
PARSING SCHEMATA FOR
PRACTICAL TEXT ANALYSIS

ph .d. thesis µ tesis doctoral

Author / Autor: Carlos Gómez Rodríguez

Supervisors / Directores: Miguel A. Alonso Pardo
Manuel Vilares Ferro

A Coruña, April 2009

PARSING SCHEMATA FOR PRACTICAL TEXT ANALYSIS

Author / Autor:
carlos gómez rodríguez

Supervisors / Directores:
miguel a . alonso pardo
manuel vilares ferro

Ph.D.�esis / Tesis Doctoral

Departamento de Computación

Universidade da Coruña

A Coruña, April 2009

Carlos Gómez Rodríguez: Parsing Schemata for Practical Text Analysis, Ph.
D.�esis, © April 2009

ABSTRACT

�is thesis presents several contributions oriented towards the common
goal of bridging the gap between Sikkel’s theory of parsing schemata and
the practical aspects of natural language parser development.
On the practical side, a compiler is presented that can be used to automat-

ically generate an e�cient implementation of a parser from its formal de-
scription in the form of a parsing schema.�is system is then used to obtain
implementations of several well-known parsers for context-free grammars
and tree-adjoining grammars, test them with practical natural language
grammars, and conduct an analysis of their empirical performance.
On the theoretical side, two extensions of parsing schemata are intro-

duced, enabling the formalism to describe two kinds of parsers that are
useful in practical applications, but were not previously supported by this
theory.�e �rst extension is for error-repair parsers, which are algorithms
able to robustly parse ungrammatical sentences. Apart from the extension
itself, a transformation is presented that can be used to automatically obtain
error-repair parsers from standard parsers.
�e second extension de�nes a variant of parsing schemata for depend-

ency parsers, which are algorithms that represent the structure of sentences
as a set of links between their words.�is formalism is used to compare
and relate several well-known projective and non-projective dependency
parsers, as well as to solve the open problem of e�ciently parsingmildly non-
projective dependency structures by de�ning novel algorithms for several
sets of these structures.
Put together, the results in this dissertation provide the parser developer

with a common formal framework that can be used to design, analyse
and compare di�erent kings of parsing algorithms, including error-repair
and dependency-based parsers; as well as practical tools to automatically
obtain e�cient implementations of these parsers directly from their formal
representation.

v

RESUMEN

Esta tesis presenta varias herramientas teóricas y prácticas, con el objetivo
común de acercar la teoría de esquemas de análisis sintáctico de Sikkel a las
necesidades prácticas que surgen en el desarrollo de analizadores sintácticos
para textos en lenguaje natural.
Para ello, desde un punto de vista práctico, se presenta un compilador

que permite generar automáticamente implementaciones e�cientes de ana-
lizadores sintácticos a partir de sus descripciones formales en forma de
esquemas de análisis. A continuación, se muestra el uso de este sistema para
obtener implementaciones de diversos analizadores conocidos para gramá-
ticas independientes del contexto y gramáticas de adjunción de árboles; y
se lleva a cabo un estudio del rendimiento empírico de los analizadores
aplicando estas implementaciones a gramáticas de lenguaje natural.
Por otra parte, desde un punto de vista teórico, se presentan dos exten-

siones de la teoría de esquemas de análisis sintáctico, que permiten a este
formalismo describir dos nuevos tipos de analizadores que, a pesar de ser
de gran utilidad práctica, no eran cubiertos hasta el momento por esta
teoría. La primera extensión es para analizadores sintácticos con corrección
de errores, que son algoritmos capaces de analizar frases agramaticales de
forma robusta. Además de la propia extensión, se de�ne también una trans-
formación que permite añadir automáticamente la capacidad de corrección
de errores a analizadores que no la poseen.
La segunda extensión de�ne una variante de los esquemas de análisis

sintáctico para analizadores de dependencias, que son algoritmos que re-
presentan la estructura de las frases como un conjunto de enlaces entre
sus palabras. Este formalismo se utiliza para comparar y relacionar entre sí
varios de los analizadores de dependencias más conocidos, tanto proyec-
tivos como no proyectivos; además de para resolver el problema abierto
de analizar e�cientemente estructuras de dependencias suavemente no pro-
yectivas, de�niendo analizadores nuevos para varios de estos conjuntos de
estructuras.
En conjunto, los resultados descritos en esta tesis proporcionan al desa-

rrollador de analizadores sintácticos unos fundamentos formales comunes

vii

que pueden ser utilizados para diseñar, analizar y comparar diferentes cla-
ses de analizadores, incluyendo aquéllos con corrección de errores y los
basados en dependencias; además de herramientas prácticas para obtener
implementaciones e�cientes de estos analizadores de forma automática,
partiendo de su representación formal.

viii

ACKNOWLEDGMENTS

I would like to express my gratitude to all the people who have contributed
to this dissertation with their professional and personal support.
My advisors, Miguel A. Alonso and Manuel Vilares, set down the basic

ideas that put my research into motion, while giving me the freedom to
pursue my own ideas.�ey not only provided advice and guidance during
these years of work, but also ensured that I could travel to places where I
would learn new things and improve as a researcher. I am also grateful to all
the rest of the people in the COLE and LyS groups, for the many interesting
discussions and for creating a pleasant working atmosphere.
John Carroll and David Weir introduced me to the exciting �eld of de-

pendency parsing, and the last part of the dissertation would not have been
possible without their valuable contributions and support. I also thank them,
and the rest of the people in the NLCLGroup at Sussex, for their friendliness
that made me feel at home in a foreign country.
Many other researchers contributed to di�erent parts of this work with

their helpful suggestions and comments: Jason Eisner, Marco Kuhlmann,
Joakim Nivre, Sylvain Salvati, Giorgio Satta and Eric Villemonte de la Cler-
gerie were some of them.
I would also like to thank the members of the dissertation committee, as

well as the external reviewers, for devoting their time and e�ort to evaluate
this thesis.
Last, but not least, I amdeeply grateful to all the people who supportedme

personally with their love and friendship during all these years.�e biggest
thanks goes to my parents and the rest of my family, for their constant
encouragement and support throughout my whole life. I am also lucky
enough to have friends who I can always trust to support me in the good
and bad times: Alberto, Alicia, Arantza, Cynthia, Iria, Judith,Mario, Quique,
Ramón... it would have been much harder to get to this stage without your
friendship.

�e research work reported in this dissertation has been partially �n-
anced byMinisterio de Educación y Ciencia and FEDER (Projects tin2004-

ix

07246-c03, hum2007-66607-c04) and Xunta de Galicia (Projects
pgidit05pxic10501pn, pgidit05pxic30501pn, pgidit05sin044e,
pgidit05sin059e, pgidit07sin005206pr, incite08e1r104022es,
incite08ena305025es, incite08pxib302179pr, Rede Galega de Pro-
cesamento da Linguaxe e Recuperación de Información); as well as by an
FPU grant and its associated foreign visit grant (Becas FPU, Ministerio de Edu-
cación y Ciencia), a visit grant by Xunta de Galicia (Estadías do programa
de recursos humanos da Dirección Xeral de I+D+i / INCITE, FSE co�nanced),
and several travel grants by Universidade da Coruña.

x

CONTENTS

i introduction and preliminaries 1
1 introduction 3
1.1 Motivation 3
1.2 Background 5

1.2.1 Parsing 5
1.2.2 Robustness in grammar-driven parsers 7
1.2.3 Parsing schemata 8

1.3 Summary of the thesis 9
1.3.1 Contributions 10
1.3.2 Structure of the thesis 11

1.4 Publications 13
2 preliminaries 19
2.1 Context-free grammars 19
2.2 Parsing algorithms and schemata 22
2.3 Formal de�nition of parsing schemata 28

2.3.1 Deduction systems 29
2.3.2 Parsing systems and parsing schemata 30
2.3.3 Correctness of parsing schemata 34
2.3.4 Relations between parsing schemata 35

2.4 Advantages of parsing schemata 37

ii compiling parsing schemata 39
3 a compiler for parsing schemata 41
3.1 Motivation and goals 41

3.1.1 Design goals 43
3.1.2 Related work 44

3.2 System architecture 45
3.3 Architecture of the generated code 46
3.4 Reading schemata 48
3.5 Code generation 52

3.5.1 Element types 52
3.5.2 Deduction step classes 55
3.5.3 Representation of items in the generated code 55

xi

xii Contents

3.5.4 Visitors for code generation 56
3.5.5 Search speci�cations 59

3.6 Indexing 60
3.6.1 Static analysis and index descriptors 61
3.6.2 Generation of indexing code 65
3.6.3 Indexing deduction steps 69

3.7 Discussion 70
4 comparing constituency parsers in practical set-

tings 73
4.1 Parsing natural language with CFGs 74
4.2 Parsing natural language with TAGs 80

4.2.1 Tree-adjoining grammars 80
4.2.2 Substitution and adjunction 83
4.2.3 Properties of TAG 85

4.3 Parsing schemata for TAG 86
4.4 Parsing schemata for the XTAG English grammar 89

4.4.1 Grammar conversion 89
4.4.2 Feature structure uni�cation 90
4.4.3 Tree �ltering 94

4.5 Comparing several parsers for the XTAG grammar 96
4.6 Discussion 100

5 practical complexity of tag parsers 103
5.1 Parsing with arti�cial TAGs 103
5.2 Overhead of TAG parsing over CFG parsing 110
5.3 Discussion 111

iii parsing schemata for error-repair parsers 115
6 error-repair parsing schemata 117
6.1 Motivation 117
6.2 Error repair in parsing schemata 118

6.2.1 De�ning error-repair parsing schemata 119
6.2.2 Adistance function for edit distance based repair 123

6.3 Lyon’s error-repair parser 125
6.3.1 Lyon is correct 127

6.4 Obtaining minimal distance parses 135
6.5 From global to regional error repair 139

6.5.1 Global vs. regional parsing performance 142
6.6 Discussion 144

Contents xiii

7 transforming standard parsers into error-repair
parsers 145
7.1 From standard parsers to error-repair parsers 145

7.1.1 �e transformation 147
7.2 Formal de�nition of the error-repair transformation 150

7.2.1 Some properties of trees and items 150
7.2.2 Some properties of deduction steps 152
7.2.3 �e error-repair transformation (formal de�nition) 154

7.3 Proof of correctness of the error-repair transformation 158
7.3.1 Proof of�eorem 7.15 160
7.3.2 Proof of�eorem 7.16 163

7.4 Optimisation techniques 170
7.5 Discussion 174

iv parsing schemata for dependency parsers 177
8 dependency parsing schemata 179
8.1 Motivation 179
8.2 De�nition of dependency parsing schemata 180
8.3 Parsing schemata for projective dependency parsers 184

8.3.1 Collins (1996) 185
8.3.2 Eisner (1996) 186
8.3.3 Eisner and Satta (1999) 188
8.3.4 Yamada and Matsumoto (2003) 189
8.3.5 Lombardo andLesmo (1996) and other Earley-based

parsers 190
8.3.6 Nivre (2003) 191
8.3.7 Covington’s projective parser (Covington, 2001) 196

8.4 Relations between dependency parsers 196
8.4.1 Yamada andMatsumoto (2003) srÐ→Eisner (1996) 197
8.4.2 Eisner and Satta (1999) srÐ→ Eisner (1996) 198
8.4.3 Other relations 199

8.5 Proving correctness 200
8.5.1 Eisner and Satta (1999) is correct 200
8.5.2 Yamada and Matsumoto (2003) is correct 201
8.5.3 Eisner (1996) is correct 202

8.6 Parsing schemata for non-projective dependency parsers 203
8.6.1 Pseudo-projectivity 203
8.6.2 Attardi (2006) and theMHk parser 203

xiv Contents

8.6.3 MST parser (McDonald et al., 2005b) 206
8.6.4 Covington’s non-projective parser (Covington, 1990;2001) 209

8.7 Parsing schemata for Link Grammar parsers 210
8.7.1 Sleator and Temperley’s LG parser 213
8.7.2 Adapting projective dependency parsers to Link

Grammar 215
8.8 Discussion 221

9 mildly non-projective dependency parsing 223
9.1 Motivation 223
9.2 Preliminaries 225
9.3 �eWG1 parser 227

9.3.1 Parsing schema forWG1 227
9.3.2 Proof of correctness forWG1 230
9.3.3 Computational complexity 242

9.4 �eWGk parser 244
9.4.1 Parsing schema forWGk 244
9.4.2 Proof of correctness forWGk 246
9.4.3 Computational complexity 247

9.5 Parsing ill-nested structures 247
9.5.1 �eMG1 andMGk parsers 248
9.5.2 Complexity 251
9.5.3 Proof of correctness forMGk 251
9.5.4 Mildly ill-nested dependency structures 258

9.6 Discussion 260

v conclusions 263
10 conclusions 265
10.1 Future work 268

bibliography 271

LIST OF FIGURES

Figure 1 Constituency and dependency structures. 6
Figure 2 Parse tree for a simple sentence. 21
Figure 3 Two alternative parse trees for an ambiguous sen-

tence. 22
Figure 4 Pseudocode for the CYK parsing algorithm. 23
Figure 5 Pseudocode for Earley’s parsing algorithm. 25
Figure 6 A parsing schema specifying the CYK parsing al-

gorithm. 26
Figure 7 Aparsing schema specifying Earley’s parsing algorithm. 27
Figure 8 Form of the trees associated to the Earley item [A→

α ● β, i , j]. 27
Figure 9 UMLactivity diagram showing how the parsing schema

compiler can be used to compile and execute a schema. 46
Figure 10 EBNF grammar for parsing schema �les. 49
Figure 11 Adjunction operation in TAG. 84
Figure 12 Substitution operation in TAG. 85
Figure 13 Marked parse tree for a simple grammatical sen-

tence. 125
Figure 14 Trees obtained for sentences with one insertion, de-

letion and substitution error, respectively; under the
distance function d̂. 125

Figure 15 Dependency tree and dependency graph. 182
Figure 16 Projective dependency structure that cannot be parsed

with Covington’s LSUP algorithm. 196
Figure 17 Formal relations between several well-known de-

pendency parsers. 197
Figure 18 Additional steps to turnWG1 intoMG1. 250
Figure 19 General form of theMGk Combine step. 250
Figure 20 One of the smallest strongly ill-nested dependency

structures. 259

xv

LIST OF TABLES

Table 1 Information about several context-free grammars
from real-life corpora. 74

Table 2 Performance measurements for CFG parsers. 78
Table 3 Empirical performance comparison of uni�cation

strategies: uni�cation during and a�er parsing. 91
Table 4 Test sentences from the XTAG distribution. 97
Table 5 Runtime comparison of four XTAG parsers on sev-

eral sentences. 98
Table 6 Items generated by four XTAG parsers on several

sentences. 99
Table 7 Execution times of four di�erent TAG parsers for

arti�cially-generated grammars Gk . 106
Table 8 Items generated by four di�erent TAG parsers for

arti�cially-generated grammars Gk . 107
Table 9 Comparison of empirical and theoretical complexit-

ies of four TAG parsers. 108
Table 10 Runtimes obtained by applying the Earley parser for

context-free grammars to sentences in Lk . 112
Table 11 Comparison of empirical complexities obtainedwhen

parsing the languages Lk with CFGs and TAGs. 113
Table 12 Performance results for global and regional error-

repair parsers. 143
Table 13 Counts of dependency trees classi�ed by gap degree,

and mild and strong ill-nestedness (for their gap
degree), appearing in various treebanks. 259

xvi

ACRONYMS

BOS Beginning Of Sentence
CFG Context-Free Grammar
CNF Chomsky Normal Form
CYK Cocke-Younger-Kasami parsing algorithm
EOS End Of Sentence
LCFRS Linear Context-Free Rewriting Systems
LG Link Grammar
LTAG Lexicalised Tree-Adjoining Grammar
MST Maximum Spanning Tree
TAG Tree-Adjoining Grammar
TAL Tree-Adjoining Languages
VPP Valid Pre�x Property

xvii

Part I

INTRODUCTION AND PRELIMINARIES

1
INTRODUCTION

�is dissertation provides several theoretical and practical tools that extend
the applicability of Sikkel’s theory of parsing schemata (Sikkel, 1997) in
several di�erent directions.
First, a compilation technique is de�ned that can be used to obtain e�-

cient implementations of parsers automatically from their corresponding
schemata.�is makes it possible to use parsing schemata to prototype and
test parsing algorithms, without the need of manually converting the formal
representation to an e�cient implementation in a programming language.
Second, the range of parsing algorithms that can be de�ned by means of

schemata is extended with the de�nition of new variants of the formalism
that can deal with error-repair parsers and dependency-based parsers.
Apart from these tools themselves, the dissertation also introduces several

research results that have been obtained by using them.�e compilation
technique is used to obtain implementations of di�erent parsers for context-
free grammars and tree-adjoining grammars and perform an empirical
analysis of their behaviour with real-sized grammars. �e extension of
parsing schemata for error-repair parsing is used to de�ne a transforma-
tion that can be employed to automatically add error-repair capabilities to
parsers that do not have them. Finally, the extension of parsing schemata
for dependency parsing is used to �nd formal relationships between several
well-known dependency parsers, as well as to de�ne novel algorithms for
mildly non-projective dependency structures.

1.1 motivation

Parsing schemata, introduced by Sikkel (1997), are high-level, declarative
descriptions of parsing algorithms. A parsing schema describes a set of

3

4 introduction

intermediate results that can be obtained by a parser and a set of operations
that it can use to generate new results from existing ones; but it imposes
no constraints on the order in which to execute the operations or the data
structures in which to store the results. We could say that schemata are
descriptions of what to do, but they abstract away from how to do it.
�is high abstraction level makes parsing schemata a useful tool to de-

scribe, analyse and compare di�erent parsing algorithms: schemata provide
simple and uniform descriptions of the parsers, and allow us to focus on
their logic without worrying about implementation details. However, if
we wished to apply the schemata formalism to practical parsing of natural
language text, we would �nd several problems, and is it these problems that
are addressed in this dissertation:

• First of all, the high abstraction level of parsing schemata, which
makes them useful from a theoretical standpoint; also rules out the
possibility of executing them on a computer. If we wish to test an
algorithm that we have de�ned by means of a schema, we must �rst
implement it in a programming language, �lling in the control struc-
tures and implementation details that were omitted in the schema.
�erefore, schemata are useful as a formal framework for de�ning
parsers and analysing their formal properties; but not for prototyping
them and studying their empirical behaviour.

• Parsing schemata can be used to represent algorithms that analyse
input sentences with respect to a given grammar, so that they only will
produce a complete analysis of an input sentence if it is grammatical.
However, it is common in practical applications to �nd sentences that
do not conform to the constraints of our grammar, since it is not pos-
sible to build a grammar that will recognise every possible structure
that can appear in a natural language.�erefore, it is interesting to be
able to de�ne robust parsers that are able to obtain a complete, albeit
approximate, analysis for ungrammatical sentences.�e formalism
of Sikkel (1997) does not allow to relax grammar constraints in order
to de�ne this kind of parsers, since it is based on the assumption that
all the possible intermediate results are parts of grammatically valid
trees.

• �e formalism of Sikkel (1997) is formally linked to constituency-
based parsing, in which the structure of sentences is expressed by
dividing them in blocks (constituents) which are in turn divided into
smaller constituents. However, in recent years, there has been a surge

1.2 background 5

of interest in dependency-based parsers, in which the structure of a
sentence is represented as a set of binary links (dependencies) between
its words. Although many current state-of-the-art parsers are based
in this assumption, dependency parsers cannot be represented by the
formalism of Sikkel (1997).

�e purpose and contribution of this dissertation is to solve these prob-
lems, by de�ning a set of extensions and tools to make parsing schemata
more useful in practice. In addition to this, research results obtained by
using these extensions and tools are also presented.

1.2 background

In this section, the contributions of this thesis are put into context by brie�y
outlining the problem of parsing natural language sentences and the form-
alism of parsing schemata.

1.2.1 Parsing

In the context of computational linguistics, the process of parsing, or syn-
tactic analysis, consists of �nding the grammatical structure of natural
language sentences. Given a sentence represented as a sequence of symbols,
each corresponding to a word, a parsing algorithm (or simply parser) will try
to �nd and output a representation of the syntactic structure of the sentence.
�e nature of this representation depends on the linguistic theory that the
parser uses to describe syntax. In phrase structure parsers, or constituency
parsers, sentences are analysed by dividing them into meaningful segments
called constituents, which are in turn broken up into smaller constituents.
�e result of a constituency analysis can be represented with a phrase struc-
ture tree (or constituency tree), as can be seen in Figure 1a. On the other
hand, in dependency-based parsers, the structure of a sentence is represented
by a set of directed links (dependencies) between their words, which form a
graph as the one in Figure 1b.
Parsing is a fundamental process in any natural language processing

pipeline, since obtaining the syntactic structure of sentences provides us
with information that can be used to extract meaning from them: constitu-
ents correspond to units of meaning, and dependency relations describe the
ways in which they interact, such as who performed the action described in

6 introduction

(a) Constituency tree. (b) Dependency graph.

Figure 1: Constituency and dependency structures.

a sentence or which object is receiving the action.�us, we can �nd parsers
applied to many practical problems in natural language processing where
some degree of semantic analysis is necessary or convenient, such as in-
formation retrieval (Vilares et al., 2008), information extraction (Surdeanu
et al., 2003), machine translation (Chiang, 2005; Shen et al., 2008), textual
entailment (Herrera et al., 2005), or question answering (Bouma et al., 2005;
Amaral et al., 2008).
�e practical importance of parsing natural language text has motivated

the development of a diverse range of algorithms for this purpose. Di�erent
parsers are better suited to di�erent situations; so the question of which
parser is better for a practical application depends on many factors, such as
the language, domain, application goal, or availability of linguistic resources.
According to the linguistic resources that they use, we can broadly classify

parsing techniques into two categories: grammar-driven and data-driven
approaches. In grammar-driven parsing, the set of valid sentences in a given
language is represented by a grammar, which is a set of formal rules that
describe the kinds of structures that can appear in the language. In a data-
driven approach, no formal grammar is needed: instead, some learning
technique is used to automatically infer linguistic knowledge from (possibly
annotated) texts, that can later be used to parse other texts. However, most of
the systems used in practice are not purely grammar-driven or data-driven;
instead, they combine features of both approaches: for example, a formal
grammar can be annotated with statistical information obtained from a
corpus of annotated text, or a system may induce a grammar automatically
from text data.
In parsers that use grammars, the kinds of rules that can be used to

describe syntactic structures and the ways in which they are used to form
sentences depend on the particular grammatical formalism that we use.

1.2 background 7

In the �eld of constituency parsing, context-free grammars (CFG’s) are a
widely-used formalism, since they are simple and can be parsed e�ciently,
in cubic time with respect to the length of the input (Younger, 1967; Earley,
1970). However, it has been shown that CFG’s are not powerful enough
to represent natural languages, since some linguistic phenomena (such as
Dutch cross-serial dependencies) are not context-free (Joshi, 1985). �is
led to the development of mildly context-sensitive grammar formalisms
(Joshi, 1985; Joshi et al., 1991), which are formalisms that are general enough
to account for linguistic phenomena that cannot be handled by CFG’s, yet
restricted enough to still be parsable in polynomial time. An example of this
type of formalism is tree-adjoining grammars (TAG’s), which are parsable in
O(n6), where n is the length of the input (Vijay-Shanker and Joshi, 1985).
In the case of dependency-based parsing, it is also possible to use a gram-

mar: for example, dependency grammars can be de�ned with the formalism
by Hays (1964) and Gaifman (1965) or as bilexical grammars (Eisner, 2000).
However, many dependency parsers (Yamada and Matsumoto, 2003; Nivre
et al., 2007b) are purely data-driven, and do not use a grammar at all.

1.2.2 Robustness in grammar-driven parsers

One of the biggest di�culties that arise when using grammar-driven ap-
proaches to process natural language sentences in practical domains is the
problem of achieving robustness. Robustness can be de�ned as the capacity
of a parser to analyse any input sentence (Nivre, 2006b), and it is a highly
desirable property for any system dealing with unrestricted natural language
text.�e problem is that, when a parser that employs a formal grammar is
used to analyse unrestricted text, it is likely to �nd sentences that do not be-
long to the formal language de�ned by the grammar.�is can happen due to
several reasons, including insu�cient coverage (the sentence is syntactically
correct, but our grammar is not detailed enough to recognise it) or errors
in the sentence itself (not all the sentences in real texts are syntactically
correct).
�e methods that have been proposed to solve this problem fall mainly

into two broad categories: those which try to parse well-formed fragments
of the input when an analysis for the complete sentence cannot be found –
partial parsers, like the one by Kasper et al. (1999) –, and those that try to
provide a complete parse for the input sentence by relaxing the constraints
imposed by the grammar. One of the approaches to achieve the latter is that

8 introduction

of error-repair parsers (McKenzie et al., 1995), which are algorithms that are
able to �nd complete parse trees for sentences not covered by their grammar,
by supposing that ungrammatical strings are versions of valid strings in
which there are a number of errors. Under this assumption, the generation
of an analysis for an ungrammatical sentence is based on the analysis of the
grammatical sentence that produced it under this error model.

1.2.3 Parsing schemata

�e formalism of parsing schemata (Sikkel, 1997) is a theoretical framework
that can be used to describe di�erent parsers in a simple and uniform way.
Parsing schemata are based on the idea of considering the parsing process
as a deduction process, which proceeds by generating intermediate results
called items.�is is similar to the view of parsing as deduction by Shieber
et al. (1995), with the di�erence that Sikkel’s framework formally de�nes
items and related concepts, providing a mathematical basis that can be used
to reason about formal properties of parsers. In particular, items in parsing
schemata are sets of partial constituency trees that are licensed by the rules
of a given grammar. Note that this fact means that parsing schemata are only
applicable to grammar-based constituency parsers, and not to data-driven
or dependency-based parsers. In fact, Sikkel’s examples were focused in
context-free grammar parsers only, but parsing schemata have subsequently
been used to describe TAG parsers as well (Alonso et al., 1999, 2004).
In order to describe a parser by means of a parsing schema, we need to

provide the following:
• A set of initial items, or hypotheses, which are obtained directly from
each input sentence.

• A set of inference rules called deduction steps, that can be used to
derive new items from existing ones. A parsing schema speci�es
these inference rules as a set, but makes no claim about the order
in which they are to be executed. �e set of deduction steps in a
schema is given as a function of the rules in our grammar, so that
the same parsing strategy will produce di�erent results with di�erent
grammars, as expected.

• A set of �nal items, which are items that contain a full parse tree for
the input or allow us to obtain it.

1.3 summary of the thesis 9

A given sentence belongs to the language de�ned by a grammar if a �nal
item can be obtained from the initial items by some sequence of inferences
using deduction steps. A generic deductive procedure as the one described
by Shieber et al. (1995) can be used to try all the possible inferences in order
to �nd �nal items; and the sequences of inferences that produce �nal items
can be used to recover parse forests (Billot and Lang, 1989).
Items in parsing schemata are formally de�ned as sets of partial con-

stituency trees, members of the quotient set of some equivalence relation
between trees. Additionally, items can be augmented with additional in-
formation. For example, probabilities can be included in items to describe
statistical parsers, or feature structures to describe uni�cation-based parsers.
Parsing schemata are a useful theoretical tool to describe and study pars-

ers for several reasons:
• �ey provide a simple and declarative way to represent parsing al-
gorithms. A representation of a parser by means of a parsing schema
is typically much more compact than, for example, a pseudocode
representation. Properties of parsers such as their time and space
computational complexities are easy to infer from their schemata.

• �ey represent parsers in a uniform way, and allow us to �nd and
prove relationships between di�erent algorithms.�e mathematical
framework provided by parsing schemata can also be used to prove
the correctness of parsers, and proofs of correctness can be transferred
between some parsers by using the formal relationships between
them.

• �ey are at a high abstraction level, so that they focus on the se-
mantics of the parser (what the parser does) and abstract away from
implementation details (the particular data and control structures
used by the algorithm). Note that this means that there is not a dir-
ect correspondence between parsing schemata and algorithms: a
schema describes a parsing strategy that can sometimes be realised
by di�erent algorithms.

1.3 summary of the thesis

�e fundamental goal of this thesis is to provide theoretical and practical
tools to extend the applicability of parsing schemata in practical natural

10 introduction

language text parsing. In what follows, we list the main contributions of
this work, and then outline the contents of each chapter of the thesis.

1.3.1 Contributions

1. A compiler is presented that automatically converts parsing schemata
into e�cient executable implementations of their corresponding pars-
ing algorithms.�e system is tested by compiling schemata for several
well-known CFG parsers and running them on grammars from real-
life corpora.

2. �e parsing schemata compiler is used to conduct an empirical study
of the performance of several TAG parsing strategies on a real-life,
feature-based LTAG (LexicalisedTreeAdjoiningGrammar): theXTAG
English Grammar (XTAG Research Group, 2001). Note that previous
comparative studies of TAG parsers in the literature were done with
“toy” grammars, but there were no such studies with real-life, wide-
coverage grammars. Additionally, the performance of TAG parsers is
also compared to that of CFG parsers, and the empirical overhead
introduced when using TAG’s to parse context-free languages is quan-
ti�ed.

3. A theoretical extension of parsing schemata is de�ned to allow ro-
bust parsers under the error-repair paradigm to be described with
schemata.

4. A transformation is de�ned that can be used to automatically add
error-repair capabilities to the schemata of parsers that do not have
them. By using this transformation, robust parsers and their imple-
mentations can be obtained automatically from non-robust parsing
schemata.

5. A variant of the parsing schemata formalism is de�ned for dependency-
based parsing, and used to describe and formally relate several well-
known projective and non-projective dependency parsers in the lit-
erature. Parsing schemata are also given for the formalism of link
grammar.

6. Novel parsing algorithms are de�ned for di�erent sets of mildly non-
projective dependency structures, including a new set of mildly ill-
nested structures that includes all the sentences present in a number
of dependency treebanks.

1.3 summary of the thesis 11

1.3.2 Structure of the thesis

�is thesis is structured in �ve parts. �e �rst part is introductory, con-
taining this chapter which summarises the main goals and contributions of
the thesis, and a chapter de�ning the formalism of parsing schemata, that
will be used throughout the thesis. �e second part presents a compiler
for parsing schemata and several empirical studies of constituency-based
parsers conducted with it.�e third part introduces an extension of parsing
schemata that can be used to describe error-repair parsers.�e fourth part
is devoted to a variant of schemata for dependency-based parsers. Finally,
the ��h part summarises conclusions and discusses future work.
A chapter-by-chapter breakdown of the parts follows:
Chapter 2 formally introduces the framework of parsing schemata, Part I

which will be used throughout the thesis.�e formalism is described here
as de�ned by Sikkel (1997), serving as a starting point for the novel exten-
sions presented in subsequent chapters.�e de�nitions are complemented
by concrete examples based on the CYK (Kasami, 1965; Younger, 1967)
and Earley (1970) parsing algorithms, which will also be used recurringly
through the rest of the chapters.
Chapter 3 presents a compiler able to automatically transform pars- Part II

ing schemata into e�cient Java implementations of their corresponding
algorithms.�e input to this system is a simple representation of a schema,
practically coincident with the formal notation commonly used to denote
them, as described in Chapter 2. �e system performs an analysis of the
deduction steps in the input schema in order to determine the best data
structures and indexes to use, ensuring that the generated implementations
are e�cient.�e system described is general enough to handle all kinds of
schemata for di�erent grammar formalisms, and it provides an extensibility
mechanism allowing the user to de�ne custom notational elements.
In Chapter 4, the compiler presented in Chapter 3 is used to generate

implementations of three well-known CFG parsing algorithms and compare
their empirical performance on several grammars taken from real-life cor-
pora.�ese results show how di�erent parsing algorithms are better suited
to di�erent grammars. Implementations are also generated for four TAG
parsing algorithms, and used to analyse sentences with the XTAG grammar,
a real-life, wide-coverage feature-based TAG. In order to be able to generate
XTAG parsers, some transformations are made to the grammar, and TAG
parsing schemata are extended with feature structure uni�cation support

12 introduction

and a simple tree �ltering mechanism.�e data obtained is used to compare
the empirical performance of these algorithms, being the �rst comparison
of TAG parsers on a large-scale, wide-coverage grammar: previously to this
work, existing comparisons were limited to “toy” grammars with a small
number of rules.
In Chapter 5, the parsing schema compiler is used to conduct further

empirical studies of CFG and TAG parsers. However, instead on focusing
on the performance of parsers on real-life grammars as in Chapter 4, we
obtain more general results by generating ranges of grammars of di�erent
lengths. By comparing the performance of several CFG and TAG parsers
on di�erent sized, arti�cially generated grammars, we can measure their
empirical computational complexity.�is allows us to evaluate the overhead
caused by using Tree Adjoining Grammars to parse context-free languages,
as well as the in�uence of string and grammar size on TAG parsing.
Chapter 6 introduces error-repair parsing schemata: an extension ofPart III

parsing schemata which can be used to de�ne parsers that can robustly
handle sentences with errors or inconsistencies. As the original theory of
parsing schemata is based on the assumption that items are sets of partial
constituency trees that follow the rules of a given grammar, the underlying
concepts behind schemata have to be rede�ned in order to support these
robust parsers.�is extension of the parsing schema framework allows us to
describe and compare error-repair parsers in a simple and uniformway, and
provides a formal basis for proving their correctness and other properties.
In addition, this framework is used to develop a generic technique for
obtaining e�cient error-correcting parsers based on regional error repair,
and empirical performance results are provided.
In Chapter 7, the framework of error-repair parsing schemata is used

to de�ne a general transformation technique to automatically obtain robust,
error-repair parsers from standard non-robust parsers. If our method is ap-
plied to a correct parsing schema verifying certain conditions, the resulting
error-repair parsing schema is guaranteed to be correct.�e required con-
ditions are weak enough to be ful�lled by a wide variety of popular parsers
used in natural language processing , such as CYK, Earley and Le�-Corner.
�e schemata obtained from the transformation can be implemented with
global, regional or local error-repair techniques, so that we may choose to
obtainmore e�cient robust parsers by sacri�cing the guarantee of obtaining
all the optimal solutions.
In Chapter 8 , a variant of parsing schemata is de�ned that can be usedPart IV

1.4 publications 13

to describe, analyse and compare dependency parsing algorithms. �is
extension is used to establish clear relations between several existing pro-
jective dependency parsers and prove their correctness. Parsing schemata
for non-projective dependency parsers are also presented. A variant of the
formalism to represent parsers based on link grammar (Sleator and Tem-
perley, 1991, 1993) is also shown, including examples of how some existing
dependency parsers can be adapted to produce parsers for link grammar.
In Chapter 9, parsing schemata are used to solve the problem of e�-

ciently parsing mildly non-projective dependency structures. Polynomial
time parsing algorithms are presented for various mildly non-projective
dependency formalisms, including well-nested structures with gap degree
bounded by a constant k, and a new class ofmildly ill-nested structures for
gap degree k.�e latter class includes all the gap degree k structures in a
number of dependency treebanks.
Finally, Chapter 10 contains a summary of the main conclusions derived Part V

from the research described in this thesis, as well as a discussion of future
work.

