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Abstract (Alonso et al., 1999). However, since parsing

schemata are defined as deduction systems over sets

\é\ﬁs‘?ﬁg“‘:C&Lgfnvggr%?"ig‘ﬁg?tiee‘:‘g; Isa'é;ksee'é of constituency trees, they cannot be used to de-
that can be used to describe, analyze and com'— scribe erendency Parsers. .
pare dependency parsing algorithms. This In this paper, we define an analogous formalism

abstraction allows us to establish clear rela-  that can be used to define, analyze and compare de-
tions between several existing projective de- pendency parsers. We use this framework to provide
pendency parsers and prove their correctness.  uniform, high-level descriptions for a wide range of
well-known algorithms described in the literature,
1 Introduction and we show how they formally relate to each other
Iaend how we can use these relations and the formal-

Dependency parsing consists of finding the structu itself to prove their correctness.

of a sentence as expressed by a set of directed linRE"
(dependencies) between words. This is an altern@a:1  Parsing schemata

“Y“—.’ to constituency pars_ing, which tries to fin(_j a di'Parsing schemata (Sikkel, 1997) provide a formal,
vision of the sentence into segments (constltuentg}mple and uniform way to describe, analyze and

which are then broken up into smaller ConSt'tuen'.[%ompare different constituency-based parsers.
Dependency structures directly show head-modifier The notion of a parsing schema comes from con-

and head-complement relationships which form thg-tdering parsing as a deduction process which gener-

basis of predlcatg_arg_ument structure, but are NBtes intermediate results callégéms An initial set
represented explicitly in constituency trees, whil fitems is directly obtained from the input sentence,
prc()jwdlrk\]g a ([epl:r)esent?t||()? 'g t\)Nht'ﬁh no non—IIeX|cda nd the parsing process consists of the application of
nodes have 1o be postulated by the parser. In adGhse ence rulesdeduction stegsvhich produce new
tion to this, some dgpendency parsers are ablg 10 r§fms from existing ones. Each item contains a piece
resent non-projective structures, which is an IMPOI5¢ information about the sentence’s structure, and a
Siccesstul parsing process will produce at least one

in which discontinuous constituents are common. inal itemcontaining a full parse tree for the sentence

The formalism of parsing schemata (Sikkel, 1997

. ful tool for the studv of it r guaranteeing its existence.
IS a usetul tool for the study of Consttuency parsers o o i, parsing schemata are formally defined
since it provides formal, high-level descriptions

of parsing algorithms that can be used to provas sets of partial parse trees from a set denoted
thelior forrr?al gro erties (such as correctnessF)) e%jree‘S(G)’ which is the set of all the possible par-

. _prop X » Chal parse trees that do not violate the constraints im-
tablish relations between them, derive new parsebsOseol by a grammag. More formally, an item set
from existing ones and obtain efficient implementas-, ; o . ;
tions automatically (@mez-Rodiguez et al., 2007).a1 is defined by Sikkel as a quotient set associated

, O : with an equivalence relation dfirees(G).
The formalism was initially defined for context-free valid parses for a string are represented b
grammars and later applied to other constituenq{t- P 9 P y

. . ems containing completmarked parse treefor
based formalisms, such as tree-adjoining grammajs. . string. Given a context-free gramma@r —

*Partially supported by Ministerio de Educaniy Ciencia —
and FEDER (TIN2004-07246-C03, HUM2007-66607-C04), !While Shieber et al. (1995) also view parsers as deduction
Xunta de Galicia (PGIDITO7SINO05206PR, PGIDITO5PXIC-systems, Sikkel formally defines items and related concepts,
10501PN, PGIDITO5PXIC30501PN, Rede Galega de Proc. daoviding the mathematical tools to reason about formal prop-
Linguaxe e RI) and Programa de Becas FPU. erties of parsers.



