
Divisible Transition Systems and Multiplanar
Dependency Parsing

Carlos Gómez-Rodríguez ∗
Universidade da Coruña

Joakim Nivre ∗∗
Uppsala University

Transition-based parsing is a widely used approach for dependency parsing that combines high
efficiency with expressive feature models. Many different transition systems have been proposed,
often formalized in slightly different frameworks. In this article, we show that a large number
of the known systems for projective dependency parsing can be viewed as variants of the same
stack-based system with a small set of elementary transitions that can be composed into complex
transitions and restricted in different ways. We call these systems divisible transition systems
and prove a number of theoretical results about their expressivity and complexity. In particular,
we characterize an important subclass called efficient divisible transition systems that parse
planar dependency graphs in linear time. We go on to show, first, how this system can be
restricted to capture exactly the set of planar dependency trees and, secondly, how the system
can be generalized to k-planar trees by making use of multiple stacks. Using the first known
efficient test for k-planarity, we investigate the coverage of k-planar trees in available dependency
treebanks and find a very good fit for 2-planar trees. We end with an experimental evaluation
showing that our 2-planar parser gives significant improvements in parsing accuracy over the
corresponding 1-planar and projective parsers for data sets with non-projective dependency trees
and performs on a par with the widely used arc-eager pseudo-projective parser.

1. Introduction

Syntactic parsing using dependency-based representations has attracted considerable

interest in computational linguistics in recent years, both because it appears to provide

a useful interface to downstream applications of parsing and because many dependency

parsers combine competitive parsing accuracy with highly efficient processing. Among

the most efficient systems available are transition-based dependency parsers, which

perform greedy search through a transition system, or abstract state machine, that maps

∗ Departamento de Computación, Universidade da Coruña, Facultad de Informática, Campus de Elviña
s/n, 15071 A Coruña, Spain. E-mail: cgomezr@udc.es

∗∗ Department of Linguistics and Philology, Uppsala University, Box 635, 75126 Uppsala, Sweden. E-mail:
joakim.nivre@lingfil.uu.se

Submission received: 13 October 2011; revised submission received: 29 August 2012; accepted for publication:
7 November 2012.

© 2007 Association for Computational Linguistics

Computational Linguistics Just Accepted MS.
doi: 10.1162/COLI_a_00150
© Association for Computational Linguistics

Computational Linguistics Volume xx, Number yy

sentences to dependency trees, guided by statistical models trained on treebank data

(Yamada and Matsumoto 2003; Nivre, Hall, and Nilsson 2004; Attardi 2006; Zhang

and Clark 2008). Transition systems for dependency parsing come in many different

varieties, and our aim in the first part of this article is to deepen our understanding of

these systems by analyzing them in a uniform framework.

More precisely, we demonstrate that a number of well-known systems from the

literature can all be viewed as variants of a stack-based system with five elementary

transitions, where different variants are obtained by composing elementary transitions

into complex transitions and by adding restrictions on their applicability. We call

such systems divisible transition systems and prove a number of theoretical results

about their expressivity – which classes of dependency graphs they can handle – and

their complexity – what upper bounds exist on the length of transition sequences.

In particular, we show that an important subclass called efficient divisible transition

systems derive planar dependency graphs in time that is linear in the length of the

sentence using standard inference methods for transition-based dependency parsing.

Even though many of these results were already known for particular systems, the

general framework allows us to derive these results from more general principles and

thereby to establish connections between previously unrelated systems. We then go

on to show that there are interesting cases of efficient divisible transition systems that

have not yet been explored, notably a system that is sound and complete for planar

dependency trees, a mild extension to the class of projective trees that are assumed in

most existing systems.

In the second part of the article, we take the planar parsing system as our point of

departure for addressing the problem of non-projective dependency parsing. Despite

the impressive results obtained with dependency parsers limited to strictly projective

2

Computational Linguistics Just Accepted MS.
doi: 10.1162/COLI_a_00150
© Association for Computational Linguistics

Gómez-Rodríguez and Nivre Divisible Transition Systems and Multiplanarity

dependency trees – that is, trees where every subtree has a contiguous yield – it is clear

that most if not all languages have syntactic constructions whose analysis requires non-

projective trees. However, it is also clear that allowing arbitrary non-projective trees

makes parsing computationally hard (McDonald and Satta 2007) and does not seem

justified by the data in available treebanks (Nivre 2006a; Kuhlmann and Nivre 2006;

Havelka 2007). This suggests that we should try to find a superset of projective trees

that is permissive enough to encompass constructions found in natural language while

restricted enough to permit efficient parsing. Proposals for such a set include trees with

bounded arc degree (Nivre 2006a, 2007), well-nested trees with bounded gap degree

(Kuhlmann and Nivre 2006; Kuhlmann and Möhl 2007), as well as trees parsable by a

particular transition system such as that proposed by Attardi (2006).

In the same vein, Yli-Jyrä (2003) introduced the concept of multiplanarity, which

generalizes the simple notion of planarity by saying that a dependency tree is k-planar

if it can be decomposed into at most k planar subgraphs, a proposal that remains largely

unexplored because an efficient test for k-planarity has been lacking. In this article, we

construct a test for k-planarity by reducing it to a graph coloring problem. Applying

this test to a wide range of dependency treebanks, we show that, while simple planarity

(or 1-planarity) is clearly insufficient (Kuhlmann and Nivre 2006), the set of 2-planar

dependency trees gives a very good fit with the available data, better than many of

the previously proposed superclasses of projective trees. We then demonstrate how the

transition system for planar dependency parsing can be generalized to k-planarity by

introducing additional stacks. In particular, we define a two-stack system for 2-planar

dependency parsing, which is provably correct and has linear complexity. Finally, we

show that the 2-planar parser, when evaluated on data sets with a non-negligible pro-

portion of non-projective trees, gives significant improvements in parsing accuracy over

3

Computational Linguistics Just Accepted MS.
doi: 10.1162/COLI_a_00150
© Association for Computational Linguistics

Computational Linguistics Volume xx, Number yy

the corresponding 1-planar and projective parsers, and provides comparable accuracy

to the widely used arc-eager pseudo-projective parser.

The remainder of the article is structured as follows. Section 2 reviews basic con-

cepts of dependency parsing and in particular the formalization of stack-based transi-

tion systems from Nivre (2008). Section 3 introduces our system of elementary transi-

tions, uses it to analyze a number of parsing algorithms from the literature as divisible

transition systems, proves a number of theoretical results about the expressivity and

complexity of such systems, and finally introduces a divisible transition system for 1-

planar dependency parsing. Section 4 reviews the notion of multiplanarity, introduces

an efficient procedure for determining the smallest k for which a dependency tree is

k-planar, and uses this procedure in an empirical investigation of available dependency

treebanks. Section 5 shows how the divisible transition system framework and the 1-

planar parser can be generalized to handle k-planar trees by introducing additional

stacks, presents proofs of correctness and complexity for the 2-planar case, and reports

the results of an experimental evaluation of projective, pseudo-projective, 1-planar and

2-planar dependency parsing. Section 6 reviews related work, and Section 7 concludes

and makes suggestions for future research.

Part of the contributions in this article (namely, the test for multiplanarity and the

1-planar and 2-planar parsers) have been published previously by Gómez-Rodríguez

and Nivre (2010); this article substantially revises and extends the ideas presented in

that paper. The framework of divisible transition systems and all the derived theoretical

results, including the properties and proofs regarding the 1-planar and 2-planar parsers,

are entirely new contributions of this article.

4

Computational Linguistics Just Accepted MS.
doi: 10.1162/COLI_a_00150
© Association for Computational Linguistics

Gómez-Rodríguez and Nivre Divisible Transition Systems and Multiplanarity

(“Only one of them concerns quality.”)

ROOT1 Z2

(Out-of

� �

?

AuxP

nich3

them

� �
?

Atr

je4
is

� �
?

Pred

jen5

only

� �
?

AuxZ

jedna6
one-FEM-SG

� �
?

Sb

na7
to

� �
?

AuxP

kvalitu8

quality

?

� �Adv

.9

.)

� �

?

AuxK

Figure 1
Dependency graph for a Czech sentence from the Prague Dependency Treebank.

2. Dependency Parsing

Dependency parsing is based on the idea that syntactic structure can be analyzed in

terms of binary, asymmetric relations between the words of a sentence, an idea that has

a long tradition in descriptive and theoretical linguistics (Tesnière 1959; Sgall, Hajičová,

and Panevová 1986; Mel’čuk 1988; Hudson 1990). In computational linguistics, depen-

dency structures have become increasingly popular in the interface to downstream

applications of parsing, such as information extraction (Culotta and Sorensen 2004;

Stevenson and Greenwood 2006; Buyko and Hahn 2010), question answering (Shen

and Klakow 2006; Bikel and Castelli 2008), and machine translation (Quirk, Menezes,

and Cherry 2005; Xu et al. 2009). And although dependency structures can easily be

extracted from other syntactic representations, such as phrase structure trees, this has

also led to an increased interest in statistical parsers that specifically produce depen-

dency trees (Eisner 1996; Yamada and Matsumoto 2003; Nivre, Hall, and Nilsson 2004;

McDonald, Crammer, and Pereira 2005).

Current approaches to statistical dependency parsing can be broadly grouped into

graph-based and transition-based techniques (McDonald and Nivre 2007). Graph-

based parsers parameterize the parsing problem by the structure of the dependency

5

Computational Linguistics Just Accepted MS.
doi: 10.1162/COLI_a_00150
© Association for Computational Linguistics

Computational Linguistics Volume xx, Number yy

trees and learn models for scoring entire parse trees for a given sentence. Many of these

models permit exact inference using dynamic programming (Eisner 1996; McDonald,

Crammer, and Pereira 2005; Carreras 2007; Koo and Collins 2010), but recent work has

explored approximate search methods in order to widen the scope of features especially

when processing non-projective trees (McDonald and Pereira 2006; Riedel and Clarke

2006; Nakagawa 2007; Smith and Eisner 2008; Martins, Smith, and Xing 2009; Martins et

al. 2010; Koo et al. 2010). Transition-based parsers parameterize the parsing problem by

the structure of a transition system, or abstract state machine, for mapping sentences to

dependency trees and learn models for scoring individual transitions from one state to

the other. Traditionally, transition-based parsers have relied on local optimization and

greedy, deterministic parsing (Yamada and Matsumoto 2003; Nivre, Hall, and Nilsson

2004; Attardi 2006; Nivre 2008), but globally trained models and non-greedy parsing

methods such as beam search are increasingly used (Johansson and Nugues 2006; Titov

and Henderson 2007; Zhang and Clark 2008; Huang, Jiang, and Liu 2009; Huang and

Sagae 2010; Zhang and Nivre 2011). In empirical evaluations, the two main approaches

to dependency parsing often achieve very similar accuracy, but transition-based parsers

tend to be more efficient. In this article, we will be concerned exclusively with transition-

based models.

In the remainder of this background section, we first introduce the syntactic rep-

resentations used by dependency parsers, starting from a general characterization of

dependency graphs and discussing a number of different restrictions of this class that

will be relevant for the analysis later on. We then go on to review the formalization

of transition systems proposed by Nivre (2008), and in particular the class of stack-

based systems, which provides the framework for our discussion of existing and novel

6

Computational Linguistics Just Accepted MS.
doi: 10.1162/COLI_a_00150
© Association for Computational Linguistics

Gómez-Rodríguez and Nivre Divisible Transition Systems and Multiplanarity

Economic1

� �
?

NMOD

news2

� �
?

SBJ

had3 little4

� �
?

NMOD

effect5

� �
?

OBJ

on6

� �
?

NMOD

financial7

� �
?

NMOD

markets8

� �
?

PMOD

.9
?

� �P

Figure 2
Dependency graph for an English sentence from the Penn Treebank.

transition-based models. Finally, we discuss the implementation of efficient parsers

based on these transition systems.

2.1 Dependency Graphs

In dependency parsing, the syntactic structure of a sentence is modeled by a depen-

dency graph, which represents each token and its syntactic dependents through labeled

directed arcs. This is exemplified in Figure 1, for a Czech sentence taken from the Prague

Dependency Treebank (Hajič et al. 2001; Böhmová et al. 2003), and in Figure 2, for an

English sentence taken from the Penn Treebank (Marcus, Santorini, and Marcinkiewicz

1993; Marcus et al. 1994).1 In the former case, an artificial token ROOT has been inserted

at the beginning of the sentence, serving as the unique root of the graph and ensuring

that the graph is a tree even if more than one token is independent of all other tokens.

In the latter case, no such device has been used, and we will not in general assume the

existence of an artificial root node prefixed to the sentence, although all our models will

be compatible with such a device.

Definition 1

A dependency graph for a sentence x = w1, . . . ,wn is a directed graph G = (V,A), where

1 The dependency graph has in this case been derived automatically from the constituency-based
annotation in the treebank using standard head-finding rules and heuristics for inferring dependency
labels.

7

Computational Linguistics Just Accepted MS.
doi: 10.1162/COLI_a_00150
© Association for Computational Linguistics

Computational Linguistics Volume xx, Number yy

1. V = {1, . . . , n} is a set of nodes,

2. A ⊆ V × V is a set of directed arcs, containing no loops (i.e., arcs of the form

(v, v) are disallowed for all v ∈ V).

The set V of nodes (or vertices) is the set of positive integers up to and including n, each

corresponding to the linear position of a token in the sentence (where the first token may

or may not be the special token ROOT). The set A of arcs (or directed edges) is a set of

pairs (i, j), where i and j are distinct nodes. Since arcs are used to represent dependency

relations, we say that i is the head of j; conversely, we say that j is a dependent of i. A

node with no incoming arcs is called a root.

We will say that two arcs (i, j) and (k, l) cross if min(i, j) < min(k, l) < max(i, j) <

max(k, l) or min(k, l) < min(i, j) < max(k, l) < max(i, j), and that an arc (i, j) covers a

node k if min(i, j) < k < max(i, j).

Note that the dependency graphs defined by Definition 1 are unlabeled depen-

dency graphs. Adding labels is straightforward by redefining arcs as triples (i, l, j),

consisting of a head i, a label l and a dependent j, but excluding labels for now will

simplify the formal analysis without limiting the generality of the results. We will

discuss the generalization to labeled dependency graphs whenever relevant, and the

experiments reported in Section 5 all use labeled graphs.

Definition 2

Let G = (V,A) be a dependency graph.

1. SINGLE-HEAD(G)⇔ every node in G has at most one incoming arc.

2. ACYCLIC(G)⇔ there are no (directed) cycles in G.

3. CONNECTED(G)⇔ G is weakly connected.

8

Computational Linguistics Just Accepted MS.
doi: 10.1162/COLI_a_00150
© Association for Computational Linguistics

Gómez-Rodríguez and Nivre Divisible Transition Systems and Multiplanarity

4. TREE(G)⇔ G is a directed tree.

5. PLANAR(G)⇔ there are no crossing arcs in G.

6. NO-COVERED-ROOTS(G)⇔ there is no root covered by an arc in G.

7. PROJECTIVE(G)⇔ PLANAR(G) and NO-COVERED-ROOTS(G).

Definition 2 lists a number of constraints that can be imposed on dependency graphs.

The most common of these is the TREE constraint, which requires that there is a root

from which all other nodes are reachable by a unique directed path, and which in turn

entails SINGLE-HEAD, ACYCLIC, and CONNECTED. A dependency graph that satisfies

the TREE constraint is called a dependency tree.

The final three constraints are usually defined only for dependency trees, although

we have extended them to apply to dependency graphs in general. The most common

of these is the PROJECTIVE constraint, which for dependency trees is equivalent to the

requirement that every subtree must have a contiguous yield and rules out both crossing

arcs and covered roots. By contrast, the PLANAR constraint forbids crossing arcs but

allows covered roots, which in the case of dependency trees is a very mild relaxation

since there can be at most one covered root without violating the TREE constraint.

Example 1

Consider the dependency graphs depicted in Figure 1 and Figure 2, ignoring labels for

the time being:

Figure 1: G1 = (V1,A1)
V1 = {1,2,3,4,5,6,7,8,9}
A1 = {(1,4), (1,9), (2,3), (4,6), (4,7), (6,2), (6,5), (7,8)}

Figure 2: G2 = (V2,A2)
V2 = {1,2,3,4,5,6,7,8,9}
A2 = {(2,1), (3,2), (3,5), (3,9), (5,4), (5,6), (6,8), (8,7)}

9

Computational Linguistics Just Accepted MS.
doi: 10.1162/COLI_a_00150
© Association for Computational Linguistics

Computational Linguistics Volume xx, Number yy

G1 satisfies TREE (hence also SINGLE-HEAD, ACYCLIC and CONNECTED) and NO-

COVERED-ROOTS but violates PLANAR (hence also PROJECTIVE) because there are

crossing arcs. By contrast, G2 satisfies all constraints listed in Definition 2.

2.2 Transition Systems for Dependency Parsing

Transition-based dependency parsing is based on the notion of a transition system, or

abstract state machine, for mapping sentences to dependency graphs. Such systems are

nondeterministic in general and usually combined with heuristic search, guided by a

treebank-induced function for scoring different transitions out of a given configuration.

For the time being, we will ignore the details of the search procedure and concentrate on

the underlying transition systems. We will adopt the general framework of Nivre (2008)

but restricted to stack-based systems.2

Definition 3

A transition system for dependency parsing is a quadruple S = (C,T, cs,Ct), where

1. C is a set of configurations, each of which contains a buffer β of

(remaining) nodes and a set A of dependency arcs,

2. T is a set of transitions, each of which is a (partial) function t ∶ C → C,

3. cs is an initialization function, mapping a sentence x = w1, . . . ,wn to a

configuration with β = [1, . . . , n],

4. Ct ⊆ C is a set of terminal configurations.

2 In addition to stack-based systems, Nivre (2008) also investigates list-based systems, which make use of
arbitrary lists instead of stacks that obey the last-in first-out constraint.

10

Computational Linguistics Just Accepted MS.
doi: 10.1162/COLI_a_00150
© Association for Computational Linguistics

Gómez-Rodríguez and Nivre Divisible Transition Systems and Multiplanarity

In stack-based transition systems, a configuration takes the form of a triple c = (σ,β,A),

where σ is a stack of nodes, β is a buffer of nodes, and A is a set dependency arcs;

the initialization function is cs(x) = ([], [1, . . . , n],∅) (for x = w1, . . . ,wn); and the set of

terminal configurations is Ct = {c ∣ c = (σ, [],A) for any σ, A} (Nivre 2008).

We use the notation σc, βc and Ac to refer to the value of σ, β and A in a given

configuration c; we use ∣σ∣ and ∣β∣ to refer to the size of σ and β (i.e., the number of

nodes), and we use [] to denote an empty stack or buffer.

Definition 4

Let S = (C,T, cs,Ct) be a transition system. A transition sequence3 for a sentence x =

w1, . . . ,wn in S is a sequence C0,m = (c0, c1, . . . , cm) of configurations, such that

1. c0 = cs(x),

2. cm ∈ Ct,

3. for every i (1 ≤ i ≤m), ci = t(ci−1) for some t ∈ T .