Note that the material in Part I (especially, Chapter 2) is required to
understand the rest of the parts, since it introduces notation that will be
used throughout the thesis. Parts II, III and IV can be read or skipped
independently of each other, but the material in the �rst chapter of each of
these parts is required to understand the rest of the part.

1.4 publications

Part of the results presented in this dissertation have appeared as publica-
tions in refereed conference proceedings and journals.�ese publications
are the following:

in english :
• Carlos Gómez-Rodríguez, Jesús Vilares and Miguel A. Alonso: A
compiler for parsing schemata. So�ware: Practice and Experience,
39(5):441-470, 2009. ISSN 0038-0644. DOI 10.1002/spe.904. (Gómez-
Rodríguez et al., 2009c)

• Carlos Gómez-Rodríguez, John Carroll and DavidWeir: A Deductive
Approach to Dependency Parsing, in ACL-08:HLT. 46th Annual Meet-

14 introduction

ing of the Association for Computational Linguistics: Human Language
Technologies. Proceedings of the Conference, pp. 968-976, Columbus,
Ohio, USA, 2008. ISBN 978-1-932432-04-6. (Gómez-Rodríguez et al.,
2008a)

• Carlos Gómez-Rodríguez, David Weir and John Carroll: Parsing
Mildly Non-projective Dependency Structures, in Proceedings of the
12th Conference of the European Chapter of the Association for Com-
putational Linguistics (EACL-09), pp. 291–299, Athens, Greece, 2009.
ISBN 978-1-932432-16-9. (Gómez-Rodríguez et al., 2009d)

• Carlos Gómez-Rodríguez, Jesús Vilares and Miguel A. Alonso: Com-
piling Declarative Speci�cations of Parsing Algorithms, in R. Wagner,
R. Newell and G. Pernul (eds.), Database and Expert Systems Applica-
tions, volume 4653 of Lecture Notes in Computer Science, pp. 529–538,
Springer-Verlag, Berlin-Heidelberg-New York, 2007. ISSN 0302-9743.
(Gómez-Rodríguez et al., 2007c)

• Carlos Gómez-Rodríguez, Jesús Vilares and Miguel A. Alonso: Pro-
totyping E�cient Natural Language Parsers, in Proceedings of the
International Conference RANLP 2007, Recent Advances in Natural
Language Processing, pp. 246-250, Borovets, Bulgaria, 2007. ISBN
978-954-91743-7-3. (Gómez-Rodríguez et al., 2007d)

• Carlos Gómez-Rodríguez, Miguel A. Alonso and Manuel Vilares:
A general method for transforming standard parsers into error-repair
parsers, in Alexander Gelbukh (ed.), Computational Linguistics and
Intelligent Text Processing, volume 5549 of Lecture Notes in Computer
Science, pp. 207–219, Springer-Verlag, Berlin-Heidelberg-New York,
2009. ISSN 0302-9743. (Gómez-Rodríguez et al., 2009a)

• Carlos Gómez-Rodríguez, Miguel A. Alonso and Manuel Vilares:
Generating XTAGParsers fromAlgebraic Speci�cations, in Proceedings
of the 8th International Workshop on Tree Adjoining Grammar and
Related Formalisms, pp. 103–108, Sydney, Australia, 2006. Association
for Computational Linguistics, East Stroudsburg, PA, 2006. ISBN
1-932432-85-X. (Gómez-Rodríguez et al., 2006b)

• Carlos Gómez-Rodríguez, Miguel A. Alonso and Manuel Vilares:
On �eoretical and Practical Complexity of TAG Parsers, in Shuly
Wintner (ed.), Proceedings of FG 2006:�e 11th conference on Formal
Grammar. Malaga, Spain, July 29-30, 2006, volume of FG Online
Proceedings, chapter 7, pp. 87-101, CSLI Publications, Stanford, 2007.
ISSN 1935-1569. (Gómez-Rodríguez et al., 2006c)

1.4 publications 15

• Carlos Gómez-Rodríguez, Jesús Vilares and Miguel A. Alonso: Auto-
matic Generation of Natural Language Parsers from Declarative Spe-
ci�cations, in Loris Penserini, Pavlos Peppas and Anna Perini (eds.),
STAIRS 2006 - Proceedings of the�ird Starting AI Researchers’
Symposium, Riva del Garda, Italy, August 28-29, 2006, volume 142
of Frontiers in Arti�cial Intelligence and Applications, pp. 259-260,
IOS Press, Amsterdam/Berlin/Oxford/Tokyo/Washington DC, 2006.
ISSN 0922-6389 / ISBN 1-58603-645-9. (Gómez-Rodríguez et al.,
2006d)

• Carlos Gómez-Rodríguez, Miguel A. Alonso and Manuel Vilares:
Generation of indexes for compiling e�cient parsers from formal spe-
ci�cations, in Proceedings of the Eleventh International Conference
on Computer Aided Systems�eory (EUROCAST 2007), Las Palmas,
Spain, 2007; and in Roberto Moreno-Díaz, Franz Pichler, and Alexis
Quesada-Arencibia (eds.), Computer Aided Systems�eory, volume
4739 of Lecture Notes in Computer Science, pp. 257–264, Springer-
Verlag, Berlin-Heidelberg-New York, 2007. ISSN 0302-9743. (Gómez-
Rodríguez et al., 2007a)

• Carlos Gómez-Rodríguez, David Weir and John Carroll: Parsing
Mildly Non-projective Dependency Structures (extended version of the
homonymous paper to appear in EACL-09). Technical Report CSRP
600, Department of Informatics, University of Sussex, 2008. ISSN
1350-3162. (Gómez-Rodríguez et al., 2008b)

in spanish :
• Carlos Gómez-Rodríguez, Miguel A. Alonso and Manuel Vilares:
Técnicas deductivas para el análisis sintáctico con corrección de errores.
Procesamiento del Lenguaje Natural, 39:13-20, 2007. ISSN 1135-5948.
(Gómez-Rodríguez et al., 2007b)

• Carlos Gómez-Rodríguez, Miguel A. Alonso and Manuel Vilares:
Estudio comparativo del rendimiento de analizadores sintácticos para
gramáticas de adjunción de árboles. Procesamiento del Lenguaje Nat-
ural, 37:179-186, 2006. ISSN 1135-5948. (Gómez-Rodríguez et al.,
2006a)

• Carlos Gómez-Rodríguez, Jesús Vilares and Miguel A. Alonso: Gen-
eración automática de analizadores sintácticos a partir de esquemas de
análisis. Procesamiento del Lenguaje Natural, 35:401–408, 2005. ISSN
1135-5948. (Gómez-Rodríguez et al., 2005b)

16 introduction

• Carlos Gómez-Rodríguez, Jesús Vilares and Miguel A. Alonso: Com-
pilación e�ciente de esquemas de análisis sintáctico. In Francisco
Javier López Fraguas (ed.), Actas de las V Jornadas sobre Programa-
ción y Lenguajes (PROLE 2005). Granada, September 13-16, 2005, pp.
175–184. �omson Paraninfo, Madrid, 2005. ISBN 84-9732-438-2.
(Gómez-Rodríguez et al., 2005a)

Other publications written during the preparation of this thesis, although
not directly containing research work presented in it, are the following:1

• Carlos Gómez-Rodríguez and Giorgio Satta: An Optimal-Time Bin-
arization Algorithm for Linear Context-Free Rewriting Systems with
Fan-Out Two, in Proceedings of Joint conference of the 47th Annual
Meeting of the Association for Computational Linguistics and the 4th
International Joint Conference on Natural Language Processing of the
Asian Federation of Natural Language Processing (ACL-IJCNLP 2009),
Singapore, Singapore, 2009 (accepted, pending publication). (Gómez-
Rodríguez and Satta, 2009)

• CarlosGómez-Rodríguez,MarcoKuhlmann, Giorgio Satta andDavid
Weir: Optimal Reduction of Rule Length in Linear Context-Free Re-
writing Systems, in Proceedings of the North American Chapter of the
Association for Computational Linguistics - Human Language Technolo-
gies Conference (NAACL’09:HLT), Boulder, Colorado, 2009 (accepted,
pending publication). (Gómez-Rodríguez et al., 2009b)

• Jesús Vilares, Carlos Gómez-Rodríguez and Miguel A. Alonso: Man-
aging Syntactic Variation in Text Retrieval, in Peter R. King (ed.),
Proceedings of the 2005 ACM Symposium on Document Engineering,
pp. 162-164, Bristol, United Kingdom, 2005. ISBN 1-59593-240-2.
(Vilares et al., 2005)

• Jesús Vilares, Carlos Gómez-Rodríguez and Miguel A. Alonso: En-
foques sintáctico y pseudo-sintáctico para la recuperación de informa-
ción en español, in Alejandro Sobrino and José Ángel Olivas (eds.),
Recuperación de información textual: aspectos lógicos y ecológicos —
Text Information Retrieval: So�-Computing and Ecological Aspects, pp.
127-137, Servizo de Publicacións e Intercambio Cientí�co, Universid-
ade de Santiago de Compostela, 2006. ISBN 84-9750-525-5. (Vilares
et al., 2006a)

1 �e �rst two of these publications contain research on LCFRS which is related to the pars-
ers presented in Chapter 9 of this dissertation. �e other three publications are about
applications of parsing to information retrieval tasks.

1.4 publications 17

• Jesús Vilares, Carlos Gómez-Rodríguez and Miguel A. Alonso: Syn-
tactic and pseudo-syntactic approaches for text retrieval, in Vicente P.
Guerrero-Bote (ed.), Current Research in Information Sciences and
Technologies: multidisciplinary approaches to global information sys-
tems. Proceedings of the First International Conference on Multidiscip-
linary Information Sciences and Technologies — InSciT 2006, pp. 104-
108, Mérida, Spain. 2006. ISBN 84-611-3104-5. (Vilares et al., 2006b)

�e so�ware system described in Chapter 2 of this thesis has been pub-
lished under the name of COMPAS (COMpiler for PArsing Schemata), and
registered with the Xunta de Galicia Intellectual Property O�ce (c-40-
2009). It is freely available at http://www.grupocole.org/software/
COMPAS/ under the GNU General Public License (GPL).

http://www.grupocole.org/software/COMPAS/
http://www.grupocole.org/software/COMPAS/

2
PRELIMINARIES

In this chapter, we introduce the formalism of parsing schemata, which will
be used throughout this thesis.

2.1 context-free grammars

A language is a set of sequences (strings) of symbols from a �nite set called
an alphabet.
A grammar is a precise de�nition of a language by means of a set of rules.

One of the most widely used types of grammar is context-free grammars.

Definition A context-free grammar is a 4-tuple G = (N , Σ, P, S) where: 2.01

• Σ is an alphabet of symbols called terminal symbols, which will be
the components of the strings in the language associated with G,

• N is an alphabet of auxiliary symbols called nonterminal symbols,
which will not appear in the strings of the language,

• S ∈ N is a special nonterminal symbol called the initial symbol or
axiom of G,

• P ⊆ N × (Σ ∪ N)∗ is a set of production rules of the form A → α,
where A is a nonterminal symbol and α is a string that may contain
both terminal and nonterminal symbols. ⊣

From now on, we will follow the usual conventions by which nonter-
minal symbols are represented by uppercase letters (A, B . . .), terminals
by lowercase letters (a, b . . .) and strings of symbols (both terminals and
nonterminals) by Greek letters (α, β . . .).
�e language associated with a grammarG = (N , Σ, P, S), denoted L(G),

is the set of strings of terminal symbols in Σ that can be obtained by starting

19

20 preliminaries

with the initial symbol S and applying a sequence of productions in P. A
production of the form A → α can be applied to any string containing
the nonterminal A, and is applied by changing one appearance of A in the
string to α. We write β ⇒ γ to denote that we can obtain the string γ by
applying a production to the string β. We write β ⇒⋆ γ to denote that γ
can be obtained by applying a sequence of zero or more productions to
the string β.�us, we can write the language associated with the grammar
G = (N , Σ, P, S) as L(G) = {α ∈ Σ⋆ ∣ S ⇒⋆ α}.

Example Suppose that we have a context-free grammar G = (N , Σ, P, S)2.02
de�ned by the following:

• Σ = {the, dog, barks}
• N = {S,NP,VP,N ,V ,Det}
• P = {S → NP VP,NP → Det N ,VP → V ,Det → the,N → dog,V →
barks}

�is is a typical example of a fragment of a context-free grammar used
for parsing a natural language, in this case English. Of course, this is an
extremely simpli�ed “toy” grammar whose associated language L(G) con-
tains a single sentence (“the dog barks”); nevertheless, the larger grammars
used in real-life applications o�en have the same structure: nonterminal
symbols correspond to syntactic structures — such as noun phrases (NP)
or verb phrases (VP) — and production rules express the valid ways in
which these structures can combine into larger ones. Terminal symbols can
denote concrete words, as in this example, or part-of-speech tags (such as
N or Det).�e latter option is common when a parser is used as one of the
steps in a natural language processing pipeline, receiving its input from a
part-of-speech tagger module which maps the words in input sentences to
these tags.
We can check that the sentence “the dog barks” is in fact in L(G) by

obtaining it as a result of applying a sequence of productions to the initial
symbol S, as explained before:

S ⇒ NP VP⇒ Det N VP⇒ Det N V ⇒ the N V ⇒ the dog V ⇒ the
dog barks.
If we represent the derivations we have just made as a tree, where each

application of a rule A → α is represented by adding nodes labelled with

2.1 context-free grammars 21

Figure 2: Parse tree for a simple sentence.

the symbols in α as children of the node A, we obtain a parse tree (or syntax
tree) for the sentence, which is shown in Figure 2.1 ⊣

Given a context-free grammar G, the problem of recognition consists of
determining whether a given string a1 . . . an belongs to the language L(G)
by �nding a sequence of derivations for it, or by ensuring that none exists.
�e problem of parsing consists of �nding all the possible parse trees for the
string a1 . . . an under the grammar G. Parsing with context-free grammars
is a particular instance of grammar-driven parsing, as explained in Section
1.2.1.
Note that, inmore complex grammars than the one shown in this example,

there may be several di�erent valid parse trees for a single sentence. For
example, in a larger natural language grammar, the parsing of the sentence
“John saw a man with a telescope” could result in two di�erent trees (shown
in Figure 3), the former corresponding to the interpretation “a man having
a telescope was seen by John”, and the latter corresponding to “John used a
telescope to see a man”. In this case, we say that both the grammar and the
sentence are ambiguous. Parsers for natural language sentences should be
able to handle ambiguity.

1 �is particular kind of tree obtained from context-free grammars is called a constituency
tree, since it divides sentences into smaller units called constituents. A constituency tree is
one of several possible ways to represent the syntactic structure of a sentence; a well-known
alternative are dependency-based representations, which have been shown in Figure 1b and
will be further explained in Chapter 8. By default, references to “parse trees” or “syntax
trees” in this dissertation should be understood as referring to constituency trees unless the
opposite is explicitly stated.

22 preliminaries

Figure 3: Two alternative parse trees for an ambiguous sentence.

2.2 parsing algorithms and schemata

�e process of parsing is an important step in natural language analysis,
as it provides us with hierarchical representation of sentences that we can
use to extract meaning from them.�is has motivated the development of
various parsing algorithms in recent decades. As an example, two of the
most widely used parsing algorithms for context-free grammars are the
CYK (Cocke-Younger-Kasami) algorithm (Kasami, 1965; Younger, 1967) and
Earley’s algorithm (Earley, 1970).
�e CYK algorithm is a bottom-up parser, meaning that it starts building

a parse tree from the smallest constituents (the leaves) and proceeds by
grouping them into larger constituents, building the tree upwards until it
�nds its root.�is algorithm can only be used to parse with context-free
grammars G = (N , Σ, P, S) in Chomsky Normal Form (Chomsky, 1959),
which roughly means that productions in P must be of the form A→ BC or

2.2 parsing algorithms and schemata 23

1 a = array [n,n,r] of boolean initialised to false;

3 for i = 1 . . . n //consider subsequences of length 1
for each rule R j → a i

5 a[i,1, j] = true;

7 for i = 2 . . . n //consider subsequences of length i
for j = 1 . . . n − i + 1 // j = beginning of subsequence

9 for k = 1 . . . i − 1 //k = partition of subsequence
for each rule Ra → RbRc

11 if (a[j,k,b] = true ∧ a[j + k,i − k,c] = true)
a[j,i,a] = true; //apply rule

13
if (a[1,n,s] = true) return true; //string belongs to

language
15 else return false; //string does not belong to language �

Figure 4: Pseudocode for the CYK parsing algorithm.

A→ a.�is poses no problem in practice, as every CFG can be converted to
this normal form. CYK is traditionally described as a dynamic programming
algorithm that is implemented by means of a table traversed by three nested
loops: nonterminal symbols in our grammar G are assigned an index (N =
{R1 . . . Rr}), and the parsing table is a boolean array of dimensions [n, n, r]
where n is the length of the string.�e algorithm works by as described by
the pseudocode in Figure 4: during the traversal of the table, a cell a[j, i , a]
is enabled if there exists a tree with root Ra whose yield is the substring of
the input that has length i and begins at position j. At the end of execution,
if the start symbol ofG has the index s, we know whether the input sentence
belongs or not to L(G) by checking if the cell a[1, n, s] has been enabled.
Note that this pseudocode corresponds to a CYK recogniser, but it can be
easily transformed to a parser by making it add pointers from each table
cell (line 12) to the pairs of cells that have been used to enable it (line 11).
Following these pointers back from the cell a[1, n, s], we obtain a forest of
parse trees (Billot and Lang, 1989).
On the other hand, the algorithm by Earley (1970) was originally de-

scribed as in the pseudocode in Figure 5. Contrary to CYK, Earley’s al-
gorithm can work with any CFG, not necessarily in Chomsky Normal Form.
Given a string of length n, the algorithm creates n+ 1 state sets (S0, . . . , Sn).

24 preliminaries

�e parser reads the string from le� to right and �lls these set with states,
which are tuples of the form (A → α, j, k). A → α in such a state repres-
ents the rule currently being used for recognition, j the amount of already
recognised symbols in its right-hand side, and k the �nal position of the
recognised part of the input string (the corresponding initial positions are
given by the indexes associated to state sets). �e state sets are �lled in
order, starting with a state (S → α, 0, 0) in S0 and proceeding from le� to
right with three operations (Predictor, Completer and Scanner) as can be
seen in the pseudocode in Figure 5. At the end of the execution, we know
that the input sentence belongs to the language de�ned by our grammar if
(S → α, ∣α∣, 0) ∈ Sn. Analogously to the CYK case, although this pseudocode
describes a recogniser, it can be adapted to build a parse forest by adding
back pointers when new states are explored (lines 13, 19 and 24).
By looking at the pseudocode for these two algorithms, we could conclude

that they are totally di�erent, unrelated approaches to the problemof parsing
with a context-free grammar: not only they di�er in the way in which they
build a parse tree (bottom-up in CYK, starting with the leaves and building
upwards towards the initial symbol, and top-down in Earley, starting with
the initial symbol and progressing downwards to the leaves); but also in
the data and control structures that they use in the process. While CYK is
a classical dynamic programming algorithm that traverses and �lls a table
with partial results, Earley is a transition-based parser that reads the input
from le� to right, and will reach a goal state if it can be parsed successfully.
However, the parsing schemata formalism allows us to relate these two

algorithms and represent them in an uniform notation. Parsing schemata,
introduced by Sikkel (1997), are based on the idea of seeing parsing as a
deduction process, which proceeds by generating intermediate results called
items. An initial set of items (hypotheses) is directly obtained from the input
sentence, and the parsing process consists of the application of inference
rules (deduction steps) which produce new items from existing ones. Each
item contains a piece of information about the sentence’s structure, and a
successful parsing process will produce at least one �nal item containing a
full parse tree for the sentence or guaranteeing its existence.
As examples, the parsing schemata forCYK andEarley’s parsing algorithms

can be seen in Figures 6 and 7. We can informally understand how parsing
schemata work by studying the semantics of these schemata.
Items in the CYK parsing schema are tuples of the form [A, i , j], where

A is a symbol and i , j are integer numbers denoting positions in the input

2.2 parsing algorithms and schemata 25

1 S = array [0..n] of state sets;
for i = 0 . . . n { S[i] = ∅; } //initialise the n+1 sets to ∅

3 for each rule S → α ∈ P //initialise S[0]
S[0] = S[0] ∪ {(S → α, 0, 0)};

5
for i = 0 . . . n { //process state sets

7 process the members of S[i] in order, executing each of these
operations on

each state (A→ α, j, f) until no more of them can be applied:
9 1) Predictor:

X = j + 1th symbol in α;
11 if X exists and is a nonterminal

for each production of the form X → β in P
13 S[i] = S[i] ∪ {(X → β, 0, i)};

2) Completer:
15 if X does not exist //(j + 1 > ∣α∣)

for each state (B → β, l , g) in S[f] {
17 Y = l + 1th symbol in β;

if Y exists ∧ Y = A
19 S[i] = S[i] ∪ {(B → β, l + 1, g)};

}
21 3) Scanner:

if X exists and is a terminal
23 if X = a i+1

S[i + 1] = S[i + 1] ∪ {(A→ α, j + 1, f)};
25 }

27 //check whether string belongs to language
if S[n] contains a state of the form (S → γ, ∣γ∣, 0) return true;

29 else return false; �
Figure 5: Pseudocode for Earley’s parsing algorithm.

string.�e meaning of such an item can be interpreted as follows: “�ere
exists a parse tree with root labelled A, licensed by the rules in the grammar,
such that its leaf nodes form the substring ai+1 . . . a j of the input sentence”.
�e algorithm will produce a valid parse for the input sentence if an item
of the form [S , 0, n] is generated: according to the said interpretation, this
item guarantees the existence of a parse tree with root S whose leaves are
labelled a1 . . . an, that is, a complete parse tree for the sentence.

26 preliminaries

Item set:
I = {[A, i , j] ∣ A ∈ N ∧ 0 ≤ i < j}

Initial items (hypotheses):
H = {[ai , i − 1, i] ∣ 0 < i ≤ n}

Deduction steps:

Unary:
[a, i − 1, i]
[A, i − 1, i]

A→ a ∈ P

Binary:
[B, i , j] [C , j, k]

[A, i , k]
A→ BC ∈ P

Final items:
{[S , 0, n]}

Figure 6: A parsing schema specifying the CYK parsing algorithm.

As the Earley parsing algorithm constructs di�erent intermediate trees
than CYK, the item set for its corresponding schema is not the same: in
this case, items are tuples of the form [A → α ● β, i , j], where A → α ● β
is a grammar rule with a special marker (dot) added at some position in
its right-hand side, and i , j are integer numbers denoting positions in the
input string. �e meaning of such an item can be interpreted as follows:
“�ere exists a valid parse tree with its root labelled A, where the direct
children of A are labelled with the symbols in the string αβ, the leaf nodes
of the subtrees rooted at the nodes labelled α form the substring ai+1 . . . a j
of the input, and the nodes labelled β are leaves”. Such a tree can be seen on
Figure 8. Note that this item format and semantics is linked to the top-down,
le�-to-right strategy that the Earley parser uses to �nd parse trees.
A deduction step η1 ...ηm

ξ Φ allows us to infer the item speci�ed by its
consequent ξ from those in its antecedents η1 . . . ηm. Side conditions (Φ)
specify the valid values for the variables appearing in the antecedents and
consequent, andmay refer to grammar rules (as in these examples) or specify
other constraints that must be veri�ed in order to infer the consequent.
In the particular case of CYK, the Unary and Binary steps use the rules

of the grammar to join partial parse trees in a bottom-up way, producing
larger trees. In particular, the Unary step uses a rule of the form A → a

2.2 parsing algorithms and schemata 27

Item set:
I = {[A→ α ● β, i , j] ∣ A→ αβ ∈ P ∧ 0 ≤ i ≤ j}

Initial items (hypotheses):
H = {[ai , i − 1, i] ∣ 0 < i ≤ n}

Deduction steps:
Initter:

[S → ●α, 0, 0]
S → α ∈ P

Scanner:
[A→ α ● aβ, i , j] [a, j, j + 1]

[A→ αa ● β, i , j + 1]

Predictor:
[A→ α ● Bβ, i , j]
[B → ●γ, j, j]

B → γ ∈ P

Completer:

[A→ α ● Bβ, i , j]
[B → γ●, j, k]

[A→ αB ● β, i , k]

Final items: {[S → γ●, 0, n]}

Figure 7: A parsing schema specifying Earley’s parsing algorithm.

Figure 8: Form of the trees associated to the Earley item [A→ α ● β, i , j].

to put together the tree A(a); while the Binary step employs a binary rule
(A→ BC) to link two partial parse trees rooted at the nonterminals B and
C into a new partial parse tree rooted at A.
In the Earley parsing schema, the Initter and Predictor steps are used

to initialise the analysis by generating items with the dot in the �rst position
of their associated production’s right-hand side.�ese items represent the
application of a production without having recognised any input symbols
yet. As we have seen, the dot in productions marks the region of their right-
hand side which has been recognised, and the Scanner and Completer

28 preliminaries

steps allow us to enlarge this region by shi�ing the dot to the right. �e
Scanner step reads and recognises a single terminal symbol from the input,
while Completer recognises a nonterminal symbol and joins two partial
parse trees into a larger one.
If we now look at Earley’s algorithm as described in Figure 5, we can

see that it is nothing but a particular implementation of this schema.�e
deduction of an item [A → α ● β, i , j] in the schema is implemented by
adding a state (A→ αβ, ∣α∣, i) to the set S[j], and the Predictor, Completer
and Scanner operations in the code correspond to the deduction steps in
the schema.�e loop and the structure used to hold the state sets impose
a particular order on the execution of these operations, which guarantees
that the state (S → γ, ∣γ∣, 0) will be generated if the input is a valid sentence
according to the grammar.
Similar observations can be made about the pseudocode for the CYK

parsing algorithm, where the deduction of an item [Nx , i , j] in the schema
is implemented by enabling the cell a[i + 1, j − i , x] in the algorithm. Note
that the same schema can be implemented by di�erent algorithms: for
example, we could write an alternative implementation of CYK processing
subsequences from right to le� (i.e. reversing the loop on the variable j).
As we can see, a parsing schema speci�es a set of operations that must

be executed and a set of intermediate results that must be obtained when
parsing a sentence, but makes no claim about the order in which to execute
the operations or the data structures to use for storing the results. As a
result, a parsing schema captures the logic of a parsing algorithm (the ways
in which the algorithm combines partial parse trees to form larger trees),
while abstracting away the implementation details (the data and control
structures used to build and store the trees). �us, parsing schemata are
located at a higher abstraction level than algorithms, and it can be said that
a parsing algorithm is a particular implementation of a schema.

2.3 formal definition of parsing schemata

Now that the concept of parsing schemata has been informally introduced,
a precise theoretical formulation will be given, which is a summary of the
main concepts de�ned by Sikkel (1997).
From now on, apart from the notational conventions mentioned in Sec-

tion 2.1, we will useN as a notation to refer to the set of natural numbers,

2.3 formal definition of parsing schemata 29

and є to denote an empty string. We will refer to the root of a tree τ as
root(τ), and to its yield (list of frontier nodes, ordered from le� to right) as
yield(τ). We will use the notation ℘(X) to refer to the power set of X.

2.3.1 Deduction systems

Definition Let X be a set of entities, andH a set of hypotheses. A deduc- 2.03
tion step is a pair (Y , x), with x ∈ X, where Y ⊆H ∪ X is a �nite set.
In a deduction step of the form ({y1, . . . , yk}, x), the entities y1 . . . yk

are called antecedents, and x is the consequent. ⊣

Definition A deduction systemD is a tuple (X ,H,D) where 2.04
• X is a set of entities called the domain ofD,
• H is a set of hypotheses,
• D ⊆ ℘(H ∪ X) × X is a �nite set of deduction steps. ⊣

LetD = (X ,H,D) be a deduction system.

Definition We de�ne the inference relation ⊢⊆ ℘(H ∪ X) × X as: 2.05
Y ⊢ x if (Y ′, x) ∈ D for some Y ′ ⊆ Y .
It will also be useful to de�ne the relations:
• Y ⊢0 x if x ∈ Y ,
• Y ⊢1 x if Y ⊢ x,
• ∀n ∈N,Y ⊢n+1 x if ∃x1 ∈ X ∣ (Y ⊢ x1 ∧ (Y ∪ {x1}) ⊢n x),
• Y ⊢∗ x if ∃n ∈ (N ∪ {0}) ∣ Y ⊢n x. ⊣

Definition Wede�ne the set of valid entities forD = (X ,H,D) asV(D) = 2.06
{x ∈ X ∣H ⊢∗ x}.
�us, the set of valid entities associated with a deduction system is the

set of all the entities that can be inferred from the hypotheses by applying a
sequence of deduction steps. ⊣

Definition An enhanced deduction system E is a tuple (X ,H,F , C ,D) 2.07
where X,H andD have the samemeaning as in a standard deduction system,
F ⊆ X is a set of �nal entities, and C ⊆ F is a set of correct �nal entities.
From a formal standpoint, the de�nition of the sets C and F is arbitrary.

In practice, they will be de�ned according to semantic criteria depending

30 preliminaries

on what the deduction system is used for. �e sets C and F allow us to
establish the correctness of a deduction system; we say that an enhanced
deduction system E = (X ,H,F , C ,D) is:
• sound, if all valid �nal entities are correct: F ∩ V(E) ⊆ C,
• complete, if all correct �nal entities are valid: C ⊆ F ∩ V(E),
• correct, if it is sound and complete. ⊣

In the particular context of parsing, a parser is said to be sound if all the
parse trees that it outputs are licensed by the grammar, and complete if every
such tree is obtained by the parser. �us, the set of correct �nal entities
will contain those entities corresponding to full syntax trees licensed by the
grammar, as explained in more detail below.

2.3.2 Parsing systems and parsing schemata

Parsing schemata are a particular case of deduction systems, where the
entities of X and the hypotheses ofH are called items and represent sets of
partial parse trees in a given grammar.

Definition Let G be a grammar, belonging to some class of grammar CG.2.08
We will refer to the set of partial constituency trees licensed by G as the set
of valid trees for G, denoted Trees(G).2

For example, if G = (N , Σ, P, S) is a context-free grammar; the set
Trees(G) is de�ned by Sikkel as the set of �nitely branching �nite trees
in which children of a node have a le�-to-right ordering, every node is
labelled with a symbol in N ∪ Σ ∪ (Σ ×N)∪ {є}, and every node u satis�es
one of the following conditions:

• u is a leaf,
• u is labelled A, the children of u are labelled X1, . . . , Xn and there is
a production A→ X1 . . . Xn ∈ P,

• u is labelled a and u has a single child labelled (a, j) for some j.

2 Note that the de�nitions given in this chapter correspond to the traditional, grammar-driven
formulation of parsing schemata.�roughout the dissertation, this theory will always be
used as a starting point, but we will depart from it: in Chapter 6 we will relax the constraints
related to valid trees, and in Chapter 8 we will de�ne schemata for data-driven parsers that
do not use a grammar at all.

2.3 formal definition of parsing schemata 31

�e pairs (a, j)will be referred to asmarked terminals, and when we deal
with a string a1 . . . an, we will usually write a j as an abbreviated notation for
(a j , j).�e natural number j is used to indicate the position of the word a
in the input, so that the input sentence a1 . . . an can be viewed as a set of
trees of the form a j(a j) rather than as a string of symbols. From now on,
we shall refer to trees of this form as pseudo-productions.
Sets of valid trees for other classes of constituency grammars di�erent

from CFG can be de�ned in an analogous way. ⊣

Definition �e set ofmarked parse trees associated with a grammar G, 2.09
for strings of length n over an alphabet Σ, is the set:

P(n)G = {τ ∈ Trees(G) ∣ ∃a1 . . . an ∈ Σ∗ ∶ root(τ) = S
∧yield(τ) = a1 . . . an}.

⊣

If the yield of a marked parse tree τ is yield(τ) = a1 . . . an, we will say
that τ is a marked parse tree for the string a1 . . . an.
Note that a marked parse tree can be de�ned as a standard parse tree

(under the canonical de�nition found in the parsing literature, as in Aho
et al. (1986)) for a string of terminal symbols that have been annotated
with their positions (i.e., marked terminals). For example, in the particular
case of a context-free grammar, we can write pseudo-productions a j(a j)
as context-free productions a j → a j (hence their name). With this, we can
de�ne the set of marked parse trees associated withG as the set of parse trees
for an augmented grammar G′ = (N ∪ Σ, Σ, P ∪ P, S), where Σ = Σ ×N is
an alphabet of marked terminals and P is the set of all pseudo-productions.

Definition Let Trees(G) be the set of trees for some grammarG. An item 2.10
set is any set I such that I ⊆ Π(Trees(G)) ∪ {∅}, where Π is a partition of
the set Trees(G). Each of the elements of an item set is called an item. If the
item set contains ∅ as an element, we call this element the empty item. ⊣

�erefore, items are sets of valid trees for a grammar G.

