Automatic Generation of Natural
Language Parsers from Declarative
Specifications!

Carlos GOMEZ-RODRIGUEZ 2, Jestis VILARES " and Miguel A. ALONSO P

aEscuela Superior de Ingenieria Informatica, Universidade de Vigo (Spain)
e-mail: cgomezr@uvigo.es
b Departamento de Computacion, Universidade da Corufia (Spain)
e-mail: {jvilares, alonso}@udc.es

Abstract. The parsing schemata formalism allows us to describe parsing algo-
rithms in a simple way by capturing their fundamental semantics while abstracting
low-level detail. In this work, we present a compilation technique allowing the au-
tomatic transformation of parsing schemata to executable implementations of their
corresponding algorithms. Taking a simple description of a schema as input, our
technique generates Java code for the corresponding parsing algorithm, including
schema-specific indexing code in order to attain efficiency. Our technique is general
enough to be able to handle all kinds of schemata for context-free grammars and
other grammatical formalisms, providing an extensibility mechanism which allows
the user to define custom notational elements.

1. Introduction

The process of parsing, by which we obtain the structure of a sentence as a result of
the application of grammatical rules, is a highly relevant step in the automatic analysis
of natural language sentences. In the last decades, various parsing algorithms have been
developed to accomplish this task. Although all of these algorithms essentially share the
common goal of generating a tree structure describing the input sentence by means of a
grammar, the approaches used to attain this result vary greatly between algorithms, so
that different parsing algorithms are best suited to different situations.

Parsing schemata, described in [16,13], provide a formal, simple and uniform way
to describe, analyze and compare different parsing algorithms. The notion of a parsing
schema comes from considering parsing as a deduction process which generates inter-
mediate results called items. An initial set of items is directly obtained from the input
sentence, and the parsing process consists of the application of inference rules which
produce new items from existing ones. Each item contains a piece of information about

Lpartially supported by Ministerio de Educacién y Ciencia and FEDER (Grants TIN2004-07246-C03-01,
TIN2004-07246-C03-02), and Xunta de Galicia (Grants PGIDITO5PXIC30501PN, PGIDIT05PXIC10501PN
and PGIDITO5SINO44E).

the sentence’s structure, and a successful parsing process will produce at least one final
item containing a full parse tree for the sentence or guaranteeing its existence.

Almost all known parsing algorithms may be described by a parsing schema (non-
constructive parsers, such as those based on neural networks, are exceptions). This is
done by identifying the kinds of items that are used by a given algorithm, defining a set
of inference rules describing the legal ways of obtaining new items, and specifying the
set of final items whose presence indicates that the sentence has been parsed.

1.1. Parsing Schemeta

Sikkel [16] provides an accurate and detailed explanation of parsing schemata. In this
paper, we will give a brief insight into the concept by introducing a concrete ex-
ample: a parsing schema for Earley’s algorithm [4]. Given a context-free grammar
G = (N,%, P,S)? and a sentence of length » which we denote by a; a ... a,, the
schema describing Earley’s algorithm is as follows?:

Item set:
{[A— a.p,i,j]| A—aB e PA0<i<j}

Initial items (hypotheses):
{la;,i — 1,4 |0 <i<n}

Deductive steps:

EARLEY INITTER, ———— S —a € P
[S — .,0,0]

[A = aaBing] la,g,5+1]

EARLEY SCANNER: P
[A— aa.B,i,5 + 1]

[A — a.Bf,i,j]
EARLEY PREDICTOR: —————————~ B -~y € P
[B = 7,4, 7]

I:A_)a'B/B7?:’j:| I:B*)’YWj?k]

EARLEY COMPLETER: :
[A — aB.3,i, k]

Final items:
{[S — 7-,0,n]}

Items in the Earley algorithm are of the form [A — «.(3,4, j], where A — a.8 isa
grammar rule with a special symbol (dot) added at some position in its right-hand side,
and ¢, j are integer numbers denoting positions in the input string. The meaning of such
an item can be interpreted as: “There exists a valid parse tree with root A, such that the

2Where N denotes the set of nonterminal symbols, X the set of terminal symbols, P the production rules
and S the axiom.