The parse assigned to x byC0,m is the dependency graphGcm = ({1, . . . , n},Acm), where

Acm is the set of dependency arcs in cm.

Starting from the initial configuration for the sentence to be parsed, transitions will

manipulate σ, β and A until a terminal configuration is reached (β is empty). Since the

node set V is given by the input sentence itself, the set Acm of dependency arcs in the

terminal configuration will determine the output dependency graph Gcm = (V,Acm).

3 Please note that, according to standard terminology both in transition-based dependency parsing and for
transition systems more generally in computer science, a transition sequence is a sequence of configurations,
not a sequence of transitions. We will later introduce the term transition chain for the corresponding
sequence of transitions. We realize that these terms are potentially confusing but prefer not to deviate
from the standard terminology.

11

Computational Linguistics Just Accepted MS.
doi: 10.1162/COLI_a_00150
© Association for Computational Linguistics

Computational Linguistics Volume xx, Number yy

Definition 5

Let S = (C,T, cs,Ct) be a transition system for dependency parsing.

1. S is sound for a class G of dependency graphs if and only if, for every

sentence x and every transition sequence C0,m for x in S, the parse

Gcm ∈ G.

2. S is complete for a class G of dependency graphs if and only if, for every

sentence x and every dependency graph Gx for x in G, there is a transition

sequence C0,m for x in S such that Gcm = Gx.

3. S is correct for a class G of dependency graphs if and only if it is sound

and complete for G.

As observed by Nivre (2008), soundness and completeness for transition systems are

analogous to soundness and completeness for grammar parsing algorithms, according

to which an algorithm is sound if it only derives parses licensed by the grammar and

complete if it derives all such parses (Shieber, Schabes, and Pereira 1995).

Example 2

The arc-standard transition system of Nivre (2008) uses three transitions:

SHIFTAS (σ, i∣β,A)⇒ (σ∣i, β,A)
LEFT-ARCAS (σ∣i, j∣β,A)⇒ (σ, j∣β,A∪{(j, i)})
RIGHT-ARCAS (σ∣i, j∣β,A)⇒ (σ, i∣β,A∪{(i, j)})

The unlabeled dependency graph in Figure 2 is derived by the transition sequence in

Figure 3. For labeled dependency parsing, the LEFT-ARC and RIGHT-ARC transitions in

addition have a parameter for the label l of the arc being added.

12

Computational Linguistics Just Accepted MS.
doi: 10.1162/COLI_a_00150
© Association for Computational Linguistics

Gómez-Rodríguez and Nivre Divisible Transition Systems and Multiplanarity

([], [1, . . . ,9], ∅)
SHIFT ⇒ ([1], [2, . . . ,9], ∅)

LEFT-ARC ⇒ ([], [2, . . . ,9], A1 = {(2,1)})
SHIFT ⇒ ([2], [3, . . . ,9], A1)

LEFT-ARC ⇒ ([], [3, . . . ,9], A2 = A1∪{(3,2)})
SHIFT ⇒ ([3], [4, . . . ,9], A2)
SHIFT ⇒ ([3,4], [5, . . . ,9], A2)

LEFT-ARC ⇒ ([3], [5, . . . ,9], A3 = A2∪{(5,4)})
SHIFT ⇒ ([3,5], [6, . . . ,9], A3)
SHIFT ⇒ ([3,5,6], [7,8,9], A3)
SHIFT ⇒ ([3, . . . ,7], [8,9], A3)

LEFT-ARC ⇒ ([3,5,6], [8,9], A4 = A3∪{(8,7)})
RIGHT-ARC ⇒ ([3,5], [6,9], A5 = A4∪{(6,8)})
RIGHT-ARC ⇒ ([3], [5,9], A6 = A5∪{(5,6)})
RIGHT-ARC ⇒ ([], [3,9], A7 = A6∪{(3,5)})

SHIFT ⇒ ([3], [9], A7)
RIGHT-ARC ⇒ ([], [3], A8 = A7∪{(3,9)})

SHIFT ⇒ ([3], [], A8)

Figure 3
Arc-standard transition sequence for the (unlabeled) dependency graph in Figure 2.

2.3 Transition-Based Parsing

A transition system is an abstract machine that computes the mapping of a sentence to

a dependency graph through a sequence of steps called transitions. In order to build a

practical parsing system on top of this, we essentially need two additional components:

a model for scoring transition sequences and an algorithm for finding the optimal

transition sequence for a given sentence. Although many different scoring models are

conceivable, practically all existing parsers use a linear model for scoring individual

transitions whose scores are then added to get the score for an entire sequence:

SCORE(C0,m) =
m

∑
i=1

f(ci−1, ti) ⋅w

where f(ci−1, ti) is a feature vector representation of transition ti out of configuration

ci−1 and w is a corresponding weight vector. Finding the highest scoring transition

sequence under this model is a hard problem in general, and transition-based parsers

13

Computational Linguistics Just Accepted MS.
doi: 10.1162/COLI_a_00150
© Association for Computational Linguistics

Computational Linguistics Volume xx, Number yy

therefore have to rely on heuristic search for the optimal transition sequence. Many

systems simply use greedy 1-best search (Yamada and Matsumoto 2003; Nivre, Hall,

and Nilsson 2004; Attardi 2006):

PARSE(x = (w1, . . . ,wn))
1 c← cs(x)
2 while c /∈ Ct
3 t∗ ← argmaxt f(c, t) ⋅w
4 c← t∗(c)
5 return Gc

Another common approach is to use beam search with a fixed beam size (Johansson

and Nugues 2006; Titov and Henderson 2007; Zhang and Clark 2008). In this case,

lines 3 and 4 above are replaced by an inner loop that expands all configurations in

the current beam using all permissible transitions and then discards all except the k

highest scoring configurations. The outer loop terminates when all configurations in

the beam are terminal, and the dependency graph corresponding to the highest scoring

configuration is returned. Setting the beam size to 1 makes this equivalent to greedy

1-best search.

The time complexity of transition-based parsing depends not only on the underly-

ing transition system but also on the scoring model and the search algorithm. However,

as long as the number of configurations considered by the search algorithm is bounded

by a constant k and as long as every transition can be scored and executed in constant

time relative to a fixed model, then the asymptotic time complexity of a parser using a

transition system S is given by an upper bound on the length of transition sequences in

S (Nivre 2008). Similarly, the space complexity is given by an upper bound on the size

of a configuration c ∈ C, since at most k configurations need to be stored at any given

time. For most of the systems considered in this article, we will see that the length of a

transition sequence isO(n), where n is the length of the input sentence, which translates

14

Computational Linguistics Just Accepted MS.
doi: 10.1162/COLI_a_00150
© Association for Computational Linguistics

Gómez-Rodríguez and Nivre Divisible Transition Systems and Multiplanarity

into a linear bound on parsing time for transition-based parsers using beam search (with

greedy 1-best search as a special case).

Transition-based dependency parsing using beam search has the advantage of

low parsing complexity in combination with very few restrictions on feature repre-

sentations, which enables fast and accurate parsing, but does not guarantee that the

optimal transition sequence is found. Recent work on tabularization for transition-

based parsing has shown that it is possible to use exact dynamic programming under

certain conditions, but this leads either to very inefficient parsing or to very restricted

feature representations. Thus, Huang and Sagae (2010) present a dynamic programming

scheme for a feature-rich arc-standard parser, but the resulting parsing complexity is

O(n7) and they therefore have to resort to beam search in practical parsing experiments.

Conversely, Kuhlmann, Gómez-Rodríguez, and Satta (2011) show how to obtain cubic

complexity for a tabularized arc-eager parser but only for very impoverished feature

representations. Hence, for the remainder of this article, we will assume that transition

sequence length is a relevant complexity bound, since it translates into a bound on run-

ning time for parsers that use beam search, as practically all state-of-the-art transition-

based parsers currently do. This bound holds as long as every transition can be scored

and executed in constant time, which is true even when including complex features like

the valency features of Zhang and Nivre (2011), which are expensive to use in dynamic

programming because of the combinatorial effect they have on parsing complexity.

3. Divisible Transition Systems

In the last decade, several different dependency parsers have been defined as stack-

based transition systems, which differ from each other in the order in which they add

dependency arcs as well as in the constraints that they impose on output dependency

graphs. In their original definitions, these differences arise from the fact that each algo-

15

Computational Linguistics Just Accepted MS.
doi: 10.1162/COLI_a_00150
© Association for Computational Linguistics

Computational Linguistics Volume xx, Number yy

rithm uses a distinct set of transitions. In this section, we show how these algorithms

can be expressed using a common set of transitions, which we call elementary transi-

tions. Under this framework, the original transitions of each algorithm are viewed as

combinations of one or more elementary transitions by means of the standard function

operations of composition and restriction. A direct consequence of this is that each of the

parsers expressed in this framework can be viewed as a restriction of the algorithm that

uses elementary transitions directly, allowing any possible concatenation of elementary

transitions. We call the systems that are analyzable within this framework divisible

transition systems.

The elementary transitions in our framework represent five primitive operations

that can be applied to stack-based configurations:

SHIFT (σ, j∣β,A)⇒ (σ∣j, β,A)
UNSHIFT (σ∣i, β,A)⇒ (σ, i∣β,A)
REDUCE (σ∣i, β,A)⇒ (σ,β,A)
LEFT-ARC (σ∣i, j∣β,A)⇒ (σ∣i, j∣β,A∪{(j, i)})
RIGHT-ARC (σ∣i, j∣β,A)⇒ (σ∣i, j∣β,A∪{(i, j)})

The first three operations modify the stack and/or buffer by moving a word from the

buffer to the top of the stack (SHIFT), moving a word from the stack to the buffer

(UNSHIFT), or popping a word from the stack (REDUCE). The remaining two operations

create dependency arcs involving the top of the stack and the first word in the buffer

(LEFT-ARC, RIGHT-ARC). We assume that LEFT-ARC and RIGHT-ARC only apply to

configurations where the new arc is not already an element of the arc set A, an assump-

tion that is needed in certain cases to guarantee termination (that is, to rule out transition

sequences where the same arc is added an indefinite number of times). Note that, in the

case of labeled dependency graphs, the LEFT-ARC and RIGHT-ARC transitions will have

a label parameter, and this restriction should not prevent the addition of an arc with the

same head and dependent as one or more existing arcs, as long as the label is different.

16

Computational Linguistics Just Accepted MS.
doi: 10.1162/COLI_a_00150
© Association for Computational Linguistics

Gómez-Rodríguez and Nivre Divisible Transition Systems and Multiplanarity

Different parsing algorithms can now be defined using composition of elementary

transitions, which is defined as standard function composition.

Definition 6

Let t1, t2 ∶ C → C be transitions. Their composition is the partial function t1; t2 ∶ C → C

mapping each c ∈ C to t2(t1(c)).

Elementary transitions are defined as partial functions t ∶ C → C, and we use Te to refer

to the set of elementary transitions. In addition, we use function restriction to impose

constraints on their domain, traditionally expressed in the literature as side conditions.

For this purpose, we use the standard notation by which the restriction of a function

f ∶X → Y to a subset A ⊆X is written as:

f A(x) = { f(x) if x ∈ A
undefined if x /∈ A

Transition systems that can be defined using composition of elementary transitions with

restrictions are said to be divisible.

Definition 7

A stack-based transition system S = (C,T, cs,Ct) is divisible if and only if every transi-

tion in T is of the form t1 s1 ; t2 s2 ; . . .; tp sp , where p > 0, ti ∈ Te, si ⊆ C.

In other words, a stack-based transition system is divisible if and only if each of its

transitions can be written as a composition of restrictions of the elementary transitions

SHIFT, UNSHIFT, REDUCE, LEFT-ARC, and RIGHT-ARC. Note that the definition allows

17

Computational Linguistics Just Accepted MS.
doi: 10.1162/COLI_a_00150
© Association for Computational Linguistics

Computational Linguistics Volume xx, Number yy

the use of unrestricted elementary transitions in the composition, since for any transi-

tion t, we have that t C = t.4

3.1 Examples of Divisible Transition Systems

In this section, we show that a number of transition-based parsers from the literature use

divisible transition systems that can be defined using only elementary transitions. This

includes the arc-eager and arc-standard projective parsers described in Nivre (2003) and

Nivre (2008), the arc-eager and arc-standard parsers for directed acyclic graphs from

Sagae and Tsujii (2008), the hybrid parser of Kuhlmann, Gómez-Rodríguez, and Satta

(2011), and the easy-first parser of Goldberg and Elhadad (2010). We also give examples

of transition systems that are not divisible (Attardi 2006; Nivre 2009).

First of all, we define four standard subsets of the configuration set C:

Hσ(C) = {(σ∣i, β,A) ∈ C ∣ ∃j ∶ (j, i) ∈ A}

Hσ(C) = {(σ∣i, β,A) ∈ C ∣ ¬∃j ∶ (j, i) ∈ A}
Hβ(C) = {(σ, i∣β,A) ∈ C ∣ ∃j ∶ (j, i) ∈ A}

Hβ(C) = {(σ, i∣β,A) ∈ C ∣ ¬∃j ∶ (j, i) ∈ A}

The set Hσ(C) is the subset of configurations where the node on top of the stack has

been assigned a head in A, while Hσ(C) is the subset where the top node has not been

assigned a head in A. Similarly, the set Hβ(C) is the subset of configurations where the

first node in the buffer has been assigned a head in A, while Hσ(C) is the subset where

the first node has not been assigned a head in A. Note that there are configurations that

are neither in Hσ(C) nor in Hσ(C), namely those where the stack is empty. There are

4 It is worth noting that the assumption that LEFT-ARC and RIGHT-ARC only apply to configurations
where the new arc is not already in the arc set A could be formally stated by restricting these transitions
to the sets LA = {(σ∣i, j∣β,A) ∣ (j, i) /∈ A} (for LEFT-ARC) and RA = {(σ∣i, j∣β,A) ∣ (i, j) /∈ A} (for
RIGHT-ARC). However, since these restrictions are part of the definition of the elementary transitions
themselves, we prefer to leave it implicit notationwise.

18

Computational Linguistics Just Accepted MS.
doi: 10.1162/COLI_a_00150
© Association for Computational Linguistics

Gómez-Rodríguez and Nivre Divisible Transition Systems and Multiplanarity

also configurations that are neither in Hβ(C) nor inHβ(C), because the buffer is empty,

but these are all terminal configurations.

Example 3

The arc-standard parser of Nivre (2008), previously defined in Example 2, is a bottom-

up parser for projective dependency trees. Its transitions can be defined in terms of

elementary transitions as follows:

SHIFTAS = SHIFT

LEFT-ARCAS = LEFT-ARC; REDUCE

RIGHT-ARCAS = RIGHT-ARC; SHIFT; REDUCE; UNSHIFT

The SHIFTAS transition is the same as the elementary SHIFT transition. The LEFT-ARCAS

transition composes the elementary LEFT-ARC transition with the REDUCE transition to

ensure that the left dependent of the new arc is popped from the stack and therefore

cannot be assigned more than one head. The RIGHT-ARCAS transition, finally, composes

four elementary transitions, where RIGHT-ARC is responsible for adding a left-headed

arc, SHIFT and REDUCE jointly remove the dependent of the new arc from the buffer,

and UNSHIFT moves the head of the new arc back to the buffer so that it can find a head

to the left. It is worth noting that the arc-standard system for projective trees does not

make use of restrictions.

While this description of the arc-standard parser corresponds to its definition in

Nivre (2008), where arcs are created involving the topmost stack node and the first

buffer node, the system has also been presented in an equivalent form with arcs built be-

tween the two top nodes in the stack (Nivre 2004). This variant can also be described as

19

Computational Linguistics Just Accepted MS.
doi: 10.1162/COLI_a_00150
© Association for Computational Linguistics

Computational Linguistics Volume xx, Number yy

a divisible transition system, with LEFT-ARCAS′ = UNSHIFT; LEFT-ARC; REDUCE; SHIFT

and RIGHT-ARCAS′ = UNSHIFT; RIGHT-ARC; SHIFT; REDUCE.5

Example 4

The arc-eager parser of Nivre (2003) is a parser for projective dependency trees, which

adds arcs in a strict left-to-right order using the following transitions:

SHIFTAE = SHIFT

REDUCEAE = REDUCE Hσ(C)

LEFT-ARCAE = LEFT-ARC
Hσ(C)

; REDUCE

RIGHT-ARCAE = RIGHT-ARC; SHIFT

As in the first example, the SHIFTAE transition is equivalent to the elementary SHIFT

transition, but the RIGHT-ARCAE transition differs from RIGHT-ARCAS by not popping

the right dependent from the stack after adding the arc and shifting. Instead, right

dependents are removed from the stack in a separate transition REDUCEAE , which is

equivalent to the elementary transition REDUCE but restricted to Hσ(C) to ensure that

unattached nodes are not removed. The LEFT-ARCAE transition, finally, is the same as

LEFT-ARCAS but restricted toHσ(C), a restriction that is not needed in the arc-standard

system where nodes on the stack can never have a head.

Example 5

The easy-first parser of Goldberg and Elhadad (2010) is a parser for projective trees that

adds arcs in a bottom-up order but in a non-directional manner, trying to make the

easier attachment decisions first regardless of the position of the corresponding words

5 Additionally, it is also possible to define the divisible transition system framework itself in such a way
that the LEFT-ARC and RIGHT-ARC elementary transitions themselves act upon the two topmost stack
nodes, rather than on the topmost stack node and first buffer node. While this definition can capture
exactly the same set of parsers as the one we are using and makes it more natural to describe the
mentioned arc-standard variant, we have not used it because it significantly complicates the definition of
other algorithms, such as the arc-eager or 1-planar parsers.

20

Computational Linguistics Just Accepted MS.
doi: 10.1162/COLI_a_00150
© Association for Computational Linguistics

Gómez-Rodríguez and Nivre Divisible Transition Systems and Multiplanarity

in the sentence. This parsing strategy corresponds to the following divisible transition

system:

SHIFTEF = SHIFT

ATTACH-RIGHT(i)EF = SHIFTi; LEFT-ARC; REDUCE; UNSHIFTi−1

ATTACH-LEFT(i)EF = SHIFTi; RIGHT-ARC; SHIFT; REDUCE; UNSHIFT; UNSHIFTi−1

where i is a strictly positive integer. Note that this means that the system has an

infinite set of transitions. However, in practice only the ATTACH-RIGHT(i)EF and

ATTACH-LEFT(i)EF transitions such that 1 ≤ i ≤ n − 1 need to be considered when pars-

ing a string of length n: since the number of nodes in the buffer is bounded by n,

transitions with i ≥ n will always be undefined because the buffer will become empty

before the first i + 1 elementary transitions can be applied. Therefore, to parse strings of

length n we only need 2n − 1 transitions.