Definition LetG be a grammar, and Π a partition of Trees(G). We de�ne 2.11
the set of �nal items for strings of length n, denoted F(n)G ,Π, as:

F(n)G ,Π = {ι ∈ Π(Trees(G)) ∣ ι ∩P(n)G ≠ ∅} ⊣

32 preliminaries

�us, an item is �nal for strings of length n if it contains a marked parse
tree for some string of that length. If we �x a particular string of length n,
we can de�ne a set of correct �nal items for that string:

Definition Let G be a grammar, Π a partition of Trees(G), and a1 . . . an2.12
a string over Σ.�e set of correct �nal items for a1 . . . an is de�ned by

CF(a1 ...an)G ,Π = {ι ∈ F(n)G ,Π ∣ ι contains a marked parse tree
for the string a1 . . . an}.

⊣

Definition Let G be a grammar, a1 . . . an a string over an alphabet Σ.2.13
An instantiated parsing system for G and a1 . . . an is a deduction system
(I ,H,D) where:
• I is an item set,
• F(n)G ,Π ⊆ I ,
• �e tree [a → ai] ∈H for every i = 1 . . . n. ⊣

Definition Let G be a grammar, Σ an alphabet of terminals. An un-2.14
instantiated parsing system for G is a triple (I ,K,D) where K ∶ Σ∗ →
℘(℘(Trees(G))) is a function such that (I ,K(a1 . . . an),D) is an instanti-
ated parsing system for each a1 . . . an ∈ Σ∗. ⊣

In practice, the parsing systems de�ned here will always use the same
functionK, in particular

K(a1 . . . an) = {[a → ai] ∣ 1 ≤ i ≤ n}. (2.1)

We will use the notation [a, i − 1, i] to refer to the items of the form
[a → ai] that will be used as hypotheses in parsing schemata.

Definition A parsing schema for a class of grammars CG is a function2.15
that maps each grammar G ∈ CG to an uninstantiated parsing system for
that grammar. ⊣

In practice, to give a precise de�nition of a parser in terms of a parsing
schema, we will need to de�ne the uninstantiated parsing system (I ,K,D)
to which it maps each given grammar G. �is implies de�ning the item

2.3 formal definition of parsing schemata 33

set I , the hypotheses-generating function K and the set of deduction steps
D. However, as the function K is always the same in practice (Equation
2.1), we will o�en omit it when de�ning schemata, providing only I and
D explicitly. For clarity, when de�ning D, we will normally refer to sets of
steps of the form

{({y1, . . . , yn}, x)∣Q(y1, . . . , yn , x)}

(where Q is a constraint de�ned over the values of y1, . . . , yn , x), with the
inference rule notation

Step name:
y1 . . . yn

x
Q(y1 , . . . ,yn ,x)

where the items yi are called the antecedent items, x is the consequent item
and Q(y1, . . . , yn , x) is a side condition. Side conditions usually refer to
grammar productions, being used to link parsing systems to grammars in
the de�nition of a schema.
�is notation will be used in all chapters except in Chapter 7, where, due

to the frequent use of deduction step expressions in the proofs, we will
employ the more compact representation

{y1, . . . , yn ⊢ x∣Q(y1, . . . , yn , x)}.

It should also be noted that, in all chapters except Chapter 7, we o�en use
the term “deduction step” to refer to a set of deduction steps expressed by a
common inference rule. For example, in Section 2.2, the term “Scanner
step” has been used to refer to the inference rule

Scanner:
[A→ α ● aβ, i , j] [a, j, j + 1]

[A→ αa ● β, i , j + 1]

which, strictly speaking, corresponds to a set of deduction steps (see De�n-
ition 2.03), one for each possible combination of concrete values for the
variables (a, i , j . . .) that appear in its expression. However, making this dis-
tinction explicit is only needed for the proofs in Chapter 7 so, for simplicity,
the term “step” will be used loosely in the rest of the chapters.

34 preliminaries

Examples of parsing schemata are those for CYK and Earley’s parsing
algorithms, which have been given in Figures 6 and 7. Note that the sets of
hypotheses and �nal items are given for clarity: in general it is not needed
to give any of these sets explicitly, as the set of hypotheses comes from the
standard function K, and the set of �nal items can be obtained by applying
the general de�nition of �nal item given above (De�nition 2.11).

2.3.3 Correctness of parsing schemata

Apart from providing us with a simple and compact way to represent parsers,
as can be seen in these examples, parsing schemata can also be used to prove
the correctness of parsers and to establish formal relations between them.
To prove the correctness of a parser, we can de�ne the soundness, com-

pleteness and correctness of a parsing schema in terms of that of its resulting
deduction systems for di�erent grammars and strings:

Definition A parsing schema S for a class of grammars CG is said to2.16
be sound (complete, correct) if, for every grammar G ∈ CG, S(G) is an
uninstantiated parsing system of the form (I ,K,D) such that, for every
string a1 . . . an ∈ Σ∗, the enhanced deduction system (I , K(a1 . . . an),
F(n)G ,Π , CF

(a1 ...an)
G ,Π , D) is sound (complete, correct). ⊣

By De�nition 2.07, this means that a parsing schema S is
• sound: if, in every instantiated parsing system obtained from S, all
valid �nal items are correct,

• complete: if, in every instantiated parsing system obtained from S,
all correct �nal items are valid,

• correct: if it is both sound and complete.
In practice, correctness of parsers will usually be proven by de�ning a set

of correct items for every string a1 . . . an, which will contain trees licensed
by the grammar and allowed by the parser for that particular string.�is set
will always be de�ned so that its intersection withF(n)G ,Π is CF

(a1 ...an)
G ,Π . Under

these conditions, soundness and completeness can be shown by proving the
stronger (but o�en easier to prove) claims that all valid items are correct and
all correct items are valid. A complete proof of correctness for the Earley
parser (Figure 7) can be found in Sikkel (1998).

2.3 formal definition of parsing schemata 35

2.3.4 Relations between parsing schemata

�e formalism of parsing schemata can also be used to establish formal
relations between parsers by means of their underlying schemata. �ese
relations can be used not only to compare parsers, but also to transfer
formal properties (such as soundness and completeness) from one parser
to another.
Sikkel (1994) de�nes several kinds of relations between schemata, which

fall into two broad categories: generalisation relations, which are used to
obtain more �ne-grained versions of parsers or to extend them to a larger
class of grammars, and �ltering relations, which can be seen as the reverse of
generalisation and are used to reduce the number of items and/or deduction
steps needed in the parsing process.�us, a generalisation can be used to
add functionality to a parser or to obtain more information from it, while
�ltering can be employed to obtain an optimised variant and reduce time
and space requirements.
As with the properties related to correctness, relations between schemata

can be de�ned by �rst de�ning relations between parsing systems, and then
extending the concept to schemata. We say that an instantiated parsing
system P1 = (I1,H1,D1) can be generalised into an instantiated parsing
system P2 = (I2,H2,D2) by the following transformations:

Definition (item re�nement): We say thatP1
irÐ→ P2 (P2 is an item re�ne- 2.17

ment of P1) if there exists a surjective function f ∶ I2 → I1 that preserves
deduction sequences, i.e., if f (X1) ⊢ f (X2) ⊢ . . . ⊢ f (Xk) in P1, then
X1 ⊢ X2 ⊢ . . . ⊢ Xk in P2. ⊣

Informally, we say thatP2 is an item re�nement ofP1 if there is amapping
between items in both parsers such that each item in P1 is broken into
multiple items in P2, and deductions are preserved.

Definition (step re�nement): We say that P1
srÐ→ P2 (P2 is a step re�ne- 2.18

ment of P1) if I1 ⊆ I2 and ⊢∗1 ⊆⊢∗2 . ⊣

Note that a su�cient condition for P1
srÐ→ P2 is that I1 ⊆ I2 and D1 ⊆⊢∗2 ,

that is, P1 is a step re�nement of P2 if the item set of P1 is a subset of that
of P2 and every single deduction step in P1 can be emulated by a sequence
of inferences in P2.

36 preliminaries

�e itemand step re�nement relations can be extended to parsing schemata:
a schema S2 is an (item, step) re�nement of a schema S1 if, for every gram-
marG and string a1 . . . an, the instantiated parsing system obtained from S2
is an (item, step) re�nement of that obtained from S1. Sikkel (1994) de�nes
a third kind of generalisation relation called extension, that we will not treat
here, and shows that generalisation relations are transitive and re�exive.
On the other hand, we say that an instantiated parsing system P1 =

(I1,H1,D1) can be �ltered into an instantiated parsing system P2 = (I2,
H2, D2) by the following transformations:

Definition (static �ltering): We say that P1
s f
Ð→ P2 (P2 is a static �lter of2.19

P1) if I2 ⊆ I1 and D2 ⊆ D1. ⊣

Definition (dynamic �ltering): We say that P1
d f
Ð→ P2 (P2 is a dynamic2.20

�lter of P1) if I2 ⊆ I1 and ⊢2⊆⊢1. ⊣

Definition (item contraction): We say that P1
icÐ→ P2 (P2 is an item2.21

contraction of P1) if P2
irÐ→ P1. ⊣

Definition (step contraction): We say thatP1
scÐ→ P2 (P2 is a step contrac-2.22

tion of P1) if P2
srÐ→ P1. ⊣

Dynamic �ltering restricts the set of inferences that a parser can make:
this can be achieved, for example, adding antecedents to steps by taking
into account context information. As an example, if in a particular parsing
system we know that an item ιc can be valid only if another item ιa is also
valid, we can add ιa as an antecedent of all deduction steps that generate ιc .
In static �ltering, which can be seen as a particular case of dynamic �lter-
ing, inferences are constrained by directly removing redundant deduction
steps. Item and step contraction are the inverse relations to item and step
re�nement: in item contraction, multiple items in P1 are collapsed into a
single one in P2; in step re�nement, a sequence of deduction steps in P1
is replaced by a single one in P2. All these �ltering relations are extended
to parsing schemata in the same way as generalisation relations. Filtering
relations are re�exive and transitive.
As an example of a generalisation relation, Sikkel (1994) shows that the

CYK parsing schema in Figure 6 can be generalised to a bottom-up Earley
algorithm:

2.4 advantages of parsing schemata 37

Item set:
I = {[A→ α ● β, i , j] ∣ A→ αβ ∈ P ∧ 0 ≤ i ≤ j}

Initial items (hypotheses):
H = {[ai , i − 1, i] ∣ 0 < i ≤ n}

Deduction steps:

BU-Initter:
[A→ ●α, i , i]

A→ α ∈ P

Scanner:
[A→ α ● aβ, i , j] [a, j, j + 1]

[A→ αa ● β, i , j + 1]

Predictor:
[A→ α ● Bβ, i , j]
[B → ●γ, j, j]

B → γ ∈ P

Completer:
[A→ α ● Bβ, i , j] [B → γ●, j, k]

[A→ αB ● β, i , k]

Final items: {[S → γ●, 0, n]}
In turn, the schema for an Earley parser, as shown in Figure 7, can be

obtained from this one by dynamic �ltering.
Relations between schemata can be used to transfer formal properties

from a schema to another in correctness proofs: for example, it is easy
to check that dynamic �ltering preserves soundness, and step re�nement
preserves completeness.

2.4 advantages of parsing schemata

�e formalism of parsing schemata can be used to describe parsing al-
gorithms in a simple and uniformway. Almost all known parsing algorithms
may be described by a schema (nonconstructive parsers, such as those
based on neural networks, are exceptions). Representations of algorithms
as schemata are more compact than the corresponding pseudocode repres-

38 preliminaries

entations, and they more directly re�ect properties of parsers such as their
time and space computational complexities.3

Parsing schemata are based in the notion of the parsing process as a
deduction process, like the “parsing as deduction” approach by Shieber et al.
(1995); but they add an array of formal concepts and tools that we can use
to prove the correctness of parsers and reason about the relations between
di�erent algorithms.
Parsing schemata are located in a higher abstraction level than algorithms,

since they specify a set of possible operations on intermediate results, but
they set no constraints on the order in which to execute these operations
or the data structures used to store the results.�is high abstraction level
makes parsing schemata a useful tool for de�ning, analyzing and comparing
di�erent parsers, since we can focus on their logic while abstracting away
from implementation details.
A parsing schema can be seen as a formal speci�cation of a parser’s

behaviour, which can be implemented in several ways. For example, the
pseudocode seen in Figure 4 is a simple, ad-hoc implementation of the CYK
schema (Figure 6). More generally, we can implement any parsing schema
following the generic approach of chart parsing (Kay, 1980). However, a
generic implementation of a chart parser is not e�cient, unless we add
indexing structures to provide fast access to items, and these structures
need to be speci�cally tailored to each particular schema.�is problem is
the focus of the next chapter of this thesis.

3 For example, we can see that the CYK and Earley parsers both run in cubic time with respect
to the input length n because their deduction steps handle at most three independent values
(i, j and k) ranging from 0 to n.

Part II

COMPILING PARSING SCHEMATA

3
A COMPILER FOR PARSING SCHEMATA

In this chapter, we present a compiler which can be used to automatically
obtain e�cient Java implementations of parsing algorithms from formal
speci�cations expressed as parsing schemata. �e system performs an
analysis of the inference rules in the input schemata in order to determine
the best data structures and indexes to use, and ensure that the generated
implementations are e�cient.�e system described is general enough to be
able to handle all kinds of schemata for di�erent grammar formalisms, such
as context-free grammars and tree-adjoining grammars, and it provides
an extensibility mechanism allowing the user to de�ne custom notational
elements.�is compiler has proven very useful for analyzing, prototyping
and comparing natural language parsers in real domains, as will be seen in
the empirical studies provided in the following chapters.

3.1 motivation and goals

Parsing schemata are located at a higher abstraction level than algorithms.
As seen in the previous chapter, a schema speci�es a set of steps that must
be executed and a set of intermediate results that must be obtained when
parsing sentences, but it makes no claim about the order in which to execute
the steps or the data structures to use for storing the results.
�eir abstraction of low-level details makes parsing schemata very useful,

allowing us to de�ne parsers in a simple and straightforward way. Com-
paring parsers, or considering aspects such as their correctness and com-
pleteness or their computational complexity, also becomes easier if we think
in terms of schemata. However, when we want to test a parser in practice
by running it on a computer, we need to implement it in a programming
language, so we have to abandon the high abstraction level and worry about

41

42 a compiler for parsing schemata

implementation details that were irrelevant at the schema level. In this
chapter we show how these implementation decisions can be made automat-
ically, making it possible to prototype and test parsers on real grammars and
inputs without ever abandoning the abstraction level provided by parsing
schemata.
To this end, we present a technique that automates the task of implement-

ing parsing schemata, by compiling them to Java language implementations
of their corresponding parsers.�e input to the compiler is a simple and
declarative representation of a parsing schema, which is practically equal to
the formal notation that we used previously. For example, a valid schema
�le describing the Earley parser will be:

@goal [S -> alpha . , 0 , length]

@step EarleyInitter

------------------------ S -> alpha

[S -> . alpha , 0 , 0]

@step EarleyScanner

[A -> alpha . a beta , i , j]

[a , j , j+1]

[A -> alpha a . beta , i , j+1]

@step EarleyCompleter

[A -> alpha . B beta , i , j]

[B -> gamma . , j , k]

[A -> alpha B . beta , i , k]

@step EarleyPredictor

[A -> alpha . B beta , i , j]

-------------------------- B -> gamma

[B -> . gamma , j , j]

Comparing this �le with Figure 7, it can be seen that the input to the com-
piler is a straightforward encoding of the inference rule representation of the
schema. Given this input, the system will produce an e�cient implement-
ation of the underlying parser (Earley’s parser in this case). �is enables

3.1 motivation and goals 43

us to save a lot of work, since we can test parsing algorithms and check
their results and performance just by writing their speci�cation, which is
compact, declarative, highly readable and easy to understand and modify;
without having to implement them.�is can be useful both for designing
new algorithms and for testing existing ones to determine which is the best
for a particular application.1

3.1.1 Design goals

�ree main design goals have been taken into account during the develop-
ment of this system:

• Declarativity:�e input format for representing schemata to be com-
piled by the system should be highly declarative, and similar to the
formal notation commonly used to represent them. �e system
should take care of all the operations needed to transform this formal,
abstract notation into a functional implementation of the correspond-
ing parser.�is allows the parser designer to focus on the semantics
of the schema while abstracting from any implementation detail.

• Generality:�e system should be able to handle all kinds of parsing
schemata for context-free grammars and other formalisms. Note that
this requirement is not trivial, since the formal notation for parsing
schemata is open, so that any mathematical object could potentially
appear in a schema.

• E�ciency: Implementations generated by the system should be ef-
�cient. Of course, we cannot expect the generated parsers to be as
e�cient in terms of runtime or memory usage as ad hoc implementa-
tions programmed by hand, but they should at least be equivalent in
terms of computational complexity.

�e declarativity goal has been achieved by de�ning a simple language to
represent schemata, practically equal to the formal notation normally used
in the literature, and using it as a starting point to generate Java code, which
can in turn be compiled.�erefore, our system works in a similar fashion
to parser generators such as Yacc (Johnson, 1975) or JavaCC (Viswanadha,
2006).

1 �e source code and binaries of the systemdescribed in this chapter can be freely downloaded
from http://www.grupocole.org/so�ware/COMPAS/

44 a compiler for parsing schemata

�e generality goal has been achieved by means of an extensibility mech-
anism: since it would be impossible to support by default all the di�erent
kinds of object that could appear in schemata, we allow the user to eas-
ily de�ne and add new object types, which can be handled by the code
generator in the same way as the prede�ned ones.
Finally, the e�ciency goal has been achieved by having our system per-

form a static analysis of input schemata in order to determine the data
structures and indexes needed to provide constant-time access to items, and
generate code for these indexes.

3.1.2 Related work

Although some previous work has been done on systems and techniques
that can be used to implement parsing schemata for natural languages, the
existing alternatives do not ful�ll the features enumerated in section 3.1.1.
�e Dyna language (Eisner et al., 2004) can be used to implement some
kinds of dynamic programs, but its notation is not as close to the formal
notation commonly used to represent schemata as ours.�eDyALog system
(de la Clergerie, 2005) can be used to compile and run tabular parsers
for several grammatical formalisms, but the speci�cations are based on
logical push-down automata and can be complex and unnatural, especially
for purely bottom-up parsers which do not use a le�-to-right strategy to
process the input string. None of these systems is speci�cally oriented to
the implementation of parsing schemata.
Shieber et al. (1995) introduce a technique to execute parsing schemata

with a deductive parsing engine programmed in Prolog. However, this
requires the conversion of items and deduction steps to the Prolog language.
Moreover, if we want the implementations generated with this technique to
be e�cient, we need to provide item indexing code by hand, so we have to
abandon the abstraction level of schemata and take implementation details
into account. Without this indexing system, the Prolog interpreter will
perform a large amount of CALL and REDO operations, distorting the
results when working with large grammars (Alonso and Díaz, 2003b; Díaz
and Alonso, 2000).
Basic parsing schemata can also be implemented in Datalog, a variant of

Prolog commonly used for deductive databases.�e subject of obtaining
e�cient implementations of Datalog programs has been studied in the
literature (McAllester, 1999; Liu and Stoller, 2003). However, the constraints

3.2 system architecture 45

imposed by Datalog disallow some useful extensions to parsing schemata,
like feature structure uni�cation (Carpenter, 1992), that can be used in this
system.

3.2 system architecture

Our parsing schemata compiler is composed of several di�erent subsystems:

• �e “sparser” (schemaparser) subsystem reads input parsing schemata,
parses them and transforms them into an internal tree representation,
which will be the input to the code generation step.�is subsystem is
a compiler generated by the JavaCC parser generator (Viswanadha,
2006).

• �e “generator” (code generator) subsystem is the most complex part
of the schema compiler.�is subsystem takes the tree representation
produced by “sparser” as input, and uses it to generate the Java classes
implementing the algorithmdescribed by the schema.�is subsystem
is divided into several parts, and each of them is used to generate a part
of the implementation: deduction step execution, item management,
indexing, etc.

• �e “eparser” (element parser) subsystem guarantees the generality
property discussed previously by providing an extensibility mechan-
ism which can be used to compile schemata with non-prede�ned
elements. As explained above, parsing schemata have an open nota-
tion, so any mathematical object could appear as part of an item.
�erefore, it would be impossible for our system to recognise “a pri-
ori” any kind of item that could potentially appear in an arbitrary
schema.�e “eparser” subsystem allows the user to de�ne her own
kinds of notational elements and use them in schemata, the use of
Java’s dynamic class loading facilities eliminating the need for recom-
pilation in order to add new element types.

Figure 9 shows how these systems interact to transform a parsing schema
into an executable parser. More details about each of the subsystems will be
given in the following sections.

46 a compiler for parsing schemata

Java code generation Compilation to executable Execution

Parse schema file (sparser)

[:SchemaFile]

Parse elements (eparser)

[:SchemaTree]

Generate code (generator)

[:Parser implementation
(.java source files)]

Compile (ant/javac)
[:Parser implementation
(executable bytecode)]

Execute (java)

Load grammar

Launch deductive engine (ready)

[:Grammar]

[:Item set]

Read sentence [:Sentence]

Launch deductive engine (parse)

[:Item set (result)]

Contains only

sentence-independent

items at this point

Figure 9: UML activity diagram showing how the parsing schema compiler can be
used to compile and execute a schema.

3.3 architecture of the generated code

Before going into detail about the design of our code-generating system,
we �rst need to think about the design of the code it will have to generate.
�e structure of this code must be generic enough to be applicable to any
schema, but it must also allow us to include particular optimisations for
each schema, to enable us to achieve the e�ciency goal.
A deductive parsing engine such as the one described by Shieber et al.

(1995) ful�lls the �rst condition, providing a generic means of implementing
any parsing schema; but it is not e�cient unless we can access items in
constant time, and the way to achieve this is di�erent in each particular
schema. �e idea of compiling parsing schemata allows us to generate
schema-speci�c code to attain e�ciency.

3.3 architecture of the generated code 47

In particular, our compilation process proceeds according to the following
principles:

• A class is generated for each deduction step.�e classes for deduction
steps implement a common interface with an applymethod which
tries to apply the step to a given item. If the step is in fact applicable
to the item, the method returns the new items obtained from the
inference. In order to achieve this functionality, the method works
as follows: �rst, it checks if the given item matches any of the step’s
antecedents. For every successful match found, the method searches
for combinations of previously-generated items in order to satisfy
the rest of the antecedents. Each combination of items satisfying
all antecedents corresponds to an instantiation of the step variables
which is used to generate an item from the consequent.

• Code is generated to read an input grammar and create an instance of
a deduction step class for each possible set of values satisfying its side
conditions. For example, a distinct instance of the Earley Predictor
step will be created at runtime for each grammar rule of the form
B → γ ∈ P, which is speci�ed in the step’s side condition. Deduction
step instances are lightweight objects, so large grammars needing a
large amount of them can be handled.

• �e execution of deduction steps in the generated code is coordinated
by a deductive parsing engine, which can be seen as an implement-
ation of the dynamic programming approach that underlies chart
parsing (Kay, 1980). Since this is a generic algorithm, the parsing
engine will always be the same and we do not need to generate it.�e
engine works as described by the following pseudocode:

1 steps = set { deduction step instances };
itemSet = set { initial items };

3 agenda = list [initial items];
for each deduction step with an empty antecedent (s) in

steps
5 result = s.apply([]);

for each item (ι) in result
7 if ι ∉ itemSet

add ι to itemSet;
9 enqueue ι into agenda;

remove s from steps;
11 while agenda not empty

currentItem = agenda.removeFirst();

48 a compiler for parsing schemata

13 for each deduction step applicable to currentItem (p)
in steps

result = p.apply(currentItem);
15 for each item (ι) in result

if ι ∉ itemSet
17 add ι to itemSet;

enqueue ι into agenda;
19 return itemSet; �

�e algorithm works with the set of all items that have been gener-
ated (either as initial hypotheses or as a result of the application of
deduction steps) and an agenda, implemented as a queue, containing
the items with which we have not yet tried to trigger new deductions.
When the agenda is emptied, all possible items will have been gen-
erated, and the presence or absence of �nal items in the item set at
this point indicates whether or not the input sentence belongs to the
language de�ned by the grammar.

• An ItemHandler class is generated to provide e�cient access to
items. �is class contains indexing code speci�c to each schema,
since the best choice of indexes will depend on the particular features
of each. Additionally, a StepHandler class is generated to provide
e�cient access to deduction steps.

3.4 reading schemata

As explained above, the goal of the “sparser” subsystem is reading an input
�le with the description of a parsing schema and converting it to an internal
tree representation holding the data that will be passed to the next subsystem,
the code generator.�e notation used to describe schemata is very simple,
and practically identical to the formal notation commonly used to de�ne
them. More concretely, the schema �le format is the one described by the
EBNF grammar in Figure 10.2

As we can see, there are two symbols in the EBNF grammar (element and
element_de�nition) which are unde�ned.�is is because their de�nition
will vary depending on the custom notational elements de�ned by the user.
Actually, from the point of view of the “sparser”, the de�nition of these

2 C-style comments (of the form /* ... */) are also allowed in schema �les, although not
re�ected in the EBNF grammar.

3.4 reading schemata 49

Schema ::= [ElementDefinitionList] [OptionList]
{ StepName StepDescription } { "@goal" GoalDescription

}
ElementDefinitionList ::=

"@begin_elements" { ElementDefinition } "@end_elements"
ElementDefinition ::= element_de�nition
OptionList ::= { "@begin_options" Option "@end_options" }
Option ::= "@option" key value
StepName ::= "@step" ID
StepDescription ::= Antecedent Separator Conditions

Consequent
GoalDescription ::= Antecedent
Antecedent ::= { ItemDescription }
Separator ::= { "-" }
Consequent ::= ItemDescription
ItemDescription ::= "[" ElementList "]"
ElementList ::= [ElementWrapper { , ElementWrapper }]
ElementWrapper ::= Element
Conditions ::= ElementList
Element ::= element �

Figure 10: EBNF grammar for parsing schema �les.

symbols is a generic regular expression accepting any string without spaces
or commas which cannot be confused with other components of the schema
�le. When the “sparser” �nds one of these strings in a position where an
element or element_de�nition is expected, it will delegate its analysis to the
“eparser” module, which deals with elements and element de�nitions. In
the remainder of this chapter, we will use the word element to refer to any
object that can appear as part of an item.
�e general structure of a parsing schema �le consists of an optional sec-

tion with element de�nitions, a second optional section containing options,
a series of deduction steps, and a series of goals or �nal items. An example
of a schema �le containing all these sections is the following:

@begin_elements
element.Symbol:nonGroundFromString:[A-RT-Za-ho-z]
element.Symbol:groundFromString:S
element.RuleWrapper:fromString:[A-Za-z \.]+->[A-Za-z \.]*

50 a compiler for parsing schemata

element.StringPosition:nonGroundFromString:[i-n]
element.StringPosition:groundFromString:[0-9]+
element.SumOfPositionsExpression:fromString:[0-9i-k\+\-]+
element.SymbolSequence:fromString:((alpha)|(beta)|(gamma))
element.SpecialElement:fromString:\.
@end_elements

@begin_options
@option outputItems allItems
@end_options

@step EarleyInitter
----------------------------- S -> alpha
[S -> . alpha , 0 , 0]

@step EarleyScanner
[A -> alpha . a beta , i , j]
[a , j , j+1]

[A -> alpha a . beta , i , j+1]

@step EarleyCompleter
[A -> alpha . B beta , i , j]
[B -> gamma . , j , k]

[A -> alpha B . beta , i , k]

@step EarleyPredictor
[A -> alpha . B beta , i , j]
--------------------------------- B -> gamma
[B -> . gamma , j , j]

@goal [S -> alpha . , 0 , length] �
As we can see, the element de�nition section is used to de�ne the types of

element that will appear in the schema’s deduction steps. Element de�nitions
map regular expressions to Java classes and methods. For example, the
element de�nition
element.StringPosition:nonGroundFromString:[i-n]

means that, whenever a lowercase letter in the range i . . . n is found in
an item, an instance of the StringPosition class must be created by
invoking the method with signature public static StringPosition

3.4 reading schemata 51

nonGroundFromString(String s) in the element.StringPosition
class.�is job is done by the “eparser”, as mentioned earlier. Note that the
reference to “non-ground” in the method name means that the generated
instance will represent a variable. Constant (ground) string positions are
de�ned in the example by a di�erent regular expression ([0-9]+).
In this case, element de�nitions are shown only for explanatory purposes:

all the elements used in the Earley schema are already prede�ned in the
system, so we do not need to explicitly rede�ne them. Explicit de�nitions
are only needed to include new kinds of elements de�ned by the user, or for
overriding the default regular expressions associated with the prede�ned
elements.
�e options section is used to parametrise the resulting parser. In this

example, we pass an option to the system indicating that we want the gen-
erated parser to output all items obtained for each sentence (if no option
were used, only the goal items would be output). Options can also be used
to dynamically change the type of agenda or deductive engine: for example,
for error-repair parsing, we could need an agenda implemented as a priority
queue instead of a standard queue, so that the items with smaller error count
could be used �rst. In order to use such an agenda, we would use a line
@option agendaClass agenda.PriorityQueueAgenda

andde�ne anagenda.PriorityQueueAgenda class implementing a simple
Agenda interface. �e content of @option lines is also accessible via a
simple API from the generated code, so that user-de�ned classes such as
this agenda can also use @option lines for further parametrisation.
A�er these optional sections, we de�ne the deduction steps of our schema

in the simple notation mentioned in Section 3.1, and then specify the format
of the �nal items with one or more @goal lines. If items matching a @goal
speci�cation are found by the generated parser, the parsing process is con-
sidered to have been successful and these �nal items are output.
In order to implement the “sparser” subsystem, the JavaCC (Viswanadha,

2006) compiler compiler has been used.�is tool generates an LL(k) com-
piler from a grammar annotated with Java code. In this case the code is
simple, since it only has to build a tree which will be passed as input to the
code generator. One of the advantages of using an LL(k)-based compiler
compiler such as JavaCC is that it provides helpful error messages by default,
thus making it easy to locate syntax errors in parsing schema �les.
�e tree produced by the “sparser” is nothing more than a hierarchical

representation of the schema, where the schema itself, deduction steps,

52 a compiler for parsing schemata

antecedents, etc. are represented by tree nodes. �e leaf nodes in this
tree are the components of items that we have called elements, and are
instantiated by the “eparser”.

3.5 code generation

�e “generator” subsystem is the most complex and important component
of the parsing schema compiler. From a tree representation of a parsing
schema generated by the “sparser” and “eparser”, this component generates
Java code for the classes implementing the corresponding algorithm. For
the sake of simplicity, we will use the parsing schema corresponding to the
CYK (Kasami, 1965; Younger, 1967) bottom-up parser in some of the code
generation examples.�is schema, which has been shown in Figure 6, is
one of the simplest that we can �nd in practice, having fewer steps and
fewer kinds of element than Earley’s, and can be de�ned in the compiler as
follows:

@step Unary
[a , i , i+1]
--------------------- A -> a
[A , i , i+1]

@step Binary
[B , i , j]
[C , j , k]
--------------------- A -> B C
[A , i , k]

@goal [S,0,length] �
3.5.1 Element types

As we have seen in the previous section, the leaf nodes of a schema tree
contain the basic components of items, called elements. Since we want
our system to be able to work with all kinds of parsing schemata, and any
mathematical object could potentially appear in the representation of an
item, we have implemented an extensibility mechanism that allows the user
to de�ne custom elements if the prede�ned element classes do not su�ce
to represent a particular schema.�is extensibility mechanism works by

3.5 code generation 53

allowing the user to de�ne regular expressions to represent new kinds of
element, and associate them to Java classes.�e problem is that the code
generator should be able to handle these user-de�ned elements and use
them successfully to generate e�cient code. In order to achieve this, our
system requires element classes to follow a simple contract, providing the
services needed by the code generator.�is basic contract comes from the
idea that any element appearing in a schema can be classi�ed into one of
four basic types:

• Simple Elements: Atomic, unstructured elements which can be in-
stantiated or not in a given moment. When simple elements are
instantiated, they take a single value from a set of possible values,
which may be bounded or not. Values can be converted to indexing
keys. Examples of simple elements are grammar symbols, integers,
string positions, probabilities, the dot in Earley items, etc.
In order to de�ne a new simple element class, the user must imple-
ment a SimpleElement interface, providing a method to obtain a
Java code representation of the element’s value, if it has one. For
example, the Java code representation of an element representing
a string position and holding the value 1 is the string “StringPosi-
tion.groundFromValue(1)”, which calls a static method returning an
integer element with the value 13.�e method returning the Java code
representation for grammar symbols is as follows:

public String getExpressionCode()
{

return " element . SymbolTable . instance () .
symbolFor (\ " "+SymbolTable.instance().getName(this

)+" \ ") ";
} �
In addition to this method, simple element classes should implement
amethod returning an integer indexing key, so that the corresponding
elements can be used for item indexing.

3 Using a static method such as this one instead of creating a new instance (“new StringPosi-
tion(1)”) is an optimisation. A parser may use millions of items, each of them with several
elements, so all the prede�ned element classes are programmed in such a way that the gener-
ated code uses multiple references to the same instances instead of multiple instances. Apart
from the memory saved with this optimisation, it must also be noted that item comparison
is one of the main performance bottlenecks in generated parsers, and this optimisation
allows such comparisons to be performed at the reference level, which is much faster than
dereferencing the elements and comparing their values.

54 a compiler for parsing schemata

• Expression Elements:�ese elements denote expressions which take
simple elements or other expressions as arguments. For example,
i+1 is an expression element representing the addition of two string
positions. Feature structures and logic terms are also represented
by this kind of element. When all simple elements in an expression
are instantiated to concrete values, the expression will be treated as a
simple element whose value is obtained by applying the operation it
de�nes (for example, summation). For the code generator to be able
to do this, a Java expressionmust be provided as part of the expression
element type de�nition, so that, for example, sums of string positions
appearing in schemata can be converted to Java integer sums in the
generated implementation. Expressions have been used to imple-
ment uni�cation of feature structures (Carpenter, 1992), le�-corner
relations (Rosenkrantz and Lewis II, 1970), etc.
When de�ning a class for a new expression, the user must implement
an ExpressionElement interface, providing a method to obtain a
Java code representation of the expression from the representation of
its children (operands). For example, the method for sums of string
positions takes an array of strings as a parameter ([op1, op2, . . . , opn])
and returns the string “op1 + op2 + . . . + opn”. Apart from this, the
user must also provide a method returning the return type of the ex-
pression: in this case, the class element.StringPosition.class.