SFrom now on, we will follow the usual conventions by which nonterminal symbols are represented by
uppercase letters (A, B...), terminals by lowercase letters (a, b...) and strings of symbols (both terminals
and nonterminals) by Greek letters (o, 3...).

direct children of A are the symbols in the string o3, and the leaf nodes of the subtrees
rooted at the symbols in o form the substring a;1 . . . a; of the input string”.

The algorithm will produce a valid parse for the input sentence if an item of the form
[S — ~.,0,n] is generated: according to the aforesaid interpretation, this item guarantees
the existence of a parse tree with root S whose leaves are a; ... a,, that is, a complete
parse tree for the sentence.

A deductive step 2= & allows us to infer the item specified by its consequent &
from those in its antecedents 7; . .. 7,,. Side conditions (®) specify the valid values for
the variables appearing in the antecedents and consequent, and may refer to grammar
rules as in this example or specify other constraints that must be verified in order to infer
the consequent.

1.2. Motivation

Parsing schemata are located at a higher abstraction level than algorithms. As can be seen
in the example, a schema specifies the steps that must be executed and the intermediate
results that must be obtained in order to parse a given string, but it makes no claim about
the order in which to execute the steps or the data structures to use for storing the results.

Their abstraction of low-level details makes parsing schemata very useful, allowing
us to define parsers in a simple and straightforward way. Comparing parsers, or consider-
ing aspects such as their correction and completeness or their computational complexity,
also becomes easier if we think in terms of schemata. However, when we want to actually
test a parser by running it on a computer and checking its results, we need to implement
it in a programming language, so we have to abandon the high level of abstraction and
worry about implementation details that were irrelevant at the schema level.

The technique presented in this paper automates this task, by compiling parsing
schemata to Java language implementations of their corresponding parsers. The input to
the compiler is a simple and declarative representation of a parsing schema, which is
practically equal to the formal notation that we used previously. For example, a valid
schema file describing the Earley parser will be:

@oal [S->alpha. , 0, length] @tep Earl eyConpl et er

. [A->alpha . Bbeta, i, j]

tep Earleylnitter .
N N ytnitter =~ S.>alpha [B->0ama. |, k]
[S -"SogiEEEnC | [A->alpha B. beta, i k]

tep Earl eyScanner .
[@A ?> al phg a beta i i @tep EarleyPredictor
[a,] '+l.] ’ ’ [A->alpha . Bbeta, i, j]
L e B -> gamm
[A->alphaa. beta, i , j+1] [B->. gama, j il

1.3. Related work

Shieber et al. provide in [15] a Prolog implementation of a deductive parsing engine
which can also be used to implement parsing schemata. However, its input notation is
less declarative (since schemata have to be programmed in Prolog) and it does not sup-
port automatic indexing, so the resulting parsers are inefficient unless the user programs
indexing code by hand, abandoning the high abstraction level.

Another alternative for implementing parsing schemata, the Dyna language [5], can

be used to implement some kinds of dynamic programs; but it has a more complex and
less declarative notation than ours, which is specifically designed for denoting schemata.

2. From declarative descriptionsto program code

Our compilation process, which transforms a declarative description of a parsing schema
into a Java implementation of its corresponding parser, proceeds according to the follow-
ing principles:

e A class is generated for each deductive step in the schema.
e The generated implementation will create an instance of this class for each possi-

ble set of values satisfying the side conditions that refer to production rules. For
example, a distinct instance of the Earley PREDICTOR step will be created for
each grammar rule of the form B — ~ € P, which is specified in the step’s side
condition.

