < i < j, such that there exists a transition
6(q,A,e) 3 (p,A,e). For a given item I, there are at most (I + 1) | A || @ | such items.
Summing over all items, we obtain a complexity O(X% Xi_ (I 4+ 1)) = O(n?), for the space.

As a consequence, time bound is O(n?) in the general case. However, we can characterize
classes of grammars with inferior time bound. In particular, if we can assure that there is
a fixed bound on the size of any itemset, then the algorithm will only execute O(n) steps.
Observe that it is the case of LALR(1) grammars, which assures a good behavior in the case
of grammars sufficiently close to this deterministic model.

4 Experimental Results

We use the syntax of complete Pascal, an universally known language, to show the efficiency
of ICE comparing it with: YACC [6], the standard generator of parsers in UNIX, when the
context is deterministic. Otherwise, we have chosen SDF [5], in the best of our knowledge the
most efficient generator of non-deterministic parsers which is inspired in the work of Tomita



in [12]. Finally, we have also compared ICE with an implementation of the classic Earley’s
algorithm proposed by the same author of this paper in [13]. Results are shown in figure 1,
where:

5

1. All tests have been performed using the same input programs for each one of the parsers

and the time needed to "print” parse trees was not measured.

2. We include the time corresponding to lexical analysis, since it is not possible in SDF to

differentiate that from the parsing. In all other cases, LEX [10] has been used as lexical
analyzer. To minimalize the time corresponding to this analysis, we have considered very
short programs.

3. All the measurements have been performed on a Sun SPARCstation 2, weakly loaded.

. The ambiguous version for Pascal includes the dangling else and the ambiguity for the

arithmetic expressions. To illustrate non-determinism, we measure the time needed to
parse programs of the form:

program P (input, output);
var a,b: integer;

begin
a:= b{+b}
end.
where ¢ is the number of +’s. As the grammar contains a rule ” Expression ::= Expression +

Expression”, these programs have a number of ambiguous parses which grows exponentially
with 2. This number is:

1 if 1€ {0,1}

Ci = ;;;100kci_k_1:<2[‘) L i s

) i+1

. SDF works on an extended LR(0) machine, and ICE uses an extended LALR(1) one. So,

the ambiguous Pascal grammar used for SDF has 357 shift /reduce conflict, while that used
for ICE contains only 305.

. Given that in both, SDF and ICE, mapping between concrete and abstract syntax is fixed,

we have generated in the case of YACC, a simple recognizer.

. ICE and SDF have been written in Le_Lisp [3], while YACC is written in C.

Conclusion

This work applies to the construction of very efficient context-free parsers. At this point, ICE
has proved its practical validity in comparison with the best deterministic and non-deterministic
generators of parsers. In this sense, our algorithm not only surpasses the best previous results,
but it does this with one single algorithm which does not have specified to it the class of
grammars it is operating on and does not require the grammar in any special form.

The modularity of the approach emphasizes the possible variations in the operational

strategies, showing the importance of the choice of the dynamic framework in relation to the
efficiency of the parse process.



Figure 1: How different parsers perform on Pascal programs.
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A balance between sharing of computations and sharing of syntactic structures seems to
favor a LALR(1) approach to implement the operational kernel of ICE. In connection with
this, we must remark that there exists a close relation between the principle of sharing and the
amount of work developed by the parser. From an intuitive point of view, the sharing of forest
reflects the sharing of computations and therefore time and space bounds are at stake. However,
this relation is not always complete. In effect, the best sharing quality for syntactic structures
is obtained using algorithms taking only into account grammatical features as it is the case of
Earley in [4]. The reverse of the coin is represented by its more restrictive deterministic domain,
which implies higher time and space bounds. On the other hand, more efficient deterministic
parsers as LR(k) have an important state splitting phenomenon, and as a consequence sharing
of structures is less efficient.

Finally, ICE is compatible with YACC [6], which permits to freely use all the input that
were developed for this generator.
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A A simple example of dynamic frames

To illustrate the following discussion, we shall assume the grammar G given by the productions:

0) & — A A (1) A - abB (2) B - CF
3) B - DF 4 B — EF (5) C — ¢
(6) D — ¢ (1) E — ¢ (8) F — de

whose LALR(1) finite state machine is represented in figure 2.

To prove the influence of the choice of the dynamic frame in the sharing of computations
and syntactic structures, we shall consider the grammar G and the input string w = abde 4. In
relation with this, figure 3 shows the state of the LALR(1) stacks after the scan of the token
e from the original input string. Each atom of these stacks represents a symbol and the state
of the LALR(1) where it was recognized. It is evident that the best sharing corresponds to S?
and the worst to ST where the concept of item is not considered.

B A simple example for the parser

To show the application of the formalism of transitions in dynamic programming, we shall
consider the grammar G, the dynamic frame S' and the input string w = abde-. All the results
can be verified by the reader from table 1 and figure 4. At this point, it is important to remark
that we only effectively save in the itemsets those items representing the recognition of some
syntactic category in the initial grammar G. In fact, we shall see that they are sufficient to
built the resulting parse forest.