The purpose of an ATTACH-RIGHT(i)EF (or ATTACH-LEFT(i)EF) is to create a

rightward (or leftward) arc involving the ith and (i + 1)th words in the input string,

and then remove the dependent. This means that the system is not limited to building

arcs in a predetermined order (such as left to right). Instead, it can generate the same

tree in different orders depending on the criterion used to choose a transition at each

configuration. In particular, the parser by Goldberg and Elhadad (2010) can be seen as an

implementation of this transition system which uses a training algorithm that assigns a

weight to each of the ATTACH-RIGHT(i)EF and ATTACH-LEFT(i)EF transitions in such

a way that “easier” (more reliable) attachments are performed first.

The ATTACH-LEFT(i)EF and ATTACH-RIGHT(i)EF transitions are essentially the

same as LEFT-ARCAS and RIGHT-ARCAS in the arc-standard system above, but pre-

ceded by i instances of SHIFT and succeeded by i − 1 instances of UNSHIFT, which

means that a separate SHIFT transition is needed only to reach a terminal configuration

21

Computational Linguistics Just Accepted MS.
doi: 10.1162/COLI_a_00150
© Association for Computational Linguistics

Computational Linguistics Volume xx, Number yy

by pushing the final root(s) onto the stack. This analysis reveals that the two systems

are similar in that they build dependency trees bottom-up but differ with respect to the

order in which arcs are added. It is worth pointing out that using sequences of SHIFT

and UNSHIFT transitions is not the most efficient way of implementing easy-first parsing

in practice.

Example 6

The hybrid parser introduced by Kuhlmann, Gómez-Rodríguez, and Satta (2011) is a

bottom-up projective transition system that builds each given dependency tree in a

unique order, rather than allowing each node to collect its dependents in different orders

like the arc-standard or easy-first systems. Its transitions can be defined as follows:

SHIFTHY = SHIFT

LEFT-ARCHY = LEFT-ARC; REDUCE

RIGHT-ARCHY = UNSHIFT; RIGHT-ARC; SHIFT; REDUCE

Note that this parser creates leftward arcs between the first node in the buffer and the

top node on the stack, just like arc-standard and arc-eager. However, rightward arcs are

created by making the topmost stack node a dependent of the second topmost stack

node, and removing the former from the stack.

Example 7

The arc-standard DAG parser of Sagae and Tsujii (2008) performs bottom-up parsing

without the common assumption that syntactic structures are represented as trees,

allowing nodes to have multiple heads. It uses the following transitions:

22

Computational Linguistics Just Accepted MS.
doi: 10.1162/COLI_a_00150
© Association for Computational Linguistics

Gómez-Rodríguez and Nivre Divisible Transition Systems and Multiplanarity

SHIFTDS = SHIFT

LEFT-REDUCEDS = LEFT-ARC; REDUCE

RIGHT-REDUCEDS = RIGHT-ARC; SHIFT; REDUCE; UNSHIFT

LEFT-ATTACHDS = LEFT-ARC {(σ∣i,j∣β,A)∈C∣¬((i,j)∈A)}

RIGHT-ATTACHDS = RIGHT-ARC {(σ∣i,j∣β,A)∈C∣¬((j,i)∈A)}; UNSHIFT

While the first three transitions are exactly the same as in the arc-standard parser

of Nivre (2008), the LEFT-ATTACHDS and RIGHT-ATTACHDS transitions differ from

LEFT-REDUCEDS and RIGHT-REDUCEDS in that they do not remove the dependent of

the new arc, thus allowing it to have additional incoming arcs. The restrictions on these

transitions disallow the creation of both a left and a right arc between the same pair

of nodes. However, note that the class of dependency structures that can be output by

this system does not exactly correspond to DAGs, since the system allows transition

sequences that create dependency graphs with cycles. For example, starting from any

configuration with at least two nodes on the stack and one node in the buffer and

applying RIGHT-ATTACHDS , RIGHT-REDUCEDS , SHIFTDS and LEFT-ATTACHDS gives

rise to a cyclic structure.

Example 8

The arc-eager DAG parser of Sagae and Tsujii (2008) allows nodes with multiple heads

like the previous one but adds arcs in a strict left-to-right order like the arc-eager parser

of Nivre (2003). The transition system can be defined as follows:

SHIFTDE = SHIFT

REDUCEDE = REDUCE Hσ(C)

LEFT-ARCDE = LEFT-ARC {(σ∣i,j∣β,A)∈C∣¬((i,j)∈A)}

RIGHT-ARCDE = RIGHT-ARC {(σ∣i,j∣β,A)∈C∣¬((j,i)∈A)}

Here the first two transitions are the same as in the arc-eager parser of Nivre (2003),

while the LEFT-ARCDE and RIGHT-ARCDE transitions differ from their counterparts

23

Computational Linguistics Just Accepted MS.
doi: 10.1162/COLI_a_00150
© Association for Computational Linguistics

Computational Linguistics Volume xx, Number yy

LEFT-ARCAE and RIGHT-ARCAE by not removing the dependent of the new arc. Like

the previous arc-standard system, this system can produce cyclic dependency graphs.

For example, starting from any configuration with at least one node in the stack and two

nodes in the buffer and applying RIGHT-ARCDE , SHIFTDE , RIGHT-ARCDE , REDUCEDE

and LEFT-ARCDE creates a cycle of length 3.

Before we close this section we will briefly consider two transition systems that are not

divisible. The non-projective parser of Attardi (2006) extends the arc-standard system

of Nivre (2004) with transitions that directly add non-projective arcs like the following:

LEFT-ARC2 (σ∣i∣k, j∣β,A)⇒ (σ∣k, j∣β,A∪{(j, i)})
RIGHT-ARC2 (σ∣i∣k, j∣β,A)⇒ (σ∣i, k∣β,A∪{(i, j)})

The non-projective parser of Nivre (2009) constructs non-projective arcs in an indirect

fashion by first swapping the order of two adjacent nodes on the stack:

SWAP (σ∣i∣j, β,A)⇒ (σ∣j, i∣β,A)

Neither of these systems can be formalized using only elementary transitions as defined

above, although they both represent straightforward extensions of the basic system.

3.2 Properties of Divisible Transition Systems

The elementary transition framework not only allows us to describe a wide range of

transition-based parsers in a clear and concise way, but it can also easily be used to

prove formal properties of transition systems. To do so, we consider the successions of

transitions allowed by these algorithms, and break their transitions up into chains of

elementary transitions.

Definition 8

Let C0,m = (c0, c1, . . . , cm) be a transition sequence for a sentence x under a transition

24

Computational Linguistics Just Accepted MS.
doi: 10.1162/COLI_a_00150
© Association for Computational Linguistics

Gómez-Rodríguez and Nivre Divisible Transition Systems and Multiplanarity

system S. The standard transition chain associated with C0,m is the sequence of transi-

tions T0,m = (t1, t2, . . . , tm) such that ti(ci−1) = ci for each i ∈ [1,m].

Definition 9

Let T0,m = (t1, t2, . . . , tm) be the standard transition chain for a transition sequence C0,m

under a divisible transition system S. Its associated elementary transition chain is the

sequence of elementary transitions

E0,m = (t1,1, t1,2, . . . , t1,p1 , t2,1, t2,2, . . . , t2,p2 , . . . , tm,1, tm,2, . . . , tm,pm)

such that t1 = t1,1 s1,1
; t1,2 s1,2

; . . .; t1,p1 s1,p1
, . . . , tm = tm,1 sm,1

; tm,2 sm,2
; . . .; tm,pm sm,pm

for some values of the restrictions s1,1, . . . , s1,p1 , . . . , sm,1, . . . , sm,pm .

Definition 10

Let E0,m = (e1, e2, . . . , eq) be the elementary transition chain for some transition se-

quence C0,m = (c0, c1, . . . , cm). Then:

r the computation function associated with C0,m is the function

e1; e2; . . .; eq , resulting from composing the elementary transitions in the

chain. Note that the same function could also be obtained from composing

the transitions in the standard transition chain associated with C0,m, and

that this function will always map c0 to cm.

r The elementary transition sequence associated with C0,m is the sequence

of configurations C ′
0,m = (c′0, c′1, . . . , c′q) such that c′0 = c0, and c′i = ei(c′i−1)

for all i ∈ [1, q]. Note that c′q will always equal cm. We will say that ei is

applied to the configuration ci−1 in C ′
0,m.

25

Computational Linguistics Just Accepted MS.
doi: 10.1162/COLI_a_00150
© Association for Computational Linguistics

Computational Linguistics Volume xx, Number yy

After these preliminaries, we will now prove a number of results about divisible transi-

tion systems, first about the classes of dependency graphs that they can derive (Section

3.2.1) and secondly about termination and parsing complexity (Section 3.2.2).

3.2.1 Constraints on Dependency Graphs. Here we consider properties related to the

graph constraints NO-COVERED-ROOTS, SINGLE-HEAD, ACYCLICITY and PLANAR.

Proposition 1

If all elementary REDUCE transitions in the elementary transition chains under S are

applied to configurations inHσ(C), then no dependency graph generated by S contains

covered roots.

This property implies that algorithms where REDUCE transitions are restricted to the

set Hσ(C) always satisfy the NO-COVERED-ROOTS constraint. Note that this restric-

tion may be expressed explicitly in the transition definitions (as in Example 4 above),

but it may also be implicit. For example, in Example 3, we defined LEFT-ARCAS =

LEFT-ARC; REDUCE. Although we did not explicitly write LEFT-ARC; REDUCE Hσ(C),

the LEFT-ARC transition always produces configurations that are trivially in Hσ(C)

(since the transition gives the topmost stack node a head), so the REDUCE transition

in this algorithm is implicitly restricted to Hσ(C). The same observation can be applied

to subsequent properties.

Proof 1

To prove this proposition, we first make some simple observations about divisible

transition systems that will be useful for this and subsequent proofs.

26

Computational Linguistics Just Accepted MS.
doi: 10.1162/COLI_a_00150
© Association for Computational Linguistics

Gómez-Rodríguez and Nivre Divisible Transition Systems and Multiplanarity

Lemma 1

In every configuration in an (elementary) transition sequence under a divisible transi-

tion system S, elements in the stack and buffer are ordered, that is, if the configuration

is of the form ([s1, . . ., sk], [b1, . . ., bl],A), then we know that s1 < . . . < sk < b1 < . . . < bl.

This can be easily seen by induction. It holds in initial configurations, since the stack is

empty and the buffer is ordered, and all of the elementary transitions preserve the order

of the nodes. Note that this lemma implies that a node cannot be in both the stack and

the buffer of the same configuration.

Lemma 2

We will call Π(c) the set of elements that are present either in the stack or in the buffer

in a configuration c. Let C ′
0,m = (c′0, c′1, . . . , c′q) be an (elementary) transition sequence

under a divisible transition system S. Then, we have that Π(c′q) ⊆ Π(c′q−1) ⊆ . . . ⊆ Π(c′0) =

{1, . . . , n}. This means that the set Π monotonically decreases in the course of an (ele-

mentary) transition sequence or, in plain language, that a node that is removed from

the stack and buffer can never be placed back there by elementary transitions. This can

be easily seen by observing that the transitions SHIFT, UNSHIFT, LEFT-ARC and RIGHT-

ARC leave the set Π unchanged, while the REDUCE transition removes one element from

it by popping the stack.

Lemma 3

Let E0,m = (e0, e1, . . . , eq) and C ′
0,m = (c′0, c′1, . . . , c′q) be an elementary transition chain

and its corresponding elementary transition sequence under a divisible transition sys-

tem S. If v /∈ Π(c′i) for some v ∈ [0, n] and i ∈ [0, q], then there exists some j ∈ [0, i] such

27

Computational Linguistics Just Accepted MS.
doi: 10.1162/COLI_a_00150
© Association for Computational Linguistics

Computational Linguistics Volume xx, Number yy

that ej = REDUCE and c′j−1 has v on the top of the stack. This amounts to saying that

the only way an element can be removed from the set Π in a divisible system is by

a REDUCE transition, as observed earlier. Thus, whenever a token v is not present in

Π(c′i) for a given configuration c′i, we can assume that it was previously popped by a

REDUCE transition applied to a configuration that had v on the top of the stack.

With these observations, it is easy to show that if a graph generated by a transition

sequence in a divisible transition system S has at least one covered root, then the

transition sequence applies at least one REDUCE transition to a configuration that is

not in Hσ(C). Let G be a dependency graph in which the node j is a root, covered by an

arc connecting the nodes i and k (i < k). If a transition sequence C0,m generates G, then

it must apply a LEFT-ARC or RIGHT-ARC transition to a configuration having i at the

top of the stack and k as the first element in the buffer, which is the only way of adding

the arc involving i and k. By Lemma 1, we know that in that configuration c, j /∈ Π(c).

By Lemma 3, we know that there must thus be a previous application of a REDUCE

transition with j on the top of the stack. Since j is a root, by definition this configuration

is not in Hσ(C), and the proposition is proved. �

Proposition 2

If all the elementary LEFT-ARC transitions in the elementary transition chains under S

are applied to configurations in Hσ(C), and all the RIGHT-ARC elementary transitions

are applied to configurations in Hβ(C), then all the dependency graphs generated by S

obey the SINGLE-HEAD constraint.

Proof 2

28

Computational Linguistics Just Accepted MS.
doi: 10.1162/COLI_a_00150
© Association for Computational Linguistics

Gómez-Rodríguez and Nivre Divisible Transition Systems and Multiplanarity

The proof of this proposition is straightforward. Since elementary transitions either

leave the generated dependency graph as it is or add one dependency arc to it, an

elementary transition sequence will generate a graph violating the SINGLE-HEAD con-

straint if and only if it contains a LEFT-ARC or RIGHT-ARC transition that adds an

incoming arc to a node that already has a head in the graph. �

Proposition 3

If all the elementary LEFT-ARC and RIGHT-ARC transitions in the elementary transition

chains under S are applied to configurations (σ∣i, j∣β,A) ∈ C where i and j belong

to different connected components of the undirected graph underlying A, then the

undirected graphs underlying all the dependency graphs generated by S are acyclic

(i.e., the dependency graphs generated by S have no undirected cycles). Note that this

in turn implies ACYCLICITY.

Proof 3

Again, this proposition is straightforward, since a cycle can only be created in the undi-

rected graph underlying the generated dependency graph if an arc is added between

nodes that are already connected. �

Proposition 4

All dependency graphs generated by a divisible system S are planar.

Proof 4

To prove this proposition, we observe that a graph is non-planar if and only if it contains

29

Computational Linguistics Just Accepted MS.
doi: 10.1162/COLI_a_00150
© Association for Computational Linguistics

Computational Linguistics Volume xx, Number yy

two arcs (i, j) and (k, l) such that min(i, j) < min(k, l) < max(i, j) < max(k, l). We can

show that there is no elementary transition chain that creates such a pair of arcs.

r An elementary transition chain that first adds the arc (i, j) and later the arc

(k, l) must apply a LEFT-ARC or RIGHT-ARC transition to a configuration

having min(i, j) at the top of the stack and max(i, j) as the first element in

the buffer, which is the only way of adding the first arc. By Lemma 1, we

know that in that configuration c, min(k, l) /∈ Π(c); and by Lemma 2, we

know that min(k, l) /∈ Π(c′) for every subsequent configuration c′ in the

sequence. Given that an arc involving min(k, l) and max(k, l) can only be

built from a configuration having min(k, l) in the stack, we conclude that

after adding the arc (i, j) to the arc set, the parser will never be able to

reach a configuration allowing it to add the arc (k, l).r An elementary transition chain that first adds the arc (k, l) and later the

arc (i, j) is not possible. The reasoning is analogous, but in this case

max(i, j) is the node that gets removed from the set Π when the arc (k, l) is

added, making it impossible to add the arc (i, j) afterwards.

Therefore, divisible systems can only generate planar dependency graphs. �

The properties considered in this section can be used as a tool set for easily proving the

soundness of transition systems with respect to different sets of dependency graphs, as

well as for designing new transition systems. We exemplify the former in Example 9

below and the latter in Section 3.3.

Example 9

30

Computational Linguistics Just Accepted MS.
doi: 10.1162/COLI_a_00150
© Association for Computational Linguistics

Gómez-Rodríguez and Nivre Divisible Transition Systems and Multiplanarity

Consider the transition set of the arc-eager parser in Example 4, repeated here for

convenience:

SHIFTAE = SHIFT

REDUCEAE = REDUCE Hσ(C)

LEFT-ARCAE = LEFT-ARC
Hσ(C)

; REDUCE

RIGHT-ARCAE = RIGHT-ARC; SHIFT

We can easily conclude the following:

r The algorithm enforces the NO-COVERED-ROOTS constraint by Proposition

1, since REDUCE transitions are restricted to Hσ(c).r The algorithm enforces the SINGLE-HEAD constraint by Proposition 2,

since LEFT-ARC elementary transitions are explicitly restricted to Hσ(C)

and RIGHT-ARC transitions are implicitly restricted to Hβ(C). (Trivially,

none of the transitions can produce a configuration outside Hβ(C).)r The algorithm enforces the ACYCLICITY constraint by Proposition 3, since

by construction none of the transitions can produce a configuration c

where the first node in the buffer is connected to any node in Π(c).r The graphs it generates are planar by Proposition 4.r The algorithm generates only projective dependency graphs, since the

combination of PLANAR, ACYCLICITY, SINGLE-HEAD and

NO-COVERED-ROOTS implies PROJECTIVE.

3.2.2 Termination and Complexity. In general, there are two ways in which a transition-

based parser may fail to parse a given input sentence. On the one hand, it may terminate

in a non-terminal configuration where no transition can be applied. On the other hand, it

may fail to terminate at all, because the system allows an infinite sequence of transitions.

31

Computational Linguistics Just Accepted MS.
doi: 10.1162/COLI_a_00150
© Association for Computational Linguistics

Computational Linguistics Volume xx, Number yy

We say that a system is robust if it can never get stuck in a non-terminal configuration

and bounded if it does not permit infinite loops.

Definition 11

A divisible transition system S = (C,T, cs,Ct) is robust if and only if, for every non-

terminal configuration c ∈ C ∖Ct, there is some transition t ∈ T such that t(c) ∈ C.

Definition 12

A divisible transition system S = (C,T, cs,Ct) is bounded if and only if there exists no

non-terminal configuration c ∈ C ∖Ct and (non-empty) sequence of transitions t1, . . . tk

(ti ∈ T) such that t1; . . .; tk(c) = c.

In this section, we first provide sufficient conditions for robustness and boundedness

and then go on to discuss the parsing complexity for a subset of divisible systems that

are guaranteed to be robust and bounded.

Proposition 5

Let S = (C,T, cs,Ct) be a divisible transition system. If SHIFT ∈ T , then S is robust.

Proof 5

It is clear that SHIFT ∈ T is sufficient for robustness, since it applies to every configu-

ration that has a non-empty buffer β, which by definition includes every non-terminal

configuration. �

Thus, in order to guarantee robustness, it is enough that a divisible transition system

includes the elementary SHIFT transition. This is the case for all the divisible systems

exemplified in Section 3.1. Before we go on to characterize bounded systems, it is

32

Computational Linguistics Just Accepted MS.
doi: 10.1162/COLI_a_00150
© Association for Computational Linguistics

Gómez-Rodríguez and Nivre Divisible Transition Systems and Multiplanarity

convenient to introduce three auxiliary functions that characterize the effect a transition

t has on an arbitrary configuration c:

r A(t) = ∣At(c)∣ − ∣Ac∣

r Π(t) = ∣Π(c)∣ − ∣Π(t(c))∣

r β(t) = ∣βc∣ − ∣βt(c)∣

A(t) is the increase in size of the arc set A, which is always non-negative as there are no

elementary transitions that remove arcs. Π(t) is the decrease in size of the set of nodes

that are on the stack σ or in the buffer β, which is also non-negative as there are no

elementary transitions that add new nodes. β(t) is the decrease in the size of the buffer

β, which can be negative as well as positive (or zero).