The classes representing deductive steps have an appl y method which tries to
apply the deductive step to a given item. If the step is in fact applicable to the
item, the method returns the new items obtained from the inference. In order
to achieve this functionality, the method works as follows: first, it checks if the
given item matches any of the step’s antecedents. For every successful match
found, the method searches for combinations of previously-generated items in
order to satisfy the rest of the antecedents. Each combination of items satisfying
all antecedents corresponds to an instantiation of the step variables which is used
to generate an item from the consequent.

The execution of deductive steps in the generated code is coordinated by a deduc-
tive parsing engine, as described in [15]. This is a schema-independent algorithm,
and therefore its implementation is the same for any schema, as described by the
following pseudocode:

steps = {deductive step instances};

items = {initial itens};
agenda = [initial itens];

For each deductive step with an enpty antecedent (s) in steps {
result = s.apply([]);

itens.add(result);

agenda. enqueue(resul t);

st eps. renmove(s);

}

Wi | e agenda not enpty {
curltem = agenda. renoveFirst();
For each deductive step applicable to curltem(p) in steps {

}
}

result = p.apply(curltemn);
itens.add(resul t);
agenda. enqueue(resul t);

return itens;

The algorithm works with the set of all items that have been generated (either as

initial hypotheses or as a result of the application of deductive steps) and an agenda, im-

plemented as a queue, which contains the items we have not yet tried to trigger new de-
ductions with. When the agenda is emptied, all possible items will have been generated,
and the presence or absence of final items in the item set at this point indicates whether
or not the input sentence belongs to the language defined by the grammar. The correction
and completeness of this algorithm can easily be proved by induction. The parse forest
can be recovered easily from the item set, as in [2].

2.1. Indexing

The combination of the deductive parsing engine with the code associated to each deduc-
tive step provides a full implementation of the parser described by the schema. However,
this implementation will only be efficient if we can efficiently access items and deduc-
tive steps. In particular, implementation of the following operations affects the resulting
parser’s computational complexity:

e Check if a given item exists in the item set. This operation is implicitly used by
thei t enms. add(...) operation in the pseudocode above.

e Search the item set for all items satisfying a certain specification. This operation
is used by the appl y method of deductive steps: once an antecedent has been
matched, a search for items matching the rest of the antecedents is needed in order
to make inferences using the step.

If we provided an inefficient implementation of any of these operations (such as
searching for items by sequentially traversing the set and individually checking if each
item conforms to the specification), our generated implementations would have a com-
putational complexity above the expected theoretical bounds for the corresponding algo-
rithms. This fact can be easily checked by studying particular algorithms, such as Ear-
ley or CYK [7,19]. In order to maintain the theoretical complexity, we must provide
constant-time access to items: in this case, each single deduction takes place in constant
time, and the worst-case complexity is bounded by the maximum possible number of step
executions: all complexity in the generated implementation is inherent to the schema.

In order to achieve this, we generate indexing code allowing efficient access to the
item set. Two distinct kind of indexes are generated for each schema, corresponding to
the operations mentioned before: existence indexes are used to check whether an item
exists in the item set, and search indexes allow us to search for items conforming to a
given specification. Apart from items, deductive steps are also indexed in deductive step
indexes. These indexes are used to restrict the set of “applicable deductive steps” for
a given item, discarding those known not to match it. Deductive step indexes usually
have no influence on computational complexity with respect to input string size, but they
do have an influence on complexity with respect to the size of the grammar, since the
number of deductive step instances depends on grammar size when production rules are
used as side conditions.

The generation of indexing code is not trivial, since the elements by which we should
index items in order to achieve efficiency vary among schemata. For instance, if we are
trying to execute an Earley COMPLETER step on an item of the form [B — ~.,j, k],
which matches the second antecedent, we will need to search for items of the form [A —
a.Bg, 1, j], for any values of A, «, 3 and 4, in order to draw all the possible conclusions
from the item and step. Since the values of B and j are fixed, this search will be efficient

and provide constant-time access to items if we have them indexed by the symbol that
follows the dot and by the second string position (B and j). However, if we analyze the
other Earley steps in the same way, we will find that their indexing needs are different,
and different parsing schemata will obviously have different needs.