. \
(N,%,P,S), a marked parse treefor a string N e

wy ... wy, is any treer € Trees(G)/root(t) = DetN//
S Ayield(t) = wy ... w,2. Anitem containing such | |
a tree for some arbitrary string is calledimal item Prml) (v.2)  (Det3) (N4} (.5)
this is a dependency _structure
\/r

An item containing such a tree for a particular string S~

w1 ... wy IS called acorrect final iterrfor that string.  Figure 1: Representation of a dependency structure with
For each input string, a parsing schema’s deduertree. The arrows below the words correspond to its as-

tion steps allow us to infer a set of items, calledid  sociated dependency graph.

itemsfor that string. A parsing schema is said to _ .
be soundif all valid final items it produces for any Pased: for example, those described by Lombardo

arbitrary string are correct for that string. A pars2nd Lesmo (1996), Barbero et al. (1998) and Ka-
ing schema is said to beompleteif all correct fi- hane etal. (1998) are tied to the formalizations of de-
nal items are valid. Aorrectparsing schema is one P€ndency grammar using context-free like rules de-
which is both sound and complete. A correct parsingcriPed by Hays (1964) and Gaifman (1965). How-
schema can be used to obtain a working impleme&Yer, many of the most widely used algorithms (Eis-
tation of a parser by using deductive engines sucieh 1996; Yamada and Matsumoto, 2003) do notuse

as the ones described by Shieber et al. (1995) afgformal grammar at all. In these, decisions about
Gomez-Rodiguez et al. (2007) to obtain all valid fi- which dependencies to create are taken individually,

nal items. using probabilistic models (Eisner, 1996) or classi-
fiers (Yamada and Matsumoto, 2003). To represent
2 Dependency parsing schemata these algorithms as deduction systems, we use the

Although parsing schemata were initially defined fof10tion of D-rules (Covington, 1990). D-rules take
context-free parsers, they can be adapted to differeh€ forma — b, which says that word can have:
constituency-based grammar formalisms, by findingS & dependent. Deduction steps in non-grammar-
a suitable definition offrees(G) for each particular Pased parsers can be tied to the D-rules associated
formalism and a way to define deduction steps froff/ith the links they create. In this way, we obtain
its rules. However, parsing schemata are not directfy 'éPresentation of the semantics of these parsing

applicable to dependency parsing, since their form3f'ategies that is independent of the particular model
framework is based on constituency trees used to take the decisions associated with each D-

In spite of this problem, many of the dependencj!!€-

parsers described in the literature are constructive, e The fundamental structures in dependency pars-
in the sense that they proceed by combining smalléfig are dependency graphs Therefore, as items
structures to form larger ones until they find a comfor constituency parsers are defined as sets of par-
plete parse for the input sentence. Therefore, ifal constituency trees, it is tempting to define items
is possible to define a variant of parsing schematgr dependency parsers as sets of partial dependency
where these structures can be defined as items agéphs. However, predictive grammar-based algo-
the strategies used for combining them can be exithms such as those of Lombardo and Lesmo (1996)
pressed as inference rules. However, in order to dand Kahane et al. (1998) have operations which pos-
fine such a formalism we have to tackle some issueglate rules and cannot be defined in terms of depen-
specific to dependency parsers: dency graphs, since they do not do any modifications
e Traditional parsing schemata are used to d&o the graph. In order to make the formalism general
fine grammar-based parsers, in which the parsinghough to include these parsers, we define items in
process is guided by some set of rules which amerms of sets of partial dependertogesas shown in
used to license deduction steps: for example, arigure 1. Note that a dependency graph can always
Earley Predictor step is tied to a particular gram- be extracted from such a tree.
mar rule, and can only be executed if such a rule

. e Some of the most popular dependency parsing
exists. Some dependency parsers are also grammargorithms, like that of Eisner (1996), work by con-

2w, is shorthand for thenarked terminalw;, 7). These are nectingspanswhich can represemntisconnectedle-
used by Shlkkel (1997) to link termlnaLsymbols to stdrlng posi-nendency graphs. Such spans cannot be represented
tions so that an input sentence can be represented as a seg ; _
trees which are used as initial items (hypotheses) for the d asingle _dependency tree. Therefore, 0.ur formal
duction system. Thus, a sentenee. .. w,, produces a set of 1ISM allows items to be sets brestsof partial de-

hypothese§ {w: (w,)}, ..., {wn(w,)}}. pendency trees, instead of sets of trees.