Proposition 6

Let S = (C,T, cs,Ct) be a divisible transition system. If every transition t ∈ T is such that

A(t) > 0 or Π(t) > 0 or β(t) > 0, then S is bounded.

Proof 6

To see why the disjunctive condition excludes looping transition sequences, consider

an arbitrary configuration c and an arbitrary transition t for which the condition holds.

If A(t) > 0 or Π(t) > 0, then c is clearly not reachable from t(c), because there are no

transitions that delete arcs (first case) or insert nodes (second case). If A(t) = 0 and

Π(t) = 0, then β(t) > 0 and c could be reachable from t(c) only if there is a transition

t′ such that β(t′) < 0 (that is, a transition that puts nodes back in the buffer). But any

such transition t′ would have to have either A(t) > 0 or Π(t) > 0, which would again

33

Computational Linguistics Just Accepted MS.
doi: 10.1162/COLI_a_00150
© Association for Computational Linguistics

Computational Linguistics Volume xx, Number yy

rule out the possibility of a loop. We may therefore conclude that there is no sequence

of transitions t1, . . . , t2 such that t1; . . .; tk(c) = c and, hence, that S is bounded. �

Example 10

The condition of Proposition 6 does not hold for the elementary transition system,

because A(UNSHIFT) = 0, Π(UNSHIFT) = 0, and β(UNSHIFT) = −1. In fact, this system

is not bounded, since we can have an unbounded number of alternating SHIFT and

UNSHIFT transitions without reaching a terminal configuration.

By contrast, the arc-eager system from Examples 4 and 9 is bounded, which can be

seen by observing that β(SHIFTAE) = 1, Π(REDUCEAE) = 1, A(LEFT-ARCAE) = 1, and

A(LEFT-ARCAE) = 1. The same reasoning can be applied to show that all the transition

systems introduced in Examples 3-8 are bounded.

As already stated above, the running time of a transition-based parser that only explores

a constant number of transition sequences (such as a greedy deterministic parser or a

beam-search parser with a constant-size beam) is given by an upper bound on the length

of a transition sequence. To prove such bounds for divisible transition systems, we will

first prove a linear bound on the number of arcs in planar graphs.

Lemma 4

A planar dependency graph with n nodes (n > 1) has no more than 4n − 6 arcs.

Proof 7

For n = 2, we can trivially have at most two arcs, (1,2) and (2,1), and thus the lemma

34

Computational Linguistics Just Accepted MS.
doi: 10.1162/COLI_a_00150
© Association for Computational Linguistics

Gómez-Rodríguez and Nivre Divisible Transition Systems and Multiplanarity

holds since 2 = 4 ⋅ 2 − 6. For the induction step, let n > 2. We will show that if the lemma

holds for graphs with less than n nodes, then it also holds for graphs with n nodes.

To do so, we first give some preliminary definitions. We will say that the length of

an arc (i, j) is `(i, j) = max(i, j) −min(i, j). We will call the domain of an arc (i, j) the

set δ(i, j) = {min(i, j),min(i, j) + 1, . . . ,max(i, j) − 1}. Note that the number of elements

in the domain of an arc equals its length. We will say that an arc (i, j) covers an arc

(k, l) if (i, j) ≠ (k, l) and min(i, j) ≤ min(k, l) < max(k, l) ≤ max(i, j). Note that an arc

(i, j) covers an arc (k, l) if and only if δ(k, l) ⊂ δ(i, j), and a pair of distinct arcs (i, j)

and (k, l) cross (as defined in Section 2.1) if and only if none of them covers the other

and δ(k, l) ∩ δ(i, j) ≠ ∅. Thus, we conclude that a pair of distinct arcs that do not cross

or cover each other have disjoint domains.

Let G be a planar dependency graph G = (V = {1, . . . , n},A). Let Ac = {a1, . . . , am}

be the set of arcs in A with length strictly smaller than n − 1, and that are not covered by

any arc in A with length strictly smaller than n − 1. By definition of Ac, we know that

`(ai) < `(1, n) = n − 1 (1)

On the other hand, since G is planar, a pair of arcs in Ac cannot cross each other.

Furthermore, by definition of Ac, an arc in Ac cannot cover another arc in Ac. Therefore,

the domains of a1, . . . , am are disjoint subsets of {1, . . . , n}, and thus

`(a1) + . . . + `(ai) ≤ `(1, n) = n − 1 (2)

By definition of Ac, every arc in A is either (i) an arc of length at least n − 1 (i.e., (1, n)

or (n,1)), or (ii) an arc ai ∈ Ac, or (iii) an arc covered by some arc ai ∈ Ac. For each given

i ∈ {1, . . . ,m}, the arcs of types (ii) and (iii) form a subgraph of G with `(ai) + 1 nodes.

Since `(ai) + 1 < n, we can apply the induction hypothesis to conclude that there are at

35

Computational Linguistics Just Accepted MS.
doi: 10.1162/COLI_a_00150
© Association for Computational Linguistics

Computational Linguistics Volume xx, Number yy

most 4(`(ai) + 1) − 6 arcs of this type for each value of i. Combining this with Equations

1 and 2, we conclude that the total amount of arcs in A is bounded by

max
a1, . . . , am

s.t. `(ai) < n − 1
and ∑mi=1 `(ai) ≤ n − 1

2 +
m

∑
i=1

[4(`(ai) + 1) − 6]

= 2 + max
a1, . . . , am

s.t. `(ai) < n − 1
and ∑mi=1 `(ai) ≤ n − 1

(−2m + 4
m

∑
i=1

`(ai))

It is easy to see that the expression is maximized for m = 2, and in that case the value of

the expression is bounded by 2 − 2 ⋅ 2 + 4(n − 1) = 4n − 6. This proves the induction step

and thus concludes the proof of Lemma 4. �

Thanks to the result in Lemma 4, we can now proceed to prove bounds on the length of

transition sequences in divisible systems that are guaranteed to be robust and bounded,

that is, systems that satisfy the conditions of Proposition 5 and Proposition 6. We call

such systems efficient divisible transition systems.

Definition 13

A divisible transition system S = (C,T, cs,Ct) is efficient if and only if SHIFT ∈ T and, for

every t ∈ T , A(t) > 0 or Π(t) > 0 or β(t) > 0.

We give three increasingly tight bounds for (i) arbitrary efficient divisible transition

systems, (ii) systems that in addition have a constant bound on the growth of the buffer,

and (iii) systems that have a constant bound on the number of elementary transitions

that a composite transition can contain.

36

Computational Linguistics Just Accepted MS.
doi: 10.1162/COLI_a_00150
© Association for Computational Linguistics

Gómez-Rodríguez and Nivre Divisible Transition Systems and Multiplanarity

Proposition 7

Let S = (C,T, cs,Ct) be an efficient divisible transition system. Then the length of a

transition sequence for a sentence x of length n in S is O(n2).

Proof 8

Consider an arbitrary transition sequence C0,m = (cs(x), . . . , cm) in S for a sentence x of

length n and the corresponding transition chain T1,m = (t1, . . . , tm). The following must

hold:

r The number of transitions t in T1,m for which A(t) > 0 is bounded by the

maximum number of arcs in a planar dependency graph, which is 4n − 6

(by Lemma 4).

r The number of transitions t in T1,m for which Π(t) > 0 is according to

Lemma 2 bounded by the number of nodes in the initial configuration

cs(x), which is n.

r The longest contiguous subsequence Ti,k = (ti, . . . , tk) of T1,m such that all

transitions tj ∈ Ti,k have A(t) = 0, Π(t) = 0 and β(t) > 0 is bounded by the

maximum size of the buffer, which again according to Lemma 2 is

bounded by the number n of nodes in the initial configuration cs(c).

Hence, T1,m can contain at mostO(n) transitions of the first two types and at mostO(n2)

transitions of the third type, because there are at most O(n) transitions that increase the

size of the buffer. �

37

Computational Linguistics Just Accepted MS.
doi: 10.1162/COLI_a_00150
© Association for Computational Linguistics

Computational Linguistics Volume xx, Number yy

Proposition 8

Let S = (C,T, cs,Ct) be an efficient divisible transition system such that, for every tran-

sition t ∈ T , β(t) > k for some constant k. Then the length of every transition sequence

for a sentence x of length n in S is O(n).

Proof 9

This follows from the same kind of considerations as in the proof of Proposition 7

together with the observation that the total number of transitions t for which A(t) = 0,

Π(t) = 0 and β(t) > 0 is now bounded by kn instead of n2, since each of the O(n)

transitions that may increase the size of the buffer can only do so by at most k. �

Proposition 9

Let S = (C,T, cs,Ct) be an efficient divisible transition system such that, for every

transition t = t1 s1 ; . . .; tm sm (t ∈ T , ti ∈ Te), m ≤ k for some constant k. The length of

every elementary transition sequence for a sentence x of length n in S is O(n).

Proof 10

This follows from Proposition 8 together with the constant bound on the number of

elementary transitions in a composite transition. �

Example 11

All the systems defined in Section 3.1 satisfy the condition of Proposition 8 and therefore

have a linear bound on the length of their transition sequences. In addition, all the

systems except the easy-first parser satisfy the condition of Proposition 9 and there-

38

Computational Linguistics Just Accepted MS.
doi: 10.1162/COLI_a_00150
© Association for Computational Linguistics

Gómez-Rodríguez and Nivre Divisible Transition Systems and Multiplanarity

fore also have a linear bound on the number of elementary transitions. To see why

this fails for the easy-first parser, note that the number of elementary transitions in

ATTACH-LEFT(i)EF and ATTACH-RIGHT(i)EF depends on i, which can grow with the

size of the sentence. Nevertheless, β(ATTACH-LEFT(i)EF) = β(ATTACH-RIGHT(i)EF) =

1 (for all values of i), which guarantees the linear bound on composite transitions.

3.3 Planar Dependency Parsing

So far in this section, we have shown how a number of well-known transition systems

from the literature can be formulated and studied as divisible transition systems, that is,

as restrictions of the same generic system based on five elementary transitions. In this

section, we show how this formulation can also be used to define a novel algorithm.

Specifically, we can obtain a transition system that will be able to parse any planar

dependency graph (regardless of projectivity) if we use all elementary transitions except

UNSHIFT directly as the transitions of the system. On top of this system, we can use

Propositions 1–4 to add optional restrictions to the system in order to enforce the

SINGLE-HEAD, ACYCLICITY and NO-COVERED-ROOTS constraints. In addition, we can

use Propositions 5–9 to show that there is a linear bound on the length of elementary

transition sequences in this system. In this way, we obtain an efficient parser for planar

dependency graphs, optionally restricted to trees, which is a novel contribution in itself.

More importantly, however, we will show in Section 5 how this system can be gener-

alized to a system capable of handling non-planar, hence non-projective, dependency

trees using the concept of multiplanarity (to be introduced in Section 4).

First, we define a planar transition system as the divisible transition system SP

having the following transitions:

39

Computational Linguistics Just Accepted MS.
doi: 10.1162/COLI_a_00150
© Association for Computational Linguistics

Computational Linguistics Volume xx, Number yy

SHIFTP = SHIFT

REDUCEP = REDUCE

LEFT-ARCP = LEFT-ARC

RIGHT-ARCP = RIGHT-ARC

3.3.1 Correctness. This transition system can parse all the planar dependency graphs. To

prove its correctness, we must show soundness (all the graphs produced by the system

are planar) and completeness (all the planar graphs can be obtained by the system).

However, soundness is trivial given Property 4, so we only need to prove completeness.

To do so, we prove the stronger claim in Lemma 5.

Lemma 5

Let G = (V,A) be a planar dependency graph for a sentence w1 . . .wn. Then there is a

transition sequence in SP ending in a terminal configuration of the form (σ, [],A) such

that all the nodes that are not covered by any dependency arc in A are in σ.

Proof 11

To prove this lemma, we proceed by induction on the length n of the sentence. In the

case where n = 1, the only possible planar dependency graph is the graph G0 = ({1},∅)

with a single node and no arcs. It is easy to see that the transition sequence that applies

a single SHIFT transition meets the required conditions, since it ends in a terminal

configuration ([1], [],∅).

For the induction step, we assume that the lemma holds for sentences of length n

and prove that it then also holds for sentences of length n + 1, for any n ≥ 1. Let Gn+1 =

(Vn+1,An+1) be a planar dependency graph for a sentence w1 . . .wn+1. We denote by

40

Computational Linguistics Just Accepted MS.
doi: 10.1162/COLI_a_00150
© Association for Computational Linguistics

Gómez-Rodríguez and Nivre Divisible Transition Systems and Multiplanarity

Ln+1 the set of arcs

Ln+1 = {(n + 1, i) ∈ An+1} ∪ {(j, n + 1) ∈ An+1},

that is, the set of incoming and outgoing arcs from the node n + 1 inGn+1, and we denote

by Gn the graph

Gn = (Vn = Vn+1 ∖ {n + 1} ,An = An+1 ∖Ln+1),

that is, the graph obtained by removing the node n + 1 and all its incoming and outgoing

arcs fromGn+1. By the induction hypothesis, there exists a transition sequenceCn whose

final configuration is of the form (σn, [],An), such that σn contains all the nodes that

are not covered by any dependency arc in An. From this transition sequence Cn, we

will obtain a transition sequence Cn+1 meeting the conditions asserted by the lemma for

the graph Gn+1. To do so, we first observe that the planarity of the graph Gn+1 implies

that the left endpoints of the arcs in Ln+1 cannot be covered by any arc in An, since this

would mean that the arc in Ln+1 and the covering arc would cross. Therefore, by the

induction hypothesis, we know that all the left endpoints of the arcs in Ln+1 are in σn.

Thus, if the left endpoints of the arcs in Ln+1 are i1, i2, . . . , ie; then the stack σn (which is

ordered, by Lemma 1) is of the form

σn = [s1, . . . , sz1 = i1, . . . , sz2 = i2, . . . , sze = ie, . . . , sm].

With this in mind, we can obtain the transition sequence Cn+1 from Cn by adding the

following extra transitions at the end of its associated transition chain:

REDUCEm−ze ;arcs(ie); REDUCEze−ze−1 ;arcs(ie−1); . . . ; REDUCEz2−z1 ;arcs(i1); SHIFT

where we use the notation arcs(i) as shorthand for:

41

Computational Linguistics Just Accepted MS.
doi: 10.1162/COLI_a_00150
© Association for Computational Linguistics

Computational Linguistics Volume xx, Number yy

r LEFT-ARC, if (n + 1, i) ∈ Ln+1 ∧ (i, n + 1) /∈ Ln+1,

r RIGHT-ARC, if (n + 1, i) /∈ Ln+1 ∧ (i, n + 1) ∈ Ln+1,

r LEFT-ARC; RIGHT-ARC, if (n + 1, i) ∈ Ln+1 ∧ (i, n + 1) ∈ Ln+1.

The final configuration of the transition sequence obtained by applying these transitions

at the end of Cn is of the form (σ,β,A), where:

r β = []; since the nodes 1, . . . , n are removed from the buffer by Cn, and

n + 1 is removed by the extra SHIFT transition,

r A = An+1, since An+1 = An ∪Ln+1, the arcs in An are added to the set by Cn,

and all the arcs in Ln+1 are added by arcs(ie), . . . , arcs(i1),

r All the nodes that are not covered by arcs in An+1 are in σ, since they were

in σn (a node not covered by arcs in An+1 is trivially not covered by arcs in

An) and the REDUCE transitions applied after Cn only remove nodes to the

right of i1, which are covered by the arc (n + 1, i1) or (i1, n + 1).6

This proves the induction step for Lemma 5, and thus correctness is proved. �

3.3.2 Constraints on Planar Dependency Parsing. As we have just proved, the transi-

tion system SP is able to parse all planar dependency graphs. However, in many prac-

tical applications it is convenient to exclude some subset of those graphs, for example

those that have cycles or more than one head per node. The results obtained in Section

3.2 can be used to easily add common constraints to the planar parser. The constraints

can be added individually or jointly, so that we can obtain a variant of the planar parser

6 This assumes that at least one arc was created to or from node n + 1 (i.e., that e > 0). In the case where
e = 0, it is trivial to show that all nodes not covered by arcs in Gn+1 are in σ, since in that case no REDUCE
transitions are applied at all after Cn.

42

Computational Linguistics Just Accepted MS.
doi: 10.1162/COLI_a_00150
© Association for Computational Linguistics

Gómez-Rodríguez and Nivre Divisible Transition Systems and Multiplanarity

with the SINGLE-HEAD, ACYCLICITY and NO-COVERED-ROOTS constraint, or with any

combination of them.

Single-Head Constraint. To add the SINGLE-HEAD constraint to the SP transition system,

we restrict the LEFT-ARCP transition to Hσ(C), and the RIGHT-ARCP transition to

Hβ(C):

LEFT-ARCP−Sh = LEFT-ARC
Hσ(C)

RIGHT-ARCP−Sh = RIGHT-ARC
Hβ(C)

The soundness of this variant for the set of planar dependency graphs that meet

the SINGLE-HEAD constraint is trivially given by Proposition 2. Completeness is also

straightforward, since, as discussed in Proposition 2, applying a LEFT-ARC transition to

a configuration of Hσ(C) or a RIGHT-ARC transition to a configuration of Hβ(C) will

always generate a graph violating the SINGLE-HEAD constraint. Therefore, any graph

that meets the SINGLE-HEAD constraint and can be obtained using the SP transition

system (which has been proven complete) can also be generated by this one.

Acyclicity Constraint. Analogously to the case for the SINGLE-HEAD constraint, we can

add the ACYCLICITY constraint to the SP transition system by applying Proposition 3.