Therefore, in order to generate indexing code, we must take the distinct features of
each schema into account. In the case of search indexes, we must analyze each deductive
step just as we have analyzed the COMPLETER step: we must keep track of which vari-
ables are instantiated to a concrete value when a search must be performed. This infor-
mation is known at schema compilation time and allows us to create indexes by the ele-
ments corresponding to instantiated variables. For example, in the case of COMPLETER,
we would create the index that we mentioned before (by the symbol directly after the dot
and the second string position) and another index by the symbol in the left side of pro-
ductions and the first string position. This second index is useful when we have an item
matching the first antecedent and we want to search for items matching the second one,
and is obtained by checking which variables are instantiated when the first antecedent is
matched.

The generation of existence indexes is similar to, but simpler than, that of search
indexes. The same principle of checking which variables will be instantiated when the
index is needed is valid in this case, but when an item is checked for existence it is always
fully known, so all its variables are instantiated.

Deductive step indexes are generated by taking into account those step variables
which will take a value during instantiation, i.e. which variables appear on side condi-
tions. Since these variables will have a concrete value for each instance of the step, they
can be used to filter instances in which they take a value that will not allow matching
with a given item.

2.2. Elements in schemata

The variety of elements that may be present in parsing schemata poses an interesting dif-
ficulty if we want our technique to be general enough to cope with all sorts of schemata.
The kinds of elements which may appear in a schema are not limited to the ones we have
seen in the Earley example: the schemata notation is open, and any mathematical object
could potentially appear as part of the definition of a schema.

As it is obviously impossible to provide a system that will recognize any kind of ele-
ment that we could potentially include in a schema, but neither do we want our compiler
to be limited to certain types of elements, we have defined an extensibility mechanism
which allows us to define new elements that can be handled by the system in an easy way.
For this purpose, we will classify all notational elements into four basic types, according
to the treatment they should receive during code generation. Any new kind of element
added to the system should be classified into one of these types:

e Simple Elements: Atomic, unstructured elements, which can be instantiated or
not in a given moment. When simple elements are instantiated, they take a single
value from a set of possible values, which can be bounded or not. Values can be
converted to indexing keys. Examples of simple elements are grammar symbols,
integers, string positions, probabilities, the dot in Earley items...

e Expression Elements: These elements denote expressions which take simple ele-
ments or other expressions as arguments. For example, i + 1 is an expression ele-

ment representing the sum of two string position arguments, and ¢ree[A, B] is an
expression over nonterminal symbols. Feature structures and logic terms are also
represented by this kind of elements. When all simple elements in an expression
are instantiated to concrete values, the expression will be treated as a simple ele-
ment whose value is obtained by applying the operation it defines (for example,
summation). For the code generator to be able to do this, a Java expression must
be provided as part of the expression element type definition, so that, for example,
sums of string positions appearing in schemata can be converted to Java integer
sums in the generated implementation. Unification of feature-structures has been
implemented in this way.

e Composite Elements: Composite elements represent sequences of elements whose
length must be finite and known. Composite elements are used to structure items.
For instance, the Earley item [A — «.Bf3, 1, j] is represented as a composite el-
ement with three components: the first one is in turn a composite element, rep-
resenting a grammar rule, while the remaining two are simple elements which
denote string positions.

e Sequence Elements: These elements denote sequences of elements of any kind
whose length is finite, but only becomes known when the sequence is instanti-
ated to a concrete value. The strings «, G and ~ appearing in the Earley schema
are examples of sequence elements, being able to represent symbol strings of
any length. The code generator must take this fact into account when generating
matching code for these elements.