To start with, the algorithm automatically adds the item I§ = [0, ¢, 5%, S¥] to S. To follow
the construction, it is sufficient to apply transitions from the original PDT, whose LALR(1)



Figure 2: The LALR(1) machine for the G grammar.

d
‘ state 3 state 10
F
B-C.F .= | __ |B-=CF. .+
F &.de state 12
C ? B—+=DF. , 4
state 9 state 1 state 2
b
- . € A a.bB, | A ab.B, F
| ® A | | - B - ? state 4 V states
B+&.CF , D d
a = , —-D. , —d. ,
A s b oo [o=or i Sfomor A S [Fmae
A B +&.EF , - F +.de ,H
A. , € , € L€ , d
P pA. 4 - | P B A4 C & state 5 R
A .abB, D B¢ ,d d
E state 13
E B¢ d > B—+E.F ,d
Three reduce-reduce conflicts Q F—+.de .,
B
F
state 7 ‘¥ state 11
A abB., - B-+eEF. , -
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finite state machine is shown in figure 2. At this point, there exists an only action to consider
in state 0 when the lookahead is b, in fact a shift action on this token that we can translate in
the application of the transitions:

8(0,e,a) > (0,a,a) to produce Ij =10,a,Sy,Sy], output I — a

6(0,a,¢) 3 (l,a,e) to produce [l,e,S), Sy, output e
The last transition does not generate any output structure because it does not express the
recognition of a syntactic category. Now, on state 1 we can perform a shitt action on the token
b applying:

§(l,e,b) > (1,b,b) to produce I3 =[1,b,5}",SY], output IZ —b

6(1,b,e) > (2,b,e) to produce [2,6, Sy Sw], output e
In state 2, the LALR(1) machine whose LALR(1) kernel is shown in figure 2 has three reduce-

reduce conflicts, which result in three ambiguities. These ambiguities are represented by the
transition:

0 =6(2,¢e,d)={(2,C,C),(2,D,D),(2,E,E)}
that produces respectively the items
=1[2,C,5%,S%] € S¥ output I —5
I3 =12,D,5y,5Y] € S¥, output I3 —6
I3=2,E,5Y,5%] € Sy, output I3 —7
We can now apply to these, the following transitions from top to down, representing the goto
actions after the empty reduces precedently applied:

6(2,C,e) 3 (3,C,e) toproduce [3,e,57,5y], output e
6(2,D,e) > (4,D,e) to produce [4,¢,5%,5y], output e
6(2,E,e) > (b,FE,e) toproduce [5,e,S¥,S¥], output e

Table 1: Development for the input w = abde- and the grammar G.

S 10 =[0,e, 5%, 58]

St (w1 =a) =1[0,a,Sy, S1"] Sy (wa=ce€) I =[6,e 5%, 5]

5¢ (wy = b) =[1,b, 5", 5¥] It =[3,F, 55, 5]
=[2052 52] I = [4,F, 5%, 5/]
=[2,D,S5y,55] I3 =[5, F, 5y, S)]
:[2’E52a52] Iﬁz[z,B,S;},SE]

5% (ws=d) I=[3,d,5% 5] I; = [0, 4,55, 5]
= [4,d, 5%, 5¢] 5S¢ (ws =) I =[8,1,5¢, 5]
:[S,d 5%, 5% I =[9,®,5¢, 5¢]

From here, there exists an only action to apply to each one of the stack configurations
represented by the preceding items, in order to shift the token d. To perform that, we
respectively apply the following groups of transitions:

1. The first one is given by:
6(3,¢,d) 5 (3,d,d) to produce I3 =[3,d,S¥, S¥], output I3 —d
n =6(3,d,e) 3 (6,d,e) to produce J; = [6,5, S¥.S¥], output e

2. The second group is composed by:

6(3,¢,d) 5 (3,d,d) to produce P =[4,d,Sy,S¥], output I?—d
7 =6(4,d,e) > (6,d,e) to again produce .Ji, output e



3. The last group of transitions is the following:

6(3,¢,d) 5 (3,d,d) to produce I3 =[5d,5%,S¥], output I} —d
3 =6(5,d,e) 3 (6,d,e) to again produce .Ji, output ¢

At this point, we can apply to J; the set of transitions representing a shift action on the token
e in state 6:

§(6,d,e) > (6,e,e) to produce I3 =[6,¢,5%,S¥], output I —e

6(6,e,¢) 3 (13,e,e) to produce W =[13,¢,57,57], output ¢

In state 13 of figure 2, the only action to perform is a reduce corresponding to rule numbered
(8) in the grammar G. To compute it, we firstly pop the symbol e by the transition:

74 = 8(13,¢,4) 3 (6,¢,¢) to produce 75 = §([6,¢, Sy, S¥],4) 3 (U, U — I;W)

where 74 is a dynamic transition applicable to the result of transitions 7, ¢ € {1,2,3} and
U = [6,¢, 5%, S¥], which explains the sharing of the node labeled by I3 in figure 4. Continuing
with the process, we can apply to the item U the following transitions:

Jy=[3,e,5%,5%], i =3, rule J, — I3U
75 = 0(6,d,4) = {(i,e,e)}, to give{ J3 = [4,e,5%,S¥], i =4, rule J; — ;U
Jy=[5,e,8%,5%], i =5, rule Jy — LU

It =[3,F,S¥ S¥], i =3, rule I — 8J,
76 = 0(1,¢,4) = {(i, F, F)}, to give Iy =[3,F,SY,5¢], i =4, rule I} — 8.J;
I3 =[3,F,S¥,5%], i =5, rule I§ — 8J,

At this point, we can simplify the output grammar by eliminating those items which do
not represent the recognition of a symbol in the grammar G. So, from the preceding rules
corresponding to the translation of the reduce of the production numbered (8) in G, and
eliminating items of the form .J;, ¢ € {2,3,4}, U and W, we obtain the new simplified rules:

IS 82T, 1D = 8PTE, I — 81T

which are the final rules used to represent the final parse forest in figure 4. In the same way,
henceforth we shall omit the generation of dynamic transitions during pop actions in order to
simplify the exposition.

An important point is that we cannot sharing the nodes labeled by I3, I and I3, even they
represent the recognition of the same token d. The reason of this relies on the state splitting
phenomenon that generates different contexts to analyze the same syntactic category, and it
was easily foreseeable from figure 3.

Again, one different transition is applicable to each one of these items. They are respectively:

6(3,F,e) > (10,F,e) to produce Js=[10,¢,57,5%], output
6(4,F,e) > (12,F,e) to produce Jg=[12,¢,57,5y], output
6(h,F,e) > (11,F,e) to produce J;=[l1,¢,S¥,S%], output

M o M

Taking now into account figure 2, the only possible action in states 10, 12 and 11 is respectively
the reduction of the rules numbered (2), (3) and (4) in the grammar G. We shall treat them
separately:

1. In the case of J5, we successively apply:

8(10,F,4) > (3,e,e) to produce Jz =[3,e,5%, S¥], output Jg — I}Js
§(3,C,4) 3> (2,e,e) toproduce Jg=[2,e,5% S¥], output Jy— I{Jg



2. In the case of Jg, we successively apply:

6(12,F,4) > (4,¢,¢) to produce Jig [4,e,5% 5¥], output Jio— I3Js

§(4,D,4) > (2,e,e) toproduce Jy; = [2,¢,5¥,S¥], output Jy — I3Jig
3. In the case of J;, we successively apply:

§(11,F,H) > (5,e,e) to produce Jip = [5,¢,5%,S¥], output Jio — I3J7

§(5,E,4) 3> (2,e,e) toproduce Jiz = [2,¢,5%,SY], output Jiz— I3J1,

We can now close the ambiguities generated by the application of the transition 7y. In effect,
we can apply the same transition 6(2,¢,4) 3 (2, B, B) to J;, © € {9,11,13} to generate the new
item

Ii — 2J9

I:ll — 2J11

]jll — 2J13

that we can simplify by eliminating irrelevant items, to obtain:

I} =201, I — 2505, I} — 21415

I{ =[2,B,SY, 5" € S with output

In relation to this, figure 4 shows that I is the common top for three different trees representing

Figure 4: AND-OR graph for the grammar G and the input w = abde.

Nil

ambiguities in the final parse forest. To continue with the process, we apply to I} the transition
6(2,B,4) 3 (7, B,¢) and we generate the item Ji4 = [7, B, S}, S}’]. From here, the only action
indicated in state 7 is given by the reduction of the rule numbered (1) in the grammar G. To
do it, we successively consider the transitions:

8(7,B,4) > (2,¢,¢) toproduce Jisz = [2,&,5¥ S¥], output Ji5 — IjJia
8(2,b,4) > (1,e,e) toproduce Jig = [l,e,S¥, S¥], output Jig — I3Jis
§(l,a,4) > (0,e,¢) toproduce Jiz = [0,¢,Sy¥,SY], output Jiz — I}Jis
8(0,e,4) > (0,4, A) toproduce Ii = [1,A,S7,SY], output Ii — 1Jir
6(0,A,4) > (8,A4,e) toproduce Jiz = [8,&,57,5y], output ¢

where the last transition is a push one and it does not generate an output structure. As in
preceding cases, we can simplify the output rules to obtain:

[FSVAY Ay



Now, the the only action in state 8 of figure 2 is a shift on the symbol represented by —. To
do it, we apply successively:
§(8,e,1) > (8,4,4) toproduce I = [8,4,5¥ S¥], output [ —-
6(8,4,e) > (9,1,¢) to produce Jig = [9,e,5%,5¥], output e

And we can finally reduce the axiom of the grammar G, which corresponds to the rule numbered
(0). To perform it, we successively apply:

8(9,4,6) > (8,e,¢) toproduce Jy = [8,¢,5Y,S¥], output Jy — IJJig
6(8,A,e) > (0,e,e) toproduce Joy = [0,e,5Y,S¥], output Jo — IiJx
§(0,e,e) > (0,9,¢) to produce I} [0,®,S¥,S¥], output I} — 0Jy

that we can simplify to obtain
D = 01}