Taking these considerations into account, we dalefine anitem setfor dependency parsing as a set
fine the concepts that we need to describe item sefsC II, wherell is a partition of2°.
for dependency parsers: Once we have this definition of an item set for
Let X be an alphabet of terminal symbols. dependency parsing, the remaining definitions are
Partial dependency trees: We define the set of analogous to those in Sikkel's theory of constituency
partial dependency tregD-treed as the set of finite Pparsing (Sikkel, 1997), so we will not include them
trees where children of each node have a left-to-rigttere in full detail. Adependency parsing systesn
ordering, each node is labelled with an element ¢t deduction systen(Z, H, D) whereZ is a depen-

SU(ExIN), and the following conditions hold: dency item set as defined abové,is a set contain-
o All nodes labelled with marked terminals, « Ing initial itemsor hypothesesand D C (2078 x
(X x IN) are leaves, 7) is a set ofdeduction stepsdefining an inference

relationt-.

d Final itemsin this formalism will be those con-

terminal, and if they have such a daughter node,f?mmg Some forgsF containing a parse tree for

is labelledw. for somei € IN some arb_ltrary string. An item containing such atree
— ’ for a particular stringu; . . . w,, will be called acor-

o Leftsiblings of nodes labelled with a marked " ect final iterrfor that string in the case of nonprojec-
minal w, do not have any daughter labellec

with j > k. Right siblings of nodes labelled with tive parsers. When defining projective parsers, cor-

) rect final items will be those containirgrojective
a marked ter_mma@k do not have any daughter parse trees fow; . .. w,. This distinction is relevant
Iabelledgj with j < k.

We d h de of ial d q because the concepts of soundness and correctness
€ denote the root node of a partial dependency; 4 qing schemata are based on correct final items
treet asroot(t). If root(t) has a daughter node la- (¢~ section 1.1), and we expect correct projective
belled with a marked terminab,,, we will say that 5 615 to produce only projective structures, while

wy, is theheadof the treet, denoted byhead(?). If nonprojective parsers should find all possible struc-
all nodes labelled with terminals trhave a daughter tures including nonprojective ones.

labelled with a marked terminal,is grounded )
Relationship between trees and graphs: Let 3 SOme pract!cal examples
t € D-treesbe a partial dependency treg(t), its 3.1 Col96 (Collins, 96)

e Nodes labelled with terminals € ¥ do not have
more than one daughter labelled with a marke

associated dependency graph, is a grapte) One of the most straightforward projective depen-
o V ={w, € (X x N) | w, is the label of a node in dency parsing strategies is the one described by
t}, Collins (1996), directly based on the CYK pars-

o E={(w;,w;) € (X xN)?|C,D are nodes irt ing algorithm. This parser works with dependency

such thatD is a daughter of?, w. the label of a trees which are linked to each other by creating
daughter of”, w, the label of aﬁ%ughter dan}. links between their heads. Its item set is defined as

S . ={[i, g <i<h<j<
Projectivity: A partial dependency tree e Icotgs = {[i,J,h] | 1 < i < h < j < n}, where an
. P B , item[i, j, h] is defined as the set of forests containing
D-treesis projectiveiff yield(t) cannot be written . o :
SN a single projective dependency tresuch thatt is
as...w;...w;...wherei > j.

: - , roundedyield(t) = w; ... w; andhead(t) = wy,.
It is easy to verify that the dependency graprg ] Lo J i
g(t) is projective with respect to the linear order of, For an input stringu . .. wy, the set of hypothe

: : ses isH = {[i,i,i] | 0 <i<n+1},ie., the set
marked terminalsy;, according to the usual def of forests containing a single dependency tree of the

nition of projectivity found in the literature (Nivre, ,
. . . L form w;(w;). This same set of hypotheses can be
2006), if and only if the.tree Is projective. used for all the parsers, so we will not make it ex-
Parse tree: A partial dependency tree € plicit for subsequent schemata.

Drtree.sis aparse treefqr a given stringw_1 S Wn The set of final items i§[1, 7, 4] | 1 < h < n}:
if its yield is a permutation Ofv, ... w,. Ifits yield  hese jtems trivially represent parse trees for the in-
is exactlyw, ... w,, we will say it is aprojective  ,t sentence, where, is the sentence’s head. The
parse tregor the string. deduction steps are shown in Figure 2.

ltem set. Leto . C D-treesbe the set of -de_ me wordsy andw used in the definition do
pendency trees which are acceptable accordlng tongt appear in the input: t(f)1ese arne+éummy terminals that we will

given grammai _(WhiCh may be a grammar of D- call beginning of sentence (BOS) and end of sentence (EOS)
rules or of CFG-like rules, as explained above). Wenarker, respectively; and will be needed by some parsers.
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[i.i, 4] [i+1,i4+1,i+1] ES99 (Eisner and Satta, 99)

Col96 (Collins,96) Initter TRy R-Link &84 G+LkK wi
[,y ha] R R [i, k, k] '
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Figure 2: Deduction steps of the parsing schemata for sorikm@vn dependency parsers.