To do so, we restrict the LEFT-ARCP and RIGHT-ARCP transitions as follows:

LEFT-ARCP−Ac = LEFT-ARC {(σ∣i,j∣β,A)∈C∣¬(i↔∗j∈A)}

RIGHT-ARCP−Ac = RIGHT-ARC {(σ∣i,j∣β,A)∈C∣¬(i↔∗j∈A)}

The soundness of this variant for the set of acyclic planar dependency graphs is trivially

implied by Proposition 3. This variant is not complete for acyclic planar dependency

graphs, since it actually enforces a stronger variant of ACYCLICITY, namely, it will only

accept dependency graphs that have no undirected cycles. However, we can combine

this acyclicity check with the SINGLE-HEAD constraint by intersecting the restrictions:

43

Computational Linguistics Just Accepted MS.
doi: 10.1162/COLI_a_00150
© Association for Computational Linguistics

Computational Linguistics Volume xx, Number yy

LEFT-ARCP−ShAc = LEFT-ARC
Hσ(C)∩{(σ∣i,j∣β,A)∈C∣¬(i↔∗j∈A)}

RIGHT-ARCP−ShAc = RIGHT-ARC
Hβ(C)∩{(σ∣i,j∣β,A)∈C∣¬(i↔∗j∈A)}

We then obtain a parser that is sound and complete for the set of planar dependency

graphs that meet the SINGLE-HEAD and ACYCLICITY constraints. The reason is that,

under the SINGLE-HEAD constraint, standard ACYCLICITY and undirected acyclicity

are equivalent, since every undirected cycle is also a directed cycle. If we need a parser

that enforces only directed ACYCLICITY but allows nodes with multiple heads, this

can also be achieved. Instead of checking ¬(i↔∗ j ∈ A), the restrictions must check

that the arc does not create a directed cycle (that is, ¬(i→∗ j ∈ A) for LEFT-ARC and

¬(j →∗ i ∈ A) for RIGHT-ARC). However, while the check for undirected cycles can be

implemented in constant time if the parser implementation keeps track of the connected

component of each node in A, the check for directed cycles is more computationally

costly.7

No-Covered-Roots Constraint. Similarly to the other constraints, we can add the NO-

COVERED-ROOTS constraint to SP by applying Proposition 1. To do so, we restrict the

REDUCEP transition as follows:

REDUCEP−Nc = REDUCE Hσ(C)

The soundness of the resulting parser with respect to planar dependency graphs com-

plying with the NO-COVERED-ROOTS constraint is directly given by Proposition 1. To

prove completeness, we observe that the transition sequences that we build for each

graph in the proof of Lemma 5 only reduce nodes that are then covered by an arc. There-

fore, given a graph G that satisfies the NO-COVERED-ROOTS constraint, we know that

7 Strictly speaking, for undirected cycles using the techniques of path compression and union by rank for
disjoint sets, the amortized time per operation is O(α(n)), where n is the number of nodes and α(n) is
the inverse of the Ackermann function, which means that α(n) is less than 5 for all remotely practical
values of n and is effectively a small constant (Cormen, Leiserson, and Rivest 1990).

44

Computational Linguistics Just Accepted MS.
doi: 10.1162/COLI_a_00150
© Association for Computational Linguistics

Gómez-Rodríguez and Nivre Divisible Transition Systems and Multiplanarity

the transition sequence built as in that proof will never reduce a root node. Therefore,

all of its REDUCE transitions will be applied to configurations in Hσ(C) and, hence, that

same transition sequence will also parseG in this variant of the transition system, which

proves completeness. The NO-COVERED-ROOTS restriction can be combined with any

combination of the other two restrictions. Note that the result of applying the NO-

COVERED-ROOTS restriction alone is equivalent to the arc-eager parser by Sagae and

Tsujii (2008). If the SINGLE-HEAD, ACYCLICITY and NO-COVERED-COOTS restrictions

are applied at the same time, together with the PLANAR constraint that is implicit in

the algorithm itself, we obtain a projective parser different from the projective parsers

described in Section 3.1.

3.3.3 Complexity of Planar Dependency Parsing. To study the runtime complexity of

the planar parser, it suffices to observe that the planar transition system in any of its

variants (with or without constraints) satisfies the following:

r It is efficient, by Definition 13, since it contains the elementary SHIFT

transition and β(SHIFTP) = 1, Π(REDUCEP) = 1, A(LEFT-ARCP) = 1 and

A(RIGHT-ARCP) = 1. This implies that the system is robust (by

Proposition 5) and bounded (by Proposition 6).

r The length of every transition sequence in the planar parser is O(n) (by

Proposition 8) and the same holds for elementary transition sequences (by

Proposition 9).

We also note that each transition in any of the variants of the planar parser can be exe-

cuted in constant time, since their execution only requires us to keep track of a constant

number of nodes at the top of the stack and at the beginning of the buffer. The exception

45

Computational Linguistics Just Accepted MS.
doi: 10.1162/COLI_a_00150
© Association for Computational Linguistics

Computational Linguistics Volume xx, Number yy

is the check for ACYCLICITY if this restriction is required. However, as explained in

Section 3.3.2, this can be implemented in constant time if the SINGLE-HEAD constraint

is present by keeping track of the undirected connected component of each node in the

generated dependency graph. Therefore, as explained in Section 2.3, the complexity of

the planar parser with beam search is O(n), both for the unrestricted version and for

the variant that enforces the SINGLE-HEAD and ACYCLICITY constraints.

3.4 Beyond Planarity

While the divisible transition system framework introduced in Section 3 can be used to

represent and study a wide range of parsers, we have seen by Proposition 4 that it is

limited to parsers that generate planar dependency graphs. As already noted, planarity

is a very mild relaxation of the better known projectivity constraint, the only difference

being that planarity allows graphs with covered roots (see Definition 2), and studies of

natural language treebanks have shown the vast majority of non-projective structures to

be non-planar as well (Kuhlmann and Nivre 2006; Havelka 2007).8 Therefore, being able

to parse planar dependency graphs only provides a modest improvement in practical

coverage with respect to projective parsing. To increase this coverage further, we need

to be able to handle dependency graphs with crossing arcs.

To be able to build such graphs, several stack-based transition systems have been

proposed in the literature that introduce extra flexibility by allowing actions that fall

outside the divisible transition system framework, like the systems by Attardi (2006)

and Nivre (2009) shown at the end of Section 3.1. Since these parsers use diverse

strategies to support different subsets of non-planar structures – allowing arcs to be built

to or from nodes deep in the stack in the case of (Attardi 2006), adding transitions able to

8 This is true in particular if dependency graphs are restricted to trees that have their roots at the periphery,
as in Figure 1, in which case the two notions become equivalent.

46

Computational Linguistics Just Accepted MS.
doi: 10.1162/COLI_a_00150
© Association for Computational Linguistics

Gómez-Rodríguez and Nivre Divisible Transition Systems and Multiplanarity

reorder stack nodes in the case of (Nivre 2009) – it seems unlikely that a simple extension

of the framework can encompass all of them in a natural way. We can, however, extend

the framework individually for each approach by adding the respective new transitions

as elementary transitions, but the details and properties of each of these extensions fall

outside the scope of this article.

Instead, in the next sections we will focus on introducing a different extension

of the framework that is achieved by adding additional stacks, giving support to a

generalization of the planar transition system described in Section 3.3 that can parse

a large set of non-planar graphs.

4. Multiplanar Dependency Graphs

Since it has been shown that exact parsing becomes computationally intractable when

arbitrary non-projective dependency graphs are allowed (McDonald and Satta 2007), a

substantial amount of research in recent years has been devoted to finding a superset of

projective dependency graphs that is rich enough to cover the non-projective phenom-

ena found in natural language while restricted enough to allow for simple and efficient

parsing, that is, a suitable set of mildly non-projective dependency structures. To this

end, different sets of dependency trees have been proposed, such as trees with bounded

arc degree (Nivre 2006a, 2007), well-nested trees with bounded gap degree (Kuhlmann

and Nivre 2006; Kuhlmann and Möhl 2007), mildly ill-nested trees with bounded gap

degree (Gómez-Rodríguez, Weir, and Carroll 2009), or the operationally defined set of

trees parsed by the transition system of Attardi (2006).

In the same vein, a straightforward way to relax the planarity constraint to obtain

richer sets of non-projective dependency graphs is the notion of multiplanarity, or k-

planarity, originally introduced by Yli-Jyrä (2003). Quite simply, a dependency graph is

said to be k-planar if it can be decomposed into k planar dependency graphs.

47

Computational Linguistics Just Accepted MS.
doi: 10.1162/COLI_a_00150
© Association for Computational Linguistics

Computational Linguistics Volume xx, Number yy

Figure 4
A 2-planar dependency structure with two different ways of distributing its arcs into two planes
(represented by solid and dotted lines).

Definition 14

A dependency graph G = (V,A) is k-planar if there exist planar dependency graphs

G1 = (V,A1), . . . ,Gk = (V,Ak) (called planes) such that A = A1 ∪⋯ ∪Ak.

Intuitively, we can associate planes with colors and say that a dependency graph G

is k-planar if it is possible to assign one of k colors to each of its arcs in such a way

that arcs with the same color do not cross. Note that there may be multiple ways of

dividing a k-planar graph into planes, as shown in the example of Figure 4. Therefore,

1-planarity is equivalent to planarity, and increasing values of k yield increasingly rich

sets of dependency graphs.

The notion of k-planarity has so far played a marginal role in the dependency

parsing literature, because little was known about the properties of these structures.

No algorithm was known to determine whether a given graph was k-planar, and no

efficient parsing algorithm existed for k-planar dependency structures. In this article,

we overcome these problems. In the remainder of this section, we present a procedure

to determine the minimum value of k for which a given structure is k-planar, and we

use it to show that the overwhelming majority of sentences in a number of dependency

48

Computational Linguistics Just Accepted MS.
doi: 10.1162/COLI_a_00150
© Association for Computational Linguistics

Gómez-Rodríguez and Nivre Divisible Transition Systems and Multiplanarity

treebanks have a tree that is at most 2-planar. In Section 5, we then show how the 1-

planar dependency parser described in Section 3.3 can be generalized to handle k-planar

dependency graphs by introducing additional stacks. In particular, we present a linear-

time transition-based parser that is provably correct for 2-planar dependency trees.9

4.1 Test for Multiplanarity

In order for a constraint on non-projective dependency structures to be useful for

practical parsing, it must provide a good balance between parsing efficiency and cover-

age of non-projective phenomena present in natural language treebanks. For example,

Kuhlmann and Nivre (2006) and Havelka (2007) have shown that the vast majority of

structures present in existing treebanks are well-nested and have a small gap degree

(Bodirsky, Kuhlmann, and Möhl 2005), leading to an interest in parsers for these kinds of

structures (Gómez-Rodríguez, Weir, and Carroll 2009; Kuhlmann and Satta 2009). How-

ever, no similar analysis has been performed for k-planar structures. Yli-Jyrä (2003) does

provide evidence that all except two structures in the Danish Dependency Treebank

(Kromann 2003) are at most 3-planar, but his analysis is based on constraints that restrict

the possible ways of assigning planes to dependency arcs, and he is not guaranteed to

find the minimal number k for which a given structure is k-planar.

Here we provide a procedure for finding the minimal natural number k such that

a dependency graph is k-planar and use it to show that the vast majority of sentences

in a number dependency treebanks are at most 2-planar, with a coverage comparable

to that of well-nestedness. The idea is to reduce the problem of determining whether

a dependency graph G = (V,A) is k-planar, for a given value of k, to a standard graph

9 The test for multiplanarity and the 2-planar parser have previously been described in Gómez-Rodríguez
and Nivre (2010).

49

Computational Linguistics Just Accepted MS.
doi: 10.1162/COLI_a_00150
© Association for Computational Linguistics

Computational Linguistics Volume xx, Number yy

Figure 5
The crossings graph corresponding to the dependency structure of Figure 4.

coloring problem. To do this, we first consider the following undirected graph:

U(G) = (A,C) where C = {{ei, ej} ∣ ei, ej are crossing arcs in G}

Note that we can formally say that two arcs (i, j) and (k, l) in a dependency graph G

such that i < k are crossing arcs if and only if min(i, j) < min(k, l) < max(i, j) < max(k, l).

These are the pairs of arcs that were forbidden in the planarity constraint introduced

in Definition 2. The graph U(G), which we call the crossings graph of G, has one node

corresponding to each arc in the dependency graphG, with an undirected edge between

two nodes if they correspond to crossing arcs in G. Figure 5 shows the crossings graph

of the 2-planar structure in Figure 4.

As noted above, a dependency graphG is k-planar if each of its arcs can be assigned

one of k colors in such a way that two arcs that cross each other are not assigned the

same color. In terms of the crossings graph, since each arc in G corresponds to a node

in U(G) and each pair of crossing arcs in G corresponds to an edge in U(G), this is

equivalent to saying that G is k-planar if each of the nodes of U(G) can be assigned one

of k colors such that no two neighbors have the same color. This amounts to solving the

well-known k-coloring problem for U(G).

For k = 1 the problem is trivial: a graph is 1-colorable only if it has no edges. This

corresponds to a dependency graph being planar only if it does not have crossing arcs.

For k = 2, the problem is equivalent to determining whether the graph is bipartite, and

50

Computational Linguistics Just Accepted MS.
doi: 10.1162/COLI_a_00150
© Association for Computational Linguistics

Gómez-Rodríguez and Nivre Divisible Transition Systems and Multiplanarity

it can be solved in time linear in the size of the graph by simple breadth-first search.

Given any undirected graph U = (V,E), we pick an arbitrary node v and give it one of

two colors. This forces us to give the other color to all its neighbors, the first color to the

neighbors’ neighbors, and so on. This process continues until we have processed all the

nodes in the connected component of v. If this has resulted in assigning two different

colors to the same node, the graph is not 2-colorable. Otherwise, we have obtained a 2-

coloring of the connected component of U that contains v. If there are still unprocessed

nodes, we repeat the process by arbitrarily selecting one of them, continue with the rest

of the connected components, and in this way obtain a 2-coloring of the whole graph

if it exists. Since this process can be completed by visiting each node and edge of the

graph U once, its complexity is O(V +E). The crossings graph of a dependency graph

with n nodes can trivially be built in time O(n2) by checking each pair of dependency

arcs to determine if they cross, and cannot contain more than n2 edges, meaning that we

can check if the dependency graph for a sentence of length n is 2-planar in O(n2) time.

For k > 2, the k-coloring problem is known to be NP-complete (Karp 1972).10 How-

ever, we have found this not to be a problem in practice when using it to measure

multiplanarity in natural language treebanks, since the effective problem size can be

reduced by noting that each connected component of the crossings graph can be treated

separately, and that nodes that are not part of a cycle need not be considered. If we

have a valid coloring for all the cycles in the graph, the rest of the nodes can be

safely colored by breadth-first search as in the k = 2 case. Given that non-projective

sentences in natural language tend to have a small proportion of non-projective arcs,

10 Note that this does not necessarily imply that the problem of determining whether a graph is k-planar is
also NP-complete, since there might be polynomial algorithms that solve it without involving a reduction
to the k-coloring problem.

51

Computational Linguistics Just Accepted MS.
doi: 10.1162/COLI_a_00150
© Association for Computational Linguistics

Computational Linguistics Volume xx, Number yy

the connected components of their crossings graphs tend to be very small and with few

cycles, and k-colorings for them can quickly be found by brute-force search.

4.2 Treebank Coverage

To find out the prevalence of k-planar trees in natural language treebanks for various

values of k, we applied the technique described in the previous section to all the trees

in the training set for eight languages in the CoNLL-X shared task on dependency

parsing (Buchholz and Marsi 2006): Arabic (Hajič et al. 2004), Czech (Hajič et al. 2006),

Danish (Kromann 2003), Dutch (Van der Beek et al. 2002), German (Brants et al. 2002),

Portuguese (Afonso et al. 2002), Swedish (Nilsson, Hall, and Nivre 2005) and Turkish

(Oflazer et al. 2003; Atalay, Oflazer, and Say 2003). The results are shown in Table 1.

As we can see, the coverage provided by the 2-planarity constraint is comparable

to that of well-nestedness. In most of the treebanks, well over 99% of the sentences are

2-planar, and 3-planarity has almost total coverage. In comparison to well-nestedness,

it is worth noting that no efficient parser has been proposed that is able to handle all

well-nested dependency trees, only well-nested trees with bounded gap degree, which

reduces coverage (Kuhlmann and Möhl 2007; Gómez-Rodríguez, Carroll, and Weir

2011). As will be seen in the next section, the class of 2-planar dependency trees not

only has good coverage of linguistic structures in existing treebanks but is also parsable

with a linear-time transition-based parser, making it a theoretically as well as practically

interesting subclass of non-projective dependency trees.

5. Multiplanar Dependency Parsing

The divisible transition system framework introduced in Section 3 can be generalized to

support k-planar dependency graphs by using k stacks instead of only one and applying

the SHIFT and UNSHIFT elementary transitions to all of them at the same time, while

52

Computational Linguistics Just Accepted MS.
doi: 10.1162/COLI_a_00150
© Association for Computational Linguistics

Gómez-Rodríguez and Nivre Divisible Transition Systems and Multiplanarity

Language Trees Non-Projective Not Planar Not 2-Pl. Not 3-Pl. Not 4-Pl. Ill-nested
Arabic 2995 205 (6.84%) 158 (5.28%) 0 (0.00%) 0 (0.00%) 0 (0.00%) 1 (0.03%)
Czech 87889 20353 (23.16%) 16660 (18.96%) 82 (0.09%) 0 (0.00%) 0 (0.00%) 96 (0.11%)

Danish 5512 853 (15.48%) 827 (15.00%) 1 (0.02%) 1 (0.02%) 0 (0.00%) 6 (0.11%)
Dutch 13349 4865 (36.44%) 4115 (30.83%) 162 (1.21%) 1 (0.01%) 0 (0.00%) 15 (0.11%)

German 39573 10927 (27.61%) 10908 (27.56%) 671 (1.70%) 0 (0.00%) 0 (0.00%) 419 (1.06%)
Portuguese 9071 1718 (18.94%) 1713 (18.88%) 8 (0.09%) 0 (0.00%) 0 (0.00%) 7 (0.08%)

Swedish 6159 293 (4.76%) 280 (4.55%) 5 (0.08%) 0 (0.00%) 0 (0.00%) 14 (0.23%)
Turkish 5510 657 (11.92%) 657 (11.92%) 10 (0.18%) 0 (0.00%) 0 (0.00%) 20 (0.36%)

Table 1
Proportion of dependency trees classified by projectivity, planarity, k-planarity and
ill-nestedness in a sample of treebanks.

REDUCE, LEFT-ARC and RIGHT-ARC only affect one stack at a time. The stack on which

these latter transitions are applied is decided by an extra elementary transition, called

SWITCH, which cycles through the k stacks selecting one of them as the active stack.

This generalization has the property that the set of arcs created in the context of each

individual stack will be planar, but pairs of arcs created in different stacks are allowed

to cross. In this way, a k-stack parser will be able to build a k-planar dependency forest

by using each of the stacks to construct one of its k planes.

Although the general case of k-planar dependency parsing is interesting as a theo-

retical construction, we will limit ourselves in this article to the 2-planar case and show

how a system built by generalizing the planar parser defined in Section 3.3 to use two

stacks instead of one can yield an efficient parser for 2-planar dependency graphs, in

particular 2-planar trees. As we saw in Section 4.2, this class of structures gives almost

perfect coverage in existing treebanks, and we will therefore leave the exploration of

k-planar dependency parsing for k higher than 2 as future work.

Note that, since we are only interested in defining a single transition system using

the multi-stack generalization of the divisible transition system framework, we will

introduce the system directly as a generalization of the planar transition system, rather

than showing the step-by-step details of how the general framework is first extended

53

Computational Linguistics Just Accepted MS.
doi: 10.1162/COLI_a_00150
© Association for Computational Linguistics

Computational Linguistics Volume xx, Number yy

to multiple stacks (as outlined above) and then defining the new system on top of the

extended framework.