• Composite Elements: Composite elements represent sequences of
elements whose length must be �nite and known. Composite ele-
ments are used to structure items: for instance, the Earley item
[A→ α ● Bβ, i , j] is represented as a composite element with three
components, the �rst being in turn a composite element representing
a grammar rule.
�e interface for this kind of element, CompositeElement, only re-
quires the user to provide methods returning the number of children
(sub-elements) of a composite, and to get the ith child.

• Sequence Elements:�ese elements denote sequences of elements of
any kind whose length is �nite, but only becomes known when the
sequence is instantiated to a concrete value.�e strings α, β and γ
appearing in the Earley schema are examples of sequence elements,
being able to represent symbol strings of any length.
�e interface SequenceElement only requires the user to provide a
method returning a type for the elements in the sequence. For ex-

3.5 code generation 55

ample, the class representing symbol sequences has a method that al-
ways returns the class object element.Symbol.class. It is possible
to de�ne sequences holding elements of multiple types by returning
a more generic type such as element.SimpleElement.class.

3.5.2 Deduction step classes

Each of the deduction steps in the schema, represented by @step speci�ca-
tions in the input �le, produces a class implementing the DeductionStep
interface. Goal speci�cations (@goal) also produce deduction step classes,
as if they were steps with a single antecedent and no consequent, since in
this way the indexing and matching techniques used to �nd items matching
antecedents can be reused to �nd the goal items in an item set.
�e main function of deduction step classes is to provide a method that,

given a particular item, generates all the items that the step can deduce
using that item as an antecedent, and previously generated items for the rest
of the antecedents.�is functionality is provided by a
List apply (Object[] item)

method in the DeductionStep interface, which will be implemented by
each concrete deduction step class created by the code generator.

3.5.3 Representation of items in the generated code

As can be seen in the signature of the apply method, items in the gen-
erated code are represented as object arrays (Object[]).�is may come
as a surprise since, when we described the basic element types in section
3.5.1, we mentioned that items were represented by instances of the class
CompositeElement.
�e reason for this discrepancy is that the representation of elements and

items in the generated code is not the same as that handled by the code
generator. In the code generator, elements of schemata are represented by
a hierarchy with its base in the Element class, and the Composite design
pattern (Gamma et al., 1995) is used to represent items as tree structures.
�is way of modelling elements is elegant from an object-oriented design
standpoint, makes it easy for the user to add custom element types and
simpli�es system maintenance.

56 a compiler for parsing schemata

In the generated code we also need to work with elements and items,
but priorities are di�erent. Generated code is a “black box” that does not
need maintenance by the user (modi�cations in generated parsers should
be made by modifying the input schema and regenerating the code). Taking
this into account, it is reasonable to prioritise e�ciency over elegance in the
compiled code.�is is the reason why, in the generated code, composite
element structures such as items are translated to object arrays, whose
components can be elements or other object arrays.�is makes generated
code somewhat convoluted and hard to read, but more e�cient, since the
array representation of items saves indirection levels and memory usage
with respect to a more object-oriented representation. As an example, we
need 32 + 3S bytes to represent the item [A, 0, 2] in the code generator,
where S is the object shell size4, and ArrayLists are used to implement
composites. With the array representation used in the generated code, the
same item takes up only 16+S bytes. Since natural language parsers typically
need to store hundreds of thousands of items, this di�erence in memory
usage is important, and the elimination of one indirection level also a�ects
parser runtimes.
While composite elements are represented by arrays in the generated

code, expression and sequence elements have no particular representation:
these elements are transformed into operations rather than data structures.
Expression elements appear in the generated code as Java expressions pro-
ducing a simple element result; and sequence elements will produce code
to match zero or more simple elements.

3.5.4 Visitors for code generation

�e twomost complex methods in a deduction step class are the constructor
and the aforementioned applymethod. If a deduction step has a production
rule as a side condition, the constructor must check if a rule passed as a
parameter matches the condition, and initialise the corresponding variables.
�erefore, the constructor of the step

@step Binary
[B , i , j]
[C , j , k]

4 �e object shell size is theminimumobject size in a JavaVirtualMachine (JVM).�e concrete
value of S depends on the particular JVM used to execute Java code, but is typically 8 bytes
in modern JVM’s.

3.5 code generation 57

--------------------- A -> B C
[A , i , k] �
will check whether the parameter is an array of length 3, and initialise the
variablesA, B andC in the step to the concrete values found in the parameter.
�erefore, if the initialisation parameter is the concrete rule S → NP VP,
the constructor will assign A = S, B = NP and C = VP.
On the other hand, the applymethod returns all the items which can

be generated using the one passed as a parameter as an antecedent, and
previously generated items for the rest of the antecedents. As an example,
suppose thatwe have the instance of the Binary step createdwith the rule S→
NP VP, and we receive the item [NP, 0, 2] as a parameter.�e operations
needed to implement the applymethod are the following:

• Match the given item with the speci�cation [B, i , j] where the value
of B must be NP and i , j can take any value.

• If it matches, assign particular values to the variables i and j (in this
case, the matching is successful, and we assign i = 0 and j = 2).

• Search for all the items in the item set that are of the form [C , j, k]
where the value of C is VP and the value of j is 2.�at is, search for
the items of the form [VP, 2, ?].

• For each of these, generate a conclusion item [S , 0, k] with the cor-
responding value of k.

• Repeat all the steps for the other antecedent, i.e., match the given item
with the speci�cation [C , j, k] and then search for items satisfying
[B, i , j]. In our particular case, the item [NP, 0, 2] does not match
the second antecedent.

Putting it all together, in order to generate code for the constructor and
applymethods, we need a way to obtain code for the following operations:

• Match a given item with a speci�cation.�e speci�cation may come
from an antecedent or a side condition, and is known at schema
compile time, while the item is only known at runtime.

• Search for all items matching a speci�cation known at compile time.
• Use a speci�cation to initialise step variables to values taken from an
item.

• Generate a conclusion item from step attribute values.

58 a compiler for parsing schemata

�e code for all these operations can be generated in a similar way if
we take into account that all of them traverse an item and are directed by
a speci�cation. We have used the Visitor design pattern (Gamma et al.,
1995) to structure this part of the code generator. Code generating visitors
traverse the parts of the schema tree corresponding to item speci�cations.
�ere is a di�erent visitor for each basic operation in the generated code
(matching, assigning values, etc.) and each visitor has a di�erent behaviour
for each kind of node (SimpleElement, ExpressionElement...) in the
speci�cation. We also need to keep track of which variables in speci�cations
have a concrete value at each part of the code and which are uninstantiated,
so this information is kept by an external structure which can be queried by
the visitor.
�e visitors themselves are also stateful, since they keep code for accessing

parts of items as an internal state.�is is because some information gener-
ated when matching an element can be needed to generate the matching
code for subsequent elements.�is can be seen in this sample of generated
code5, which checks whether an item in the Earley algorithm conforms to
a generic speci�cation [A → α ● Bβ, i , j] (where the variables are not yet
instantiated and could take any value):

//structural check
if (((Object[])item).length != 3) return result;
if (item[0] instanceof Object[])
{

if (((Object[])item[0]).length < 3) return result;
}
else

return result; //matching failed
//"matching" with trigger item
if (((Object[])item[0])[0] instanceof element.Symbol) //class

check
sp_A = (element.Symbol) ((Object[])item[0])[0];

else
return result; //matching failed

int sp_alpha_index = 1; //variable to read symbols from the
sequence alpha

while (sp_alpha_index < ((Object[])item[0]).length
&& ((Object[])item[0])[sp_alpha_index] instanceof element.

Symbol)

5 �e generated code is not shown literally. It has been simpli�ed by removing some optim-
isations in order to make the example more compact and readable.

3.5 code generation 59

{
sp_alpha.add(((Object[])item[0])[sp_alpha_index]);
sp_alpha_index++;

}
if (item[0] instanceof Object[])
{

if (((Object[])item[0]).length < 2+sp_alpha_index)
return result; //matching failed

}
else

return result; //matching failed
if (!((Object[])item[0])[0+sp_alpha_index].equals(Dot.

getInstance()))
return result; //matching failed

if (((Object[])item[0])[1+sp_alpha_index] instanceof element.
Symbol)

{
sp_B = (element.Symbol) ((Object[])item[0])[1+

sp_alpha_index];
}
else

return result; //matching failed
int sp_beta_index = 2+sp_alpha_index;
(...) �
When the visitor that generates matching code visits the sequence ele-

ment node corresponding to α, it inserts the declaration for a new vari-
able sp_alpha_index into the code.�is variable is used as a loop index
when reading symbols in the sequence α, and its value at the end of the
loop will depend on the number of symbols that match α for each par-
ticular item. �is value must then be used to access the subsequent ele-
ments: for example, in order to access B in [A → α ● Bβ, i , j] the code
((Object[])item[0])[1+sp_alpha_index] is used. A representation
of the code being used to access the item is stored in the visitor’s state so
that this information can be kept between invocations.

3.5.5 Search speci�cations

In the previous section we mentioned that one of the operations the apply
method needs to perform is to search for all the items matching a speci�ca-
tion known at compile time. While the rest of the operations that we have

60 a compiler for parsing schemata

mentioned work on a single item, this one must access the item set.�is
operation is not really implemented by the deduction step classes, but in an
ItemHandler class that provides e�cient access to items by using indexes
speci�cally generated for each schema.
�e ItemHandler class provides three services: adding an item to the

item set including it in the corresponding indexes, checking whether a
given item is present or not in the item set, and returning all items verifying
certain characteristics. All of these methods need indexing techniques in
order to work e�ciently.
In order to call the thirdmethod, which is the one used by apply to search

for antecedent items, we need a way of specifying constraints on items. A
simple and e�cient way to do this is by representing search constraints in
the same way as items, but using null values to represent unconstrained
elements.�erefore, in our example where the CYK Binary step needed to
search for items of the form [VP, 2, ?], the deduction step class would pass
the speci�cation [VP, 2, null] to the item handler class:
Object[] sp_skeleton_SP_CYKMainStep0_1 = new Object[] { sp__C,

sp_i2, null };
List items1 =
ItemHandler.instance().getBySpecification (

sp_skeleton_SP_CYKMainStep0_1); �
�e ItemHandler will then return all items of this form by using its

indexes.

3.6 indexing

If we wish our generated parsers to achieve the e�ciency goal mentioned
in Section 3.1.1, access to items and deduction steps must be e�cient. As
we have seen in the previous section, when we execute a step we o�en need
to search the item set for all the items satisfying a given speci�cation. In
order to maintain the theoretical complexity of parsing schemata, we must
provide constant-time access to items. In this case, each single deduction
takes place in constant time, and the worst-case complexity is bounded by
the maximum possible number of step executions: all complexity in the
generated implementation is inherent to the schema.

3.6 indexing 61

As an example, the theoretical complexity of the CYK parsing algorithm is
O(n3), where n is the length of the input.�is is because the most complex
step in this algorithm is

@step Binary
[B , i , j]
[C , j , k]
--------------------- A -> B C
[A , i , k] �
which can be executed on at mostO(n3) combinations of antecedents, since
positions i, j and k take values between 0 and n and symbols A, B,C come
from a �nite set.
As we have seen, the applymethod that executes this step in the gener-

ated code matches the item received as a parameter with the speci�cation
[B, i , j] and then searches for all items in the item set of the form [C , j, k]
for �xed values of C and j. If we can obtain a list of these items in constant
time, the applymethod will run in O(n) (since we have to traverse this
list and generate a conclusion for each of the items)6, and it will generate
O(n) items. Since the total number of items generated in a CYK parser is
O(n2) (items have two indexes ranging from 0 to n), this applymethod
will be invoked O(n2) times during the execution of the parser.�erefore,
the total complexity is O(n2) × O(n) = O(n3), matching the theoretical
computational complexity of CYK. However, if we had no indexing and the
search for items were sequential, the applymethod would run in O(n2)
(there are O(n2) items to search among) and the generated implementation
for CYK would be O(n4).

3.6.1 Static analysis and index descriptors

Generating indexes that can provide constant-time access to items is not a
trivial task, since a generic indexing technique does not su�ce: the elements
by which we should index items in order to achieve e�ciency vary among
schemata. For example, the CYK parser’s deduction steps perform two

6 In this reasoning about complexity, we are only taking into account the �rst part of the
apply method, which matches the parameter item with the �rst speci�cation and then
searches for items conforming to the second. However, if we apply an analogous reasoning
to the second part of the method (i.e. applying matching to the second speci�cation and
searching to the �rst), we obtain that the second part is also O(n), so the method is globally
O(n).

62 a compiler for parsing schemata

di�erent kinds of searches for items: searches for items of the form [C , j, ?]
(where ? can take any value) and searches for items of the form [B, ?, j].
�us, in order to ensure that these searches access items in constant time,
we need at least two indexes: one by the �rst and second components and
another one by the �rst and third. Di�erent parsing schemata, as well as
di�erent steps in the same schema, will have di�erent needs.�erefore, in
order to generate indexing code, we must take the distinct features of each
schema into account.
Two distinct kinds of item indexes are generated for each schema. Situ-

ations like the one just mentioned as an example, where it is necessary to
search for items conforming to a given speci�cation, are handled by search
indexes. On the other hand, existence indexes are used to e�ciently check
whether an item exists in the item set.
To illustrate how the adequate indexes can be determined by a static

analysis of the schema that can be performed at compilation time, we analyze
the general case where we have a deduction step of the form

[a, d , e , g] [b, d , f , g]
(consequent)

c e f g

where each lowercase letter represents the set of elements (be them grammar
symbols, string positions or other entities) appearing at particular positions
in the step, so that a stands for the set of elements appearing only in the �rst
antecedent item, e represents those appearing in the �rst antecedent and
side condition, g those appearing in both antecedents and side condition,
and the rest of the letters represent the other possible combinations as can
be seen in the step. Note that any deduction step with two antecedent items
can be represented in this way (taking into account that some of the element
sets a, b . . . may be empty, and that the ordering of elements inside items
is irrelevant to this discussion). In this example, we consider only two
antecedents for the sake of simplicity, but the technique is general and can
be applied to deduction steps with an arbitrary number of antecedents.
In this case, the following indexes are needed:

• One search index for each antecedent, using as keys the elements ap-
pearing in that antecedent which are also present in the side condition
or in the other antecedent.�erefore, a search index is generated by
using (d , e , g) as keys in order to recover items of the form [a, d , e , g]
when d, e and g are known and a can take any value; and another

3.6 indexing 63

index using the keys (d , f , g) is generated and used to recover items
of the form [b, d , f , g] when d, f and g are known.�e �rst index
allows us to e�ciently search for items matching the �rst antecedent
when we have already found a match for the second, while the second
one can be used to search for items matching the second antecedent
when we have started our deduction by matching the �rst one.

• One existence index using as keys all the elements appearing in the
consequent, since all of them are instantiated to concrete values when
the step successfully generates a consequent item.�is index is used
to check whether the generated item already exists in the item set
before adding it.

As this index generation process must be applied to all deduction steps
in the schema, the number of indexes needed to guarantee constant-time
access to items increases linearly with the number of steps. However, in
practice we do not usually need to generate all of these indexes, since many
of them are repeated or redundant. For example, if we suppose that the sets
e and f in our last example contain the same number and type of elements,
and elements are ordered in the same way in both antecedents, the two
search indexes generated would in fact be the same, and our compiler would
detect this fact and generate only one. In practical cases, the items used by
di�erent steps of a parsing schema usually have the same structure (see, for
example, the �rst antecedents of Scanner, Completer and Predictor,
or the consequents of Scanner and Completer, on the Earley schema
shown in Figure 7).�us, inmore complex schemata, indexes can usually be
shared among several deduction steps, so the amount of indexes generated
is kept small.
�e static analysis that has just been explained in an abstract way is carried

out in a more procedural fashion by the compiler, by gathering information
during deduction step code generation. To decide which search indexes are
needed, a data structure called a search descriptor is generated whenever the
system generates the code for searching items by speci�cation in a deduction
step’s applymethod. For example, when the code generator produces the
code for this search in the CYK parser:

Object[] sp_skeleton_SP_CYKMainStep0_1 = new Object[] { sp__C,
sp_i2, null };

List items1 =
ItemHandler.instance().getBySpecification (

sp_skeleton_SP_CYKMainStep0_1); �

64 a compiler for parsing schemata

the code-generating visitors, apart from outputting the search speci�cation
new Object[] { sp__C, sp_i2, null }, also produce a tree structure
of the form [Symbol , StringPosition , null]. �is structure,
called a search descriptor, speci�es the structure of the items that are searched
for and the positions and classes of elements which take concrete values in
the search speci�cation. Note that components of descriptors take null or
non-null values depending on which of the sets (a,b . . .) seen in the abstract
description contains the element that generated each of them. However, the
code generator does not need to reason with these sets explicitly: instead, it
works with the list of variables that have been assigned concrete values in
each point of the applymethod where a search is needed.
Search descriptors from all the deduction steps in the input schema are

gathered into a list, and used to decide which indexes to create. It will be con-
venient to create indexes by non-null components of search descriptors that
can be used for indexing (i.e. belonging to a class that provides a method
to obtain an indexing key, see Section 3.5.1). �e simplest way to do this,
and the one corresponding to the general description provided above, is
by creating an index for every search descriptor, indexing by all compon-
ents meeting these conditions. With this approach, the presence of our
search descriptor [Symbol , StringPosition , null] means that
we should generate an index on the �rst and second components of items,
and the other search descriptor obtained from the same step (which is [
Symbol , null , StringPosition]) means that we should generate
an index on the �rst and third components.
�e decisions that the system makes about the indexes it needs to create

are encoded into objects called index descriptors, which are lists containing
the positions of elements used for indexing and the type of indexes that are
going to be used. For example, an index descriptor for our �rst index in
this case could be [0:hash,1:hash], meaning that we are going to use the
elements in positions 0 and 1 as keys for hash indexes7.�e decision as to
which particular data structures to use for indexes (hashes, arrays...) can be
con�gured as an option, either by setting a global default or by con�guring
it for each particular element class.

7 Note that items are trees, not lists, so in a general case the position of an element cannot be
denoted by a single integer. Positions are represented by lists of integers: for example, when
working with Earley items of the form [A→ α ● Bβ, i , j], we can have a search descriptor
[[null,null,null,Symbol,null],null,IntElement], and the corresponding index
descriptor for an index by B and j would be [[0,3]:hash,[2]:hash].

3.6 indexing 65

3.6.2 Generation of indexing code

Once we have index descriptors for all the search indexes we will need,
we can proceed to generate indexing code. �is code is located in the
ItemHandler class which, as mentioned in section 3.5.5, provides three
services: �nding all items verifying a given speci�cation (getBySpecific-
ation), checkingwhether a given item exists in the set (exists) and adding
an item to the set (add).
�e getBySpecification service uses search indexes, which are ob-

tained from index descriptors computed as described in the previous sec-
tion.�e exists service uses existence indexes.�ese are obtained in the
same way as search indexes, but their search descriptors come from a full
consequent item instead of from a search speci�cation, and have no null
values.�e add service must use both search indexes and existence indexes,
since every item added to the set must be accessible to the other two services.
Although the functionality of each of the three services is di�erent, their

implementation can be done in such a way that a signi�cant part of the code
is common to all of them, and we can take advantage of this fact during
code generation. In particular, we can describe the three methods with the
following high-level pseudocode:

method (item or specification)
{

test whether parameter conforms to search descriptor
associated to index 1;

if it does
{

access index 1 using parameter;
process obtained list;

}
(...)
test whether parameter conforms to search descriptor

associated to index d;
if it does
{

access index d using parameter;
process obtained list;

}
} �

66 a compiler for parsing schemata

Note that, although we mention search descriptors in the pseudocode,
search descriptors are not accessible from the code, they are only used to
generate it. Each of the d tests in the pseudocode corresponds to a di�erent
series of conditional statements that check if the parameter conforms to
the structure expressed by a search descriptor, but they do not use the
descriptor itself: its constraints are directly compiled into code. Also note
that, although the conditions and bodies of the if statements are expressed
in an uniform way in the pseudocode, they are di�erent in the code, since
they are generated from di�erent search descriptors.�is is the reason why
the pseudocode is expressed as a series of conditional statements, and not
as a loop.
�emain conceptual di�erence between the threemethods is themeaning

of “process obtained list”. In the case of add, processing the list means
initialising it if it is null and adding the parameter item to it. In the case
of exists, it consists of checking if the list is empty. Finally, in the case of
getBySpecification, the method will simply return the obtained list.
In reality, the parts appearing as common in the pseudocode are also

slightly di�erent, but the di�erences are small enough to allow us to reuse
most of the generator code.
�e strategy for generating the code for these methods is similar to the

one used in step classes. In this case, instead of traversing an element tree,
we traverse a search descriptor, generating code at each node. We do not
use the Visitor design pattern because the behaviour at each node depends
on its content, not its class.
A high level pseudocode for generating the code to test whether a para-

meter conforms to the search descriptor is the following:

generateIndexingCheckCode (SearchDescriptorNode node , List
address , String objectName)

{
if (node is associated to a class)
objectName = " (Class) " + objectName;

add (address,objectName) to address map;

if (node is not associated to a class)
return " "; //null node => this part of items is not used in

the indexing code

3.6 indexing 67

if (node associated to a class other than SequenceElement)
generate type check:
" (object in ObjectName) instanceof (c l a s s associated to

node) "

if (node is associated to class SequenceElement)
{
if (operation = getBySpecification) //parameter is a

specification
generate type check:
" (object in ObjectName) instanceof SequenceElement "

if (operation = exists or add) //parameter is a concrete
item

{
Class cl = expected class for members of the sequence;
if objectName is of the form " (*) [i] "
{
generate loop:
" int newIndex = 0;
while (i+newIndex < (*) . length && (*) [i+newIndex]

instanceof c l)
newIndex++; "

objectName = (*)[i+newIndex];
}

}
}

if (node is associated to array)
{
generate length checks;
for i = 0..numChildren() -1
{
child = i+1th child of node;
address = add(address,i);
update objectName to traverse child;
generateIndexingCheckCode (child , address , objectName

);
address = removeLast(address);

}
}

} �
In this recursivemethod, nodeholds a particular node in a search descriptor

that we are using to generate code, address holds its address expressed as

68 a compiler for parsing schemata

a list of integers, and the string objectName stores the code that should be
used to access the corresponding element in the generated code.
Apart from generating the checks needed to match an item or speci�c-

ation to a search descriptor, this method also introduces entries into an
address map, as can be seen in the code.�e address map is used to convert
positions in a search descriptor (which are lists of integers) to the string used
to access the corresponding parts of items and speci�cations in the generated
code. For example, the following address map is produced when executing
this code on a search speci�cation for items of the form [A→ α ● Bβ, i , j]
in Earley’s algorithm:

Address Object name
[] ((Object[])item)

[0] ((Object[])item)[0]

[0, 0] (A) ((Object[])((Object[])item)[0])[0]

[0, 1] (α) ((Object[])((Object[])item)[0])[1]

[0, 2] (●) ((Object[])((Object[])item)[0])[1+ind4]

[0, 3] (B) ((Object[])((Object[])item)[0])[2+ind4]

[0, 4] (β) ((Object[])((Object[])item)[0])[3+ind4]

[1] (i) ((Object[])item)[1]

[2] (j) ((Object[])item)[2]

�e information in the address map is then used to generate the code to
actually access the indexes.�e need for the address map arises because the
values of loop indexes declared as part of the checking code (such as ind4
in this case) will also be used by the index access code to be generated later.
Generation of the index access code has a quite complex implementation,

as we support di�erent indexing data structures including arrays and collec-
tions (such as hash maps), which are accessed through di�erent Java syntax.
We also must take into account that indexes can be nested, but the result of
an intermediate query can be null. For example, if we use hash indexing
with two components of items as keys, a hash map will be queried by using
the �rst component, and the result of the query will be a second hash map
that can be queried by using the �rst component. But the �rst query can
also return null, and we have to check this condition to avoid trying the
second query on a null object and causing an exception.

3.6 indexing 69

As these are purely implementation issues that do not have implications
for research, we will not go into further details on this part of the code
generator. An example of the code generated for hash indexes, and using
the address map shown before, is the following:

if ((partial0=((HashMap)(ex_index2).get(
((element.Symbol)((Object[])((Object[])item)[0])[0])
.getHashKey())

)) != null)
{
result =((HashMap)partial0.get(

((element.Symbol)((Object[])((Object[])item)[0])[2+ind4
])

.getHashKey()
));

} �
3.6.3 Indexing deduction steps

Apart from the indexes on items explained above, our system also includes
deduction step indexes in the generated parsers.�ese indexes are used to
optimise the process of deciding which deduction step instances can be
applicable to a given item. Instead of blindly trying to apply every step and
let the pattern-matching processes discard those notmatching the processed
item, we use the index to obtain a set of potentially applicable step instances,
the rest (which are known not to be useful) being directly discarded.
As particular instances of deduction steps in a schema are usually tied

to grammar rules, deduction step indexes do not improve computational
complexity with respect to string length (which is already optimised by item
indexing), but they can improve complexity with respect to grammar size.
�is is usually an important factor for performance in natural language
applications, since it is common to use grammars with thousands of rules.
Deduction step indexes are generated by taking into account step variables

which take a value during the creation of a step instance, i.e. variables
appearing on side conditions. For instance, for the general deduction step
shown in section 3.6.1, one deduction step index would be created for each
antecedent, using as keys the elements appearing both in the side condition
and in that particular antecedent: therefore, two indexes are generated using
the values (e , g) and (f , g). �ese indexes are used to restrict the set of

70 a compiler for parsing schemata

deduction step instances applicable to items. As each instance corresponds
to a particular instantiation of the side conditions, in this case each step
instance will have di�erent values for c, e, f and g. When the deductive
engine asks for the set of steps applicable to a given item [w , x , y, z], the
deduction step handler will use the values of (y, z) as keys in order to return
only instances with matching values of (e , g) or (f , g). Instances of the
steps where these values do not match can be safely discarded, as we know
that our item will not match any of both antecedents. Note that it is not
necessary to use the value c as an indexing key: since it does not appear on
any of the antecedents, it will not a�ect the applicability of the step to any
item.

3.7 discussion

In this chapter, we have described the design and implementation of a work-
ing compiler which is able to automatically transform formal speci�cations
of parsing algorithms (expressed as parsing schemata) into e�cient imple-
mentations of the corresponding parsers.�e system’s source code can be
downloaded from http://www.grupocole.org/software/COMPAS/.
�e compiler takes a simple representation of a parsing schema as input

and uses it to produce optimised Java code for the parsing algorithm it de-
scribes.�e system performs a static analysis of the input schema in order
to determine the adequate indexes and data structures that will provide
constant-time access to items, ensuring the e�ciency of the generated im-
plementation.
�e system is general enough to be applicable to di�erent grammatical

formalisms, and has been used to generate parsers for context-free gram-
mars and tree-adjoining grammars. In addition, we provide an extensibility
mechanism that allows the user to add new kinds of elements to schemata
apart from the prede�ned ones. �is same mechanism has been used to
provide prede�ned extensions like those for feature structure uni�cation
and probabilistic parsing.
�e ability to easily produce parsers from schemata is very useful for the

design, analysis and comparison of parsing algorithms, as it allows us to test
them and check their results and performance without having to implement
them in a programming language.�e implementations generated by our
system are e�cient enough to be used as prototypes in real-life domains,
so they provide a quick means of evaluating several parsing algorithms in

http://www.grupocole.org/software/COMPAS/

3.7 discussion 71

order to �nd the best one for a particular application. �is is especially
useful in practice, since di�erent parsing algorithms can be better suited to
di�erent grammars and domains.
�e following chapters of the dissertation provide practical examples of

how the described system can be used to prototype, test and evaluate pars-
ing algorithms: we use it to generate implementations of di�erent parsers
for context-free grammars and tree-adjoining grammars, and to perform
empirical comparisons of these algorithms on real-sized grammars.

4
COMPARING CONSTITUENCY PARSERS IN PRACTICAL
SETTINGS

In the last chapter, we presented a compiler able to automatically obtain e�-
cient implementations of parsing algorithms from their formal speci�cations
expressed as parsing schemata. In this chapter, we show how this system can
be used to prototype di�erent parsing algorithms for constituency-based
grammar formalisms, and evaluate them empirically on practical grammars
and corpora.
First, implementations are generated for three well-known parsing al-

gorithms for context-free grammars (CFG), and they are compared by using
them to parse sentences with three di�erent grammars taken from real-life
corpora. �e obtained results show how the choice of the most suitable
algorithm for a particular application depends on the characteristics of the
particular grammar being used.
Second, implementations are also generated with our system for four

di�erent tree-adjoining grammar (TAG) parsers, and they are used to analyse
natural language sentences under the XTAG English Grammar (XTAG Re-
search Group, 2001).�is allows us to compare the empirical performance
of these algorithms under a real-life, wide-coverage feature-based TAG. To
the best of our knowledge, this is the �rst such empirical comparison of
TAG parsers: previous studies in the literature (Díaz and Alonso, 2000) are
based on “toy” grammars with a small number of rules, so their results are
hardly extrapolable to practical applications1.

1 �e claim that performance results for small TAGs do not predict those for large grammars
will be further substantiated in Chapter 5, where further studies are performed to evaluate
the in�uence of grammar size in performance.

73

74 comparing constituency parsers in practical settings

susanne alvey deltra

Symbols (∣N ∪ Σ∣) 1,921 498 310
Nonterminals (∣N ∣) 1,524 266 282
Terminals (∣Σ∣) 397 232 28
Rules (∣P∣) 17,633 1,485 704

Epsilon rules 0.00% 0.00% 15.48%
Unary rules 5.26% 10.64% 41.05%
Binary rules 22.98% 50.17% 18.18%
Other rules 71.76% 39.19% 25.28%

Average rule length (RHS) 3.54 2.40 1.74

Table 1: Information about the context-free grammars used in the experiments:
total number of symbols, nonterminals, terminals, production rules, dis-
tribution of rule lengths, and average length of the right-hand side of
productions.

4.1 parsing natural language with cfgs

As a �rst example of the use of the compilation technique presented in
Chapter 3 to prototype parsing algorithms and test them with di�erent
natural language grammars; we have used the compiler to generate imple-
mentations of three popular parsing algorithms for context-free grammars:
CYK (Kasami, 1965; Younger, 1967), Earley (Earley, 1970) and Le�-Corner
(Rosenkrantz and Lewis II, 1970).
�e schemata we have used describe recognisers, and therefore their

generated implementation only checks sentences for grammaticality by
launching the deductive engine and testing for the presence of �nal items
in the item set. However, these schemata can easily be modi�ed to produce
a parse forest as output (Billot and Lang, 1989). If we want to use a probabil-
istic grammar in order to modify the schema so that it produces the most
probable parse tree, this requires slight modi�cations of the deductive en-
gine, since it should only store and use the item with the highest probability
when several items di�ering only in their associated probabilities are found
(Manning and Schütze, 1999).

4.1 parsing natural language with cfgs 75

�e three algorithms have been tested with sentences from three di�erent
natural language grammars: the English grammar from the Susanne cor-
pus (Sampson, 1994), the Alvey grammar (Carroll, 1993) (which is also an
English-language grammar) and the Deltra grammar (Schoorl and Belder,
1990), which generates a fragment ofDutch.�eAlvey andDeltra grammars
are uni�cation-based grammars, which were converted to plain context-
free grammars by removing their arguments and feature structures.2 �e
test sentences were randomly generated by starting with the axiom and
randomly selecting nonterminals and rules to perform expansions, until
valid sentences consisting only of terminals were produced. Note that, as we
are interested in measuring and comparing the performance of the parsers,
not the coverage of the grammars; randomly-generated sentences are a
good input in this case: by generating several sentences of a given length,
parsing them and averaging the resulting runtimes, we get a good idea of the
performance of the parsers for sentences of that length. Table 1 summarises
some facts about the three grammars, where by “Rule Length” we mean the
average length of the right-hand side of a grammar’s production rules.
For Earley’s algorithm, we have used a schema �le similar to the one given

in Section 3.1, but slightly modi�ed by dividing the Predictor step into
di�erent steps for di�erent lengths of the associated production’s right side
(0, 1, 2 or more symbols).�is modi�cation of the schema makes existence
indexing more e�ective and thus reduces execution times, without a�ecting
computational complexity.
For the CYK algorithm, grammars were converted to Chomsky normal

form (CNF), since this is a precondition of the algorithm. In the case of the
Deltra grammar, which is the only one of our test grammars containing
epsilon rules, we have used a weak variant of CNF allowing epsilon rules
and the following CYK variant, which can handle them:

@step Binary
[B , i , j]
[C , j , k]
--------------------- A -> B C
[A , i , k]

@step Unary

2 Note that, although the compiler can handle feature structure uni�cation, it has not been
used in this study, since the goal was to compare the three grammars under homogen-
eous conditions. For experiments where feature structures are used, see the comparisons
performed with the XTAG English Grammar in Section 4.5.

76 comparing constituency parsers in practical settings

[a , i , j]
--------------------- A -> a
[A , i , j]

@step Epsilon
[epsilon , i , i]
--------------------- A ->
[A , i , i]

@goal [S , 0 , length] �
For the Le�-Corner parser, the schema used is the sLC variant described

by Sikkel (1997), where side conditions containing boolean expression ele-
ments are used to evaluate le�-corner relations. Side conditions of this
kind are compiled to code that prevents the steps from generating results if
the corresponding predicates do not hold.�is code is inserted in such a
way that the predicates are checked as soon as the referenced variables are
instantiated. By aborting the steps as soon as possible when predicates do
not hold, we avoid unnecessary calculations. A schema �le for sLC is the
following3:

@step SimplifiedLCInitter
----------------------------- S -> gamma
[S -> . gamma , 0 , 0]

@step SimplifiedLCNonterminal
[E , i]
[A -> alpha . , i , j]
------------------------------ B -> A beta / Left-Corner(E;B)
[B -> A . beta , i , j]

@step SimplifiedLCTerminal
[E , i]
[A , i , i+1]
------------------------------- B -> A beta / Left-Corner(E;B)
[B -> A . beta , i , i+1]

@step SimplifiedLCEpsilon
[E , i]
------------------------------- B ->

3 �is is a slightly simpli�ed version of the actual sLC schema �le used in the tests, which can
be found in the long version of Gómez-Rodríguez et al. (2006d). However, the di�erences
are merely notational and both versions are equivalent in terms of performance.