As we can see, we use D-rules as side conditior#Z)05a).
for deduction steps, since this parsing strategy is not The item set for Eisner's parsing schema is
grammar-based. Conceptually, the schema we ha¥g,;.o06 = {[i,j,7.F] | 0<i<j<n} U
just defined describes a recogniser: givenasetof Bfi, j, F, 7] | 0<i<j<n} U {[i,j,F,F] |
rules and an input string; . . . w,,, the sentence can 0 < i < j < n}, where each itenfi, j, T, F'] is de-
be parsed (projectively) under those D-rules if anfined as the item[i,j,j] € Zcos, €ach item
only if this deduction system can infer a correct finali, j, F, T is defined as the itemi, j,i] € Zcoigs,
item. However, when executing this schema with and each item[i, j, F, )| is defined as the set
deductive engine, we can recover the parse forest loy forests of the form{¢;,¢2} such thatt; and
following back pointers in the same way as is done, are groundedhead(t1) = w;, head(t2) = w;,
with constituency parsers (Billot and Lang, 1989). and 3k € IN(i < k < j)/yield(t1) = w; . .. w;, A

Of course, boolean D-rules are of limited interesyield(t2) = wyyq - . w;.
in practice. However, this schema provides a formal- Note that the flag$, c in an item[i, j, b, ¢] indi-
ization of a parsing strategy which is independentate whether the words in positiohand j, respec-
of the way linking decisions are taken in a partictively, have a parent in the item or not. Items with
ular implementation. In practice, statistical modelgne of the flags set t& represent dependency trees
can be used to decide whether a step linking wordghere the word in positionor j is the head, while
a andb (i.e., havinga — b as a side condition) is items with both flags set tB represent pairs of trees
executed or not, and probabilities can be attached k&aded at positiorisandj, and therefore correspond
items in order to assign different weights to differento disconnected dependency graphs.
analyses of the sentence. The same principle appliesDeduction stegsare shown in Figure 2. The
to the rest of D-rule-based parsers described in thigt of final items is{[0, n, F, T]}. Note that these
paper. items represent dependency trees rooted at the BOS
3.2 Eis96 (Eisner, 96) markerwg, which acts as a “dummy head” for the

_sentence. In order for the algorithm to parse sen-

By counting the number of free variables used o ces correctly, we will need to define D-rules to
each deduction step of Collins’ parser, we can corgjioy 4, to be linked to the real sentence head.
clude that it has a time complexity 6f(n°). This

complexity arises from the fact that a parentles8.3 ES99 (Eisner and Satta, 99)

word (head) may appear in any position in the paiEisner and Satta (1999) define @tn?) parser for

tial results generated by the parser; the complexigplit head automaton grammars that can be used
can be reduced t0(n?) by ensuring that parentless

words can only appear at the first or last position “Alternatively, we could consider items of the forii i +

: - P : , F', F'] to be hypotheses for this parsing schema, so we would
of an item. This is the pl’lnCIple behind the parsetot need amnitter step. However, we have chosen to use a stan-

defined by Eisner_(1996), which is still in wide US€garg set of hypotheses valid for all parsers because this allows
today (Corston-Oliver et al., 2006; McDonald et al. for more straightforward proofs of relations between schemata.