5.1 2-Planar Dependency Parsing

The 2-planar transition system S2P has configurations of the form (σ1, σ2,B,A), where

we call σ1 the active stack and σ2 the inactive stack. Since the system uses two stacks

rather than one, it does not conform to the standard definition of a stack-based transition

system given in Section 2.2, but it behaves analogously. In this case, the initialization

function is cs(w1, . . . ,wn) = ([], [], [1, . . . , n],∅) and the set of terminal configurations

is Ct = {c ∣ c = (σ1, σ2, [],A) for any σ1, σ2, A}. The transitions of this system are the

following:

SHIFT2P = (σ1, σ2, i∣B,A)⇒ (σ1∣i, σ2∣i,B,A)
REDUCE2P = (σ1∣i, σ2,B,A)⇒ (σ1, σ2,B,A)
LEFT-ARC2P = (σ1∣i, σ2, j∣B,A)⇒ (σ1∣i, σ2, j∣B,A ∪ {(j, i)})
RIGHT-ARC2P = (σ1∣i, σ2, j∣B,A)⇒ (σ1∣i, σ2, j∣B,A ∪ {(i, j)})
SWITCH2P = (σ1, σ2,B,A)⇒ (σ2, σ1,B,A)

The SHIFT2P transition pops the first (leftmost) word in the buffer, and pushes it to both

stacks. The LEFT-ARC2P transition adds an arc from the first word in the buffer to the

top of the active stack. The RIGHT-ARC2P transition adds an arc from the top of the active

stack to the first word in the buffer. The REDUCE2P transition pops the top word from

the active stack, implying that we have added all arcs to or from it on the plane tied

to that stack. The SWITCH2P transition, finally, makes the active stack inactive and vice

versa, changing the plane the parser is working with. In order to exemplify how this

system can parse non-planar dependency graphs, Figure 6 shows a transition sequence

for the tree in Figure 1.

54

Computational Linguistics Just Accepted MS.
doi: 10.1162/COLI_a_00150
© Association for Computational Linguistics

Gómez-Rodríguez and Nivre Divisible Transition Systems and Multiplanarity

([], [], [1, . . . ,9], ∅)
SHIFT ⇒ ([1], [1], [2, . . . ,9], ∅)
SHIFT ⇒ ([1,2], [1,2], [3, . . . ,9], ∅)

RIGHT-ARC ⇒ ([1,2], [1,2], [3, . . . ,9], A1 = {(2,3)})
SHIFT ⇒ ([1,2,3], [1,2,3], [4, . . . ,9], A1)

REDUCE ⇒ ([1,2], [1,2,3], [4, . . . ,9], A1)
REDUCE ⇒ ([1], [1,2,3], [4, . . . ,9], A1)

RIGHT-ARC ⇒ ([1], [1,2,3], [4, . . . ,9], A2 = A1 ∪ {(1,4)})
SHIFT ⇒ ([1,4], [1, . . . ,4], [5, . . . ,9], A2)
SHIFT ⇒ ([1,4,5], [1, . . . ,5], [6, . . . ,9], A2)

LEFT-ARC ⇒ ([1,4,5], [1, . . . ,5], [6, . . . ,9], A3 = A2 ∪ {(6,5)})
REDUCE ⇒ ([1,4], [1, . . . ,5], [6, . . . ,9], A3)

RIGHT-ARC ⇒ ([1,4], [1, . . . ,5], [6, . . . ,9], A4 = A3 ∪ {(4,6)})
SWITCH ⇒ ([1, . . . ,5], [1,4], [6, . . . ,9], A4)
REDUCE ⇒ ([1, . . . ,4], [1,4], [6, . . . ,9], A4)
REDUCE ⇒ ([1,2,3], [1,4], [6, . . . ,9], A4)
REDUCE ⇒ ([1,2], [1,4], [6, . . . ,9], A4)

LEFT-ARC ⇒ ([1,2], [1,4], [6, . . . ,9], A5 = A4 ∪ {(6,2)})
SHIFT ⇒ ([1,2,6], [1,4,6], [7,8,9], A5)

SWITCH ⇒ ([1,4,6], [1,2,6], [7,8,9], A5)
REDUCE ⇒ ([1,4], [1,2,6], [7,8,9], A5)

RIGHT-ARC ⇒ ([1,4], [1,2,6], [7,8,9], A6 = A5 ∪ {(4,7)})
SHIFT ⇒ ([1,4,7], [1, . . . ,7], [8,9], A6)

RIGHT-ARC ⇒ ([1,4,7], [1, . . . ,7], [8,9], A7 = A6 ∪ {(7,8)})
SHIFT ⇒ ([1,4,7,8], [1, . . . ,8], [9], A7)

REDUCE ⇒ ([1,4,7], [1, . . . ,8], [9], A7)
REDUCE ⇒ ([1,4], [1, . . . ,8], [9], A7)
REDUCE ⇒ ([1], [1, . . . ,8], [9], A7)

RIGHT-ARC ⇒ ([1], [1, . . . ,8], [9], A8 = A7 ∪ {(1,9)})
SHIFT ⇒ ([1,9], [1, . . . ,9], [], A8)

Figure 6
2-planar transition sequence for the (unlabeled) dependency graph in Figure 1.

5.1.1 Correctness of 2-Planar Dependency Parsing. To show that this transition system

is correct for the set of 2-planar dependency graphs, we need to prove that it is sound

(every graph produced by the system is 2-planar) and complete (all 2-planar graphs can

be derived the system). We do this by proving two corresponding lemmas, the second

of which is a stronger claim than mere completeness.

Lemma 6

55

Computational Linguistics Just Accepted MS.
doi: 10.1162/COLI_a_00150
© Association for Computational Linguistics

Computational Linguistics Volume xx, Number yy

The system S2P is sound for the set of 2-planar dependency graphs.

Proof 12

This lemma is proven by showing that the algorithm cannot create a pair of crossing

arcs on the same stack. This is done by applying the proof of Proposition 4 separately

to each of the two stacks of the 2-planar system (or, alternatively, by observing that the

transition system resulting from ignoring one of the stacks in the 2-planar system is

divisible). This implies that, given each of the two stacks, the subgraph formed by the

arcs created by a transition sequence in configurations where that stack was active is

planar, which trivially implies that the graph generated by the sequence is 2-planar. �

Lemma 7

Let G = (V,A) be a 2-planar dependency graph for a sentence w1 . . .wn, with planes P1

and P2. Then there is a transition sequence in S2P ending in a terminal configuration of

the form (σ1, σ2, [],A) such that all the nodes that are not covered by any dependency

arc in P1 are in σ1, and all the nodes that are not covered by any dependency arc in P2

are in σ2.

Proof 13

The proof is analogous to that of the planar parser, but we have to handle two stacks

and two planes. As in the planar case, we proceed by induction on the length n of the

sentence. In the case where n = 1, the only possible 2-planar dependency graph is the

graph G0 = ({1},∅) with a single node and no arcs, and the transition sequence that

applies a single SHIFT transition meets the conditions of the lemma, since it ends in a

terminal configuration ([1], [1], [],∅).

56

Computational Linguistics Just Accepted MS.
doi: 10.1162/COLI_a_00150
© Association for Computational Linguistics

Gómez-Rodríguez and Nivre Divisible Transition Systems and Multiplanarity

For the induction step, we assume that the lemma holds for sentences of length

n and prove that it also holds for sentences of length n + 1, for any n ≥ 0. Let Gn+1 =

(Vn+1,An+1) be a 2-planar dependency graph for a sentence w1 . . .wn+1, with planes

P 1
n+1 = (Vn+1,A1

n+1) and P 2
n+1 = (Vn+1,A2

n+1). We denote by Ln+1 the set of arcs

Ln+1 = {(n + 1, i) ∈ An+1} ∪ {(j, n + 1) ∈ An+1},

that is, the set of incoming and outgoing arcs from the node n + 1 inGn+1, and we denote

by Gn the graph

Gn = (Vn = Vn+1 ∖ {n + 1} ,An = An+1 ∖Ln+1),

that is, the graph obtained by removing the node n + 1 and all its incoming and out-

going arcs from Gn+1. It is easy to show that the graphs P 1
n = (Vn,A1

n+1 ∖Ln+1) and

P 2
n = (Vn,A2

n+1 ∖Ln+1) are planes of Gn. They are planar graphs (being subgraphs of

P 1
n+1 and P 2

n+1, which are planar) and the union of their arc set isAn+1 ∖Ln+1 = An (since

A1
n+1 ∪A2

n+1 = An+1, as P 1
n+1 and P 2

n+1 are planes of Gn+1).

By the induction hypothesis, there exists a transition sequence Cn whose final

configuration is of the form (σ1
n, σ

2
n, [],An), such that σbn contains all the nodes that

are not covered by any dependency arc in P bn, for b = 1,2. From this transition sequence

Cn, we will obtain a transition sequence Cn+1 meeting the conditions asserted by the

lemma for the graph Gn+1.

To do so, we first observe that for b = 1,2, the planarity of the graph P bn+1 implies

that the left endpoints of the arcs in Abn+1 cannot be covered by any arc in P bn, since this

would mean that the arc in Abn+1 and the covering arc would cross. Therefore, by the

induction hypothesis, we know that all the left endpoints of the arcs in Abn+1 are in σbn.

Thus, if the left endpoints of the arcs in A1
n+1 are i1, i2, . . . , ie and those of the arcs in

57

Computational Linguistics Just Accepted MS.
doi: 10.1162/COLI_a_00150
© Association for Computational Linguistics

Computational Linguistics Volume xx, Number yy

A2
n+1 are j1, j2, . . . , jf ; then the stack σ1

n (which is ordered, since the same reasoning as

in Lemma 1 can be applied to the 2-planar transition system) is of the form

σ1
n = [s1, . . . , sz1 = i1, . . . , sz2 = i2, . . . , sze = ie, . . . , sm],

and the stack σ2
n is of the form

σ2
n = [t1, . . . , ty1 = j1, . . . , ty2 = j2, . . . , tyf = jf , . . . , tq].

With this in mind, we can obtain the transition sequence Cn+1 from Cn by adding the

following extra transitions at the end of its associated transition chain:

REDUCEm−ze ;arcs(ie); REDUCEze−ze−1 ;arcs(ie−1); . . . ; REDUCEz2−z1 ;arcs(i1); SWITCH;
REDUCEq−yf ;arcs(jf); REDUCEyf−yf−1 ;arcs(jf−1); . . . ; REDUCEy2−y1 ;arcs(j1); SHIFT;
SWITCH

where we use the notation arcs(i) as shorthand for:

r LEFT-ARC, if (n + 1, i) ∈ Ln+1 ∧ (i, n + 1) /∈ Ln+1,

r RIGHT-ARC, if (n + 1, i) /∈ Ln+1 ∧ (i, n + 1) ∈ Ln+1,

r LEFT-ARC; RIGHT-ARC, if (n + 1, i) ∈ Ln+1 ∧ (i, n + 1) ∈ Ln+1.

The final configuration of the transition sequence obtained by applying these transitions

at the end of Cn is of the form (σ1, σ2, β,A), where:

r β = [], since the nodes 1, . . . , n are removed from the buffer by Cn, and

n + 1 is removed by the extra SHIFT transition;

r A = An+1, since the arcs in An are added to the set by Cn, and all the arcs in

Ln+1 are added by arcs(ie), . . . , arcs(i1), arcs(jf), . . . , arcs(j1);

58

Computational Linguistics Just Accepted MS.
doi: 10.1162/COLI_a_00150
© Association for Computational Linguistics

Gómez-Rodríguez and Nivre Divisible Transition Systems and Multiplanarity

r all the nodes that are not covered by arcs in P bn+1 are in σb, for b = 1,2, since

they were in σbn (a node not covered by arcs in P bn+1 is trivially not covered

by arcs in P bn) and the REDUCE transitions applied after Cn only remove

nodes to the right of i1 from the first stack, which are covered by the arc

(n + 1, i1) or (i1, n + 1), and from the right of j1 from the second stack,

which are covered by the arc (n + 1, j1) or (j1, n + 1).11

This proves the induction step for Lemma 7. �

Proposition 10

The system S2P is correct for the set of 2-planar dependency graphs.

Proof 14

The proposition follows from Lemma 6 and Lemma 7. �

5.1.2 Constraints on 2-Planar Dependency Parsing. The 2-planar parser can be re-

stricted to graphs satisfying the SINGLE-HEAD and ACYCLICITY constraints in exactly

the same way as the planar parser, and the proofs follow the same line of reasoning.

Therefore, a version of the 2-planar parser that is sound and complete for the set of

2-planar dependency forests (that is, 2-planar dependency graphs without cycles and

with each node having at most one head) can be defined as follows:

11 This is assuming that arcs are created to or from node n + 1 in both planes (i.e., that e > 0 and f > 0), but
the cases where e = 0 or f = 0 are trivial, since in those cases no new REDUCE transitions are applied to
the respective stacks after Cn.

59

Computational Linguistics Just Accepted MS.
doi: 10.1162/COLI_a_00150
© Association for Computational Linguistics

Computational Linguistics Volume xx, Number yy

SHIFT2P = (σ1, σ2, i∣B,A)⇒ (σ1∣i, σ2∣i,B,A)
REDUCE2P = (σ1∣i, σ2,B,A)⇒ (σ1, σ2,B,A)
LEFT-ARC2P−ShAc = LEFT-ARC

Hσ(C)∩{(σ1∣i,σ2,j∣β,A)∈C∣¬(i↔∗j∈A)}

= (σ1∣i, σ2, j∣B,A)⇒ (σ1∣i, σ2, j∣B,A ∪ {(j, i)})
only if ¬∃k ∣ (k, i) ∈ A (single-head) and ¬i↔∗ j ∈ A (acyclicity)

RIGHT-ARC2P−ShAc = RIGHT-ARC
Hβ(C)∩{(σ1∣i,σ2,j∣β,A)∈C∣¬(i↔∗j∈A)}

= (σ1∣i, σ2, j∣B,A)⇒ (σ1∣i, σ2, j∣B,A ∪ {(i, j)})
only if ¬∃k∣(k, j) ∈ A (single-head) and ¬i↔∗ j ∈ A (acyclicity)

SWITCH2P = (σ1, σ2,B,A)⇒ (σ2, σ1,B,A)

Since structures in dependency treebanks are typically restricted to forests, this is the

version of the 2-planar parser that we use in the experimental evaluation in Section 5.2.

The NO-COVERED-ROOTS constraint is not so straightforward to implement in

the 2-planar parser, since in the 2-planar case a node without a head may need to be

reduced from one stack and get a head later from the other stack, so restricting the

REDUCE transitions in the 2-planar parser to nodes with a head would also forbid some

structures without covered roots. In any case, the NO-COVERED-ROOTS constraint does

not seem practically meaningful when we go beyond planar structures.

5.1.3 Complexity of 2-Planar Dependency Parsing. To reason about the complexity of

the 2-planar parser, we first note that a naive implementation of the transition system

as given here does not guarantee termination. The reason is that the system allows an

infinite sequence of SWITCH transitions, switching the active and inactive stacks repeat-

edly and cycling between the same two configurations without making any advance.

This can easily be avoided in practice by forbidding SWITCH transitions from being

executed if the last transition in the sequence was also a SWITCH. Note that we could

also have incorporated this restriction into the formal system (for example, by adding

a flag to configurations to indicate whether they previous transition was a SWITCH or

not), but this would have unnecessarily complicated the notation. Assuming that our

60

Computational Linguistics Just Accepted MS.
doi: 10.1162/COLI_a_00150
© Association for Computational Linguistics

Gómez-Rodríguez and Nivre Divisible Transition Systems and Multiplanarity

implementation of the 2-planar parser has this restriction on SWITCH transitions, we

can show that the length of a transition sequence for a sentence of length n is O(n) in

the same way as for efficient divisible systems (see Section 3.2.2).

Proposition 11

Let S2P be the 2-planar system restricted so that two consecutive SWITCH transitions are

not permitted. Then the length of every transition sequence for a sentence x of length n

in S2P is O(n).

Proof 15

The proof follows the same lines as for efficient divisible transition systems. For every

transition chain T1,m = t1, . . . , tm for x = w1, . . . ,wn, the following must hold:

r The number of SHIFT transitions in T1,m is at most n, since each node in

{1, . . . , n} can only be shifted once.

r The number of REDUCE transitions in T1,m is at most 2n, since each node

in {1, . . . , n} can only be reduced twice (once per stack).

r The number of LEFT-ARC and RIGHT-ARC transitions in T1,m is bounded

by the maximum number of arcs in a 2-planar dependency graph with n

nodes, which is 8n − 12.12

r Given the ban on consecutive SWITCH transitions, the maximum number

of SWITCH transitions in T1,m is 1 plus the number of other transitions.

12 This follows from Lemma 4, since a 2-planar graph can be broken up into two planes, each of which is a
planar graph with n nodes. Moreover, if the SINGLE-HEAD and ACYCLICITY constraints are used, the
maximum number of arcs is n − 1, since every node can have at most one incoming arc and there must be
at least one root.

61

Computational Linguistics Just Accepted MS.
doi: 10.1162/COLI_a_00150
© Association for Computational Linguistics

Computational Linguistics Volume xx, Number yy

It follows that m ≤ 2(n + 2n + 8n − 12) + 1 and hence that m is O(n). �

Applying the same reasoning as for the planar parser regarding constant-time execution

of transitions and fixed-size beam search, we conclude that the complexity of the 2-

planar parser is still O(n), both for the unrestricted version and for the variant with the

SINGLE-HEAD and ACYCLICITY constraints.

Throughout this article, we have presented complexity results for transition-based

parsers under the assumption that these parsers use deterministic search or fixed-

size beam search because this is the most straightforward method to make parsing

practically feasible with the rich history-based feature models that are the key com-

ponent of accurate transition-based parsers. The relevance of this assumption is further

supported by recent results on tabularization and dynamic programming for transition-

based parsing, which show that such techniques either lead to a significant increase

in parsing complexity or require drastic simplifications in the feature models used.

In the former case, practical parsing still has to rely on approximate inference, as in

Huang and Sagae (2010). In the latter case, dynamic programming provides an exact

inference method only for a very simple approximation of the original transition-based

model, as in Kuhlmann, Gómez-Rodríguez, and Satta (2011). In general, this exemplifies

the tradeoff between approximate inference with richer models (beam search) and

exact inference with simpler models (dynamic programming). Thus, while the feature

model used by Zhang and Nivre (2011) to achieve state-of-the-art accuracy for English

makes dynamic programming very difficult due to the combinatorial effect on parsing

complexity of complex valency and label set features, the feature representation of a

single configuration can still be computed in constant time, which is all that is required

to achieve linear-time parsing with beam search. The same is true for all the transition

systems and feature models explored in this article. Nevertheless, it is an interesting

62

Computational Linguistics Just Accepted MS.
doi: 10.1162/COLI_a_00150
© Association for Computational Linguistics

Gómez-Rodríguez and Nivre Divisible Transition Systems and Multiplanarity

theoretical question whether the novel 2-planar system admits of tabularization and

what the resulting complexity would be. At present, we do not know the exact answer

to this question, but a reasonable conjecture is that complexity would be exponential for

the class of feature models that are relevant for transition-based parsing.