4.1 parsing natural language with cfgs 77

[B -> . , i , i]

@step SimplifiedLCSummariser
[C -> gamma . E delta , k , i]

[E , i]

@step SimplifiedLCScanner
[A -> alpha . B beta , i , j]
[B , j , j+1]

[A -> alpha B . beta , i , j+1]

@step SimplifiedLCCompleter
[A -> alpha . B beta , i , j]
[B -> gamma . , j , k]

[A -> alpha B . beta , i , k]

@goal [S -> alpha . , 0 , length] �
Performance results4 for all these algorithms and grammars are shown in

Table 2.�e following conclusions can be drawn from the measurements:

• �e empirical computational complexity of the three algorithms is
below their theoretical worst-case complexity of O(n3), where n
denotes the length of the input string. In the case of the Susanne
grammar, the measurements we obtain are close to being linear with
respect to string size. In the other two grammars, the measurements
grow faster with string size (approximately O(n2)), but are still far
below the cubic worst-case bound.

• CYK is the fastest algorithm in all cases, and it generates less items
than the other ones.�is may come as a surprise at �rst, as CYK is
generally considered slower than Earley-type algorithms, particu-
larly than Le�-Corner. However, these considerations are based on
time complexity relative to string size, and do not take into account
complexity relative to grammar size. In this aspect, CYK is better
than Earley-type algorithms, providing linear - O(∣P∣) - worst-case

4 �e machine used for these tests was a standard end-user computer in 2006, a laptop
equipped with an Intel 1500 MHz PentiumM processor, 512 MB RAM, Sun Java Hotspot
virtual machine (version 1.4.2_01-b06) and Windows XP.

78 comparing constituency parsers in practical settings

GrammarString Time Elapsed (s) Items Generated
length CYK Earley LC CYK Earley LC

Susanne 2 0.000 1.450 0.030 28 14,670 330
4 0.004 1.488 0.060 59 20,945 617
8 0.018 4.127 0.453 341 51,536 2,962
16 0.050 13.162 0.615 1,439 137,128 7,641
32 0.072 17.913 0.927 1,938 217,467 9,628
64 0.172 35.026 2.304 4,513 394,862 23,393
128 0.557 95.397 4.679 17,164 892,941 52,803

Alvey 2 0.000 0.042 0.002 61 1,660 273
4 0.002 0.112 0.016 251 3,063 455
8 0.010 0.363 0.052 915 7,983 1,636
16 0.098 1.502 0.420 4,766 18,639 6,233
32 0.789 9.690 3.998 33,335 66,716 39,099
64 5.025 44.174 21.773 133,884 233,766 170,588
128 28.533 146.562 75.819 531,536 596,108 495,966

Deltra 2 0.000 0.084 0.158 1,290 1,847 1,161
4 0.012 0.208 0.359 2,783 3,957 2,566
8 0.052 0.583 0.839 6,645 9,137 6,072
16 0.204 2.498 2.572 20,791 28,369 22,354
32 0.718 6.834 6.095 57,689 68,890 55,658
64 2.838 31.958 29.853 207,745 282,393 261,649
128 14.532 157.172 143.730 878,964 1,154,710 1,110,629

Table 2: Performance measurements for CFG parsers.

complexity with respect to grammar size, while Earley is O(∣P∣2).5
�erefore, the fact that CYK outperforms the other algorithms in our
tests is not so surprising, as the grammars we have used have a large

5 It is possible to reduce the computational complexity of Earley’s parser to linear with respect
to grammar size by de�ning a new set of intermediate items and transforming prediction
and completion deduction steps accordingly. Even in this case, CYK performs better that
Earley’s algorithm due to the lower number of items generated: O(∣N ∪ Σ∣n2) for CYK vs.
O(∣G∣n2) for Earley’s algorithm, where ∣G∣ denotes the size of the grammar measured as ∣P∣
plus the summation of the lengths of all productions.

4.1 parsing natural language with cfgs 79

number of productions. �e greatest di�erence between CYK and
the other two algorithms in terms of the amount of items generated
appears with the Susanne grammar, which has the largest number
of productions. It is also worth noting that the relative di�erence
in terms of items generated tends to decrease when string length
increases, at least for Alvey and Deltra, suggesting that CYK could
generate more items than the other algorithms for larger values of n.

• Le�-Corner is notably faster than Earley in all cases, except for some
short sentences when using the Deltra grammar. �e Le�-Corner
parser always generates fewer items than the Earley parser, since
it avoids unnecessary predictions by using information about le�-
corner relations.�e Susanne grammar seems to be very well suited
for Le�-Corner parsing, since the number of items generated de-
creases by an order of magnitude with respect to Earley. On the other
hand, the Deltra grammar’s le�-corner relations seem to contribute
less useful information than the others’, since the di�erence between
Le�-Corner and Earley in terms of items generated is small when
using this grammar. In some of the cases, Le�-Corner’s runtimes are
a bit slower than Earley’s because this small di�erence in items is not
enough to compensate for the extra time required to process each
item due to the extra steps in the schema, which make Le�-Corner’s
matching and indexing code more complex than Earley’s.6

• �e parsing of the sentences generated using the Alvey and Deltra
grammars tends to require more time, and the generation of more
items, than that of the Susanne sentences.�is happens in spite of the
fact that the Susanne grammar has more rules.�e probable reason is
that the Alvey and Deltra grammars have more ambiguity, since they
are designed to be used with their arguments and feature structures,
and information has been lost when these features were removed
from them. On the other hand, the Susanne grammar is designed as
a plain context-free grammar and therefore its symbols contain more
information.

• Execution times for the Alvey grammar quickly grow for sentence
lengths above 16.�is is because sentences generated for these lengths

6 From a theoretical point of view, our indexing mechanisms should make performance
results invariant to the number and size of deductive steps and items. However, in practice,
there are a lot of aspects (memory allocation, object packaging, . . .) that make execution
time depend on the number and size of steps and items.

80 comparing constituency parsers in practical settings

tend to be repetitions of a single terminal symbol, and are highly
ambiguous.

4.2 parsing natural language with tags

Up to now, all the schemata that we have seen correspond to parsers for
context-free grammars. However, as mentioned in Section 2.3.2, it is also
possible to de�ne parsing schemata for other constituency-based grammar
formalisms: all the de�nitions in Section 2.3.2 can be applied to any grammar
class CG as long as we can de�ne a set of valid constituency trees Trees(G)
for every grammar G ∈ CG.
In this section, our schema compiler is used to obtain implementations of

parsers for tree-adjoining grammars (TAG) (Joshi and Schabes, 1997a), and
test their empirical performance by parsing natural language sentences with
a real-sized grammar: the XTAG English Grammar (XTAGResearch Group,
2001). To this end, we �rst provide a brief introduction to the formalism of
TAG.

4.2.1 Tree-adjoining grammars

Context-free grammars are one of the most widely used formalisms for
de�ning the syntax of natural languages, since they are relatively simple
to de�ne and can be parsed e�ciently: as we have seen, several parsers
for CFG have a cubic worst-case complexity with respect to input length,
and their behaviour is typically better than cubic in practical cases (see
Section 4.1). However, it has been shown that context-free grammars are
not expressive enough to cover all the linguistic phenomena present in
natural languages: some constructions present in human languages are
context-sensitive, and thus cannot be adequately modelled by a context-free
grammar. For instance, Huybregts (1984) and Shieber (1985) show that
certain variants of German contain constructions that can only be modelled
by formalisms that generate the copy language ({αα ∣ α ∈ Σ∗}), which is
not context-free. Another known linguistic phenomenon that lies outside
the generative capacity of context-free grammars is that of cross-serial
dependencies, present in languages like Dutch (Joshi, 1985). Cross-serial
dependencies appear in sentences of the form a1a2 . . . akb1b2 . . . bk , where
each ai depends on the corresponding bi .

4.2 parsing natural language with tags 81

�us, it is clear that context-free grammars are not enough to model
natural language: if we want a formalism that can successfully express the
range of syntactic constructions used in human languages, we need a class
of grammars with greater generative capacity than CFG, that is, one that
generates a strict superset of the set of context-free languages. However,
for our formalism to be useful, this superset should not be too large: for
example, the smallest strict superset of context-free languages described in
the classical formal language hierarchy de�ned by Chomsky (1956, 1959),
which is the set of context-sensitive languages; allows expressing constraints
that are considered more complex than those in natural languages (for
instance, the language {ap ∣ p is a prime number} is context-sensitive), and
the parsing problem is PSPACE-complete for this class of languages.
For these reasons, researchers have devoted considerable e�orts to search

for grammar formalisms that are general enough to be able to model all the
known constructions present in human languages, yet restricted enough to
be parsable in polynomial time.�e formalisms satisfying these conditions
are called mildly context-sensitive (Joshi, 1985; Joshi et al., 1991), and the
languages they generate are known as mildly context-sensitive languages.
Several mildly context-sensitive formalisms have been proposed, ones gen-
erating larger sets of structures than others: for example, among the most
general of these formalisms we have linear context-free rewriting systems
(Vijay-Shanker et al., 1987; Weir, 1988), and among the most restrictive we
have tree-adjoining grammars (Joshi and Schabes, 1997a).
Tree-adjoining grammars (TAG) are an extension of context-free gram-

mars, �rst described by Joshi et al. (1975), and later re�ned by Joshi (1987).
�e languages generated by these grammars, called tree-adjoining languages
(TAL), are only slightly more expressive than context-free languages, yet
expressive enough to model linguistic phenomena like cross-serial depend-
encies or those derived from the copy language. �is, together with the
fact that TAG parsers run in O(n6) time in the worst case (Vijay-Shanker
and Joshi, 1985), makes them an interesting formalism for natural language
processing.

Definition A tree-adjoining grammar is a 5-tuple G = (N , Σ, I,A, S) 4.01
where:

• Σ is an alphabet of symbols called terminal symbols,
• N is an alphabet of auxiliary symbols called nonterminal symbols,
satisfying Σ ∩ N = ∅,

82 comparing constituency parsers in practical settings

• S ∈ N is a distinguished nonterminal symbol called the initial symbol
or axiom of the grammar G,

• I is a �nite set of trees called initial trees, and
• A is a �nite set of trees called auxiliary trees. ⊣

�e meaning of N and Σ is the same as in context-free grammars (see
Section 2.1): terminal symbols (Σ) are those that appear in strings of the
language generated by the grammar, nonterminals (N) are auxiliary symbols
used to derive strings. As in CFG, the initial symbol S will be the root node
of parse trees. On the other hand, the initial and auxiliary trees in I ∪A
(together called elementary trees) are used to derive trees (and from them,
strings); although the derivation operations are di�erent from those in CFG.
Given a context-free grammar G, we saw in Section 2.1 that the strings

of its associated language L(G) can be obtained by starting with the initial
symbol S and applying a series of derivations (licensed by a set of production
rules) to it. However, if instead of strings we focus on parse trees, we
could equivalently de�ne L(G) as the set of yields of the trees obtained by
starting with the tree with a single node labelled S, and applying a series of
operations consisting on adding nodes labelled with the symbols of a string
α as children of a frontier node labelled A if there is a production A→ α
in the grammar, until all the frontier nodes in our tree are labelled with
terminals.
�e general idea of derivation in tree-adjoining grammars is a gener-

alisation of this tree-based derivation concept for CFG: in this case, the
starting point is any initial tree in the set I rooted at a node labelled S, not
necessarily a trivial tree with a single node, and new trees can be obtained
by combining elementary trees, using two combination operations: substi-
tution and adjunction. Substitution consists of inserting a complete initial
tree, rooted at a node labelled A, in the place of a frontier node also labelled
A: note that this is the same operation done in CFG derivations, but adding
the possibility of inserting trees of arbitrary depth, instead of the trees with
two levels represented by CFG productions. On the other hand, adjunction
is the operation that provides TAG with their extra generative power, and
it roughly consists of inserting an auxiliary tree t ∈ A, verifying certain
constraints, in the place of an inner node of another tree, which has been
marked as an adjunction node.�e original tree containing the adjunction
node is split into two parts, with the said node appearing in both, and the
auxiliary tree being used to link them.

4.2 parsing natural language with tags 83

4.2.2 Substitution and adjunction

To de�ne TAG derivations in more detail, we �rst need to de�ne initial and
auxiliary trees. Initial trees are trees whose non-leaf nodes are labelled with
symbols in N , and whose leaf nodes can be labelled with any symbol in
N ∪ Σ ∪ {є}. Auxiliary trees have the same form as initial trees, with the
exception that exactly one of their frontier nodes must be marked as a foot
node. �e foot node must be labelled with a nonterminal symbol, and it
must have the same label as the root. �e path from the root to the foot
node of an auxiliary tree is referred to as its spine.7

Elementary trees in I ∪A can be combined among themselves to form
derived trees, which can in turn be combined with other derived trees or
elementary trees to form larger derived trees. Trees can be combined by
using the adjunction and substitution operations.
�e adjunction operation combines an auxiliary tree β with another tree

γ, which can be an initial, derived or auxiliary tree. For an adjunction to
be possible, there must be an inner node in the tree γ (called an adjunction
node) whose label is the same as that of the root and foot of the auxiliary tree
β. Under this assumption, the derived tree is assembled as follows (Figure
11):

a. Let γ2 be the subtree of γ rooted at the adjunction node. We call
γ1 the tree obtained by removing all the nodes in γ2, except for the
adjunction node, from γ. Note that both γ1 and γ2 contain a copy of
the adjunction node (these copies act as a frontier node of γ1 and the
root of γ2).

b. �e derived tree is obtained by linking the tree β to the trees γ1 and
γ2 by collapsing the copy of the adjunction node in γ1 and the root
of β into a single node, and by collapsing the copy of the adjunction
node in γ2 and the foot node of β into a single node.

7 We are de�ning TAG with the adjunction and substitution operations, since the XTAG
English grammar that will be used in our experiments allows these operations. However, it
should be noted that it is also possible to de�ne TAG where only adjunction is allowed. In
this case, there are additional constraints on the sets I andA: the root of initial trees must be
labelled S, and no leaf nodes of elementary trees can be labelled with nonterminal symbols
except for the foot nodes of auxiliary trees. TAG without substitution are formally simpler
than those described here and have the same generative power; however, substitution is
usually allowed in practical grammars since it simpli�es the description of elementary trees.

84 comparing constituency parsers in practical settings

Figure 11: Adjunction operation in TAG.

In simple variants of TAG, any non-leaf node is allowed to act as an adjunc-
tion node as long as its label matches that of the root and foot nodes of the
auxiliary tree which is being adjoined. In practice, it is o�en convenient to
add further restrictions to adjunction operations: a node in an elementary
tree can be associated with a (possibly empty) set of auxiliary trees that may
adjoin into it, so that adjunctions of other trees into that node are forbidden
even if their labels match. It is also possible to add obligatory adjunction
constraints to nodes, forcing certain nodes to be expanded by adjunction op-
erations. In the case of the XTAG English grammar, adjunction constraints
are not represented explicitly, but they are enforced by the feature structures
(Carpenter, 1992) associated to nodes in its elementary trees: an adjunction
operation is forbidden if it produces feature structures that do not unify.
�e substitution operation combines an initial tree β with another tree γ,

which can be an initial, derived or auxiliary tree. For a substitution to be
possible, there must be a non-foot node in the frontier of γ whose label is
the same as that of the root of β. We call such a node a substitution node.
Under this assumption, the derived tree is obtained as in Figure 12: β is

4.2 parsing natural language with tags 85

Figure 12: Substitution operation in TAG.

linked to γ by collapsing the substitution node in γ and the root node of β
into a single node.
Given these two operations, we can de�ne the set of valid trees associated

to a tree-adjoining grammar G = (N , Σ, I,A, S), denoted Trees(G), as the
set of all trees that can be derived from an initial tree whose root is labeled
S by applying the adjunction and substitution operations using trees from
I ∪A.

4.2.3 Properties of TAG

Tree-adjoining grammars have some interesting properties that make them
a useful formalism to describe the structure of natural language sentences:

• Extended domain of locality: In context-free grammars, syntax trees
are assembled from productions of the form A → α. In contrast,
in tree-adjoining grammars, the basic building blocks are element-
ary trees of arbitrary depth. �is enlarges the domain that can be

86 comparing constituency parsers in practical settings

used to de�ne relations and dependencies between syntactic con-
stituents. For example, an elementary tree can directly de�ne the
dependency between a subject and a verb located inside a VP (verb
phrase) constituent.�is cannot be done locally in a CFG, since we
need at least one production to relate the subject to the VP and a
di�erent production to link the VP to the verb.

• Long-distance dependencies:�e adjunction operation in TAG allows
arbitrary long-distance dependencies to be established in derived
trees: a pair of nodes in the same elementary tree, which are directly
related by a local dependency, can end up in arbitrarily distanced
positions in the �nal parse tree, a�er adjunction operations have been
performed.

Some TAGs used for natural language processing are lexicalised, meaning
that each elementary tree in the grammar is associated with a lexical ele-
ment (terminal) in its frontier, called its anchor. Lexicalised tree-adjoining
grammars (LTAG) can be automatically extracted from treebanks (Chen and
Vijay-Shanker, 2000).

4.3 parsing schemata for tag

With the de�nition of valid trees for a tree-adjoining grammar G, given at
the end of Section 4.2.2, we can apply all the de�nitions in Section 2.3.2 to
TAG, including that of parsing schema (2.15).�us, the formalism of parsing
schemata can be used to describe TAG parsers.
As in the case of CFG, describing a TAG parser by means of a schema

implies establishing amapping that assigns an uninstantiated parsing system
to each particular grammar G. In the case of CFG, we usually do this by
writing inference rules, each representing a set of deduction steps, and
(possibly) linked to the grammar by a side condition requiring the presence
of a particular kind of production rule (Section 2.3.2). For example, in the
schema for Earley’s CFG parser, one of such rules is

Predictor:
[A→ α ● Bβ, i , j]
[B → ●γ, j, j]

B → γ ∈ P

where the condition B → γ ∈ P restricts the values of the variables B and γ
depending on the productions (P) of the grammar.

4.3 parsing schemata for tag 87

Since tree-adjoining grammars use elementary trees instead of produc-
tions, it could seem appropriate to use elementary trees as side conditions
for TAG parsing schemata. However, it is usually not necessary to use com-
plete trees to de�ne deduction steps, since a smaller context is enough to
describe their logic. In particular, it is common in the literature (Nederhof,
1997, 1999; Alonso et al., 1999) to use a representation based on represent-
ing each elementary tree γ as a set of context-free productions P(γ), and
using these productions as side conditions.�is notation, calledmulti-layer
representation (Díaz et al., 1998), is simple and compact, and it makes the
relations between TAG and CFG parsers easy to understand.
Given a tree-adjoining grammar G = (N , Σ, I,A, S), and a tree γ ∈

(I ∪ A), we denote by P(γ) the set of productions of the form Nγ →
Nγ
1 N

γ
2 . . .N

γ
r , such that Nγ is an inner node of the tree γ, and Nγ

1 N
γ
2 . . .N

γ
r

is the ordered sequence of direct children of Nγ. Additionally, we will use
the notation Rγ for the root node of a tree γ, and Fγ for the foot node of γ.
An example of a parsing schema for TAG is the schema corresponding to

the CYK-based algorithm by Vijay-Shanker and Joshi (1985), which can be
found in Alonso et al. (1999).�is schema is de�ned as a function that maps
each tree-adjoining grammar G = (N , Σ, I,A, S) to a deduction system
whose domain is the item set

{[Nγ , i , j, p, q, ad j]}

verifying that Nγ is a tree node in an elementary tree γ ∈ (I ∪A), i and j
(0 ≤ i ≤ j) are string positions, p and q may be unde�ned or instantiated to
positions i ≤ p ≤ q ≤ j (the latter only when γ ∈A), and ad j ∈ {true, false}
is a �ag indicating whether an adjunction has been performed on node Nγ .8

�e positions i and j indicate that a substring ai+1 . . . a j of the string is
being recognised, and positions p and q denote the substring dominated by
γ’s foot node.�e �nal item set is

{[Rα , 0, n,−,−, ad j] ∣ α ∈ I}

for the presence of such an item would indicate that there exists a valid
parse tree with yield a1a2 . . . an and rooted at Rα , the root of an initial tree;
and therefore there exists a complete parse tree for the sentence.

8 �e standard TAG formalism that we consider here does not allow multiple trees to adjoin
into a single node, although some extensions do (Alonso and Díaz, 2003a).

88 comparing constituency parsers in practical settings

�e deduction steps for this schema are as follows:

Scanner:
[a, i , i + 1]

[Nγ , i , i + 1,−,−, false] a = label(Nγ)

Epsilon:[Nγ , i , i ,−,−, false] є = label(Nγ)

�e steps Scanner and Epsilon are used to start the bottom-up parsing
process by recognising a terminal symbol in the input string, or none if we
are using a tree with an epsilon node.

Unary:
[Mγ , i , j, p, q, ad j]
[Nγ , i , j, p, q, false] Nγ → Mγ ∈ P(γ)

Binary:

[Mγ , i , k, p, q, ad j1],
[Pγ , k, j, p′, q′, ad j2]

[Nγ , i , j, p ∪ p′, q ∪ q′, false] Nγ → MγPγ ∈ P(γ)

�e Binary step (where the operation p∪ p′ returns p if p is de�ned, and
p′ otherwise) represents the bottom-up parsing operation which joins two
subtrees into one, and is analogous to the Binary step of the CYK parser
for CFG (Figure 6). �e Unary step is used to handle unary branching
productions.

Foot:
[Nγ , i , j, p, q, false]
[Fβ , i , j, i , j, false] β ∈ adj(Nγ)

Adjunction:

[Rβ , i′, j′, i , j, ad j],
[Nγ , i , j, p, q, false]
[Nγ , i′, j′, p, q, true] β ∈ adj(Nγ)

Foot and Adjunction implement the adjunction operation, where a
tree β is adjoined into a node Nγ.�eir side condition β ∈ adj(Nγ)means
that β must be adjoinable into the node Nγ (which involves checking that
Nγ is an adjunction node, comparing its label to Rβ ’s and verifying that no
adjunction constraint disallows the operation, if the grammar contemplates
such constraints).

Substitution:
[Rα , i , j,−,−, ad j]
[Nγ , i , j,−,−, false] α ∈ subs(Nγ)

4.4 parsing schemata for the xtag english grammar 89

Finally, the Substitution step implements the substitution operation in
grammars supporting it.

4.4 parsing schemata for the xtag english grammar

By using parsing schemata like the above example or the ones described by
Alonso et al. (1999) and Nederhof (1999) as an input to the system described
in Chapter 3, we can easily obtain e�cient implementations of several
TAG parsing algorithms. Additionally, if we extend them with support for
feature structure uni�cation, the generated parsers can be used with feature-
based TAGs like the XTAG English grammar (XTAG Research Group, 2001);
although further additions, such as tree �ltering, are highly convenient in
order to obtain good performance results with this grammar.
In this section, we describe how we have dealt with the particular char-

acteristics of the XTAG English grammar in order to make it compatible
with our generic compilation technique; and we provide empirical results
which allow us to compare the performance of several di�erent TAG parsing
algorithms in the practical case of the XTAG grammar. It should be noted
that previous comparisons of TAG parsers in the literature (Díaz and Alonso,
2000) use much smaller grammars, such as simpli�ed subsets of the XTAG
English grammar, instead of the whole XTAG grammar with all its trees
and feature structures. �erefore, our comparison provides valuable in-
formation about the behaviour of various parsers on a complete, large-scale
natural language grammar.�is behaviour is very di�erent from the one
that can be observed on small grammars, since grammar size becomes a
dominant factor in computational complexity when large grammars like
XTAG are used to parse relatively small natural language sentences (see the
experiments by Sarkar (2000), and the empirical evaluation of the impact
of grammar size in complexity that will be presented in Chapter 5).

4.4.1 Grammar conversion

�e �rst step we undertook in order to generate parsers for the XTAG
English grammar was a full conversion of the grammar to an XML-based
format, a variant of the TAGmarkup language (TAGML) (Bonhomme and
Lopez, 2000). In this way we had the grammar in a standard, well-de�ned
format, easier to parse and modify than the original, ad-hoc format.�is

90 comparing constituency parsers in practical settings

is highly convenient since grammar preprocessing or conversion is o�en
necessary (an example is the binarisation required in order to use the CYK
algorithm) and standard APIs for XML make it fast and easy to perform
such transformations.
During this conversion, the relationships between features that were

expressed as uni�cation equations in the original XTAG grammar were
transformed to links to symbolic variables, so that two features that should
take equal values were linked to the same variable.
Additionally, the trees’ anchor nodeswere duplicated, so that every anchor

node in the original XTAG grammarwas transformed to an adjunction node
with a single child labelled as an anchor node, with both nodes taking their
label and feature structures from the original node.�is transformation was
necessary in order to work around a peculiar characteristic of the XTAG
grammar: while the generic TAG formalism does not allow adjunction at
anchor nodes, the XTAG grammar does. By applying this transformation
to the grammar, we can parse it with our generic parsers without needing
to modify them in order to contemplate this variation from the standard
de�nition of TAGs, since we can perform adjunctions at the new adjunction
nodes that we add to the trees and the e�ect is equivalent to that of adjoining
on the anchor.

4.4.2 Feature structure uni�cation

�e XTAG trees include feature structures (Carpenter, 1992; Vijay-Shanker
and Joshi, 1988) associated with each of its nodes. Feature structures contain
information about how nodes may interact with each other, and they may
impose constraints on the adjunction and substitution operations, where
the feature structures in the involved nodes must unify.
Two strategies may be used in order to take uni�cation into account

in parsing: feature structures can be uni�ed a�er parsing or during pars-
ing.�e �rst strategy consists of parsing the sentence just as in a grammar
without feature structures, ignoring uni�cation, and then recovering the
parse forest and performing uni�cation only on the �nal parse trees, elimin-
ating trees that violate uni�cation constraints.�e second strategy consists
of performing uni�cation as a part of the parsing process, so that feature
structures are uni�ed during operations like adjunction or substitution.

4.4 parsing schemata for the xtag english grammar 91

during parsing after parsing

Mean 108,270 412,793
Trimmed Mean 10% 12,614 10,710
Trimmed Mean 20% 7,812 10,019

1st Quartile 1,585 2,123
Median 4,424 9,023
3rd Quartile 9,671 19,073

Standard Deviation 388,010 14,235

Wilcoxon p-value 0.4545

Table 3: Runtimes inmilliseconds of an Earley-based TAG parser using two di�erent
uni�cation strategies: uni�cation during and a�er parsing.�e following
data are shown: mean, trimmed means (10 and 20%), quartiles, standard
deviation, and p-value for the Wilcoxon paired signed rank test (the p-
value of 0.4545 indicates that no statistically signi�cant di�erence was
found between the medians).

At �rst sight, each of these strategies has its advantages and disadvant-
ages. By performing uni�cation during parsing, we are considering the
constraints imposed by feature structures earlier, so we avoid the generation
of unnecessary trees violating these constraints. On the other hand, by
unifying a�er parsing, we are only performing uni�cation on the items
needed to build the �nal parse trees, so we avoid uni�cation operations on
items that lead to incomplete parses.
�erefore, none of the methods is better than the other in absolute terms:

the convenience of one or the other will depend on theway feature structures
are used in the grammar.
In the particular case of the XTAG English grammar, we have compared

the two strategies with a parsing schema for the Earley algorithm for TAGs
without the valid pre�x property described by Schabes (1994) (the extensions
made to the schema in order to support uni�cation are described later) by
using 16 sample sentences taken from the XTAG distribution. An analysis
of the runtimes provides the results in Table 3.

92 comparing constituency parsers in practical settings

Although the means of both samples seem very di�erent, they are not
highly signi�cant, as they are in�uenced by huge outliers. Trimmed means,
which are insensitive to outliers, are fairly similar.�eWilcoxon two-sample
paired signed-rank test (Wilcoxon, 1945) (whose p-value is shown in the
last row) does not �nd signi�cant di�erence between both methods, so we
cannot conclude that any of them is better than the other for parsing the
XTAG grammar. We can, however, conclude that uni�cation during parsing
performs better formost sentences (cf. the quartiles) although it performs
much worse for some particular cases.
If we measure the number of items generated instead of execution time,

we conclude that if we unify during parsing we generate signi�cantly fewer
items (Wilcoxon p-value = 0.0174).�is means that the amount of items
we avoid to generate thanks to failed uni�cation operations exceeds the
amount of extra items generated when we have situations where several
items di�er only in their associated feature structures.
From now on, we will focus on the strategy that performs uni�cation

during parsing. In order to generate implementations of parsing algorithms
that support this strategy with our parsing schemata based system, we must
extend our schemata in order to support uni�cation.�is has been done in
the following way:

• Items are extended so that they hold a feature structure in addition
to the rest of the information they include.

• We de�ne two operations on feature structures: the uni�cation op-
eration and the “keep variables” operation.�e “keep variables” op-
eration is a transformation on feature structures that takes a feature
structure as an argument, which may contain features, values, sym-
bolic variables and associations between them, and returns a feature
structure containing only the variable-value associations related to a
given elementary tree, ignoring the variables and values not associ-
ated through these relations, and completely ignoring features.

• During the process of parsing, feature structures that refer to the same
node, or to nodes that are taking part in a substitution or adjunction
and are going to collapse into a single node in the �nal parse tree,
must be uni�ed. For this to be done, the test that these nodes must
unify is added as a side condition to the steps that must handle them,
and the uni�cation results are included in the item generated by the
consequent. Of course, considerations about the di�erent role of
the top and bottom feature structures in adjunction and substitution

4.4 parsing schemata for the xtag english grammar 93

(Vijay-Shanker and Joshi, 1988) must be taken into account when
determining which feature structures must be uni�ed.

• Feature structures that are included in items must only hold variable-
value associations for the symbolic variables appearing in the tree to
which the structures refer, for these relationships hold the information
that we need in order to propagate values according to the rules
speci�ed in the uni�cation equations. Variable-value associations
referring to di�erent elementary trees are irrelevant when parsing
a given tree, and feature-value and feature-variable associations are
local to a node and cannot be extrapolated to other nodes, so we will
not propagate any of this information in items. However, it must
be used locally for uni�cation.�erefore, deduction steps perform
uni�cation by using the information in their antecedent items and
recovering complete feature structures associated to nodes directly
from the grammar, and then use the “keep-variables” operation to
remove the information that is not needed in the consequent item.

• In some algorithms, such as the CYK-based algorithm for TAG, a single
deduction step deals with several di�erent elementary tree nodes that
do not collapse into one in the �nal parse tree. In this case, several
“keep variables” operationsmust be performed on each step execution,
one for each of these nodes. If we just uni�ed the information on all
the nodes and called “keep variables” at the end, we could propagate
information incorrectly.

• In Earley-type algorithms, we must make a decision about how pre-
dictor steps handle feature structures. Two options are possible: one
is propagating the feature structure in the antecedent item to the
consequent, and the other is discarding the feature structure and
generating a consequent whose associated feature structure is empty.
�e �rst option has the advantage that violations of uni�cation con-
straints are detected earlier, thus avoiding the generation of some
items. However, in scenarios where a predictor is applied to sev-
eral items di�ering only in their associated feature structures, this
approach generates several di�erent items while the discarding ap-
proach collapses them into a single consequent item. Moreover, the
propagating approach favors the appearance of items with more com-
plex feature structures, thus making uni�cation operations slower. In
practice, for the XTAG grammar we have found that these drawbacks
of propagating the structures overcome the advantages, especially in

94 comparing constituency parsers in practical settings

complex sentences, where the discarding approach performs much
better.�erefore, in our comparison of di�erent algorithms we will
use this variant, where uni�cation constraints within a tree involving
a node are not checked until the node is completed by a Completer
step.

4.4.3 Tree �ltering

�e full XTAG English grammar contains thousands of elementary trees,
so parsing performance is not good if we use the whole grammar to parse
each sentence. Tree selection �lters (Schabes and Joshi, 1991) are used to
select a subset of the grammar, discarding the trees which are known not to
be useful given the words in the input sentence.
To emulate this functionality in our parsing schema-based system, we

have used its extensibility mechanism to de�ne a function Selects-tree(a,T)
that returns true if the terminal symbol a selects the tree T.�e implement-
ation of this function is a Java method that looks for this information in
XTAG’s syntactic database.�en the function is inserted in a �ltering step
on our schemata:

[a, i , j]
[Selected, α]

α ∈ Trees/Selects-tree(a;α)

�e presence of an item of the form [Selected, α] indicates that the tree
α has been selected by the �lter and can be used for parsing. In order for
the �lter to take e�ect, we add [Selected, α] as an antecedent to every step
in our schemata introducing a new tree α into the parse (such as initters,
substitution and adjoining steps). In this way we guarantee that no trees
that do not pass the �lter will be used for parsing.
Note that the Selects-tree function can be de�ned to return true by default

when we are working with a generic non-lexicalised TAG without such a
�lter, so we can preserve the genericity of the schemata while allowing them
to take advantage of lexicalisation to improve performance with the XTAG
grammar.

4.4 parsing schemata for the xtag english grammar 95

Example

An example of two of the steps in the parsing schemata shown in Section
4.3 (Binary and Foot), written in the input notation used as input to our
schemata compiler, follows:

@step CYKBinary
[Node1 , i , k , p , q , adj]
[Node2 , k , j , p1 , q1 , adj2]
--- Node3 -> Node1 Node2
[Node3 , i , j , Union(p;p1) , Union(q;q1) , false]

@step CYKFoot
[Node1 , i , j , p , q , false]
----------------------------------- Node2 -> Node3 / Identity (

Symbol-of(Node3) ; Tfoot) , Adjoinable (Tree-of(Node2
) ; Node1)

[Node2 , i , j , i , j , false] �
where:
• Union represents the operation that we have denoted as ∪ in the
schema in Section 4.3,

• Tfoot is a special convenience node that we add as a daughter of foot
nodes in elementary trees, with the only function of marking them
as the foot node (as in Nederhof (1999)),

• Symbol-of returns the label of a given node, and Tree-of the tree
to which it belongs,

• Identity is a comparison operation that returns true if their oper-
ands are the same object, and

• Adjoinable checks whether an auxiliary tree can be adjoined into a
given node, by comparing the node’s label to those associated with
the root and foot nodes of the auxiliary tree.