for dependency parsing. This algorithm is conno D-rules of the formv; — w1, i.e., it must not
ceptually simpler than Eis96, since it only usesllow the EOS marker to govern any words. If this
items representing single dependency trees, avoiid-the case, it is trivial to see that every forest in an
ing items of the form[i, j, F, F']. Its item set is item of the form[0, n + 1] must contain a parse tree
Irsey = {[i,4,i] | 0<i<j<n}U/{[ij,j] | rooted atthe BOS markerand with yielg ...w,,.
0<i<j<n}, where items are defined as in As can be seen from the schema, this algorithm
Collins’ parsing schema. requires less bookkeeping than any other of the
Deduction steps are shown in Figure 2, and the sphrsers described here.
of final items is{[0,n,0]}. (Parse trees hawe, as
their head, as in the previous algorithm). 3.5 LL96 (Lombardo and Lesmo, 96) and
Note that, when described for head automaton  other Earley-based parsers

grammars as in Eisner and Satta (1999), this alg§ne aigorithms in the above examples are based on
rithm seems more complex to understand and implesying individual decisions about dependency links,
ment than the previous one, as it requires four d'ﬁerr'epresented by D-rules. Other parsers, such as that
ent kinds of items in order to keep track of the statg¢| ompardo and Lesmo (1996), use grammars with
of the automata used by the grammars. Howevefoniexi-free like rules which encode the preferred
t_hls abstract representation of its underlying semanyder of dependents for each given governor, as de-
tics as a dependency parsing schema shows that thig.q by Gaifman (1965). For example, a rule of the
parsing strategy is in fact conceptually simpler fogy, N(Det % PP) is used to allowV to haveDet
dependency parsing. as left dependent anBlP as right dependent.

3.4 YMO3 (Yamada and Matsumoto, 2003) The algorithm by Lombardo and Lesmo (1996)

Yamada and Matsumoto (2003) define a determinids @ version of Earley’s context-free grammar parser
tic, shift-reduce dependency parser guided by sufEarley, 1970) using Gaifman’s dependency gram-
port vector machines, which achieves over 90% ddbar, and can be written by using an item set
pendency accuracy on section 23 of the Penn treéiomLes = {[A(a.0),3,5] | A(af) € P A
bank. Parsing schemata are not suitable for directly< ¢ < j < n}, where each iterfA(c.3), i, j] rep-
describing deterministic parsers, since they work dgsents the set of partial dependency trees rooted at
a high abstraction level where a set of operationd. Where the direct children ofl area, and the
are defined without imposing order constraints ogubtrees rooted at have yieldw; ...w;. The de-
them. However, many deterministic parsers can béuction steps for the schema are shown in Figure 2,
viewed as particular optimisations of more generafind the final item set i§[(S5.), 1, n]}.
nondeterministic algorithms. In this case, if we rep- As we can see, the schema for Lombardo and
resent the actions of the parser as deduction stebgsmo’s parser resembles the Earley-style parser in
while abstracting from the deterministic implemen-Sikkel (1997), with some changes to adapt it to de-
tation details, we obtain an interesting nondetermirpendency grammar (for example, tSeanneral-
istic parser. ways moves the dot over the head symbol
Actions in Yamada and Matsumoto’s parser create Analogously, other dependency parsing schemata
links between two target nodes, which act as heatmsed on CFG-like rules can be obtained by mod-
of neighbouring dependency trees. One of the adfying context-free grammar parsing schemata of
tions creates a link where the left target node beSikkel (1997) in a similar way. The algorithm by
comes a child of the right one, and the head of Barbero et al. (1998) can be obtained from the left-
tree located directly to the left of the target nodesorner parser, and the one by Courtin and Genthial
becomes the new left target node. The other a¢1998) is a variant of the head-corner parser.
tion is symmetric, performing the same operation L
with a right-to-left link. An O(n?) nondetermin- S:8 Pseudo-projectivity
istic parser generalising this behaviour can be dé*seudo-projective parsers can generate non-
fined by using an item sefy,03 = {[i,j] | projective analyses in polynomial time by using
0 <i<j<n+1}, where each itenji, j] is de- a projective parsing strategy and postprocessing
fined as the itenji, j, F, F] in Zg;s96; and the de- the results to establish nonprojective links. For
duction steps are shown in Figure 2. example, the algorithm by Kahane et al. (1998) uses
The set of final items i§[0,» + 1]}. In order for a projective parsing strategy like that of LL96, but
this set to be well-defined, the grammar must havesing the following initializer step instead of the



Initter andPredictor. ' 4.1 YMO3 5 Eis96
Initter Ale)ePAl<i<n It is easy to see from the schema definitions that

[A(a)ﬂ.vi - 1]
) Iy mos € Zgisos- In order to prove the relation
4 Relations between dependency parsers petween these parsers, we need to verify that every