5.2 Experimental Evaluation

In this section, we present an experimental evaluation of the novel 1-planar and 2-planar

transition systems in comparison to the widely used arc-eager projective system of

Nivre (2003) (analyzed above in Example 4). Besides being the default parsing algorithm

in MaltParser (Nivre, Hall, and Nilsson 2006), this system is also the basis of the ISBN

Dependency Parser (Titov and Henderson 2007) and ZPar (Zhang and Clark 2008;

Zhang and Nivre 2011). In addition to a strictly projective arc-eager parser, we also

include a version that uses pseudo-projective parsing (Nivre and Nilsson 2005) to

recover non-projective arcs. This is the most widely used method for non-projective

transition-based parsing and as such a competitive baseline for the 2-planar parser.

In order to make the comparison as exact as possible, we have chosen to implement

all four systems in the MaltParser framework and use the same type of classifiers and

feature models. For the arc-eager baselines, we copy the setup from the CoNLL-X shared

task on dependency parsing, which includes the use of support vector machines with

a polynomial kernel, history-based feature models tuned separately for each language,

and pseudo-projective parsing with the Head encoding (Nivre et al. 2006). For the 1-

planar and 2-planar parsers, we use the same type of classifier but modify the feature

model to take into account the following systematic differences between the transition

systems:

63

Computational Linguistics Just Accepted MS.
doi: 10.1162/COLI_a_00150
© Association for Computational Linguistics

Computational Linguistics Volume xx, Number yy

LAS LP-NP LR-NP
Language Pr 1Pl PPr 2Pl Pr 1Pl PPr 2Pl Pr 1Pl PPr 2Pl
Arabic 66.2 66.7 66.1 ⋆⋆67.1 – 25.0 – 10.0 0.0 9.1 18.2 27.3
Czech 77.6 78.3 ⋆⋆79.7 ⋆⋆80.1 – 52.0 77.0 71.4 7.5 15.9 58.9 58.9
Danish 85.1 84.6 84.9 84.8 – 56.5 42.9 55.6 0.0 12.5 22.5 17.5
Dutch 75.2 74.9 ⋆⋆⋆78.1 ⋆⋆77.2 – 59.9 62.1 66.0 1.9 11.7 47.0 46.2
German 85.6 85.7 ⋆86.2 ⋆⋆86.9 – 54.7 61.4 71.2 16.9 35.6 42.4 45.8
Portuguese 85.6 ⋆86.3 ⋆⋆87.1 ⋆⋆87.6 – 43.8 82.4 77.8 1.5 3.1 44.6 35.4
Swedish ⋆84.0 83.0 ⋆84.0 83.5 – 24.4 16.7 6.9 12.5 12.5 12.5 4.2
Turkish 63.7 63.8 64.2 63.5 – 25.9 12.5 7.0 6.6 13.2 10.5 10.5

Table 2
Parsing accuracy for projective, 1-planar, pseudo-projective and 2-planar transition systems in
MaltParser. LAS = labeled attachment score; LP-NP = labeled precision on non-projective arcs;
LR-NP = labeled recall on non-projective arcs. Statistical significance of LAS differences reported
at the .05 level using McNemar’s test: ⋆ = significantly better than one other system; ⋆⋆ =
significantly better than two other systems; ⋆⋆⋆ = significantly better than three other systems.

r In both the 1-planar and 2-planar parser, we need to add features over the

arc connecting the top node of the stack and the first node of the buffer (if

any). No such arc can exist in the arc-eager system used by the projective

and pseudo-projective baseline systems.

r In the 2-planar parser, we need to add features over the top nodes of the

inactive stack. No such nodes exist in the 1-planar and arc-eager systems.

We did not perform extensive feature optimization experiments for the new systems,

so it is likely that there is room for further improvement. For replicability, the complete

experimental settings are available at http://stp.lingfil.uu.se/~nivre/exp.

Table 2 shows parsing results for the same eight data sets from the CoNLL-X

shared task that were investigated with respect to k-planarity in Section 4.2: Arabic,

Czech, Danish, Dutch, German, Portuguese, Swedish and Turkish. The overall accuracy

metric is labeled attachment score (LAS), the percentage of tokens that are assigned

both the correct head and the correct label. In addition, we report labeled precision

(LP-NP) and recall (LR-NP) specifically on non-projective dependency arcs, where an

64

Computational Linguistics Just Accepted MS.
doi: 10.1162/COLI_a_00150
© Association for Computational Linguistics

Gómez-Rodríguez and Nivre Divisible Transition Systems and Multiplanarity

arc (i, j) is taken to be non-projective if and only if there is some node k such that

min(i, j) < k < max(i, j) and not i→∗ k. Precision is the percentage of non-projective arcs

output by the system that are correct, while recall is the percentage of non-projective

arcs in the gold standard that are output by the system. Note that, while precision is

undefined for the projective parser because it does not output any non-projective arcs,

recall may nevertheless be greater than zero because arcs that are non-projective in the

gold standard can be projective in the output of the parser.13

Looking first at the overall LAS results, we see that the 2-planar parser outperforms

both the 1-planar and the projective parser for languages with a high proportion of

non-projective trees (≥ 19%): Czech, Dutch, German and Portuguese. This is in line

with our expectations, given the substantially higher coverage of the 2-planar parser

for non-projective structures, and the difference is statistically significant at the .05 level

for all languages in this group (McNemar’s test). For three of these languages, the 2-

planar parser also outperforms the pseudo-projective parser, although the differences

are not statistically significant, and only in the case of Dutch is the pseudo-projective

parser significantly better. Given the relatively small difference in coverage between the

projective and 1-planar parser, one would expect these systems to have very similar

performance, and this is also what we find except for Portuguese where the 1-planar

parser is significantly better than the projective arc-eager parser.

For languages with a lower proportion of non-projective trees (Arabic, Danish,

Swedish, Turkish), there are generally smaller differences between the parsers, and

for Danish and Turkish there are in fact no statistically significant differences at all,

which indicates that the increased expressivity is not beneficial (nor harmful) when

13 When this happens, there is by necessity an error elsewhere in the parser output, since the projectivity of
the arc implies that at least one gold standard arc must be missing.

65

Computational Linguistics Just Accepted MS.
doi: 10.1162/COLI_a_00150
© Association for Computational Linguistics

Computational Linguistics Volume xx, Number yy

non-projective structures are rare. Interestingly, it seems that the planar parsers have

an advantage over the arc-eager parsers for Arabic, where the 2-planar parser is signifi-

cantly better than both the projective and pseudo-projective parsers. By contrast, the arc-

eager parsers seem to have an advantage for Swedish, where the projective and pseudo-

projective parsers are both significantly better than the 1-planar parser. At present, we

have no explanation for this language-specific variation.

Turning next to labeled precision (LP-NP) and recall (LR-NP) on non-projective

dependency arcs, we again find that the 2-planar parser does quite well on the four

languages with 19% or more non-projective trees, with precision consistently over 50%

and recall in the 35–60% range. Again, the results are very similar to those achieved

with the pseudo-projective parser, with the 2-planar parser giving higher precision for

Dutch and German and higher recall for German. For the remaining four languages,

both precision and recall remains low, which probably points to a sparse data problem

when learning how to switch between the two planes during parsing, but the same

holds true for the pseudo-projective parser. As expected, the 1-planar parser has only

marginally higher recall than the projective parser (which, as pointed out earlier, may

recover non-projective dependencies by accident), but it is interesting to note that the 1-

planar parser has relatively high precision on the few non-projective arcs that it predicts,

in some cases comparable to that of the 2-planar parser.

In conclusion, the experimental evaluation shows that the 2-planar parser has the

potential to improve parsing accuracy over a strictly projective (or 1-planar) parser

for languages with a sufficient proportion of non-projective trees, and that it generally

performs at about the same level as the widely used arc-eager pseudo-projective parser.

We believe that it is possible to improve results even further by careful optimization of

features and other parameters, but this will have to be left for future research. It would

66

Computational Linguistics Just Accepted MS.
doi: 10.1162/COLI_a_00150
© Association for Computational Linguistics

Gómez-Rodríguez and Nivre Divisible Transition Systems and Multiplanarity

also be interesting to explore the use of global optimization and beam search, which

has been shown to improve accuracy over local learning and greedy search (Titov and

Henderson 2007; Zhang and Clark 2008; Zhang and Nivre 2011).

6. Related Work

The literature on dependency parsing has grown enormously in recent years and we

will not attempt a comprehensive review here but focus on previous research related to

the three main themes of the article: a formal framework for analyzing and construct-

ing transition systems for dependency parsing (Section 3), a procedure for classifying

mildly non-projective dependency structures in terms of multiplanarity (Section 4), and

a novel transition-based parser for (a subclass of) non-projective dependency structures

(Section 5).

6.1 Frameworks for Dependency Parsing

Due to the growing popularity of dependency parsing, several proposals have been

made that group and study different dependency parsers under common (more or less

formal) frameworks. Thus, Buchholz and Marsi (2006) observed that almost all of the

systems participating in the CoNLL-X shared task could be classified as belonging to

one of two approaches, which they called the “all pairs” and the “stepwise” approaches.

This was taken up by McDonald and Nivre (2007), who called the first approach global

exhaustive graph-based parsing and the second approach local greedy transition-based

parsing. The terms graph-based and transition-based have become well established, even

though there now exist graph-based models that do not perform exhaustive search

(McDonald and Pereira 2006; Koo et al. 2010) as well as transition-based models that

are neither local nor greedy (Titov and Henderson 2007; Zhang and Clark 2008).

67

Computational Linguistics Just Accepted MS.
doi: 10.1162/COLI_a_00150
© Association for Computational Linguistics

Computational Linguistics Volume xx, Number yy

Nivre (2008), building on earlier work in Nivre (2006b), formalizes transition-based

parsing by means of transition systems and oracles. Two distinct types of transition sys-

tems are described, differing in the data structures they use to store partially processed

tokens: stack-based and list-based systems. The formalization of stack-based systems

provided there has been one point of departure for the present article (see Section 2.2)

but, while general stack-based systems allow transitions to be arbitrary partial functions

from configurations to configurations, we have focused on a class of systems where

transitions are obtained by composing a small set of elementary transitions, allowing us

to derive specific formal properties.

Gómez-Rodríguez, Carroll, and Weir (2011) propose a common deductive frame-

work that can be used to describe a wide range of dependency parsers, including

both graph-based and transition-based algorithms. While the high abstraction level of

this framework makes it able to describe and relate very different parsing strategies,

it also means that it is not suitable to describe lower-level properties of transition-

based parsers such as their computational complexity when implemented with beam

search. Kuhlmann, Gómez-Rodríguez, and Satta (2011) introduce a technique to obtain

polynomial-time deductive parsers that simulate all the transition sequences allowed

by a transition system.

6.2 Mildly Non-Projective Dependency Structures

Most natural language treebanks contain non-projective dependency analyses (Havelka

2007), but the general problem of parsing arbitrary non-projective dependency graphs

has been shown to be computationally intractable except under strong independence

assumptions (McDonald and Satta 2007). This has motivated researchers to look for sets

of dependency structures that have more coverage of linguistic phenomena than pro-

68

Computational Linguistics Just Accepted MS.
doi: 10.1162/COLI_a_00150
© Association for Computational Linguistics

Gómez-Rodríguez and Nivre Divisible Transition Systems and Multiplanarity

jective structures, while being more efficiently parsable than unrestricted non-projective

graphs.

Several sets have been defined by applying different restrictions to dependency

graphs, such as arc degree (Nivre 2006a, 2007), gap degree and well-nestedness

(Bodirsky, Kuhlmann, and Möhl 2005; Kuhlmann and Nivre 2006; Kuhlmann and

Möhl 2007), and k-ill-nestedness (Maier and Lichte 2009). Among these sets, only well-

nested dependency structures with bounded gap degree have been shown to have

exact polynomial-time algorithms (Kuhlmann 2010; Gómez-Rodríguez, Carroll, and

Weir 2011). For dependency structures with bounded arc degree, a greedy transition-

based parser based on the algorithm of Covington (2001) is described in Nivre (2007).

Other sets have been defined operationally as the set of dependency structures that

are parsable by a given algorithm. These include the graphs parsable by the transition

system of Attardi (2006) or the more restrictive dynamic programming variant of Cohen,

Gómez-Rodríguez, and Satta (2011), the set of structures that yield binarizable produc-

tions with the algorithm of Kuhlmann and Satta (2009), or the set of mildly ill-nested

structures (Gómez-Rodríguez, Weir, and Carroll 2009; Gómez-Rodríguez, Carroll, and

Weir 2011).

As mentioned earlier, the notion of multiplanarity was originally introduced by Yli-

Jyrä (2003), who also presents additional constraints on k-planar graphs. However, no

algorithms were previously known to determine whether a given graph was k-planar

or to efficiently parse k-planar dependency structures.

6.3 Non-Projective Transition-Based Parsing

While early transition-based dependency parsers were restricted to projective depen-

dency graphs (Yamada and Matsumoto 2003; Nivre 2003), several techniques have

been proposed to accomodate non-projectivity within the transition-based framework.

69

Computational Linguistics Just Accepted MS.
doi: 10.1162/COLI_a_00150
© Association for Computational Linguistics

Computational Linguistics Volume xx, Number yy

Pseudo-projective parsing, proposed by Nivre and Nilsson (2005), is a general technique

applicable to any data-driven parser. Before training the parser, dependency structures

are projectivized using lifting operations (Kahane, Nasr, and Rambow 1998), and partial

information about the lifting paths is encoded in augmented arc labels. After parsing,

dependency structures are deprojectivized using a heuristic search procedure guided

by the augmented arc labels.

A more integrated approach is to deal with with non-projectivity by adding extra

transitions to projective transition systems. Attardi (2006) parses a restricted set of non-

projective trees by adding transitions that create arcs using nodes deeper than the top

of the stack. Nivre (2009) instead uses a transition that changes the order of input

words, obtaining full coverage of non-projective structures in quadratic worst-case time

(but achieving linear practical performance). A similar technique is used by Tratz and

Hovy (2011) to develop an O(n2 logn) non-projective version of the easy-first parser of

Goldberg and Elhadad (2010).

Finally, the parsing algorithm described by Covington (2001) can be implemented

as a list-based transition system that in its unrestricted form is complete for all non-

projective trees (Nivre 2008). The worst-case complexity for this system is O(n2), but

efficiency can be improved in practice by bounding the arc degree (Nivre 2006a, 2007).

7. Conclusion

Although data-driven dependency parsing has seen tremendous progress during the

last decade in terms of empirically observed accuracy for a wide range of languages,

it is probably fair to say that our theoretical understanding of the methods used is still

less developed than for the more familiar paradigm of context-free grammar parsing.

In this article, we have tried to contribute to the theoretical foundations of dependency

parsing in essentially two ways.

70

Computational Linguistics Just Accepted MS.
doi: 10.1162/COLI_a_00150
© Association for Computational Linguistics

Gómez-Rodríguez and Nivre Divisible Transition Systems and Multiplanarity

Our first contribution is the framework of divisible transition systems, where tran-

sition systems for dependency parsing can be defined by composition and restriction

of the five elementary transitions SHIFT, UNSHIFT, REDUCE, LEFT-ARC and RIGHT-

ARC. On the one hand, this can be used as an analytical tool to characterize existing

systems for dependency parsing and prove formal properties related to expressivity and

complexity. Thus, we have shown that all divisible systems, including a number of well-

known systems from the literature, are sound for planar dependency graphs and can be

restricted to satisfy a number of other formal constraints, and we have characterized

the subclass of efficient divisible transition systems that give linear parsing complexity

when combined with greedy inference or beam search as is customary in transition-

based parsing. Even though most of these results have been established previously for

particular systems, the general framework allows us to show how the results follow

from more general principles. On the other hand, the framework can be used to develop

new systems with required formal properties. To illustrate this, we have presented a

system that is both sound and complete for planar dependency graphs (with or without

additional formal constraints) and that fills a gap in the dependency parsing literature.

Our second contribution consists in extending the available techniques for depen-

dency parsing to multiplanar dependency graphs, an interesting hierarchy of mildly

non-projective dependency structures that have remained unexplored due to the lack

of suitable formal tools. First of all, we have shown that the problem of finding the

smallest k such that a dependency graph is k-planar can be reduced to the familiar k-

coloring problem for undirected graphs and can thereby be solved efficiently for k ≤ 2

but in practice also for higher k due to the sparseness of non-projective dependencies in

natural language. Using this procedure, we have shown that the set of 2-planar depen-

dency trees have a coverage in existing treebanks that is at least as good as alternative

71

Computational Linguistics Just Accepted MS.
doi: 10.1162/COLI_a_00150
© Association for Computational Linguistics

Computational Linguistics Volume xx, Number yy

characterizations of mildly non-projective dependency structures. In addition, we have

shown how the planar dependency parser defined in the first part of the article can be

generalized to the k-planar dependency graphs and in particular to the 2-planar case.

Preliminary experiments using standard methods for transition-based parsing show

that this system can give significant improvements over a strictly projective system for

languages with a non-negligible proportion of non-projective dependencies.

There are a number of directions for future research that suggest themselves. First

of all, there are many instances of divisible transition systems that have not yet been

explored, either theoretically or for practical parsing applications. For example, as

remarked in Section 3.3.2, there is a way of restricting the 1-planar parser to projective

forests, which is different from previously explored systems for projective dependency

parsing. Secondly, it may be interesting to study different ways of extending divisible

transition systems for greater expressivity, besides introducing additional stacks. This

may involve the addition of new transition types, as proposed by Attardi (2006) and

Nivre (2009), or new data structures, as in the list-based systems of Nivre (2008). Finally,

it would be interesting to see what level of accuracy can be reached for 2-planar depen-

dency parsing with proper feature selection in combination with the latest techniques

for global optimization and non-greedy search (Titov and Henderson 2007; Zhang and

Clark 2008; Huang and Sagae 2010; Zhang and Nivre 2011).

Acknowledgments
The authors would like to thank Johan Hall for support with the MaltParser system and three
anonymous reviewers for useful comments on previous versions of the manuscript. The first
author has been partially funded by the Spanish Ministry of Economy and Competitiveness and
FEDER (project TIN2010-18552-C03-02) and Xunta de Galicia (Rede Galega de Recursos
Lingüísticos para unha Sociedade do Coñecemento). Part of the reported experiments were
conducted with the help of computing resources provided by the Supercomputing Center of
Galicia (CESGA).

72

Computational Linguistics Just Accepted MS.
doi: 10.1162/COLI_a_00150
© Association for Computational Linguistics

Gómez-Rodríguez and Nivre Divisible Transition Systems and Multiplanarity

References

Afonso, Susana, Eckhard Bick, Renato Haber, and Diana Santos. 2002. “Floresta sintá(c)tica”: a

treebank for Portuguese. In Proceedings of the 3rd International Conference on Language Resources

and Evaluation (LREC 2002), pages 1968–1703, Paris, France. ELRA.