In order to add a new kind of element to the schema compiler, the user will have
to define it as a subclass of one of these four basic types, and implement that type’s
interface by following some simple guidelines. In addition to this, the user must provide
one or more regular expressions in order to specify the format of the strings representing
the new kind of element in schemata definition files. These expressions can be included
in a global configuration file or directly in the schema files that will use the element.
The schema parser will use the regular expressions to identify our new type of element
in schema files. When one of these elements is found in a schema, the compiler will
dynamically load the corresponding class and instantiate it by using Java’s reflection
mechanisms, thus avoiding the need to recompile the system in order to add new element
classes. This makes our technique highly extensible, and easily allows us to work with
schemata containing all kinds of non-predefined items.

3. Experimental results

In this section, we will present some examples of the use of our compilation technique
with different algorithms and grammars, and their corresponding performance measure-
ments. In particular, we have used our technique to generate implementations of three
popular parsing algorithms for context-free grammars: CYK, Earley and Left-Corner
[10]. However, we must remark that we are not limited to working with context-free
grammars, since parsing schemata can be used to represent parsers for other grammar
formalisms as well. All grammars in the Chomsky hierarchy can be handled in the same
way as context-free grammars, and other formalisms can be added by defining element

Table 1. Information about the grammars used in the experiments: total number of symbols, nonterminals,
terminals, production rules, distribution of rule lengths, and average rule length.

Grammar |[NUZX| |N| |2 |P] Epsilon Unary Binary Other Rule length

Susanne 1,921 1,524 397 17,633 0% 5.26% 22.98% 71.76% 3.54
Alvey 498 266 232 1,485 0% 10.64% 50.17% 39.19% 2.4
Deltra 310 282 28 704 15.48% 41.05% 18.18% 25.28% 1.74

classes for their rules using the extensibility mechanism. For example, we have also used
the system to generate parsers for tree adjoining grammars [6].

The schemata we have used describe recognizers, and therefore their generated im-
plementation only checks sentences for grammaticality by launching the deductive en-
gine and testing for the presence of final items in the item set. However, these schemata
can easily be modified to produce a parse forest as output [2]. If we want to use a prob-
abilistic grammar in order to modify the schema so that it produces the most probable
parse tree, this requires slight modifications of the deductive engine, since it should only
choose the item with the highest probability when several items are available to match
an antecedent.

The three algorithms have been tested with sentences from three different natu-
ral language grammars: the English grammar from the Susanne corpus [11], the Alvey
grammar [3] (which is also an English-language grammar) and the Deltra grammar [14],
which generates a fragment of Dutch. The Alvey and Deltra grammars were converted
to plain context-free grammars by removing their arguments and feature structures. The
test sentences were randomly generated by starting with the axiom and randomly select-
ing nonterminals and rules to perform expansions, until valid sentences consisting only
of terminals were produced. Note that, as we are interested in measuring and comparing
the performance of the parsers, not the coverage of the grammars; randomly-generated
sentences are a good input in this case: by generating several sentences of a given length,
parsing them and averaging the resulting runtimes, we get a good idea of the performance
of the parsers for sentences of that length. Table 1 summarizes some facts about the three
grammars, where by “Rule Length” we mean the average length of the right-hand side
of a grammar’s rules.

For Earley’s algorithm, we have used the schema file described earlief*.

For the CYK algorithm, grammars were converted to Chomsky normal form (CNF),
since this is a precondition of the algorithm. In the case of the Deltra grammar, which is
the only one of our test grammars containing epsilon rules, we have used a weak variant
of CNF allowing epsilon rules and the following CYK variant, which can handle them:

4The results in fact correspond to a slightly modified Earley schema, which “divides” the PREDICTOR step
into different steps for different lengths of the associated production’s right side (0, 1, 2 or more symbols). This
modification of the schema makes existence indexing more effective and thus reduces execution times, without
affecting computational complexity.