The framework of parsing schemata can be used @gduction step in YM03 can be emulated by a se-
establish relationships between different parsing afuence of inferences in Eis96. In the case of the
gorithms and to obtain new algorithms from existingnitter step this is trivial, since thanitters of both
ones, or derive formal properties of a parser (such #arsers are equivalent. If we write tReLinkstep in
soundness or correctness) from the properties of rée nOtat,l%n}Ne ha\zeFu%ed for Eisner items, we have
lated algorithms. R-Link 2 ’[,]k F[;’}’ i
. - . - Z7 K K
b tSlkkeI (13194) ieflner_? sr]e¥e|1ql tklntds of rtelathns. This can be emulated in Eisner’s parser by an
etween schemata, which 1all Into tWo Calegoresz | jnkstep followed by &CombineSpanstep:
generalisationrelations, which are used to obtaln[. K, F, F] - [j, k, T, F] (by R-Link
more fine-grained versions of parsers, diftdring j.’k’T’F ]F F C ik FF ’b CombineS
lations, which can be seen as the reverse of gengr‘-’ [0, 1 FIE [ K B ) (by CombineSpans
relz_ i ' d d to red th ber of it Symmetrically, theL-Link step in YMO3 can be
alisation and are used to reduce the number ol 1Nl ated by ain-Link followed by aCombineSpans
and/or steps needed for parsing. He gives a formg| .
e : . Eis96.
definition of each kind of relation. Informally, a -
parsing schema can be generalised from another &2 ES99— Eis96
the following transformations: If we write the R-Link step in Eisner and Satta’s

parser in the notation for Eisner items, we have
[i,5, F\ T U+1LkTF]
i, k, T, F)

nce can be emulated in Eisner’s parser

wj; — Wk

e ltem refinement: We say th&, - P, (P, is an
item refinement ofP,) if there is a mapping be- R-Link
tween items in both parsers such that single items This infere
in_ Py are broken into multiple items iR, and in- as follows:
dividual deductions are preserved. - (.7 + 1, F, F] (by Initter)

e Step refinement: We say th&, = P, if the li,5, F,T),[j.j + 1, F, F] - [i, j + 1, F, F] (CombineSpans
item set of P, is a subset of that of» and every [; j 11, F, F],[j + 1,k T, F] - i, k, F, F] (CombineSpais
single deduction step if*; can be emulated by a [; &, r, F] - [i, k, T, F] (by R-LinK).

W; — Wi

sequence of inferences . The proof corresponding to tHeLink step is sym-
On the other hand, a schema can be obtained frometric. As for theR-Combinerand L-Combiner
another by filtering in the following ways: steps in ES99, it is easy to see that they are partic-

ular cases of th€ombineSpanstep in Eis96, and
therefore can be emulated by a single application of

¢ Static/dynamic filtering:P; /4, P, if the item

set of P, is a subset of that aP, and P, allows a CombineSpans

subset of the'dlrect |nf.erencesm. ' _ Note that, in practice, the relations in sections 4.1
e Item contraction: The inverse of item refinement,,4 4 2 mean that the ES99 and YMO03 parsers are

ic . ir
P = PRitR— P _ superior to Eis96, since they generate fewer items
e Step contraction: The inverse of step refinemenand need fewer steps to perform the same deduc-
P 5 pif Py 5 P tions. These two parsers also have the interesting

All the parsers described in section 3 can be rgroperty that they use disjoint item sets (one uses
lated via generalisation and filtering, as shown iffems representing trees while the other uses items
Figure 3. For space reasons we cannot show formégpresenting pairs of trees); and the union of these
proofs of all the relations, but we sketch the proofélisjoint sets is the item set used by Eis96. Also note
for some of the more interesting cases: that the optimisation in YMO3 comes from contract-
— _ ~ing deductions in Eis96 so that linking operations

The initialization step as reported in Kahane's paper is difgra immediately followed by combining operations;

ferent from this one, as it directly consumes a nonterminal fro . . . . .
the input. However, using this step results in an incompletrgvhIIe ES99 does the opposite, forcing combining

algorithm. The problem can be fixed either by using the stePPerations to be followed by linking operations.
sh0\_/v_n here instead_ (bo_tt_om—up Earley strategy) or by adding A3  Other relations
additional step turning it into a bottom-up Left-Corner parser. . Lo .