A�er extending the steps with the support for tree �ltering and feature
structure uni�cation, we obtain the following:

@step CYKBinary
[Node1 , i , k , p , q , adj1 , fs1]
[Node2 , k , j , p1 , q1 , adj2 , fs2]
--- Node3

-> Node1 Node2 / Not-null (Keep-vars (Tree-vars(Tree-of
(Node1)) ; Unify (Top(Node1) ; Bottom(Node1) ; fs1

96 comparing constituency parsers in practical settings

; Top(Node2) ; Bottom(Node2) ; fs2 ; Bottom(Node3))
))

[Node3 , i , j , Union(p;p1) , Union(q;q1) , false , Unif-
result]

@step CYKFoot
[Node1 , i , j , p , q , false , fs]
[Selected , Tree-of (Node2)]
--- Node2 -> Node3 /

Identity(Symbol-of(Node3) ; Tfoot) , Not-null (Keep-
vars (Tree-vars(Tree-of (Node2)) ; Unify (Bottom(
Node1) ; fs ; Bottom(Node2))))

[Node2 , i , j , i , j , false , Unif-result] �
where:
• Keep-vars calls the “keep variables” operation discussed above, and
Unify performs feature structure uni�cation,

• Tree-vars returns the list of variables associated with a given ele-
mentary tree, and is used to specify the variables that must be pre-
served by Keep-vars operations,

• Top and Bottom return the top and bottom feature structures (Vijay-
Shanker and Joshi, 1988) associated to a node in an XTAG elementary
tree,

• Uni�cation operations return a null value when feature structures
do not unify (which is checked by the Not-null predicate used in
side conditions). If structures do unify, the variable Unif-result
used in consequent items stores the feature structure obtained from
uni�cation.

4.5 comparing several parsers for the xtag grammar

In this section, we make an empirical comparison of several di�erent TAG
parsing algorithms— the CYK-based algorithm described by Vijay-Shanker
and Joshi (1985), Earley-based algorithms with (Alonso et al., 1999) and
without (Schabes, 1994) the valid pre�x property (VPP), and the algorithm
byNederhof (1999)— on the XTAGEnglish grammar (release 2.24.2001), by
using the compiler described in Chapter 3 and the ideas we have explained
above.�e schemata for these algorithms without uni�cation support can
be found in Alonso et al. (1999).�ese schemata were extended as described

4.5 comparing several parsers for the xtag grammar 97

1. He was a cow 9. He wanted to go to the city
2. He loved himself 10.�at woman in the city contributed to this

article
3. Go to your room 11. �at people are not really amateurs at in-

telectual duelling
4. He is a real man 12. �e index is intended to measure future

economic performance
5. He was a real man 13.�ey expect him to cut costs throughout

the organization
6. Who was at the door 14. He will continue to place a huge burden

on the city workers
7. He loved all cows 15. He could have been simply being a jerk
8. He called up her 16. A few fast food outlets are giving it a try

Table 4: Test sentences from the XTAG distribution.

in the previous sections, and used as input to our system which generated
implementations of their corresponding parsers.�e parsers were then run
on sample sentences taken from the XTAG distribution, which are shown
in Table 4, obtaining the performance measures (in terms of runtime and
amount of items generated) that can be seen in Tables 5 and 6.9 Note that
the sentences are ordered by minimal runtime.
As we can see, the execution times are not as good as the ones we would

obtain if we used Sarkar’s XTAG distribution parser written in C (Sarkar,
2000).�is is not surprising, since our parsers have been generated by a
generic tool without knowledge of the grammar, while the XTAG parser
has been designed speci�cally for optimal performance in this particular
grammar and uses additional information (such as tree usage frequency
data from several corpora, see XTAG Research Group (2001)).
However, our comparison allows us to draw conclusions about which

parsing algorithms are better suited for the XTAG grammar. In terms of
memory usage, the CYK-based algorithm is the clear winner, since it clearly
generates less items than the other algorithms, and a CYK item does not take
up more memory than an Earley item.

9 �e machine used for these tests was an Intel Pentium 4 / 3.40 GHz, with 1 GB RAM and
Sun Java Hotspot virtual machine (version 1.4.2_01-b06) running on Windows XP.

98 comparing constituency parsers in practical settings

Sentence Runtimes in milliseconds

cyk earley, no vpp earley, vpp nederhof

1 2,985 *750 *750 2,719
2 3,109 1,562 *1,219 6,421
3 4,078 1,547 *1,406 6,828
4 4,266 1,563 *1,407 4,703
5 4,234 1,921 *1,421 4,766
6 4,485 1,813 *1,562 7,782
7 5,469 2,359 *2,344 11,469
8 7,828 4,906 *3,563 15,532
9 10,047 4,422 *4,016 18,969
10 13,641 *6,515 7,172 31,828
11 16,500 *7,781 15,235 56,265
12 16,875 17,109 *9,985 39,132
13 25,859 *12,000 20,828 63,641
14 54,578 *35,829 57,422 178,875
15 *62,157 113,532 109,062 133,515
16 *269,187 3,122,860 3,315,359

Table 5: Runtimes for di�erent XTAG parsers on the sentences shown in Table 4.
Best results for each sentence are highlighted with an asterisk.

On the other hand, if we compare execution times, there is not a single
best algorithm, since the performance results depend on the size and com-
plexity of the sentences. �e Earley-based algorithm with the VPP is the
fastest for the �rst, “easier” sentences, but CYK gives the best results for the
more complex sentences. In the middle of the two, there are some sentences
where the best performance is achieved by the variant of Earley that does
not verify the valid pre�x property.�erefore, in practical cases, we should
take into account the most likely kind of sentences that will be passed to
the parser in order to select the best algorithm.

4.5 comparing several parsers for the xtag grammar 99

Sentence Items generated

cyk earley, no vpp earley, vpp nederhof

1 1,341 1,463 *1,162 1,249
2 *1,834 2,917 2,183 2,183
3 *2,149 2,893 2,298 2,304
4 1,864 1,979 *1,534 2,085
5 1,855 1,979 *1,534 2,085
6 *2,581 3,587 2,734 2,742
7 *2,658 3,937 3,311 3,409
8 *4,128 8,058 4,711 4,716
9 *4,931 6,968 5,259 5,279
10 *6,087 8,828 7,734 8,344
11 *7,246 12,068 13,221 13,376
12 *7,123 10,428 9,810 10,019
13 *10,408 12,852 15,417 15,094
14 *20,760 31,278 40,248 47,570
15 *22,115 37,377 38,824 59,603
16 *68,778 152,430 173,128

Table 6: Amount of items generated by di�erent XTAG parsers on the sentences
shown in Table 4. Best results for each sentence are highlighted with an
asterisk.

Nederhof ’s algorithm is always the one with the slowest execution time,
in spite of being an improvement of the VPP Earley parser that reduces
worst-case time complexity.�is is probably because, when extending the
Nederhof schema in order to support feature structure uni�cation, we get
a schema that needs more uni�cation operations than Earley’s and has to
use items that store several feature structures. Nederhof ’s algorithm would
perhaps perform better in relation to the others if we had used the strategy

100 comparing constituency parsers in practical settings

of parsing without feature structures and then performing uni�cation on
the output parse forest.10

Note that the generated implementations used for these executions apply
the tree �ltering technique discussed in Section 4.4.3, so that the e�ective
grammar size is di�erent for each sentence; hence the high variability in
execution times among the di�erent test sentences.

4.6 discussion

In this chapter, we have used the compiler introduced in Chapter 3 to
perform empirical comparisons of di�erent constituency-based parsing
algorithms. We have compared algorithms for two di�erent constituency
grammar formalisms (CFG and TAG) by using them to parse sentences with
grammars from well-known natural language corpora.
In the case of CFG, the CYK (Kasami, 1965; Younger, 1967), Earley (Earley,

1970) and Le�-Corner (Rosenkrantz and Lewis II, 1970) algorithms have
been compared on the Susanne (Sampson, 1994), Alvey (Carroll, 1993) and
Deltra (Schoorl and Belder, 1990) grammars. For TAG, we have compared
a CYK-based algorithm (Vijay-Shanker and Joshi, 1985), Earley-based al-
gorithms with and without the VPP (Alonso et al., 1999; Schabes, 1994),
and the algorithm by Nederhof (1999); using the XTAG English Grammar
(XTAG Research Group, 2001).
�ese experiments are an example of how the parsing schemata compiler

presented in Chapter 3 can be used to easily obtain implementations of
di�erent parsers and test them on real-sized grammars under homogeneous
conditions. �e measurements obtained in the comparisons show how
di�erent parsers can be better or worse suited to a particular task depending
on factors related to the size and nature of the grammar and sentences to
be parsed. Our system provides a quick way to evaluate several parsing
algorithms in order to �nd the best one for a particular application.
In the following chapter, we investigate the factors that a�ect performance

of TAG parsers in more detail. While comparing parsers on real natural

10 It should also be noted that the example sentences do not correspond to the worst case in
TAG parsing, so the theoretical worst-case performance of the algorithm is not neccesarily a
good predictor of practical performance. As it is not possible to de�ne an “average case” for
TAG parsing, having an homogeneous comparison environment (as provided by the system
presented in this thesis) is useful to determine which algorithms work better in practice.

4.6 discussion 101

language grammars provides interesting results about their relative per-
formance in practical settings, this approach is not su�cient if we want to
gain insight into the underlying factors that in�uence performance: as the
natural language grammars that we have used are �xed, we cannot use them
to evaluate the in�uence of grammar-related parameters (such as grammar
size) in performance. In the following chapter, we use arti�cially generated
grammars so as to be able to vary these parameters and draw conclusions
about the empirical computational complexity of TAG parsers and their
overhead over CFG parsers.

5
PRACTICAL COMPLEXITY OF TAG PARSERS

In the last chapter, we used the compiler described in Chapter 3 to perform
empirical comparisons of di�erentCFG and TAG parsing algorithms, by using
them to parse sentences with natural language grammars from well-known
corpora.
�e current chapter complements these studies with experiments based

on arti�cially-generated grammars, providing an evaluation of the in�uence
of grammar size on the performance of TAG parsers, as well as a study of
the practical overhead caused by using tree-adjoining grammars to parse
context-free languages.

5.1 parsing with artificial tags

When studying the complexity of parsing algorithms in theory, it is common
to focus mainly on complexity with respect to sentence length. However,
other factors such as grammar size can have a signi�cant in�uence on the
practical performance of parsers. In the particular case of TAG parsers, both
the results reported by Sarkar (2000) and the experiments in Chapter 4
suggest that the main factor a�ecting performance in practical settings is
not sentence length, but grammar size. �is is especially relevant in the
case of LTAG parsing, where the e�ective grammar size for a given sentence
depends on the lexicalised trees selected by each of its lexical elements.
In this section, we make a detailed analysis of the in�uence of both

sentence length and grammar size in the empirical performance of several
TAG parsers. As in previous comparisons, the system described in Chapter
3 is used to generate implementations of the parsers, but in this case the
algorithms are compared on arti�cially generated grammars and sentences.

103

104 practical complexity of tag parsers

�e advantage of using arti�cially generated grammars is that we can
easily see the in�uence of grammar size on performance. If we test the
algorithms on a real-life grammar, as we did in Chapter 4; we cannot get a
very precise idea of how the size of the grammar a�ects performance, since
we have no control over this factor. On the other hand, by using arti�cial
grammars, we are able to adjust both string length and grammar size at will
in the experiments, making it possible to isolate and analyse the in�uence
of each of these factors.
�e algorithms used in this comparison are the same TAG parsers that

were used in Chapter 4: the CYK-based algorithm by Vijay-Shanker and
Joshi (1985), Earley-like parsers with and without the VPP (Alonso et al.,
1999; Schabes, 1994), and the algorithm described by Nederhof (1999).
For the grammars, we will use a grammar size parameter k, in such a way

that we can obtain a grammar of size k for each value of k. To de�ne these
grammars, we will use bracketed notation to write elementary trees, and * to
mark the foot node of auxiliary trees. Given an integer k > 0, we de�ne the
tree-adjoining grammar Gk to be the grammar Gk = (N , Σ, I,A, S) where:

Σ = {a j ∣ 0 ≤ j ≤ k},

N = {S , B},

I = {S(B(a0))}, and

A = {B(B(B∗ a j)) ∣ 1 ≤ j ≤ k}.

�erefore, for a given k, Gk is a grammar with one initial tree and k
auxiliary trees, which parses a language over an alphabet with k+ 1 terminal
symbols.�e actual language de�ned by Gk is the regular language Lk =
a0(a1 ∣ a2 ∣ . . . ∣ ak)∗.
It is easy to prove that the grammar Gk is one of the minimal tree-

adjoining grammars (in terms of number of trees) whose associated lan-
guage is Lk . Note that we need at least a tree containing a0 as its only
terminal in order to parse the sentence a0, and for each 1 ≤ i ≤ k, we need
at least a tree containing ai and no other a j (j > 0) in order to parse the
sentence a0ai . �erefore, any TAG for the language Lk must have at least
k + 1 elementary trees.
Note that although the languages Lk are trivial, the grammars Gk are

built in such a way that any of the auxiliary trees may adjoin into any other.

5.1 parsing with artificial tags 105

�erefore these grammars are suitable if we want to make an empirical
analysis of worst-case complexity.
Table 7 shows the execution time inmilliseconds1, and Table 8 the amount

of items generated, obtained by running four TAG parsers working with the
grammars Gk , for di�erent values of string length (n) and grammar size (k).
Input strings were always generated in the same way: as the pre�x of length
n of a0(a1a2 . . . ak)∗.
From the results in Table 7, we can observe that both factors (string length

and grammar size) have an in�uence on runtime, and they interact among
themselves: the growth rates with respect to one factor are in�uenced by the
other factor, so it is hard to give precise estimates of empirical computational
complexity. However, we can get rough estimates by focusing on cases where
one of the factors takes high values and the other one takes low values (since
in these cases the constant factors a�ecting complexity will be smaller)
and test them by checking whether the sequence T(n, k)/ f (n) seems to
converge to a positive constant for each �xed k (with T(n, k) being the exe-
cution time for string length n and grammar size k, and f (n) an estimation
of complexity with respect to string length) or whether T(n, k)/ f (k) seems
to converge to a positive constant for each �xed n (if f (k) is an estimation
of complexity with respect to grammar size).
By applying these principles, we �nd that the empirical time complexity

with respect to string length is in the range between O(n2.8) and O(n3) for
the CYK-based and Nederhof algorithms, and between O(n2.6) and O(n3)
for the Earley-based algorithms with and without the valid pre�x property
(VPP).�erefore, the practical time complexity we obtain is far below the
theoretical worst-case bounds for these algorithms, which areO(n6) (except
for the Earley-based algorithm with the VPP, which is O(n7)).2

If we focus on the amount of items generated in each case (Table 8) we
obtain that the empirical space complexity with respect to string length is
approximately O(n2) for all the algorithms, also far below the worst-case
bounds (O(n4) and O(n5)).

1 �e machine used for these tests was an Intel Pentium 4 3.40 GHz, with 1 GB RAM and Sun
Java Hotspot virtual machine (version 1.4.2_01-b06) running on Windows XP.

2 Although it is possible to design arti�cial grammars producing worst-case performance
with respect to n, the results for such grammars would have less practical interest, as they
would depart from the usual characteristics of practical TAGs.�e elementary trees in the
grammars Gk have a similar structure to trees found in natural language grammars such as
the XTAG English grammar.

106 practical complexity of tag parsers

runtimes in ms : earley-based without the vpp

String Size (n) Grammar Size (k)
1 8 64 512 4096

2 ∼0 16 15 *1,156 *109,843
4 ∼0 31 63 *2,578 *256,094
8 16 31 *172 *6,891 *589,578
16 31 172 *625 *18,735 *1,508,609
32 110 609 *3,219 *69,406
64 485 2,953 *22,453 *289,984
128 2,031 *13,875 *234,594
256 10,000 *101,219
512 61,266

runtimes in ms : cyk-based

String Size (n) Grammar Size (k)
1 8 64 512 4096

2 ∼0 ∼0 16 1,344 125,750
4 ∼0 ∼0 63 4,109 290,187
8 16 31 234 15,891 777,968
16 *15 *62 782 44,188 2,247,156
32 *94 *312 3,781 170,609
64 *266 *2,063 25,094 550,016
128 *1,187 14,516 269,047
256 *6,781 108,297
512 *52,000

runtimes in ms : nederhof ’s algorithm

String Size (n) Grammar Size (k)
1 8 64 512 4096

2 ∼0 ∼0 47 1,875 151,532
4 ∼0 15 187 4,563 390,468
8 15 31 469 12,531 998,594
16 46 188 1,500 40,093 2,579,578
32 219 953 6,235 157,063
64 1,078 4,735 35,860 620,047
128 5,703 25,703 302,766
256 37,125 159,609
512 291,141
runtimes in ms : earley-based with the vpp

String Size (n) Grammar Size (k)
1 8 64 512 4096

2 ∼0 ∼0 31 1,937 194,047
4 ∼0 16 78 4,078 453,203
8 15 31 234 10,922 781,141
16 31 188 875 27,125 1,787,140
32 125 750 4,141 98,829
64 578 3,547 28,640 350,218
128 2,453 20,766 264,500
256 12,187 122,797
512 74,046

Table 7: Execution times of four di�erent TAG parsers for arti�cially-generated
grammars Gk . Best results are highlighted with an asterisk.

5.1 parsing with artificial tags 107

items generated : earley-based with and without the vpp

String Size (n) Grammar Size (k)
1 8 64 512 4096

2 *20 55 335 2,575 20,495
4 *54 160 944 7,216 57,392
8 *170 *590 3,054 22,766 180,462
16 *594 *2,538 11,290 79,386 624,154
32 *2,210 *10,850 *47,410 298,290
64 *8,514 *45,138 *226,914 *1,187,426
128 *33,410 *156,405 *1,152,834
256 *132,354 *688,053
512 *526,850

items generated : cyk-based

String Size (n) Grammar Size (k)
1 8 64 512 4096

2 23 *44 *212 *1,556 *12,308
4 64 *143 *703 *5,183 *41,023
8 206 605 *2,621 *18,749 *147,773
16 730 2,933 *10,873 *71,801 *559,225
32 2,738 13,349 50,417 *286,961
64 10,594 57,095 264,673 1,196,513
128 41,666 236,768 1,442,721
256 165,250 964,754
512 658,178

items generated : nederhof ’s algorithm

String Size (n) Grammar Size (k)
1 8 64 512 4096

2 22 64 400 3,088 24,592
4 66 215 1,335 10,295 81,875
8 226 877 4,909 37,165 295,213
16 834 3,989 19,545 141,401 1,140,829
32 3,202 17,509 84,145 557,233
64 12,546 73,733 397,665 2,261,345
128 49,666 302,917 1,970,949
256 197,634 1,228,229
512 788,482

Table 8: Items generated by four di�erent TAG parsers for arti�cially-generated
grammars Gk . Best results are highlighted with an asterisk.

108 practical complexity of tag parsers

time complexity cyk ear . no vpp ear . vpp neder .

�eoretical wrt n O(n6) O(n7) O(n6) O(n6)
Practical wrt n O(n2.9) O(n2.8) O(n2.8) O(n2.9)

�eoretical wrt k O(k2) O(k2) O(k2) O(k2)
Practical wrt k O(k2) O(k2) O(k2) O(k2)

space complexity cyk ear . no vpp ear . vpp nederh .

�eoretical wrt n O(n4) O(n4) O(n5) O(n5)
Practical wrt n O(n2) O(n2) O(n2) O(n2)

�eoretical wrt k O(k) O(k) O(k) O(k)
Practical wrt k O(k) O(k) O(k) O(k)

Table 9: Comparison of the empirical time and space complexities obtained for
four TAG parsers with the corresponding theoretical complexities.

With respect to the size of the grammar, we obtain a time complexity
of approximately O(∣I ∪ A∣2) for all the algorithms. �is matches the
theoretical worst-case bound, which is O(∣I ∪A∣2) due to the adjunction
steps, which work with pairs of trees. In the case of our arti�cially generated
grammarsGk , any auxiliary tree can adjoin into any other, so it is logical that
our times grow quadratically. Note, however, that real-life grammars such as
the XTAG English grammar (XTAG Research Group, 2001) have relatively
few di�erent nonterminals with respect to their amount of elementary trees,
so many pairs of trees are susceptible of adjunction and we cannot expect
their behavior to be much better than this.
Space complexity with respect to grammar size is approximately O(∣I ∪

A∣) for all the algorithms.�is is an expected result, since each generated
item is associated to a given tree node.
An overview of the empirical time and space complexities obtained from

these experiments, compared to the corresponding theoretical worst-case
complexities, is shown in Table 9.
Practical applications of TAG in natural language processing usually fall

within the range of values for n and k covered in our experiments (grammars

5.1 parsing with artificial tags 109

with hundreds or a few thousands of trees are used to parse sentences of
several dozens of words). Within these ranges, both string length and
grammar size take signi�cant values and have an important in�uence on
execution times, as we can see from the results in the tables.�is leads us
to note that traditional complexity analysis based on a single factor (string
length or grammar size) can be misleading for practical applications, since it
can lead us to an incomplete idea of real complexity. For example, if we are
working with a grammar with thousands of trees, the size of the grammar
is the most in�uential factor, and the use of �ltering techniques (Schabes
and Joshi, 1991) to reduce the amount of trees used in parsing is essential in
order to achieve good performance.�e in�uence of string length in these
cases, on the other hand, is mitigated by the huge constant factors related
to grammar size. For instance, in the times shown in the tables for the
grammar G4096, we can see that parsing times are multiplied by a factor less
than 3 when the length of the input string is duplicated, although the rest of
the results have lead us to conclude that the practical asymptotic complexity
with respect to string length is at least O(n2.6).�ese interactions between
both factors must be taken into account when analyzing performance in
terms of computational complexity.
Earley-based algorithms achieve better execution times than the CYK-

based algorithm for large grammars, although they are worse for small
grammars.�is contrasts with the results obtained for context-free gram-
mars in Chapter 4, where CYK worked better for large grammars: when
working with CFG’s, CYK has a better computational complexity than Earley
with respect to grammar size (see Section 4.1), but the TAG variant of the
CYK algorithm is quadratic with respect to grammar size and does not have
this advantage.
CYK generates fewer items than the Earley-based algorithms when work-

ing with large grammars and short strings, and the opposite happens when
working with small grammars and long strings.
�e Earley-based algorithm with the VPP generates the same number of

items than the one without this property, and has worse execution times.
�e reason is that no partial parses violating this property are generated
by any of both algorithms in the particular case of the grammars Gk , so
guaranteeing the valid pre�x property does not prevent any items from
being generated.�erefore, the fact that the variant without the VPP works
better in this particular case cannot be extrapolated to other grammars.
However, the di�erences in times between these two algorithms illustrate

110 practical complexity of tag parsers

the overhead caused by the extra checks needed to guarantee the valid pre�x
property in a particularly bad case.
Nederhof ’s algorithm has slower execution times than the other Earley

variants. Despite the fact that Nederhof ’s algorithm is an improvement over
the other Earley-based algorithm with the VPP in terms of computational
complexity, the extra deduction steps it contains makes it slower in practice.
Finally, if we compare the runtimes obtained in this section with those

obtained with the XTAG English Grammar (Table 5 in Section 4.5), we
see that the obtained execution times for the XTAG grammar are in the
ranges that we could expect given the arti�cial grammar results, i.e. they
approximately match the times in the tables for the corresponding grammar
sizes and input string lengths. �e most noticeable di�erence is that the
Earley-like algorithm verifying the valid pre�x property generates fewer
items that the variant without the VPP in the XTAG grammar, and this
causes its runtimes to be faster. But this di�erence is not surprising, as
explained above.

5.2 overhead of tag parsing over cfg parsing

�e languages Lk that we parsed in the last section were regular languages,
so in practice we do not need tree adjoining grammars to parse them,
although it was convenient to use them in our comparison.�is can lead us
to wonder how large is the overhead caused by using the TAG formalism to
parse context-free languages.
Given the regular language Lk = a0(a1 ∣ a2 ∣ . . . ∣ ak)∗, a context-free

grammar that parses it is G′
k = (N , Σ, P, S), with

N = {S}, and

P = {S → a0} ∪ {S → Sai ∣ 1 ≤ i ≤ k}.

�is grammar minimises the number of rules needed to parse Lk (k + 1
rules), but has le� recursion. If we want to eliminate le� recursion, we can
use the grammar G′′

k = (N , Σ, P, S) with

N = {S ,A}, and

P = {S → a0A} ∪ {A→ aiA ∣ 1 ≤ i ≤ k} ∪ {A→ є},

5.3 discussion 111

which has k + 2 production rules.
�e number of items generated by the Earley algorithm for context-free

grammars when parsing a sentence of length n from the language Lk by
using the grammar G′

k is (k + 2)n. In the case of the grammar G′′
k , the same

algorithm generates (k+4)n+ n(n−1)
2 + 1 items. In both cases the amount of

items generated is linear with respect to grammar size, as with TAG parsers.
With respect to string length, the amount of items isO(n) forG′

k andO(n2)
forG′′

k , and it was approximately O(n2) for the TAGGk . Note, however, that
the constant factors behind complexity aremuch greater when working with
Gk than with G′′

k , and this re�ects on the actual number of items generated
(for example, the Earley algorithm generates 16,833 items when working
with G′′

64 and a string of length n = 128, while the TAG variant of Earley
without the valid pre�x property generated 1,152,834 items).
�e execution times for both algorithms appear in Table 10. From the

obtained times, we can deduce that the empirical time complexity is linear
with respect to string length and quadratic with respect to grammar size
in the case of G′

k ; and quadratic with respect to string length and linear
with respect to grammar size in the case of G′′

k . So this example shows
that, when parsing a context-free language using a tree-adjoining grammar,
we get an overhead both in constant factors (more complex items, more
deduction steps, etc.) and in asymptotic behaviour (summarised in Table
11), so actual execution times can be several orders of magnitude larger.
Note that the way grammars are designed also has an in�uence, but our tree
adjoining grammars Gk are the simplest TAGs able to parse the languages
Lk by using adjunction (an alternative would be to write a grammar using
the substitution operation to combine trees).

5.3 discussion

In this chapter, we have used the parsing schema compiler presented in
Chapter 3 to conduct an empirical study of the factors that in�uence per-
formance of several TAG parsing algorithms, establishing comparisons both
between themselves and with CFG parsers.
�e results show that both string length and grammar size can be import-

ant factors in performance, and the interactions between them sometimes
make their in�uence hard to quantify. �e in�uence of string length in
practical cases is usually below the theoretical worst-case bounds (between

112 practical complexity of tag parsers

string length (n) grammar size (k), grammar G′
k

1 8 64 512 4096

n=2 ∼0 ∼0 ∼0 31 2,062
n=4 ∼0 ∼0 ∼0 62 4,110
n=8 ∼0 ∼0 ∼0 125 8,265
n=16 ∼0 ∼0 ∼0 217 15,390
n=32 ∼0 ∼0 15 563 29,344
n=64 ∼0 ∼0 31 1,062 61,875
n=128 ∼0 ∼0 109 2,083 122,875
n=256 ∼0 15 188 4,266 236,688
n=512 15 31 328 8,406 484,859

string length (n) grammar size (k), grammar G′′
k

1 8 64 512 4096

n=2 ∼0 ∼0 ∼0 ∼0 47
n=4 ∼0 ∼0 ∼0 15 94
n=8 ∼0 ∼0 ∼0 16 203
n=16 ∼0 ∼0 ∼0 46 688
n=32 ∼0 ∼0 15 203 1,735
n=64 31 31 93 516 4,812
n=128 156 156 328 1,500 13,406
n=256 484 547 984 5,078 45,172
n=512 1,765 2,047 3,734 18,078

Table 10: Runtimes obtained by applying the Earley parser for context-free gram-
mars to sentences in Lk .

5.3 discussion 113

complexity tag Gk cfg G′
k cfg G′′

k

Time wrt n O(n2.9) O(n) O(n2)
Time wrt k O(k2) O(k2) O(k)

Space wrt n O(n2) O(n) O(n2)
Space wrt k O(k) O(k) O(k)

Table 11: Comparison of empirical complexities obtained when parsing the lan-
guages Lk with CFGs and TAGs.

O(n) and O(n2) in our tests for CFGs, and slightly below O(n3) for TAGs).
Grammar size becomes the dominating factor in large TAGs, making tree
�ltering techniques advisable in order to achieve faster execution times.
Using TAGs to parse context-free languages causes an overhead both in

constant factors and in practical computational complexity, thus increasing
execution times by several orders of magnitude with respect to CFG parsing.

�e results presented in this chapter conclude Part ii of this dissertation,
in which we have de�ned a practical tool for the development of natural
language parsers using parsing schemata; and we have used it to study the
empirical behaviour of parsers for context-free grammars and tree-adjoining
grammars.�is system can be used to generate an e�cient implementation
of any parser that can be described as a parsing schema, allowing parser
developers to prototype algorithms by specifying them formally, without
needing to implement them.
In the following parts, we take a more theoretical approach, in order

to extend the theory of parsing schemata to be able to describe two kinds
of parsers of practical interest that were not contemplated in the original
formalism by Sikkel (1997). In particular, Part iii de�nes parsing schemata
for error-repair parsers, and Part iv for dependency-based parsers. In both
cases, the de�nitions of the formalisms are followed by novel results derived
from their application.

Part III

PARSING SCHEMATA FOR ERROR-REPAIR PARSERS

6
ERROR-REPAIR PARSING SCHEMATA

Robustness, the ability to analyze any input regardless of its grammaticality,
is a desirable property for any system dealing with unrestricted natural
language text. Error-repair parsing approaches achieve robustness by con-
sidering ungrammatical sentences as corrupted versions of valid sentences.
�e formalism of parsing schemata, as de�ned by Sikkel (1997) and ex-

plained in Chapter 2 of this thesis, cannot be used to represent this kind of
parsing algorithms. In this chapter we present a variant of the formalism
that can be used to de�ne and relate error-repair parsers and study their
formal properties, such as correctness. Additionally, we will use this new
formalism, together with the parsing schema compiler presented in Chapter
3, to generate and compare implementations of parsers with global and
regional error-repair strategies.

6.1 motivation

When using grammar-driven parsers to process natural language texts in
real-life domains, it is common to �nd sentences that cannot be parsed by
the grammar. �is may be due to several reasons, including insu�cient
coverage (the input is well-formed, but the grammar cannot recognise it)
and ill-formedness of the input (errors in the sentence or errors caused
by input methods). A standard parser will fail to return an analysis in
these cases. A robust parser is one that can provide useful results for such
extragrammatical sentences.
�e methods that have been proposed to achieve robustness in grammar-

driven parsing fall mainly into two broad categories: those that try to parse
well-formed fragments of the input when a parse for the complete sentence
cannot be found (partial parsers, such as the one described by Kasper et al.

117

118 error-repair parsing schemata

(1999)) and those which try to assign a complete parse to the input sentence
by relaxing grammatical constraints. In this chapter we will focus on error-
repair parsers, which fall into the second category. An error-repair parser
is a kind of robust parser that can �nd a complete parse tree for sentences
not covered by the grammar, by supposing that ungrammatical strings are
corrupted versions of valid strings.
In the �eld of compiler design for programming languages, the problem

of repairing and recovering from syntax errors during parsing has received
a great deal of attention in the past (see for example the list of references
provided in the annotated bibliography of Grune and Jacobs (2008, section
18.2.7)) and also in recent years (see for example van der Spek et al. (2005);
Corchuelo et al. (2002); Kim and Choe (2001); Cerecke (2002)). In the
�eld of natural language parsing, some error-repair parsers have also been
described, for example, in Lyon (1974); Mellish (1989), or more recently in
Vilares et al. (2004); Perez-Cortes et al. (2000).
However, no formalism has been proposed to uniformly describe error-

repair parsers, compare them and prove their correctness. In this chapter
we propose such a framework as an extension of parsing schemata (Sikkel,
1997).�is not only allows us to take advantage of all the theoretical bene�ts
of parsing schemata that have been described in Section 2.4 when de�ning
and studying error-repair parsers; but also to use the compiler introduced in
Chapter 3 to obtain e�cient implementations of them, as will be described
at the end of this chapter. Furthermore, we will show in Chapter 7 how
the described formalism can be used to automatically transform standard
parsers, like those used in Chapter 4, into robust, error-repair parsers.

6.2 error repair in parsing schemata

Asmentioned above, error-repair parsers are able to analyze ungrammatical
sentences by considering them as versions of valid sentences that have been
modi�ed by applying a number of errors to them.�us, errors can be seen
as transformations on strings: for instance, a typical error could be the
omission of a word from a sentence. Here, we will take the more general
approach of considering that errors are transformations of constituency
parse trees: from this point of view, string transformations can be seen as a
particular case of tree transformations where only terminal nodes can be
altered.

6.2 error repair in parsing schemata 119

An error-repair parser will be able to detect errors in sentences, and build
a constituency tree for an ungrammatical sentence based on the parse tree
for its corresponding grammatical sentence.
�e parsing schemata formalism introduced in Chapter 2 does not su�ce

to de�ne error-repair parsers that can show such a robust behavior in the
presence of errors: by De�nition 2.10, items can only contain members of
Trees(G), which are trees that conform to the constraints imposed by the
grammar, but in order to build trees for ungrammatical sentences we need
to be able to violate these constraints. What we need is to obtain items
containing “approximate parses” if an exact parse for the sentence does not
exist. Approximate parses need not be members of Trees(G), since they
may correspond to ungrammatical sentences, but they should be similar
to a member of Trees(G). �is notion of “similarity” can be formalised
as a distance function in order to obtain a de�nition of items allowing
approximate parses to be generated.