Atalay, Nart B., Kemal Oflazer, and Bilge Say. 2003. The annotation process in the Turkish

treebank. In Proceedings of EACL Workshop on Linguistically Interpreted Corpora (LINC-03), pages

243–246, Morristown, NJ, USA. Association for Computational Linguistics.

Attardi, Giuseppe. 2006. Experiments with a multilanguage non-projective dependency parser.

In Proceedings of the 10th Conference on Computational Natural Language Learning (CoNLL), pages

166–170.

Bikel, Daniel M. and Vittorio Castelli. 2008. Event matching using the transitive closure of

dependency relations. In Proceedings of ACL-08: HLT, Short Papers, pages 145–148.

Bodirsky, Manuel, Marco Kuhlmann, and Mattias Möhl. 2005. Well-nested drawings as models

of syntactic structure. In James Rogers, editor, Proceedings of FG-MoL 2005: The 10th Conference

on Formal Grammar, pages 195–203. CSLI publications.

Böhmová, Alena, Jan Hajič, Eva Hajičová, and Barbora Hladká. 2003. The Prague Dependency

Treebank: A three-level annotation scenario. In Anne Abeillé, editor, Treebanks: Building and

Using Parsed Corpora. Kluwer, pages 103–127.

Brants, Sabine, Stefanie Dipper, Silvia Hansen, Wolfgang Lezius, and George Smith. 2002. TIGER

treebank. In Proceedings of the 1st Workshop on Treebanks and Linguistic Theories (TLT), pages

24–42.

Buchholz, Sabine and Erwin Marsi. 2006. CoNLL-X shared task on multilingual dependency

parsing. In Proceedings of the 10th Conference on Computational Natural Language Learning

(CoNLL), pages 149–164.

73

Computational Linguistics Just Accepted MS.
doi: 10.1162/COLI_a_00150
© Association for Computational Linguistics

Computational Linguistics Volume xx, Number yy

Buyko, Ekaterina and Udo Hahn. 2010. Evaluating the impact of alternative dependency graph

encodings on solving event extraction tasks. In Proceedings of the Conference on Empirical

Methods in Natural Language Processing (EMNLP), pages 982–992.

Carreras, Xavier. 2007. Experiments with a higher-order projective dependency parser. In

Proceedings of the CoNLL Shared Task of EMNLP-CoNLL 2007, pages 957–961.

Cohen, Shay B., Carlos Gómez-Rodríguez, and Giorgio Satta. 2011. Exact inference for

generative probabilistic non-projective dependency parsing. In Proceedings of the 2011

Conference on Empirical Methods in Natural Language Processing (EMNLP 2011), pages 1234–1245.

Cormen, Thomas H., Charles E. Leiserson, and Ronald L. Rivest. 1990. Introduction to Algorithms.

MIT Press.

Covington, Michael A. 2001. A fundamental algorithm for dependency parsing. In Proceedings of

the 39th Annual ACM Southeast Conference, pages 95–102.

Culotta, Aron and Jeffery Sorensen. 2004. Dependency tree kernels for relation extraction. In

Proceedings of the 42nd Annual Meeting of the Association for Computational Linguistics (ACL),

pages 423–429.

Eisner, Jason M. 1996. Three new probabilistic models for dependency parsing: An exploration.

In Proceedings of the 16th International Conference on Computational Linguistics (COLING), pages

340–345.

Goldberg, Yoav and Michael Elhadad. 2010. An efficient algorithm for easy-first non-directional

dependency parsing. In Human Language Technologies: The 2010 Annual Conference of the North

American Chapter of the Association for Computational Linguistics (NAACL HLT), pages 742–750.

Gómez-Rodríguez, Carlos, John Carroll, and David Weir. 2011. Dependency parsing schemata

and mildly non-projective dependency parsing. Computational Linguistics, 37(3):541–586.

74

Computational Linguistics Just Accepted MS.
doi: 10.1162/COLI_a_00150
© Association for Computational Linguistics

Gómez-Rodríguez and Nivre Divisible Transition Systems and Multiplanarity

Gómez-Rodríguez, Carlos and Joakim Nivre. 2010. A transition-based parser for 2-planar

dependency structures. In Proceedings of the 48th Annual Meeting of the Association for

Computational Linguistics (ACL), pages 1492–1501.

Gómez-Rodríguez, Carlos, David Weir, and John Carroll. 2009. Parsing mildly non-projective

dependency structures. In Proceedings of the 12th Conference of the European Chapter of the

Association for Computational Linguistics (EACL), pages 291–299.

Hajič, Jan, Jarmila Panevová, Eva Hajičová, Jarmila Panevová, Petr Sgall, Petr Pajas, Jan

Štěpánek, Jiří Havelka, and Marie Mikulová. 2006. Prague Dependency Treebank 2.0. CDROM

CAT: LDC2006T01, ISBN 1-58563-370-4. Linguistic Data Consortium.

Hajič, Jan, Otakar Smrž, Petr Zemánek, Jan Šnaidauf, and Emanuel Beška. 2004. Prague Arabic

Dependency Treebank: Development in data and tools. In Proceedings of the NEMLAR

International Conference on Arabic Language Resources and Tools, pages 110–117.

Hajič, Jan, Barbora Vidova Hladka, Jarmila Panevová, Eva Hajičová, Petr Sgall, and Petr Pajas.

2001. Prague Dependency Treebank 1.0. LDC, 2001T10.

Havelka, Jiri. 2007. Beyond projectivity: Multilingual evaluation of constraints and measures on

non-projective structures. In Proceedings of the 45th Annual Meeting of the Association of

Computational Linguistics, pages 608–615.

Huang, Liang, Wenbin Jiang, and Qun Liu. 2009. Bilingually-constrained (monolingual)

shift-reduce parsing. In Proceedings of the Conference on Empirical Methods in Natural Language

Processing (EMNLP), pages 1222–1231.

Huang, Liang and Kenji Sagae. 2010. Dynamic programming for linear-time incremental

parsing. In Proceedings of the 48th Annual Meeting of the Association for Computational Linguistics

(ACL), pages 1077–1086.

Hudson, Richard A. 1990. English Word Grammar. Blackwell.

75

Computational Linguistics Just Accepted MS.
doi: 10.1162/COLI_a_00150
© Association for Computational Linguistics

Computational Linguistics Volume xx, Number yy

Johansson, Richard and Pierre Nugues. 2006. Investigating multilingual dependency parsing. In

Proceedings of the 10th Conference on Computational Natural Language Learning (CoNLL), pages

206–210.

Kahane, Sylvain, Alexis Nasr, and Owen Rambow. 1998. Pseudo-projectivity: A polynomially

parsable non-projective dependency grammar. In Proceedings of the 36th Annual Meeting of the

Association for Computational Linguistics (ACL) and the 17th International Conference on

Computational Linguistics (COLING), pages 646–652.

Karp, Richard M. 1972. Reducibility among combinatorial problems. In R. Miller and J. Thatcher,

editors, Complexity of Computer Computations. Plenum Press, pages 85–103.

Koo, Terry and Michael Collins. 2010. Efficient third-order dependency parsers. In Proceedings of

the 48th Annual Meeting of the Association for Computational Linguistics (ACL), pages 1–11.

Koo, Terry, Alexander M. Rush, Michael Collins, Tommi Jaakkola, and David Sontag. 2010. Dual

decomposition for parsing with non-projective head automata. In Proceedings of the 2010

Conference on Empirical Methods in Natural Language Processing, pages 1288–1298.

Kromann, Matthias Trautner. 2003. The Danish Dependency Treebank and the DTAG treebank

tool. In Proceedings of the 2nd Workshop on Treebanks and Linguistic Theories (TLT), pages 217–220.

Kuhlmann, Marco. 2010. Dependency Structures and Lexicalized Grammars: An Algebraic Approach,

volume 6270 of Lecture Notes in Computer Science. Springer.

Kuhlmann, Marco, Carlos Gómez-Rodríguez, and Giorgio Satta. 2011. Dynamic programming

algorithms for transition-based dependency parsers. In Proceedings of the 49th Annual Meeting

of the Association for Computational Linguistics (ACL), pages 673–682.

Kuhlmann, Marco and Mathias Möhl. 2007. Mildly context-sensitive dependency languages. In

Proceedings of the 45th Annual Meeting of the Association of Computational Linguistics, pages

160–167.

76

Computational Linguistics Just Accepted MS.
doi: 10.1162/COLI_a_00150
© Association for Computational Linguistics

Gómez-Rodríguez and Nivre Divisible Transition Systems and Multiplanarity

Kuhlmann, Marco and Joakim Nivre. 2006. Mildly non-projective dependency structures. In

Proceedings of the COLING/ACL 2006 Main Conference Poster Sessions, pages 507–514.

Kuhlmann, Marco and Giorgio Satta. 2009. Treebank grammar techniques for non-projective

dependency parsing. In Proceedings of the 12th Conference of the European Chapter of the

Association for Computational Linguistics (EACL), pages 478–486.

Maier, Wolfgang and Timm Lichte. 2009. Characterizing discontinuity in constituent treebanks.

In Proceedings of the 14th Conference on Formal Grammar, volume 5591 of Lecture Notes in

Computer Science, pages 164–179, Berlin-Heidelberg-New York. Springer-Verlag.

Marcus, Mitchell P., Beatrice Santorini, and Mary Ann Marcinkiewicz. 1993. Building a large

annotated corpus of English: The Penn Treebank. Computational Linguistics, 19:313–330.

Marcus, Mitchell P., Beatrice Santorini, Mary Ann Marcinkiewicz, Robert MacIntyre, Ann Bies,

Mark Ferguson, Karen Katz, and Britta Schasberger. 1994. The Penn Treebank: Annotating

predicate-argument structure. In Proceedings of the ARPA Human Language Technology Workshop,

pages 114–119.

Martins, Andre, Noah Smith, and Eric Xing. 2009. Concise integer linear programming

formulations for dependency parsing. In Proceedings of the Joint Conference of the 47th Annual

Meeting of the ACL and the 4th International Joint Conference on Natural Language Processing of the

AFNLP (ACL-IJCNLP), pages 342–350.

Martins, Andre, Noah Smith, Eric Xing, Pedro Aguiar, and Mario Figueiredo. 2010. Turbo

parsers: Dependency parsing by approximate variational inference. In Proceedings of the

Conference on Empirical Methods in Natural Language Processing (EMNLP), pages 34–44.

McDonald, Ryan, Koby Crammer, and Fernando Pereira. 2005. Online large-margin training of

dependency parsers. In Proceedings of the 43rd Annual Meeting of the Association for

Computational Linguistics (ACL), pages 91–98.

77

Computational Linguistics Just Accepted MS.
doi: 10.1162/COLI_a_00150
© Association for Computational Linguistics

Computational Linguistics Volume xx, Number yy

McDonald, Ryan and Joakim Nivre. 2007. Characterizing the errors of data-driven dependency

parsing models. In Proceedings of the 2007 Joint Conference on Empirical Methods in Natural

Language Processing and Computational Natural Language Learning (EMNLP-CoNLL), pages

122–131.

McDonald, Ryan and Fernando Pereira. 2006. Online learning of approximate dependency

parsing algorithms. In Proceedings of the 11th Conference of the European Chapter of the Association

for Computational Linguistics (EACL), pages 81–88.

McDonald, Ryan and Giorgio Satta. 2007. On the complexity of non-projective data-driven

dependency parsing. In Proceedings of the 10th International Conference on Parsing Technologies

(IWPT), pages 122–131.

Mel’čuk, Igor. 1988. Dependency Syntax: Theory and Practice. State University of New York Press.

Nakagawa, Tetsuji. 2007. Multilingual dependency parsing using global features. In Proceedings

of the CoNLL Shared Task of EMNLP-CoNLL 2007, pages 952–956.

Nilsson, Jens, Johan Hall, and Joakim Nivre. 2005. MAMBA meets TIGER: Reconstructing a

Swedish treebank from Antiquity. In Peter Juel Henrichsen, editor, Proceedings of the

NODALIDA Special Session on Treebanks, pages 121–132.

Nivre, Joakim. 2003. An efficient algorithm for projective dependency parsing. In Proceedings of

the 8th International Workshop on Parsing Technologies (IWPT), pages 149–160.

Nivre, Joakim. 2004. Incrementality in deterministic dependency parsing. In Proceedings of the

Workshop on Incremental Parsing: Bringing Engineering and Cognition Together (ACL), pages 50–57.

Nivre, Joakim. 2006a. Constraints on non-projective dependency graphs. In Proceedings of the 11th

Conference of the European Chapter of the Association for Computational Linguistics (EACL), pages

73–80.

Nivre, Joakim. 2006b. Inductive Dependency Parsing. Springer.

78

Computational Linguistics Just Accepted MS.
doi: 10.1162/COLI_a_00150
© Association for Computational Linguistics

Gómez-Rodríguez and Nivre Divisible Transition Systems and Multiplanarity

Nivre, Joakim. 2007. Incremental non-projective dependency parsing. In Proceedings of Human

Language Technologies: The Annual Conference of the North American Chapter of the Association for

Computational Linguistics (NAACL HLT), pages 396–403.

Nivre, Joakim. 2008. Algorithms for deterministic incremental dependency parsing.

Computational Linguistics, 34:513–553.

Nivre, Joakim. 2009. Non-projective dependency parsing in expected linear time. In Proceedings

of the Joint Conference of the 47th Annual Meeting of the ACL and the 4th International Joint

Conference on Natural Language Processing of the AFNLP (ACL-IJCNLP), pages 351–359.

Nivre, Joakim, Johan Hall, and Jens Nilsson. 2004. Memory-based dependency parsing. In

Proceedings of the 8th Conference on Computational Natural Language Learning (CoNLL), pages

49–56.

Nivre, Joakim, Johan Hall, and Jens Nilsson. 2006. Maltparser: A data-driven parser-generator

for dependency parsing. In Proceedings of the 5th International Conference on Language Resources

and Evaluation (LREC), pages 2216–2219.

Nivre, Joakim, Johan Hall, Jens Nilsson, Gülsen Eryiğit, and Svetoslav Marinov. 2006. Labeled

pseudo-projective dependency parsing with support vector machines. In Proceedings of the 10th

Conference on Computational Natural Language Learning (CoNLL), pages 221–225.

Nivre, Joakim and Jens Nilsson. 2005. Pseudo-projective dependency parsing. In Proceedings of

the 43rd Annual Meeting of the Association for Computational Linguistics (ACL), pages 99–106.

Oflazer, Kemal, Bilge Say, Dilek Zeynep Hakkani-Tür, and Gökhan Tür. 2003. Building a Turkish

treebank. In Anne Abeillé, editor, Treebanks: Building and Using Parsed Corpora. Kluwer, pages

261–277.

Quirk, Chris, Arul Menezes, and Colin Cherry. 2005. Dependency treelet translation:

Syntactically informed phrasal SMT. In Proceedings of the 43rd Annual Meeting of the Association

79

Computational Linguistics Just Accepted MS.
doi: 10.1162/COLI_a_00150
© Association for Computational Linguistics

Computational Linguistics Volume xx, Number yy

for Computational Linguistics (ACL), pages 271–279, Ann Arbor, MI.

Riedel, Sebastian and James Clarke. 2006. Incremental integer linear programming for

non-projective dependency parsing. In Proceedings of the Conference on Empirical Methods in

Natural Language Processing (EMNLP), pages 129–137.

Sagae, Kenji and Jun’ichi Tsujii. 2008. Shift-reduce dependency DAG parsing. In Proceedings of the

22nd International Conference on Computational Linguistics (COLING), pages 753–760.

Sgall, Petr, Eva Hajičová, and Jarmila Panevová. 1986. The Meaning of the Sentence in Its Pragmatic

Aspects. Reidel.

Shen, Dan and Dietrich Klakow. 2006. Exploring correlation of dependency relation paths for

answer extraction. In Proceedings of the 21st International Conference on Computational Linguistics

and the 44th Annual Meeting of the Association for Computational Linguistics, pages 889–896.

Shieber, Stuart M., Yves Schabes, and Fernando C. N. Pereira. 1995. Principles and

implementation of deductive parsing. Journal of Logic Programming, 24:3–36.

Smith, David and Jason Eisner. 2008. Dependency parsing by belief propagation. In Proceedings of

the Conference on Empirical Methods in Natural Language Processing (EMNLP), pages 145–156.

Stevenson, Mark and Mark A. Greenwood. 2006. Comparing information extraction pattern

models. In Proceedings of the Workshop on Information Extraction Beyond The Document, pages

12–19.

Tesnière, Lucien. 1959. Éléments de syntaxe structurale. Editions Klincksieck.

Titov, Ivan and James Henderson. 2007. A latent variable model for generative dependency

parsing. In Proceedings of the 10th International Conference on Parsing Technologies (IWPT), pages

144–155.

Tratz, Stephen and Eduard Hovy. 2011. A fast, accurate, non-projective, semantically-enriched

parser. In Proceedings of the 2011 Conference on Empirical Methods in Natural Language Processing,

80

Computational Linguistics Just Accepted MS.
doi: 10.1162/COLI_a_00150
© Association for Computational Linguistics

Gómez-Rodríguez and Nivre Divisible Transition Systems and Multiplanarity

pages 1257–1268.

Van der Beek, Leonoor, Gosse Bouma, Robert Malouf, and Gertjan Van Noord. 2002. The Alpino

dependency treebank. In Mariet Theune, Anton Nijholt, and Hendri Hondorp, editors,

Language and Computers, Computational Linguistics in the Netherlands 2001. Selected Papers from

the Twelfth CLIN Meeting, pages 8–22. Rodopi.

Xu, Peng, Jaeho Kang, Michael Ringgaard, and Franz Och. 2009. Using a dependency parser to

improve smt for subject-object-verb languages. In Proceedings of Human Language Technologies:

The 2009 Annual Conference of the North American Chapter of the Association for Computational

Linguistics (NAACL HLT), pages 245–253.

Yamada, Hiroyasu and Yuji Matsumoto. 2003. Statistical dependency analysis with support

vector machines. In Proceedings of the 8th International Workshop on Parsing Technologies (IWPT),

pages 195–206.

Yli-Jyrä, Anssi. 2003. Multiplanarity – a model for dependency structures in treebanks. In

Proceedings of the 2nd Workshop on Treebanks and Linguistic Theories (TLT), pages 189–200.

Zhang, Yue and Stephen Clark. 2008. A tale of two parsers: Investigating and combining

graph-based and transition-based dependency parsing. In Proceedings of the Conference on

Empirical Methods in Natural Language Processing (EMNLP), pages 562–571.

Zhang, Yue and Joakim Nivre. 2011. Transition-based parsing with rich non-local features. In

Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics (ACL),

pages 188–193.

81

Computational Linguistics Just Accepted MS.
doi: 10.1162/COLI_a_00150
© Association for Computational Linguistics

82

Computational Linguistics Just Accepted MS.
doi: 10.1162/COLI_a_00150
© Association for Computational Linguistics