SRefer to Sikkel (1994) for the distinction between static andf We generalise the linking steps in ES99 so that the
dynamic filtering, which we will not use here. head of each item can be in any position, we obtain a
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Figure 3: Formal relations between several well-known dédpacy parsers. Arrows going upwards correspond to
generalisation relations, while those going downwardsespond to filtering. The specific subtype of relation is
shown in each arrow’s label, following the notation in Sewt#.

correctO(n®) parser which can be filtered to Col96a schema from that of related ones. In this sec-

just by eliminating theCombiner steps. tion, we will show how we can prove that the YM03
From Col96, we can obtain z(h(n5) head-corner and ES99 algorithms are correct, and use that fact to

parser based on CFG-like rules by an item refingrove the correctness of Eis96.

ment in which each Collins iterfi, j, ] is split into 51 ES99is correct

a set of itemsA(«a.(.7), 1, j, h]. Of course, the for-
mal refinement relation between these parsers onff§} Order to prove the correctness of a parser, we must

holds if the D-rules used for Collins’ parser correrove its soundness and completeness (see section
spond to the CFG rules used for the head-corndrl)- Soundness is generally trivial to verify, since
parser: for every D-ruleB — A there must be a We only need to check that every individual deduc-
corresponding CFG-like ruld — ... B...inthe tion step in the parser infers a correct consequent
grammar used by the head-corner parser. item when applied to correct antecedents (i.e., in this
Although this parser uses three indideg, 4, us- €@Se, that steps always generate non-empty items
ing CFG-like rules to guide linking decisions makeghat conform to the definition in 3.3). The difficulty
the », indices unnecessary, so they can be removel§ Proving completeness, for which we need to prove
This simplification is an item contraction which re-that all correct final items are valid (i.e., can be in-
sults in anO(n®) head-corner parser. From hereferred by the schema). To show this, we will prove
we can follow the procedure in Sikkel (1994) tothe stronger result that all correct items are valid.
relate this head-corner algorithm to parsers analo- We Will show this by strong induction on the
gous to other algorithms for context-free grammard€ngth of items, where the length of an item=
In this way, we can refine the head-comer parset: ¥; ] is defined asength(i) = k —i+1. Cor-
to a variant of de Vreught and Honig's algorithm'€Ct items of length 1 are the hypotheses of the
(Sikkel, 1997), and by successive filters we reach gchema (of the forfy, 4, i]) which are trivially valid.
left-corner parser which is equivalent to the one de/Ve Will prove that, if all correct items of lengtn
scribed by Barbero et al. (1998), and a step contragf€ valid for alll <:m </, then items of lengtti
tion of the Earley-based dependency parser LL9&e also valid. _ _
The proofs for these relations are the same as those-€t [i; ¥, ] be an item of lengtti in Zp599 (thus,
described in Sikkel (1994), except that the deper-= ¥ —7+1). If this itemis correct, then it contains
dency variants of each algorithm are simpler (du@ 9rounded dependency tresuch thatyield(t) =

to the absence of epsilon rules and the fact that ti&: - - - Wy, andhead(t) = w;.
rules are lexicalised). By construction, the root of is labelledw;. Let

_ w; be the rightmost daughter af; in ¢t. Sincet
5> Proving correctness is projective, we know that the yield af; must be
Another useful feature of the parsing schematef the formw;...wy, wherei < I < j < k. If
framework is that it provides a formal way to de-l < j, thenwy is the leftmost transitive dependent of
fine the correctness of a parser (see last paragraph in ¢, and ifk > j, then we know thatu;, is the
of Section 1.1) which we can use to prove that ourightmost transitive dependent of; in ¢.
parsers are correct. Furthermore, relations betweenLet ¢t; be the subtree of rooted atw;. Lett; be
schemata can be used to derive the correctnesstbé tree obtained from removirtg from¢. Lett; be