6.2.1 De�ning error-repair parsing schemata

Given a grammar G with an alphabet Σ of terminal symbols and a set N
of nonterminal symbols, we shall denote by Trees′(G) the set of �nitely
branching �nite trees in which children of a node have a le�-to-right order-
ing and every node is labelled with an element from N ∪ Σ ∪ (Σ ×N)∪ {є}.
Note that Trees(G) ⊂ Trees′(G), and that nodes labelled with elements of
(Σ ×N) correspond tomarked terminals of the form (a, i) (cf. De�nition
2.08). We will use the notation ai to abbreviate a marked terminal (a, i) or
(ai , i), depending on the context.
Let d ∶ Trees′(G) × Trees′(G)→N ∪ {0,∞} be a function verifying the

following distance axioms1:

• For all t1, t2 ∈ Trees′(G), d(t1, t2) takes positive real values or the
value +∞ (non-negativity),

• For all t ∈ Trees′(G), d(t, t) = 0,
• For all t1, t2 ∈ Trees′(G), d(t1, t2) = d(t2, t1) (symmetry),

1 �ese are the axioms for a extended pseudometric. If, in addition to this, the function d veri�es
positive de�niteness (i.e. if, apart from being non-negative, we have that d(t1 , t2) = 0 if and
only if t1 = t2), then the distance is an extended metric. A pseudometric is a generalisation
of a metric where we allow the possibility of distinct entities being at zero distance, and a
(pseudo)metric is called extended if it is allowed to take the value +∞.

120 error-repair parsing schemata

• For all t1, t2, t3 ∈ Trees′(G), d(t1, t3) ≤ d(t1, t2) + d(t2, t3) (triangle
inequality).

We shall denote by Treese(G) the set {t ∈ Trees′(G) ∣ ∃t′ ∈ Trees(G) ∶
d(t, t′) ≤ e}, i.e., Treese(G) is the set of trees that have distance e or less
to some grammatically valid tree. Note that, by construction, Trees(G) ⊆
Trees0(G).

Definition We de�ne the set of approximate trees for a grammar G and a6.01
tree distance function d asApTrees(G) = {(t, e) ∈ (Trees′(G)×(N∪{0})) ∣
t ∈ Treese(G)}. ⊣

�erefore, an approximate tree is the pair formed by a tree and its distance
to some tree in Trees(G).
�is concept of approximate trees allows us to precisely de�ne the prob-

lems that we want to solve with error-repair parsers. Given a grammar G,
a distance function d and a sentence a1 . . . an, the approximate recognition
problem is to determine the minimal e ∈ (N ∪ {0}) such that there exists
an approximate tree (t, e) ∈ ApTrees(G) where t is a marked parse tree for
the sentence. We will call such an approximate tree an approximate marked
parse tree for a1 . . . an.
Similarly, the approximate parsing problem consists of �nding the min-

imal e ∈ (N∪ {0}) such that there exists an approximate marked parse tree
(t, e) ∈ ApTrees(G) for the sentence, and �nding all approximate marked
parse trees of the form (t, e) for the sentence.
As we can see, while the problem of parsing is a problem of �nding

trees, the problem of approximate parsing can be seen as a problem of
�nding approximate trees. In the same way that the problem of parsing
can be solved by a deduction system whose items are sets of trees, the
problem of approximate parsing can be solved by one whose items are sets
of approximate trees.

Definition Given a grammar G and a distance function d, we de�ne an6.02
approximate item set as a set I ′ such that

I ′ ⊆ ((
∞
⋃
i=0
Πi) ∪ {∅})

where each Πi is a partition of the set {(t, e) ∈ ApTrees(G) ∣ e = i}. ⊣

6.2 error repair in parsing schemata 121

Each element of an approximate item set is a set of approximate trees,
and will be called an approximate item. Note that the concept is de�ned
in such a way that each approximate item contains approximate trees with
a single value of the distance e. Directly de�ning an approximate item set
using any partition of ApTrees(G) would be impractical, since we need our
parsers to keep track of the degree of discrepancy of partial parses with
respect to the grammar, and that information would be lost if our items
were not associated to a single value of e.�is concrete value of e is what
we will call the parsing distance of an item ι, or dist(ι):
Definition Let I ′ ⊆ ((⋃∞i=0Πi) ∪ {∅}) be an approximate item set as 6.03
de�ned above, and ι ∈ I ′.�e parsing distance associated to the nonempty
approximate item ι, dist(ι), is de�ned by the (trivially unique) value i ∈
(N ∪ {0}) ∣ ι ∈ Πi . In the case of the empty approximate item ∅, we will
say that dist(∅) =∞. ⊣

Having de�ned approximate item sets that can handle robust parsing
by relaxing grammar constraints, error-repair parsers can be described by
using parsing schemata that work with these items.�ese are de�ned in an
analogous way to standard parsing schemata:

Definition Let G be a grammar over an alphabet Σ of terminals and an 6.04
alphabet N of nonterminals, d a distance function, and I ′ an approximate
item set for that grammar and distance. We de�ne the set of �nal approxim-
ate items for strings of length n, denoted F ′(n)G ,I′ , as:

F ′(n)G ,I′ = {ι ∈ I ′ ∣ ∃(t, e) ∈ ι ∶ t ∈ P(n)G }. ⊣

�us, an approximate item is �nal for strings of length n if it contains an
approximate marked parse tree for some string of length n. As in the case
of standard parsing schemata, we can �x a particular string of length n to
de�ne a set of correct �nal items for that string:

Definition Let G be a grammar over an alphabet Σ of terminals and an 6.05
alphabet N of nonterminals, d a distance function, I ′ an approximate item
set for that grammar and distance, and a1 . . . an ∈ Σ∗.�e set of correct �nal
approximate items for that string, denoted CF ′a1 ...anG ,I′ , is:

CF ′a1 ...anG ,I′ = {ι ∈ I ′ ∣ ∃(t, e) ∈ ι ∶ t is a marked parse tree
for the string a1 . . . an}.

⊣

122 error-repair parsing schemata

Definition Let G be a grammar, Σ an alphabet of terminals, d a distance6.06
function, and a1 . . . an ∈ Σ∗ a string.
An error-repair instantiated parsing system is a deduction system (I ′,H,D)

such that I ′ is an approximate item set for G with distance function d, and
H is a set of hypotheses such that {ai(ai)} ∈H for each ai , 1 ≤ i ≤ n. ⊣

Definition Let G be a grammar, Σ an alphabet of terminals, and d a6.07
distance function.
An error-repair uninstantiated parsing system is a triple (I ′,K,D) where
K is a function such that (I ′,K(a1 . . . an),D) is an error-repair instantiated
parsing system for each a1 . . . an ∈ Σ∗ (in practice, we will always de�ne
this function asK(a1 . . . an) = {{ai(ai)} ∣ 1 ≤ i ≤ n}). ⊣

Definition A error-repair parsing schema for a class of grammars CG and a6.08
distance function d is a function that assigns an error-repair uninstantiated
parsing system to each grammar G ∈ CG. ⊣

�e concepts of valid items, soundness, completeness and correctness are
totally analogous to the standard parsing schemata case (Section 2.3.3). Note
that, in the particular case of completeness, this means that a complete error-
repair parser must be able to infer all correct �nal items, regardless of their
associated parsing distance. However, in practice, only items with aminimal
distance need to be used to solve the approximate parsing problem:

Definition �e minimal parsing distance for a string a1 . . . an in an ap-6.09
proximate item set I ′ is de�ned by

MinDist(I ′, a1 . . . an) =
min{e ∈ (N ∪ {0}) ∣ ∃ι ∈ CF ′a1 ...anG ,I′ ∶ dist(ι) = e}. ⊣

Definition �e set of minimal �nal items for a string a1 . . . an in an ap-6.10
proximate item set I ′ is de�ned by

MF(I ′, a1 . . . an) = {ι ∈ CF ′a1 ...anG ,I′ ∣ dist(ι) =MinDist(I ′, a1 . . . an)}. ⊣

�e approximate recognition and approximate parsing problems that we
de�ned earlier for any string and grammar can be solved by obtaining the
set of minimal �nal items in an approximate item set. Minimal �nal items
can be deduced by any correct error-repair parsing schema, since they are a
subset of correct �nal items.

6.2 error repair in parsing schemata 123

6.2.2 A distance function for edit distance based repair

A correct error-repair parsing schema will obtain the approximate parses
whose distance to an exact parse is minimal.�erefore, a suitable distance
function should be chosen depending on the kind of errors that are more
likely to appear in input sentences.
Let us suppose a generic scenario where we would like to repair errors

according to edit distance.�e edit distance or Levenshtein distance (Leven-
shtein, 1966) between two strings is the minimum number of insertions,
deletions or substitutions of a single terminal needed to transform either of
the strings into the other one. Given a string a1 . . . an containing errors, we
would like our parsers to return an approximate parse based on the exact
parse tree of one of the grammatical strings whose Levenshtein distance to
a1 . . . an is minimal.
A suitable distance function d̂ for this case is given by ignoring the indexes

in marked terminals (i.e. two trees di�ering only in the integer values
associated to their marked terminals are considered at zero distance for
this de�nition) and de�ning the distance as the number of elementary
tree transformations that we need to transform one tree into another, if
the elementary transformations that we allow are inserting, deleting or
changing the label of a marked terminal node in the frontier.
More formally, for each t ∈ Trees′(G), we de�ne Insertion(t),Deletion(t)

and Substitution(t) as the set of trees obtained by inserting a marked ter-
minal node in the frontier, deleting a marked terminal node and changing
its associated symbol, respectively. With this, we can de�ne sets of trans-
formations of a given tree t as follows:

Trans0(t) = {t} ∪ {t′ ∣ t′ di�ers from t
only in integer values associated with marked terminals},

Trans1(t) = ⋃
t′∈Trans0(t)

Insertion(t′) ∪Deletion(t′) ∪ Substitution(t′),

Transi(t) = {t′ ∈ Trees′(G) ∣ ∃u ∈ Transi−1(t) ∶ t′ ∈ Trans1(u)}, for i > 1,

and our distance function d̂ as follows:

d̂ ∶ Trees′(G) × Trees′(G)→N ∪ {0,∞},

124 error-repair parsing schemata

d̂(t1, t2) = min{i ∈ (N ∪ {0}) ∣ t2 ∈ Transi(t1)}, if
∃i ∈ (N ∪ {0}) ∶ t2 ∈ Transi(t1),

d̂(t1, t2) =∞ otherwise.

Note that our distance function d̂ satis�es the properties of an extended
pseudometric:
• It is symmetrical, since for every t1, t2 ∈ Trees′(G), we have that
t1 ∈ Transi(t2) if and only if t2 ∈ Transi(t1). �is is easy to verify
if we take into account that t1 ∈ Deletion(t2) ⇔ t2 ∈ Insertion(t1),
t1 ∈ Insertion(t2)⇔ t2 ∈ Deletion(t1), and t1 ∈ Substitution(t2)⇔
t2 ∈ Substitution(t1),

• Non-negativity is trivial to verify, since Transi(t) is only de�ned for
i ≥ 0,

• d̂(t, t) is always zero because t ∈ Trans0(t) by construction,
• �e triangle inequality holds because if t3 ∈ Transe2(t2) and t2 ∈
Transe1(t1), then we have that t3 ∈ Transe1+e2(t1); because if we apply
to t1 the e1 transformations that turn it into t2, and then apply the e2
transformations that turn t2 into t3, we obtain t3 (note that there may
be a way of obtaining t3 from t1 with less transformations, hence the
inequality).

If we call the string edit distance ded , then it is easy to see that for any
tree t1 such that yield(t1) = α, and for any string β, there exists a tree t2 with
yield β such that d̂(t1, t2) = ded(α, β).�is tree is obtained by applying to
the frontier nodes of α the elementary transformations that turn α into β.
As we only allow transformations dealing with marked terminal nodes,

trees that di�er in nodes labelled with other symbols will be considered to be
at in�nite distance.�erefore, when we de�ne a parser using this distance,
the parses (t2) obtained for an ungrammatical input sentence (β) will be
identical, except formarked terminals, to the valid parses (t1) corresponding
to the grammatical sentences (α) whose distance to the input is minimal. As
an example, Figure 13 shows a marked parse tree t for the grammatical input
sentence “�e dog barks”; and Figure 14 shows the minimal distance trees
for ungrammatical sentences obtained by adding, removing and changing a
word of the original sentence (we will call these transformations an insertion
error, deletion error and substitution error, respectively). Each of the trees in

6.3 lyon ’s error-repair parser 125

Figure 13: Marked parse tree for a simple grammatical sentence.

Figure 14: Trees obtained for sentenceswith one insertion, deletion and substitution
error, respectively; under the distance function d̂.

Figure 14 is at distance 1 from the tree in Figure 13 for the distance function
d̂.2

6.3 lyon ’s error-repair parser

�e formalism of error-repair parsing schemata allows us to represent error-
repair parsers in a simple, declarative way, making it easy to explore their
formal properties and obtain e�cient implementations of them. As an
example, we will see how this formalism can be used to describe one of the
most in�uential error-repair parsers in the literature: the one described by
Lyon (1974).

2 Note that the marked terminal nodes in the �gure have been labelled with words (the, etc.),
instead of with parts-of-speech like the terminal nodes (Det, etc.).�is has been done for
clarity, to show the kind of errors in words and sentences that can be detected. In reality,
if the terminal alphabet Σ is a set of parts-of-speech, marked terminals have to contain
parts-of-speech as well: thus, for example, the typographical error of typing “do” instead
of “dog” could translate into a substitution of an V tag for an N tag in the marked terminal
nodes.

126 error-repair parsing schemata

�e schema for Lyon’s error-repair parser maps each context-free gram-
mar G = (N , Σ, P, S) ∈ CFG to a triple (I ′,K,D), whereK has the stand-
ard de�nition given above, and I ′ and D are de�ned as follows:

I ′Lyon = {[A→ α ● β, i , j, e] ∣ A→ αβ ∈ P ∧ e ≥ 0 ∧ 0 ≤ i ≤ j}

where we use [A → α ● β, i , j, e] as a shorthand notation for the set of
approximate trees (t, e) such that t is a partial parse tree with root Awhere
the direct children of A are labelled with the symbols of the string αβ,
and the frontier nodes of the subtrees rooted at the symbols in α form the
substring ai+1 . . . a j of the input string. �e distance function d used to
de�ne the approximate item set, and therefore conditioning the values of e,
is d̂ as de�ned in Section 6.2.2.
�e set of deduction steps, D, for Lyon’s parser is de�ned as the union of

the following:

Initter:
[S → ●γ, 0, 0, 0]

Scanner:
[A→ α ● xβ, i , j, e] [x , j, j + 1]

[A→ αx ● β, i , j + 1, e]

Completer:
[A→ α ● Bβ, i , j, e1] [B → γ●, j, k, e2]

[A→ αB ● β, i , k, e1 + e2]

Predictor:
[A→ α ● Bβ, i , j, e1]

[B → ●γ, j, j, 0]
B → γ ∈ P

ScanSubstituted:
[A→ α ● xβ, i , j, e] [b, j, j + 1]

[A→ αx ● β, i , j + 1, e + 1]

ScanDeleted:
[A→ α ● xβ, i , j, e]

[A→ αx ● β, i , j, e + 1]

ScanInserted:
[A→ α ● β, i , j, e] [b, j, j + 1]

[A→ α ● β, i , j + 1, e + 1]

6.3 lyon ’s error-repair parser 127

�e Initter, Scanner, Completer and Predictor steps are similar to
those in Earley’s algorithm (Figure 7 in page 27), with the di�erence that we
have to keep track of the distance associated to the approximate trees in our
items.
�e ScanSubstituted, ScanDeleted and ScanInserted steps are

error-repair steps, and they allow us to read unexpected symbols from the
string while incrementing the distance. ScanSubstituted allows us to
repair a substitution error in the string, ScanDeleted repairs a deletion
error, and ScanInserted an insertion error.
Note that the ScanInserted step is de�ned slightly di�erently from the

one in the original formulation by Lyon (1974), which is:

ScanInsertedLyon:
[A→ α ● xβ, i , j, e] [b, j, j + 1]

[A→ α ● xβ, i , j + 1, e + 1]

�is alternative version of ScanInserted cannot be used to repair an
insertion error at the end of the input, since a repair is only attempted if we
are expecting a terminal symbol x and we �nd another terminal b instead,
but not if we are expecting the end of the string. Lyon avoids this problem by
extending the grammars used by the schema by changing the initial symbol
S to S′ and adding the additional rule S′ → S$, where the character $ acts as
an end-of-sentence marker. However, we choose to keep our more general
version of the step, and not to extend the grammar with this additional rule.
�e set of �nal items and the subset of correct �nal items are:

F ′Lyon = {[S → γ●, 0, n, e]}
CF ′Lyon = {ι = [S → γ●, 0, n, e] ∣ ∃(t, e) ∈ ι ∶
t is a marked parse tree for a1 . . . an}

6.3.1 Lyon is correct

Once we have de�ned a parser by means of an error-repair parsing schema,
as we have done with Lyon’s error-repair parser, we can use the formalism
to prove its correctness. As an example, we will show an outline of the
proof that the parsing schema for Lyon’s algorithm is correct. Note that the
proof is not given in full detail since it will be subsumed by a more general
result presented in Chapter 7. In that chapter, we will see how any standard

128 error-repair parsing schemata

parsing schema meeting a certain set of conditions can be systematically
transformed to an error-repair parser, in such a way that the correctness of
the standard parser implies that the error-repair parser obtained by applying
the transformation is also correct.�e proof outlined here can be obtained
as a particular case of the proof that the aforesaid transformation preserves
soundness and completeness, which is described in detail in Section 7.3.
First of all, we observe that the schema for Lyon’s parser, as given above,

does not guarantee completeness as de�ned by the parsing schemata formal-
ism: the goal of Lyon’s algorithm is to perform a least-errors analysis of the
input sentence, and therefore to obtain all theminimal correct �nal items
for a given string, rather than the full set of correct �nal items. However,
we can easily obtain a strictly correct version of the schema by adding a
deduction step

DistanceIncreaser:
[A→ α ● β, i , j, e]

[A→ α ● β, i , j, e + 1]

�is DistanceIncreaser step is not necessary in practical implement-
ations of the parser, where we are not interested in strict completeness
(�nding all possible approximate parses) because we only need the minimal-
distance parses. However, if we are able to prove that the variant of the
parser that includes DistanceIncreaser is correct, it immediately follows
that the version without it generates all minimal �nal items, since any se-
quence of deductions that uses an item [A → α ● β, i , j, e + 1] obtained
from a DistanceIncreaser to produce a minimal �nal item can also be
made directly with [A→ α ● β, i , j, e], avoiding the use of this step.�us, if
we call the variant of Lyon’s schema with the DistanceIncreaser SLyon,
the practical correctness of Lyon’s algorithm is implied by the following
theorem:

Theorem �e parsing schema SLyon is correct. ⊣6.11

Proof. In order to prove the correctness of the schema SLyon, wemust prove:

• Soundness: given a grammar and an input string, all valid �nal items
are correct.

• Completeness: given a grammar and an input string, all the correct
�nal items are valid (i.e. can be inferred from the hypotheses).

6.3 lyon ’s error-repair parser 129

Soundness

By construction, each of the items [A→ α ● β, i , j, e] in I ′Lyon represents
the set of approximate trees (t, e) such that t is a partial parse tree with
root Awhere the direct children of A are the symbols of the string αβ. We
will say that an item [A→ α ● β, i , j, e] is correct if it contains at least one
approximate tree (t, e) such that the leaf nodes of the subtrees rooted at the
symbols in α form the substring ai+1 . . . a j of the input string

3 (we will call
such a tree a correct tree for the item). In the particular case of �nal items,
which are of the form [S → γ●, 0, n, e], correct approximate trees (t, e)
trivially verify that t is a marked parse tree for a1 . . . an, and thus a �nal
item containing a correct approximate tree veri�es the generic de�nition of
a correct �nal item.
Proving the soundness of a parsing schema is proving that all valid �nal

items are correct for every grammar G and input string a1 . . . an. To do this,
we will follow the general procedure described in Section 2.3.3, proving the
stronger claim that all valid items are correct for every grammarG and input
string a1 . . . an. Since hypotheses are trivially correct, it su�ces to show that
the consequent item of each deduction step in the schema is always correct
if its antecedents are.�is is proven by reasoning individually about each
deduction step, we show the reasoning for some of them as an example:

• Consequents of an Initter or Predictor step are correct by con-
struction: an item of the form [B → ●γ, j, j, 0] contains at least the
approximate tree (B(γ), 0), which is trivially a correct tree for this
item, since B(γ) ∈ Trees(G).

• If the antecedents of a Scanner are correct, then the consequent is
correct: if the item [A→ α ● xβ, i , j, e] is correct, then there exists an
approximate tree (A(α(. . .)xβ), e) where the yield of α is ai+1 . . . a j.
Since x → x j+1 is a legal pseudo-production, we know that adding
x j+1 as only child of x in this tree will not result in an increase of
distance to a grammatical tree, so there exists an approximate tree
(A(α(. . .)x(x j+1)β), e) where the yield of α is ai+1 . . . a j. On the
other hand, if the hypothesis [x , j, j + 1] is present, then a j+1 = x.
�erefore, the approximate tree (A(α(. . .)x(x j+1)β), e) also veri�es
the property that the yield of αx is ai+1 . . . a j+1, and thus is a correct

3 We are supposing that we have each terminal in the input string annotated with is position,
so that our input is a string of marked terminals.

130 error-repair parsing schemata

approximate tree for the item [A → αx ● β, i , j + 1, e], hence the
consequent item is correct.

• If the antecedents of a ScanSubstituted are correct, then the
consequent is correct: if the item [A → α ● xβ, i , j, e] is correct,
then we apply the same reasoning as in the Scanner to conclude that
there exists an approximate tree (A(α(. . .)x(x j+1)β), e) where the
yield of α is ai+1 . . . a j. On the other hand, if the hypothesis [b, j, j+1]
is present, then a j+1 = b.�e tree A(α(. . .)x(b j+1)β) is trivially in
Trans1(A(α(. . .)x(x j+1)β)), and as we have that A(α(. . .)x(x j+1)β)
is in Transe(t) for some t ∈ Trees(G), we know that the distance
from that t to A(α(. . .)x(b j+1)β) is at most e + 1. �erefore, there
exists an approximate tree (A(α(. . .)x(b j+1)β), e + 1). Since this ap-
proximate tree veri�es the property that the yield of αx is ai+1 . . . a j+1,
it is a correct approximate tree for the consequent item [A → αx ●
β, i , j + 1, e + 1], hence this item is correct.

By reasoning similarly about the rest of the deduction steps in SLyon, we
conclude the soundness part of the proof.

Completeness

Proving completeness for this schema is proving that, given an input string,
all correct �nal items are valid, i.e., they can be inferred from the hypo-
theses.�erefore, given a string a1 . . . an, we have to prove that every item
containing an approximate tree (t, e) such that t is a marked parse tree for
a1 . . . an can be inferred from the hypotheses.
Since �nal items in this schema are always of the form [S → α●, 0, n, e],

this is equivalent to proving the following proposition:

Proposition LetG = (N , Σ, P, S) be a context-free grammar, and a1 . . . an ∈6.12
Σ∗ a string. Every correct item of the form [S → α●, 0, n, e] is valid in the in-
stantiated parsing system (I ′Lyon ,K(a1 . . . an),D) obtained from applying
SLyon to G and a1 . . . an. ⊣

�is proposition is proved by induction on the distance e:

base case (e = 0): Items in this schema’s item set where the dis-
tance e is 0 can be mapped to items from a standard Earley parser by
the function f ∶ I ′Lyon → IEarl e y that maps ι = [A → α ● Bβ, i , j, 0] to

6.3 lyon ’s error-repair parser 131

f (ι) = [A→ α ● Bβ, i , j].�is mapping is trivially bijective, and it is easy
to see that deductions are preserved, that is, for example, the deduction
ι1ι2 ⊢ ιc can be made by a Completer in Lyon’s parser if an only if the
deduction f (ι1) f (ι2) ⊢ f (ιc) can be made by a Completer in Earley’s
parser. Since any correct item of the form [S → α●, 0, n, 0] in the error-
repair parser is f −1(κ) for some correct �nal item κ = [S → α●, 0, n] in the
Earley parser, and we know that the Earley parser is complete (Sikkel, 1998),
it follows that all �nal items of the form [S → α●, 0, n, 0] are valid in Lyon’s
parser.

induction step : Supposing that Proposition 6.12 holds for a distance
value of e, we must prove that it also holds for e + 1.
Let [S → α●, 0, n, e + 1] be a correct �nal item for the string a1 . . . an. We

will prove that this item is valid in the deduction system (I ′Lyon ,K(a1 . . . an),
D).
As this item is correct for the string a1 . . . an, we know that it contains an

approximate tree (t, e + 1) where t is a tree rooted at S and with yield(t) =
a1 . . . an. By de�nition of approximate tree, we know that there exists a tree
u ∈ Trees(G) such that d̂(t, u) = e + 1 or, equivalently, t ∈ Transe+1(u).
By de�nition of Transe+1(u), this implies that there is another tree t′ such

that t′ ∈ Transe(u) and t ∈ Trans1(t′), and this implies that there exists an
approximate tree (t′, e) such that d̂(t, t′) = 1.
Since d̂(t, t′) = 1, and yield(t) = a1 . . . an, we know that yield(t′)must

be one of the following:4

a1 . . . a j−1b ja j+1 . . . an, if t ∈ Substitution(t′),

a1 . . . a j−1(a j+1, j) . . . (an , n + 1), if t ∈ Insertion(t′),

a1 . . . a j−1b j(a j , j + 1)(a j+1, j + 2) . . . (an , n + 1), if t ∈ Deletion(t′).

With this, we divide the proof into three cases, according to the form of
yield(t′):

4 Note that, as our de�nition of d̂ ignores indexes associated to marked terminals, we can
safely change the indexes of the marked terminals in the yield to keep them consecutive in
the insertion and deletion cases.

132 error-repair parsing schemata

induction step, case 1 (substitution error): In this case,
yield(t′)= a1 . . . a j−1b ja j+1 . . . an. We consider the deduction system (I ′Lyon ,
K(a1 . . . a j−1 b a j+1 . . . an), D) obtained by applying SLyon to the grammar
G and the string a1 . . . a j−1 b a j+1 . . . an. Consider the item in I ′ containing
the approximate tree (t′, e): this item must be of the form [S → α●, 0, n, e],
since d̂(t, t′) = 1 and (t, e + 1) ∈ [S → α●, 0, n, e + 1] (note that the fact
that the two trees are at �nite distance by the function d̂ implies that the
S → α● part of their corresponding items must be equal, because trees at
�nite distance can only di�er in marked terminal and epsilon nodes in the
frontier).
�is item [S → α●, 0, n, e] is a correct �nal item in the deduction system

(I ′Lyon ,K(a1 . . . a j−1 b a j+1 . . . an),D), since t′ is a marked parse tree for
the input string a1 . . . a j−1 b a j+1 . . . an. By the induction hypothesis, the
item is also valid in this system. �us, to prove the induction step for
the substitution case, it su�ces to show that the validity of this item in
the system (I ′Lyon , K(a1 . . . a j−1 b a j+1 . . . an), D) implies that the item
[S → α●, 0, n, e + 1] is valid in the system (I ′Lyon , K(a1 . . . an), D).
�erefore, we have reduced this case of the proof to proving the following

lemma:

Lemma Let (I′Lyon ,K,D) be the uninstantiated parsing system obtained6.13
by applying Lyon’s parsing schema to a given grammar G.
Given a nonempty string a1 . . . an, and a string a1 . . . a j−1ba j+1 . . . an(1 ≤

j ≤ n) obtained by substituting the jth terminal in the �rst string,
if [S → α●, 0, n, e] is a valid item in the instantiated parsing system (I ′Lyon ,
K(a1 . . . a j−1 b a j+1 . . . an), D), then [S → α●, 0, n, e + 1] is valid in the
instantiated parsing system (I ′Lyon , K(a1 . . . an), D). ⊣

�is lemma is proven by de�ning the following function f1:

f1 ∶ I ′Lyon ∪K(a1 . . . a j−1 b a j+1 . . . an)→ I ′Lyon ∪K(a1 . . . an),

f1([A→ α ● β, i , k, e]) = [A→ α ● β, i , k, e] if i > j − 1 or k < j.
f1([A→ α ● β, i , k, e]) = [A→ α ● β, i , k, e + 1] if i ≤ j − 1 and j ≤ k.
f1([b, j − 1, j]) = [a j , j − 1, j].
f1([ai , i − 1, i]) = [ai , i − 1, i], for i ≠ j.

and then showing that if ι1, ι2, . . . , ιa ⊢ ιc in the instantiated parsing system
(I ′Lyon ,K(a1 . . . a j−1ba j+1 . . . an),D), then f1(ι1), f1(ι2), . . . , f1(ιa) ⊢∗ f1(ιc)

6.3 lyon ’s error-repair parser 133

in the instantiated parsing system (I ′Lyon ,K(a1 . . . an),D).�is is proven
by individually considering each deduction step with which an inference
ι1, ι2, . . . , ιa ⊢ ιc can be performed, and checking that it is preserved in the
target system.
For example, let us consider the Completer step. If ι1, ι2, . . . , ιa ⊢ ιc by

a Completer step, the number of antecedent items a must be 2 and the
involved items must be of the form: ι1 = [A→ α ● Bβ, i1, i2, e1], ι2 = [B →
γ●, i2, i3, e2] and ιc = [A→ αB ● β, i1, i3, e1 + e2].
We compute all the possible di�erent values of f1(ι1), f1(ι2) and f1(ιc)

depending on the values of the indexes:
Case 1: j ≤ i1 or i3 ≤ j − 1: in this case,

f1(ι1) = [A→ α ● Bβ, i1, i2, e1],
f1(ι2) = [B → γ●, i2, i3, e2],
f1(ιc) = [A→ αB ● β, i1, i3, e1 + e2].

Case 2: i1 ≤ j − 1 < j ≤ i2: in this case,

f1(ι1) = [A→ α ● Bβ, i1, i2, e1 + 1],
f1(ι2) = [B → γ●, i2, i3, e2],
f1(ιc) = [A→ αB ● β, i1, i3, e1 + e2 + 1].

Case 3: i2 ≤ j − 1 < j ≤ i3: in this case,

f1(ι1) = [A→ α ● Bβ, i1, i2, e1],
f1(ι2) = [B → γ●, i2, i3, e2 + 1],
f1(ιc) = [A→ αB ● β, i1, i3, e1 + e2 + 1].

As we can see, in any of the three cases, f1(ι1), f1(ι2) ⊢ f1(ιc) in the in-
stantiated parsing system (I ′Lyon ,K(a1 . . . an),D) by a single Completer
step.
Analogous reasoning can be applied to the rest of the deduction steps in

Lyon’s parsing schema; concluding that if ι1, ι2, . . . , ιa ⊢ ιc in the instantiated
parsing system (I ′Lyon ,K(a1 . . . a j−1ba j+1 . . . an),D), then f1(ι1), f1(ι2),
. . . , f1(ιa)⊢∗ f1(ιc) in the instantiated parsing system (I ′Lyon ,K(a1 . . . an),
D).�e proof for the rest of the steps will not be shown here, since a more
general version of this lemma (Lemma 7.18) will be detailedly proven in
Section 7.3.2.

134 error-repair parsing schemata

On the other hand, for every hypothesis h ∈ K(a1 . . . a j−1ba j+1 . . . an),
we have that f (h) ∈ K(a1 . . . an) by de�nition of the function f1.
Putting these two facts together, we have that

ι1, ι2, . . . , ιa ⊢∗ ιc in (I ′Lyon ,K(a1 . . . a j−1ba j+1 . . . an),D)⇒
f (ι1), f (ι2), . . . , f (ιa) ⊢∗ f (ιc) in (I ′Lyon ,K(a1 . . . an),D).

If we set a = 0 and ιc = [S → α●, 0, n, e], this expression reduces to

⊢∗ [S → α●, 0, n, e] in (I ′Lyon ,K(a1 . . . a j−1ba j+1 . . . an),D)⇒
⊢∗ [S → α●, 0, n, e + 1] in (I ′Lyon ,K(a1 . . . an),D)

which is equivalent to Lemma 6.13, and thus we have proven the substitution
case of the induction step.

induction step, cases 2 and 3 (insertion and deletion
errors): �e proofs for the second and third cases of the induction
step are conducted analogously to the previous case. First, we consider the
instantiated parsing systems obtained by applying the schema SLyon to the
grammar G and yield(t′) and, reasoning like previously, we reduce each of
the cases to the following lemmata:

Lemma Let (I ′Lyon ,K,D) be the uninstantiated parsing system obtained6.14
by applying Lyon’s parsing schema to a given grammar G.
Given a nonempty string a1 . . . an, and a string a1 . . . a j−1a j+1 . . . an(1 ≤

j ≤ n) obtained by deleting the jth terminal in the �rst string,
if [S → α●, 0, n − 1, e] is a valid item in the instantiated parsing system
(I ′Lyon , K(a1 . . . a j−1 a j+1 . . . an), D), then [S → α●, 0, n, e + 1] is valid in
the instantiated parsing system (I ′Lyon , K(a1 . . . an), D). ⊣

Lemma Let (I ′Lyon ,K,D) be the uninstantiated parsing system obtained6.15
by applying Lyon’s parsing schema to a given grammar G.
Given a string a1 . . . an, and a string a1 . . . a j−1ba ja j+1 . . . an(1 ≤ j ≤ n+1)

obtained by inserting a terminal b in position j of the �rst string,
if [S → α●, 0, n + 1, e] is a valid item in the instantiated parsing system
(I ′Lyon ,K(a1 . . . a j−1 b a ja j+1 . . . an), D), then [S → α●, 0, n, e+1] is valid
in the instantiated parsing system (I ′Lyon , K(a1 . . . an), D). ⊣

6.4 obtaining minimal distance parses 135

To prove these lemmata, we follow an analogous procedure to that used
for Lemma 6.13, but instead of the function f1, we use the following functions
f2 and f3, respectively:

f2 ∶ I ′Lyon ∪K(a1 . . . a j−1 a j+1 . . . an)→ I ′Lyon ∪K(a1 . . . an),

f2([A→ α ● β, i , k, e]) = [A→ α ● β, i , k, e] if j > k.
f2([A→ α ● β, i , k, e]) = [A→ α ● β, i , k + 1, e + 1] if j > i and j ≤ k.
f2([A→ α ● β, i , k, e]) = [A→ α ● β, i + 1, k + 1, e] if j ≤ i .
f2([x , i − 1, i]) = [x , i − 1, i], for i < j.
f2([x , i − 1, i]) = [x , i , i + 1], for i >= j.

f3 ∶ I ′Lyon ∪K(a1 . . . a j−1 b a ja j+1 . . . an)→ I ′Lyon ∪K(a1 . . . an),

f3([A→ α ● β, i , k, e]) = [A→ α ● β, i , k, e] if j > k.
f3([A→ α ● β, i , k, e]) = [A→ α ● β, i , k − 1, e + 1] if j > i and j ≤ k.
f3([A→ α ● β, i , k, e]) = [A→ α ● β, i − 1, k − 1, e] if j ≤ i .
f3([x , i − 1, i]) = [x , i − 1, i], for i < j.
f3([b, j − 1, j]) = [a j , j − 1, j] (if j ≤ n), [an , n − 1, n] (otherwise)5

f3([x , i − 1, i]) = [x , i − 2, i − 1], for i ≥ j.