@oal [S, 0, length]
@tep CYKBi nary

[B, i,]

[C. ., k]
--------------------- A->BC
[A, i, k1]

@t ep CYKUnary

La,i,]]
--------------------- A->a
LA,]

@tep CYKEpsilon

[epsilon, i , i]
--------------------- A->
[A, 0, 0]

For the Left-Corner parser, the schema used is the sL.C variant described in [16],
where side conditions containing boolean expression elements® are used to evaluate left-

corner relationships:
@oal [S -> alpha .

@tep SinplifiedLClnitter

, 0,

@tep SinplifiedLCNonterm nal
[E., Q]

[A->alpha . , i, j]

[B-> A beta]

@tep SinplifiedLCTerm nal

[E, i]

[a, i, i+1]

[B->a beta]
___________________________ /
[B->a . beta, i , i+l]

length]

| LO(E; B)

LC(E; B)

@tep SinplifiedLCEpsilon
[E, i]
[B->]

@tep SinplifiedLCPredictor

[C->gamm . E delta, k, i
[E, i]

@tep SinplifiedLCScanner

[A->alpha. Bbeta, i , |]
[B, ., j+1]

[A->alpha B. beta, i ,
@tep SinplifiedLCConpl eter

[A->alpha. Bbeta, i, j]
[B->gamma . , j , k]

[A->alpha B. beta, i , k]

Performance results® for all these algorithms and grammars are shown in table 2.
The following conclusions can be drawn from the measurements:

e The empirical computational complexity of the three algorithms is below their
theoretical worst-case complexity of O(n?), where n denotes the length of the
input string. In the case of the Susanne grammar, the measurements we obtain
are close to being linear with respect to string size. In the other two grammars,
the measurements grow faster with string size, but are still far below the cubic

worst-case bound.

e CYK isthe fastest algorithm in all cases, and it generates less items than the other
ones. This may come as a surprise at first, as CYK is generally considered slower
than Earley-type algorithms, particularly than Left-Corner. However, these con-

5Side conditions of this kind are compiled to code that prevents the steps from generating results if the
corresponding predicates don’t hold. This code is inserted in such a way that the predicates are checked as soon
as the referenced variables are instantiated. By aborting the steps as soon as possible when predicates don’t

hold, we avoid unnecessary calculations.

6The machine used for these tests was a standard end-user computer, a laptop equipped with an Intel 1500
MHz Pentium M processor, 512 MB RAM, Sun Java Hotspot virtual machine (version 1.4.2_01-b06) and

Windows XP.

Table 2. Performance measurements for generated parsers.

Grammar String Time Elapsed (s) Items Generated
length CYK Earley LC CYK Earley LC

Susanne 2 0.000 1.450 0.030 28 14,670 330
0.004 1.488 0.060 59 20,945 617

8 0.018 4.127 0.453 341 51,536 2,962

16 0.050 13.162 0.615 1,439 137,128 7,641

32 0.072 17.913 0.927 1,938 217,467 9,628

64 0.172 35.026 2.304 4,513 394,862 23,393

128 0.557 95.397 4.679 17,164 892,941 52,803

Alvey 2 0.000 0.042 0.002 61 1,660 273
0.002 0.112 0.016 251 3,063 455

8 0.010 0.363 0.052 915 7,983 1,636

16 0.098 1.502 0.420 4,766 18,639 6,233

32 0.789 9.690 3.998 33,335 66,716 39,099

64 5025 44.174 21.773 | 133,884 233,766 170,588

128 28.533 146.562 75.819 | 531,536 596,108 495,966

Deltra 2 0.000 0.084 0.158 1,290 1,847 1,161
4 0.012 0.208 0.359 2,783 3,957 2,566
8 0.052 0.583 0.839 6,645 9,137 6,072
16 0.204 2.498 2.572 20,791 28,369 22,354
32 0.718 6.834 6.095 57,689 68,890 55,658
64 2.838 31.958 29.853 | 207,745 282,393 261,649