the tree obtained by removing all the children to thas always, straightforward, and completeness can be
right of w, from¢;, andt; be the tree obtained by re- proven by using the properties of other algorithms.
moving all the children to the left ab, from¢;. By  Since the set of final items in Eis96 and ES99 are
constructiont; belongs to a correctitef, [ —1,:], the same, and the former is a step refinement of the
t, belongs to a correct iteff, 5, j] andt3 belongs to latter, the completeness of ES99 directly implies the
a correct itemjj, k, j]. Since these three items havecompleteness of Eis96.
a length strictly less thah by the inductive hypoth-  Alternatively, we can use YMO3 to prove the cor-
esis, they are valid. This allows us to prove that theectness of Eis96 if we redefine the set of final items
item [i, k, 4] is also valid, since it can be obtainedin the latter to be of the forrfo, n + 1, F, F], which
from these valid items by the following inferences: are equally valid as final items since they always
[i,0 —1,4], [, 4, 5] F [4,,4] (by theL-Link step), contain parse trees. This idea can be applied to trans-
[, 7,4], [4, k. 7] F [i, k, 4] (by theL-Combinerstep). fer proofs of completeness across any refinement re-
This proves that all correct items of lengthvhich lation.
are of the form(i, k, 7] are correct under the induc- :
tive hypothesis. The same can be proved foritems & Conclusions
the form[i, k, k] by symmetric reasoning, thus prov-We have defined a variant of Sikkel's parsing
ing that the ES99 parsing schema is correct. schemata formalism which allows us to represent
. dependency parsing algorithms in a simple, declar-

5.2 YMO3 s correct ative way. We have clarified relations between
In order to prove correctness of this parser, we foharsers which were originally described very differ-
low the same procedure as above. Soundnessdftly. For example, while Eisner presented his algo-
again trivial to verify. To prove completeness, Weithm as a dynamic programming algorithm which
use strong induction on the length of items, whergombines spans into larger spans, Yamada and Mat-
the length of an itenfi, j] is defined ag — i + 1. sumoto’s works by sequentially executing parsing

The induction step is proven by considering angctions that move a focus point in the input one po-
correct item[i, k] of lengthl > 2 (I = 2 is the base sition to the left or right, (possibly) creating a de-
case here since items of length 2 are generated B¥ndency link. However, in the parsing schemata
the Initter step) and proving that it can be inferredfor these algorithms we can see (and formally prove)
from valid antecedents of length less thaso it is  that they are related: one is a refinement of the other.
valid. To show this, we note that, If > 2, either  parsing schemata are also a formal tool that can be
w; has at least a right dependentgr has at least a ysed to prove the correctness of parsing algorithms.
left dependent in the item. Supposing thathas a The relationships between dependency parsers can
right dependent, if; andt, are the trees rooted @t be exploited to derive properties of a parser from
andwy, in a forest infi, k], we callw; the rightmost  those of others, as we have seen in several examples.
daughter ofw; and consider the fO”OWing trees: Although the examples in this paper are cen-

v = the subtree of; rooted atw;, u, =the tree ob- tered in projective dependency parsing, the formal-
tained by removing from;, us = the tree obtained jsm does not require projectivity and can be used to
by removing all children to the right ab; from v,  represent nonprojective algorithms as #eln in-
uz = the tree obtained by removing all children toteresting line for future work is to use relationships
the left ofw; from v. between schemata to find nonprojective parsers that

We observe that the fore§t;, u2 } belongs to the can be derived from existing projective counterparts.
correct item[é, 5], while {us, t2} belongs to the cor-

rectitem|y, k|. From these two items, we can obtain

[i, k] by using thelL-Link step. Symmetric reason—ﬁ .  that formally describ d
; P ; n alternative framework that formally describes some de-
ing can be applied ifv; has no right dependents but endency parsers is that of transition systems (McDonald and

wy, has at least a Ief_t dependent, and analogously f@re, 2007). This model is based on parser configurations and
the case of the previous parser, we conclude that tlensitions, and has no clear relationship with the approach de-

YMO3 parsing schema is correct. scribed here.
) ) 8Note that spanning tree parsing algorithms based on edge-
5.3 Eis96 is correct factored models, such as the one by McDonald et al. (2005b)

. . : . _@are not constructive in the sense outlined in Section 2, so the
By using the previous proofs and the relatlonshlpg proach described here does not directly apply to them. How-

between schemata that we explained earlier, it _l£er, other nonprojective parsers such as (Attardi, 2006) follow
easy to prove that Eis96 is correct: soundness isconstructive approach and can be analysed deductively.
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