128 14532 157.172 143.730 | 878,964 1,154,710 1,110,629

siderations are based on time complexity relative to string size, and don’t take
into account complexity relative to grammar size. In this aspect, CYK is better
than Earley-type algorithms, providing linear - O(|P|) - worst-case complexity
with respect to grammar size, while Earley is O(| P|?). Therefore, the fact that
CYK outperforms the other algorithms in our tests is not so surprising, as the
grammars we have used have a large number of productions. The greatest differ-
ence between CYK and the other two algorithms in terms of the amount of items
generated appears with the Susanne grammar, which has the largest number of
productions. It is also worth noting that the relative difference in terms of items
generated tends to decrease when string length increases, at least for Alvey and
Deltra, suggesting that CYK could generate more items than the other algorithms
for larger values of n.

Left-Corner is notably faster than Earley in all cases, except for some short sen-
tences when using the Deltra grammar. The Left-Corner parser always generates
fewer items than the Earley parser, since it avoids unnecessary predictions by us-
ing information about left-corner relationships. The Susanne grammar seems to
be very well suited for Left-Corner parsing, since the number of items generated
decreases by an order of magnitude with respect to Earley. On the other hand, the

Deltra grammar’s left-corner relationships seem to contribute less useful infor-
mation than the others’, since the difference between Left-Corner and Earley in
terms of items generated is small when using this grammar. In some of the cases,
Left-Corner’s runtimes are a bit slower than Earley’s because this small difference
in items is not enough to compensate for the extra time required to process each
item due to the extra steps in the schema, which make Left-Corner’s matching
and indexing code more complex than Earley’s.

e The parsing of the sentences generated using the Alvey and Deltra grammars
tends to require more time, and the generation of more items, than that of the
Susanne sentences. This happens in spite of the fact that the Susanne grammar has
more rules. The probable reason is that the Alvey and Deltra grammars have more
ambiguity, since they are designed to be used with their arguments and feature
structures, and information has been lost when these features were removed from
them. On the other hand, the Susanne grammar is designed as a plain context-free
grammar and therefore its symbols contain more information.

e Execution times for the Alvey grammar quickly grow for sentence lengths above
16. This is because sentences generated for these lengths tend to be repetitions of
a single terminal symbol, and are highly ambiguous.

4. Conclusionsand futurework

In this paper, we have presented a compilation technique which allows us to automati-
cally transform a parsing schema into an implementation of the algorithm it describes.
We have seen examples of the application of this technique to several schemata associ-
ated to context-free grammars (CYK, Earley and Left-Corner) but it can also be applied
to other grammar formalisms.

Our input notation is highly declarative, so the user only has to write the schema
without worrying about implementation details. An extensibility mechanism allows the
user to add new kinds of elements to schemata apart from the predefined ones. Adapted
indexing code is automatically generated for each schema, so that generated implemen-
tations keep the theoretical computational complexity of the algorithms.

Compilation of parsing schemata is very useful for the design, analysis and proto-
typing of parsing algorithms, as it allows us to test them and check their results and per-
formance without having to implement them in a programming language. As we have
seen by comparing the performance of CYK, Earley and Left-Corner parsers for several
grammars, not all algorithms are equally suitable for all grammars. In this work we pro-
vide a quick way to evaluate several parsing algorithms in order to find the best one for
a particular application.

Currently, we are applying our compilation technique in two directions:

e To analyze parsing performance for grammars based on other formalisms used
for natural language processing, such as the XTAG [18], a wide coverage Feature-
Based Tree-Adjoining Grammar (FB-TAG) [6]. In this context, we are studying
the behaviour of some of the most popular parsers for tree adjoining grammars:
a CYK-based algorithm [17], two extensions of the Earley’s algorithm with and
without the valid prefix property [12,1], Nederhof’s parsing algorithm [8] and
Van Noord’s head-corner parser [9].

e To generate robust parsers for context-free grammars and tree adjoining gram-
mars.

References

[1] Miguel A. Alonso, David Cabrero, Eric de la Clergerie, and Manuel Vilares. Tabular algorithms for
TAG parsing. In Proc. of EACL’99, 9th Conference of the European Chapter of the Association for
Computational Linguistics, pages 150-157, Bergen, Norway, June 1999. ACL.

[2] Sylvie Billot and Bernard Lang. The structure of shared forest in ambiguous parsing. In Proc. of the 27th
Annual Meeting of the Association for Computational Linguistics, pages 143-151, Vancouver, British
Columbia, Canada, June 1989. ACL.

[3] J.A. Carroll. Practical unification-based parsing of natural language. Technical Report no. 314, Univer-
sity of Cambridge, Computer Laboratory, England. PhD Thesis., 1993.

[4] J. Earley. An efficient context-free parsing algorithm. Communications of the ACM, 13(2):94-102,
1970.

[5] Jason Eisner, Eric Goldlust, and Noah A. Smith. Dyna: A declarative language for implementing dy-
namic programs. In Proceedings of the 42nd Annual Meeting of the Association for Computational
Linguistics (Companion Volume), pages 218-221, Barcelona, July 2004.

[6] Aravind K. Joshi and Yves Schabes. Tree-adjoining grammars. In Grzegorz Rozenberg and Arto Salo-
maa, editors, Handbook of Formal Languages. Vol 3: Beyond Words, chapter 2, pages 69-123. Springer-
Verlag, Berlin/Heidelberg/New York, 1997.

[7] T. Kasami. An efficient recognition and syntax algorithm for context-free languages. Scientific Report
AFCRL-65-758, Air Force Cambridge Research Lab., Bedford, Massachussetts, 1965.

[8] Mark-Jan Nederhof. The computational complexity of the correct-prefix property for TAGs. Computa-
tional Linguistics, 25(3):345-360, 1999.

[9] Gertjan van Noord. Head-corner parsing for TAG. Computational Intelligence, 10(4):525-534, 1994.

[10] D.J. Rosenkrantz and P. M. Lewis Il. Deterministic Left Corner parsing. In Conference Record of 1970
Eleventh Annual Meeting on Switching and Automata Theory, pages 139-152, Santa Monica, CA, USA,
October 1970. IEEE.

[11] G. Sampson. The Susanne corpus, Release 3, 1994.

[12] Yves Schabes. Left to right parsing of lexicalized tree-adjoining grammars. Computational Intelligence,
10(4):506-515, 1994.

[13] Karl-Michael Schneider. Algebraic Construction of Parsing Schemata. Mensch & Buch Verlag, Berlin,
Germany, 2000.

[14] J.J. Schoorl and S. Belder. Computational linguistics at Delft: A status report, Report WTM/TT 90-09,
1990.

[15] Stuart M. Shieber, Yves Schabes, and Fernando C. N. Pereira. Principles and implementation of deduc-
tive parsing. Journal of Logic Programming, 24(1-2):3-36, July-August 1995.

[16] Klaas Sikkel. Parsing Schemata — A Framework for Specification and Analysis of Parsing Algorithms.
Texts in Theoretical Computer Science — An EATCS Series. Springer-Verlag, Berlin/Heidelberg/New
York, 1997.

[17] K. Vijay-Shanker and Aravind K. Joshi. Some computational properties of tree adjoining grammars. In
23rd Annual Meeting of the Association for Computational Linguistics, pages 82-93, Chicago, IL, USA,
July 1985. ACL.

[18] XTAG Research Group. A lexicalized tree adjoining grammar for English. Technical Report IRCS-01-
03, IRCS, University of Pennsylvania, 2001.

[19] D.H. Younger. Recognition and parsing of context-free languages in time n3. Information and Control,

10(2):189-208, 1967.