�ese two proofs, together with the one for Lemma 6.13, imply that the
induction step holds for the three possible values of yield(t′).�is concludes
the proof of Proposition 6.12, and therefore, of the correctness of the parsing
schema SLyon.

6.4 obtaining minimal distance parses

In the previous section, we have proven that the error-repair parsing schema
SLyon, describing the algorithm by Lyon (1974), is correct and complete.�is

5 �e particular value of f3([b, j − 1, j]) is not used in the proof, and therefore it is not
relevant as long as it is always a valid hypothesis in K(a1 . . . an). Note that the system
(I′Lyon , K(a1 . . . a j−1 b a ja j+1 . . . an), D) has one more hypothesis than the target system
(I′Lyon , K(a1 . . . an), D), since the symbol b is not present in the string associated with
the latter.

136 error-repair parsing schemata

guarantees that, given a grammar and an input string, the corresponding
deduction systemobtained fromSLyon infers all the valid approximate parses
from the string and no invalid approximate parses, i.e., for every possible
approximate tree (t, e) where t is a marked parse tree for the input string
a1 . . . an, we obtain the corresponding correct �nal item [S → α●, 0, n, e].
However, when implementing a robust parser in practice, we do not want

to obtain all the possible valid approximate parses (which would not be
possible in �nite time, since there is an in�nite number of such parses).
What we are interested in, as we mentioned in the de�nition of approximate
parsing (Section 6.2.1), are the approximate parses with a minimal distance
to a grammatically valid tree.
We will see that any correct error-repair parsing schema verifying a

property that we will call �nite completeness can be adapted to solve the
approximate parsing problem in �nite time, generating only the minimal
distance parses, by adding some constraints to it. To this end, we will de�ne
some concepts that will lead us to the notion of a �nitely complete schema.

Definition Let S be an error-repair parsing schema that maps each gram-6.16
marG to an uninstantiated parsing system (I ′,K,D).�e bounded schema
associated to S with bound b̄, denoted Boundb̄(S), is the error-repair pars-
ing schema that maps each grammarG to the uninstantiated parsing system
Boundb̄(S(G)) = Boundb̄(I ′,K,D) = (I ′,K,Db̄), where

Db̄ = {((X1, X2, . . . , Xc),Y) ∈ D ∶ dist(Y) ≤ b̄}. ⊣

�at is, a bounded parsing schema is a variant of a parsing schema that
does not allow to deduce items with an associated distance greater than the
bound b̄.
For example, if we take the parsing schema SLyon as a starting point,

the bounded parsing schema Boundb̄(SLyon) is the schema that maps each
grammar G ∈ CFG to the uninstantiated parsing system (I ′Lyon ,K,Db̄),
where I ′Lyon is the item set de�ned in Section 6.3, and Db̄ is the union of
the sets:

b̄-Initter:
[S → ●γ, 0, 0, 0]

b̄-Scanner:
[A→ α ● xβ, i , j, e] [x , j, j + 1]

[A→ αx ● β, i , j + 1, e]
e ≤ b̄

6.4 obtaining minimal distance parses 137

b̄-Completer:
[A→ α ● Bβ, i , j, e1] [B → γ●, j, k, e2]

[A→ αB ● β, i , k, e1 + e2]
e1 + e2 ≤ b̄

b̄-Predictor:
[A→ α ● Bβ, i , j, e1]

[B → ●γ, j, j, 0]
B → γ ∈ P

b̄-ScanSubstituted:
[A→ α ● xβ, i , j, e] [b, j, j + 1]

[A→ αx ● β, i , j + 1, e + 1]
e + 1 ≤ b̄

b̄-ScanDeleted:
[A→ α ● xβ, i , j, e]

[A→ αx ● β, i , j, e + 1]
e + 1 ≤ b̄

b̄-ScanInserted:
[A→ α ● β, i , j, e] [b, j, j + 1]

[A→ α ● β, i , j + 1, e + 1]
e + 1 ≤ b̄

Definition We will say that an error-repair uninstantiated parsing system 6.17
(I ′,K,D) is complete up to a distance b̄ if, for any input string, all the correct
�nal items with a parsing distance not greater than b̄ are valid.
We will say that an error-repair parsing schema S for a class of gram-

mars CG is complete up to a distance b̄ if, for every grammar G ∈ CG, the
uninstantiated parsing system S(G) is complete up to b̄. ⊣

Definition We will say that an error-repair parsing schema S is �nitely 6.18
complete if, for all k ∈ (N ∪ {0}), the bounded parsing schema Boundk(S)
is complete up to k. ⊣

Note that a �nitely complete error-repair parsing schema is always com-
plete, since we can make k arbitrarily large. On the other hand, the converse
does not hold: a schema can be complete but not �nitely complete if some
valid �nal item with parsing distance k needs the presence of an item with
distance greater than k to be inferred. However, it is easy to check that this
is not the case with SLyon:

Proposition �e error-repair parsing schema SLyon is �nitely complete.⊣ 6.19

�is fact can be proven in the exact same way as completeness: in the
completeness proof shown in the previous section we never need to use
the validity of any item with parsing distance greater than k to prove the

138 error-repair parsing schemata

validity of a correct �nal item with distance k. In particular, the proof
of Proposition 6.12, that proves completeness of the instantiated parsing
system (I ′Lyon ,K(a1 . . . an),D), can be used without changes to prove that,
given a bound k, every item with distance ≤ k is valid in the instantiated
parsing system (I ′Lyon ,K(a1 . . . an),Dk). �is directly implies the �nite
completeness of SLyon.
It is easy to see that, if we have a deductive engine that is able to run

parsing schemata, any correct, �nitely complete error-repair parsing schema
(I ′,K,D) can be used to build a parser that solves the approximate parsing
problem in �nite time, returning all valid approximate parses with minimal
distance without generating any non-minimal distance parse.�e simplest
way to do it is the following:

function RobustParser (string) : item set
{

b̄ = 0; //distance bound (maximum allowed distance)
while (true)
{
compute validItems = v(Boundb̄(I ′ ,K,D),string);
finalItems = { ι in validItems ∣ ι is a final item };
if (finalItems ≠ ∅) return finalItems;

b̄ = b̄ + 1; //while we do not find any approximate parse,
we increase the allowed distance

}
} �
where the function v(sys,str) computes all valid items in the parsing
system sys for the string str, and can be implemented as in Shieber et al.
(1995) or by automatically generating an implementation with the compiler
described in Chapter 3.
It is easy to prove that, if the approximate parsing problem has a solution

for a given string (i.e., if there exists an e ∈ (N ∪ {0}) such that there is
an approximate tree (t, e) ∈ ApTrees(G) with t a marked parse tree for
the sentence), then this algorithm �nds it in �nite time6. If we call E the
set of natural numbers verifying that property, the loop invariant is that

6 For a distance function like d̂, a solution to the approximate parsing problem always exists.
Given a grammar G and a string a1 . . . an , we take any marked parse tree in Trees(G)
with yield b1 . . . bk and change it to a marked parse tree for a1 . . . an by applying a �nite
sequence of elementary operations (for example, k deletion operations to delete the marked
terminals b1 . . . bk followed by n insertion operations to insert a1 . . . an).�erefore, under
that de�nition of distance, this algorithm always terminates in �nite time.

6.5 from global to regional error repair 139

/∃ e ∈ E ∣ e < b̄, and the loop bound ismin(E)− b̄.�e invariant, the bound
and the fact that the schema is �nitely complete together guarantee that the
�nal items returned are those with minimal distance.
In practice, we canmake several optimisations to this simple algorithm to

improve runtime. For example, the valid items generated in each iteration
can be used as hypotheses in the next one instead of inferring them again.
Note that this parsing engine can execute any robust parsing schema (not
only Lyon’s) and is guaranteed to �nd all optimal solutions (minimal distance
parses) as long as the schema is correct and �nitely complete and such
solutions exist. If we use the engine to execute the SLyon parsing schema
as given in Section 6.3, without the DistanceIncreaser step (which is
not needed for minimal distance parsers, as reasoned in Section 6.3.1), we
obtain a parser which is roughly equivalent to the original algorithm by
Lyon (1974).�e only di�erences with respect to Lyon’s algorithm in terms
of items generated are those derived from the decision of not using an end-
of-sentence marker and the slight modi�cation of ScanInserted explained
earlier.

6.5 from global to regional error repair

If a robust parser is able to �nd all the minimal-distance approximate parses
for each given string, it is called a global error-repair parser.�erefore, all
parsers which solve the approximate parsing problem as we have de�ned
it, including the ones implemented with the technique explained in the
previous section, are global error-repair parsers.
In practice, global error-repair parsers can be useful when working with

small grammars or short strings, but they can get really ine�cient if we need
to parse long sentences or use grammars with thousands of productions, as
usual in natural language processing.�emain reason for this ine�ciency is
that this kind of parsers need to search for possible errors in every possible
position in the input string. For example, given an input of length n, the
ScanInserted step of the schema SLyon can be executed on any item of the
form [A→ α ● β, i , j, e] as long as j < n.�is means that we will infer items
based in the assumption that each of the n words in the input sentence has
been generated by an insertion error.�e items generated with each of these
assumptions will in turn produce more items.
A more e�cient alternative for error repair is that of local error-repair

parsers (McKenzie et al., 1995; Bertsch and Nederhof, 1999).�ese parsers

140 error-repair parsing schemata

work by processing the sentence without error repair until they successfully
�nd a parse, or until they �nd a state where the parsing process cannot
continue (which we call detection point). Local error-repair parsers assume
that the error in the input is located at the detection point, and apply repair
steps only at that point, modifying the string as necessary to continue
parsing. As local error-repair parsers do not have to search the whole string
for errors, they are much more e�cient than global techniques. However,
they do not guarantee that their results are optimal, since there are sentences
where the minimal distance parses are reached by applying corrections
before the detection point.
An intermediate solution is that of regional error repair-parsers (Vilares

et al., 2001, 2002, 2004).�ese algorithms work as non-error-repair parsers
until they reach a detection point, just like local algorithms, but then they
apply error-repair techniques to a region of states surrounding the detection
point.�is region may be enlarged until a satisfactory correction for the
detected error is found. �e particular criterion to choose, and option-
ally enlarge, the region can be adjusted according to the desired tradeo�
between e�ciency and quality of the solutions. From this standpoint, local
and global error-repair parsers can be considered as extreme cases of re-
gional algorithms where this criterion is extremely aggresive or extremely
conservative, respectively.
Since parsing schemata specify a set of allowed operations on intermediate

items but they abstract away from the control structures used to execute
these operations; the same error-repair parsing schema can be implemented
as a global, regional or local error-repair parser by using di�erent control
structures to execute it. In this section, we will see how to implement parsers
with an interesting kind of regional error-repair strategy, which we will call
aminimal regional error-repair strategy. A minimal regional error-repair
parser is one that always �nds at least one of the optimal solutions (minimal
distance parses) for a given string, but does not guarantee �nding all the
optimal solutions if there are several possible minimal distance parses for
the string.
Note that state-based regional error-repair parsers, like those de�ned

by Vilares et al. (2001), are generally tied to a particular implementation.
On the other hand, error-repair parsing schemata allow us to de�ne more
general, item-based regional parsers, where detection points and regions
are sets of items instead of sets of states. Additionally, parsing schemata
allow us to obtain regional parsers from the same schemata used for global

6.5 from global to regional error repair 141

parsers, in such a way that the regional parser will always return an optimal
solution if the corresponding global parser is correct and �nitely complete.
To do this, we use the notion of a progress function:

Definition Let I ′ be an approximate item set. A progress function for I ′ is 6.20
a function fp ∶ I ′ → {p ∈ (N ∪ {0}) ∣ p ≤ k}, where k is a positive integer
called themaximum progress. ⊣

Let S be a correct and �nitely complete error-repair parsing schema, and
fp a progress function for its item set. A minimal regional parser based on
S can be implemented by executing the parsing systems obtained from S
with the following deductive engine:

function RegionalParser (string) : item set

b̄ = 0; //maximum allowed distance
maxProgr = 0; //upper region limit
minProgr = 0; //lower region limit
while (true)
{
compute validItems = v2(Boundb̄(S(G)),string,minProgr,

maxProgr);

finalItems = {ι ∈ validItems ∣ ι is a final item };
if (finalItems ≠ ∅) return finalItems;

newMax = max{p ∈ N ∣ ∃i ∈ validItems ∶ fp(i) = p}

if (newMax > maxProgr) {
maxProgr = newMax; minProgr = newMax;

}
else if (minProgr > 0) minProgr = minProgr-1;

else b̄ = b̄+1;
} �

where the function v2(ded,str,min,max) computes all valid items in the
deduction system ded for the input str, with the constraint that error-repair
steps are only launched if at least one of their antecedents, ι, satis�es that
minProgr ≤ fp(ι) ≤ maxProgr.�e set of items whose progress function is
inside this interval is called the error-repair region, and the particular shape
of this region will depend on the progress function fc used by the parser.
Independently of this function fc , it is guaranteed that, if S is correct and

�nitely complete, this regional parser always returns at least one minimal

142 error-repair parsing schemata

distance parse: to prove this, note that the value of the distance bound
b̄ is only increased in an iteration where minProgr = 0 and maxProgr
= max{p ∈ (N∪{0}) ∣ ∃ι ∈ validItems ∶ fp(ι) = p} and, in this situation,
executing v2(Boundb̄(S(G)), string, minProgr, maxProgr) is equi-
valent to executing v(Boundb̄(S(G)), string), which returns all valid
approximate items for the distance bound b̄. �erefore, the whole set of
valid items in the bounded parsing system Boundb̄(S(G)) is computed
before considering solutions with distance b̄ + 1.�is, together with �nite
completeness of S, implies that at least one minimal distance parse will be
found by the algorithm before producing any non-optimal solution.
In order for the regional parser to be e�cient, we should de�ne the

progress function so that it is a good approximation of how “promising” an
item is towards reaching a �nal item.�e criteria to choose a good progress
function are similar to those that characterise a good heuristic function in
an informed search problem.�us, the ideal progress function would be one
such that f (ι) = 0 if ι is not necessary to infer a �nal item, and f (ι) > f (κ)
if ι can be used to infer a �nal item in less steps than κ. Obviously this
function cannot be used (until the deduction process is �nished, we do
not know if a given item can lead to a �nal item or not); but functions that
provide a good approximation of this ideal heuristic will produce e�cient
parsers. In the degenerate case where fp(ι) = 0 for any item ι, the progress
function does not provide any information and the regional error-repair
parser is equivalent to the global algorithm seen in the previous section.
A simple yet adequate function in the case of the schemaSLyon is fp j([A→

α ● β, i , j, e]) = j, which simply evaluates an item according to its index
j. Another alternative is fp j−i([A→ α ● β, i , j, e]) = j − i. Both functions
prioritise the items that have progressed further to the right in the input
string, and take maximum values for �nal items.

6.5.1 Global vs. regional parsing performance

In order to test our parsers and study their performance, we have used the
system described in Chapter 3 to execute Lyon’s parsing schema both as a
global error-repair parser, as described in Section 6.4, and as a minimal
regional error-repair parser, as in Section 6.5.�e progress function used
for the regional parser is the fp j function as de�ned above.

6.5 from global to regional error repair 143

min . num . of avg . avg . items avg . items improve-
dist. sentences len . (global) (regional) ment (%)

0 70 11.04 37,558 37,558 0.00%
1 24 11.63 194,249 63,751 65.33%
2 2 18.50 739,705 574,534 22.33%
3 2 14.50 1,117,123 965,137 13.61%
>3 none n/a n/a n/a n/a

Table 12: Performance results for the global and regional error-repair parsers when
parsing sentences from the ATIS test set. Each row corresponds to a value
of the minimal parsing distance (or error count), and shows the amount
of sentences in the set with that minimal parsing distance, their average
length, and the average number of items generated by both algorithms
when parsing these sentences. �e last column represents the relative
improvement of the regional parser over the global parser in terms of the
amount of items generated.

�e grammar and sentences used for testing are from the DARPA ATIS3
system. Particularly, we have used the same test sentences that were used by
Moore (2000).�is test set is suitable for our purpose, since it comes from
a real-life application and contains ungrammatical sentences. In particular,
28 of the 98 sentences in the set are ungrammatical. By running our error-
repair parsers, we �nd that the minimal edit distance to a grammatical
sentence is 1 for 24 of them (i.e., these 24 sentences have a possible repair
with a single error), 2 for two of them, and 3 for the remaining two.
Table 12 shows the average number of items generated by our parsers

with respect to the minimal parsing distance of the inputs. As we can see,
regional parsing reduces item generation by a factor of three in sentences
with a single error. In sentences with more than one error the improvements
are smaller: this is because, before returning any solution with distance
e + 1, the regional parser generates all valid items with distance e (i.e., all
the items a global parser would generate up to this distance). However,
we should note that parsing time grows faster than the number of items
generated, so these relative improvements in items translate to larger relative
improvements in runtime. Moreover, in practical settings we can expect
sentences with several errors to be less frequent than sentences with a single

144 error-repair parsing schemata

error, as in this case.�us, the faster runtimes make item-based regional
error-repair parsers a good practical alternative to global algorithms.

6.6 discussion

In this chapter we have introduced error-repair parsing schemata, a formal
framework that extends Sikkel’s theory of parsing schemata, and can be used
to easily de�ne, analyze and compare error-repair parsers. With this new
theoretical tool, all the advantages of parsing schemata that we have seen
in the previous chapters are extended to error-repair parsers, including the
possibility of implementing them with the system described in Chapter 3.
Furthermore, as parsing schemata capture the logic of the algorithms while
abstracting away from control structures, the same error-repair parsing
schema can be implemented with di�erent repair strategies (global, regional
or local) depending on the control structures that we use to handle the
execution of its deduction steps.
As an example, we have used error-repair parsing schemata to describe

the Earley-based error-repair algorithm �rst described by Lyon (1974), to
prove its correctness, to generate a deductive implementation of the original
algorithm, and to obtain a faster, regional error-repair parser based on the
same parsing schema; and we have performed an empirical comparison
to measure the e�ciency gain obtained by applying a regional error-repair
strategy with respect to global repair.
�e methods that we have used for obtaining these results are generic

and can be applied to other parsers. In the next chapter, we will present
a transformation that can be used to convert standard parsing schemata
satisfying certain conditions to correct error-repair parsing schemata. With
this transformation, we can automatically obtain correct global and regional
error-repair parsers from standard parsing schemata such as those for the
CYK or Le�-Corner parsers that we have used in Chapter 4.

7
TRANSFORMING STANDARD PARSERS INTO
ERROR-REPAIR PARSERS

In the last chapter, we de�ned the formalismof error-repair parsing schemata
and used it to describe a particular parsing algorithm with error-repair
capabilities, prove its correctness, and obtain implementations of it with
regional and global repair strategies.
In this chapter, we use this formalism to de�ne a general transformation

technique to automatically obtain robust, error-repair parsers from standard
non-robust parsers. If our method is applied to a correct parsing schema
satisfying certain conditions, the resulting error-repair parsing schema is
guaranteed to be correct. �e required conditions are weak enough to
be ful�lled by a wide variety of popular parsers used in natural language
processing, such as CYK, Earley and Le�-Corner.
�e transformation is de�ned as a function that maps correct parsing

schemata to correct error-repair parsing schemata that can successfully
obtain approximate parses minimising the Levenshtein distance to a gram-
matical sentence, by using the extended pseudometric d̂ de�ned in 6.2.2 as
tree distance function.
We �rst provide an informal description of the transformation and how it

is applied, and then we de�ne it formally and prove its correctness. Finally,
we discuss some optimisations and simpli�cations that can be applied as
post-processing, and will be useful when the transformation is used in
practice.

7.1 from standard parsers to error-repair parsers

Most standard, non-robust parsers work by using grammar rules to build
trees and link them together to form larger trees, until a complete parse

145

146 transforming standard parsers into error-repair parsers

can be found. Our transformation is based on generalising parser deduc-
tion steps to enable them to link approximate trees and still obtain correct
results, and adding some standard steps that introduce error hypotheses
into the item set, which will be gracefully integrated into parse trees by the
generalised steps.
�e particular strategy used by parsers to build and link trees obviously

varies between algorithms but, in spite of this, we can usually �nd two kinds
of deduction steps in parsing schemata: those which introduce a new tree
into the parse from scratch, and those which link a set of trees to form a
larger tree. We will call the former predictive steps and the latter yield union
steps.
Predictive steps can be identi�ed because the yield of the trees in their

consequent item does not contain any marked terminal symbol, that is,
they generate trees which are not linked to the input string. Examples of
predictive steps are the Earley Initter and Predictor steps. Yield union
steps can be identi�ed because the sequence of marked terminals in the
yield of the trees of their consequent item (which we call themarked yield
of these items)1 is the concatenation of the marked yields of one or more
of their antecedents,2 and the trees in the consequent item are formed by
linking trees in antecedent items. Examples of yield union steps are Earley
Completer and Scanner (see Figure 7 in page 27), and all the steps in the
CYK parsing schema (Figure 6 in page 26).
If all the steps in a parsing schema are predictive steps or yield union

steps, we will call it a prediction-completion parsing schema. Most of the
parsing schemata which can be found in the literature for widely-used
parsers are prediction-completion parsing schemata, which allows us to
obtain error-repair parsers from them in a systematic way.

1 In the sequel, we will use the notation yieldm(t) to refer to the marked yield of a tree t, and
yieldm(ι) to refer to the common marked yield of the trees in an item ι, which we will call
the marked yield of the item.

2 Actually, predictive steps can also be seen as yield union steps where the marked yield of
the consequent item is the concatenation of the marked yield of zero of their antecedents.
From this perspective it is not necessary to de�ne predictive steps, but the concept has been
introduced for clarity.

7.1 from standard parsers to error-repair parsers 147

7.1.1 �e transformation

�e error-repair transformation of a prediction-completion parsing systemP
is the error-repair parsing systemR(P) obtained by applying the following
changes to it:

1. Transform the item set into the corresponding approximate item
set by extending each item with a �eld which will store its parsing
distance.

2. Add the following steps to the schema:

a) SubstitutionHypothesis = {[a, i , i + 1] ⊢ [b, i , i + 1, 1] ∣ b ∈
Σ}.3

�e consequent of this step contains the tree b → ai+1, for each
symbol ai+1 in the input string (input symbol) and each b ∈ Σ
(expected symbol). Generating this item corresponds to the
error hypothesis that the symbol ai+1 that we �nd in the input
string is the product of a substitution error, and should be b
instead.

b) DeletionHypothesis = {⊢ [b, i , i , 1] ∣ b ∈ Σ}.
�e consequent item contains the tree b → є, for each position
i in the input string.�is corresponds to the error hypothesis
that the symbol b, which should be the i + 1th symbol in the
input, has been deleted.�e item [b, i , i , 1] allows us to use this
symbol during parsing even if it does not appear in the input
sentence.

c) InsertionHypothesis = {[a, i , i + 1] ⊢ [є, i , i + 1, 1]}.
�e consequent of this step contains the tree є → ai+1, for each
input symbol ai+1 in the input string, which corresponds to the
hypothesis that the symbol ai+1 in the input is the product of an
insertion error, and therefore should not be taken into account
in the parse.

d) BeginningInsertionCombiner =
{[є, 0, j, e1], [(a∣є), j, k, e2] ⊢ [(a∣є), 0, k, e2]}.

3 We remind the reader that, due to the extensive use of expressions of sets of deduction steps
in the explanations and proofs throughout this chapter, we will use this compact notation
(explained in Section 2.3.2) to refer to sets of steps, rather than the inference rule notation
employed in the rest of the chapters of this thesis.

148 transforming standard parsers into error-repair parsers

OtherInsertionCombiner =
{[(a∣є), i , j, e1], [є, j, k, e2] ⊢ [(a∣є), i , k, e1 + e2]}.

�ese steps produce trees of the form a2(є(a1)a2) and
a1(a1є(a2)). If the �rst symbol in the input is an inserted char-
acter, the insertion hypothesis is combined with the hypothesis
immediately to its right. Insertion hypotheses corresponding
to symbols other than the �rst one are combined with the hypo-
thesis immediately to their le�.
�is is done because all correct parsing schemata have steps
to handle subtrees rooted at terminals that can be straightfor-
wardly transformed to handle these extended insertion hypo-
theses, while some (such as CYK) do not possess steps to handle
subtrees rooted at є, so their conversion would bemore complex
without these InsertionCombiner steps.

e) CorrectHypothesis = {[a, i , i + 1] ⊢ [a, i , i + 1, 0]}.
�e consequent of this item contains the tree a → ai+1, for each
symbol ai+1 in the input string.�erefore, it is equivalent to the
hypothesis [a, i , i + 1].�is item corresponds to the hypothesis
that there is no error in the input symbol ai+1, hence the distance
value 0.

3. For every predictive step in the schema (steps producing an item with
an empty yield), change the step to its generalisation obtained (in
practice) by setting the distance associated with each antecedent item
Ai to an unbound variable ei , and set the distance for the consequent
item to zero. For example, the Earley step

Predictor = {[A→ α ● Bβ, i , j] ⊢ [B → ●γ, j, j] ∣ B → γ ∈ P}
produces the step

Predictor’ = {[A→ α ● Bβ, i , j, e] ⊢ [B → ●γ, j, j, 0] ∣ B → γ ∈ P}.
4. For every yield union step in the schema (steps using items with yield
limits (i0, i1), (i1, i2), . . ., (ia−1, ia) to produce an item with yield
(i0 . . . ia)):
• If the step requires a hypothesis [a, i , i + 1], then change all
appearances of the index i + 1 to a new unbound index j.4

4 �is is done because steps including hypotheses as antecedents are not strictly yield union
steps according to the formal de�nition of yield union step that we will see later in Section

7.1 from standard parsers to error-repair parsers 149

• Set the distance for each antecedent item Ak with yield (ik−1, ik)
to an unbound variable ek , and set the distance for the con-
sequent to the sum of these variables, e1 + e2 + . . . + ea.

• Set the distance for the rest of antecedent items, if there is any,
to unbound variables e′j.

Example �e Earley step 7.01

Completer = {[A→ α ● Bβ, i , j], [B → γ●, j, k]
⊢ [A→ αB ● β, i , k]}

produces the step

Completer’ = {[A→ α ● Bβ, i , j, e1], [B → γ●, j, k, e2]
⊢ [A→ αB ● β, i , k, e1 + e2]}.

�e Earley step

Scanner = {[A→ α ● aβ, i , j], [a, j, j + 1]
⊢ [A→ αa ● β, i , j + 1]}

produces the step

Scanner’ = {[A→ α ● aβ, i , j, e1], [a, j, k, e2]
⊢ [A→ αa ● β, i , k, e1 + e2]}.

�e CYK step

CYKUnary = {[a, i , i + 1] ⊢ [A, i , i + 1] ∣ A→ a ∈ P}
produces

CYKUnary’ = {[a, i , j, e] ⊢ [A, i , j, e] ∣ A→ a ∈ P}. ⊣

7.2.2. However, these steps can always be easily transformed to yield union steps by applying
this transformation. Note that this change does not alter any of the signi�cant properties of
the original (standard) parsing schema, since items [a, i , j] with j ≠ i + 1 can never appear
in the deduction process.

150 transforming standard parsers into error-repair parsers

7.2 formal definition of the error-repair transforma-
tion

By applying these four simple transformation rules to a prediction-completion
parsing schema, we obtain an error-repair parsing schema which shares
its underlying semantics. As the transformation rules are totally system-
atic, they can be applied automatically, so that a system based on parsing
schemata, such as the one described in Chapter 3, can generate implementa-
tions of error-repair parsers from non-error-repair parsing schemata. How-
ever, in order for the transformation to be useful we need to ensure that the
error-repair parsers obtained from it are correct.
In order to do this, we �rst need to de�ne some concepts that will take

us to a formal de�nition of the transformation that we have informally
described in the previous section.

7.2.1 Some properties of trees and items

Let t ∈ Trees(G) be a constituency parse tree. We will say that t is an
anchored tree if there is at least one marked terminal ai in yield(t). If t does
not contain any marked terminal, then we will call it a non-anchored tree.
Note that the presence of marked terminals binds anchored trees to

particular positions in the input string, while non-anchored trees are not
bound to positions.

Definition We say that an anchored tree t is substring-anchored if its7.02
yield is of the form α a l+1 a l+2 . . . ar β, where α and β contain no marked
terminals, for some l , r ∈ (N ∪ {0}) such that l < r.�e values l and r are
called the le�most yield limit and the rightmost yield limit of t, respectively,
and we will denote them le�(t) and right(t). ⊣

Definition We say that a tree t is a contiguous yield tree if it is either7.03
substring-anchored or non-anchored.
We de�ne themarked yield of a contiguous yield tree t, denoted yieldm(t),

as:
• �e empty string є, if t is non-anchored,
• �e string a l+1 a l+2 . . . ar , if t is substring-anchored with yield limits
le�(t) = l , right(t) = r. ⊣

7.2 formal definition of the error-repair transformation 151

Definition Let I be an item set. 7.04
• We will say that an item ι ∈ I is a homogeneously anchored item if
there exist l and r ∈ (N ∪ {0}) such that, for every tree t ∈ ι, t is
substring-anchored and veri�es that le�(t) = l and right(t) = r. In
this case, we will call l the le�most yield limit of the item ι, denoted
le�(ι), and r the rightmost yield limit of ι, denoted right(ι).

• We will call ι ∈ I a non-anchored item if, for every tree t ∈ ι, t is
non-anchored.

• We will call any item ι ∈ I which is in neither of these two cases a
heterogeneously anchored item.

We will say that an item set I is homogeneous if it contains no heterogen-
ously anchored items. ⊣

Note that all trees contained in items in a homogeneous item set are
contiguous yield trees.

Example �e Earley, CYK and Le�-Corner parsing schemata de�ned by 7.05
Sikkel (1997) (and shown in pages 26, 27 and 76 of this dissertation, re-
spectively) have, by construction, homogeneous item sets. Earley and Le�-
Corner items of the form ι = [A→ α●β, i , j]where i < j are homogeneously
anchored items, where le�(ι) = i and right(ι) = j. Items where i = j are
non-anchored items. In the case of CYK, items of the form ι = [A, i , j]where
i < j are homogeneously anchored, with le�(ι) = i and right(ι) = j. ⊣

Definition Let I be a homogeneous item set, H a set of possible hypo- 7.06
theses for a terminal alphabet Σ.5 An item representation set for I is a set
R = E × {(i , j) ∈ (N ∪ {0}) × (N ∪ {0}) ∣ i ≤ j}, where E is any set such
that Σ ⊆ E and there exists a function rR ∶ R → I ∪H (which we will call
an item representation function) satisfying that it is surjective (every item
has at least one inverse image) and, for all (q, i , j) ∈ R,
• if i < j and ι = rR(q, i , j) is nonempty, then ι is a homogeneously
anchored item with le�(ι) = i and right(ι) = j.

• if i = j and ι = rR(q, i , j) is nonempty, then ι is a non-anchored item.
• if q ∈ Σ and j = i + 1, ι = rR(q, i , j) is the hypothesis [q, i , i + 1] =

{q((q, i + 1))} ∈H.

5 Note that, in this de�nition,H represents the set of all the possible hypotheses of the form
{a((a, i))} with a ∈ Σ⋆ and i ∈N, and not only the hypotheses associated to a particular
input string.

152 transforming standard parsers into error-repair parsers

• if q ∈ Σ and j ≠ i + 1, ι = rR(q, i , j) is the empty item ∅.

Note that a �nal item for a string of length n will always be of the form
rR(q, 0, n) for some q.

Example In the case of the Earley parser for a context-free grammar G =7.07
(N , Σ, P, S), we consider the representation set REarl e y = (D(P) ∪ Σ) ×
{(i , j) ∈ (N∪{0})×(N∪{0}) ∣ i ≤ j}, where the set of dotted productions
D(P) is de�ned as {(A → α, k) ∣ A → α ∈ P ∧ k ∈ (N ∪ {0}) ∧ 0 ≤ k ≤
∣α∣)}.�is allows us to de�ne the obvious representation function for the
Earley item set, rREarl e y ∶ ((A→ γ, k), i , j) → [A→ α ● β, i , j], where α is
the substring γ1 . . . γk of γ and β is the rest of γ; and rREarl e y ∶ (a, i , j) →
[a, i , j]. ⊣

7.2.2 Some properties of deduction steps

Definition Let I be a homogeneous item set, and R = E × (N ∪ {0}) ×7.08
(N ∪ {0}) an item representation set for I , with representation function
rR. If we write [a, b, c] as shorthand for rR(a, b, c), a yield union step set is
a set of deduction steps of the form

{[q1, i0, i1], [q2, i1, i2], . . . , [qm , im−1, im],
[c1, j1, k1], [c2, j2, k2], . . . , [cn , jn , kn] ⊢

[qc , i0, im] ∣
i0 ≤ i1 ≤ . . . ≤ im ∈ (N ∪ {0}) ∧ j1, . . . , jn , k1, . . . , kn ∈ (N ∪ {0})∧

ji ≤ ki ∧ P(q1, q2, . . . , qm , c1, c2, . . . , cn , qc) = 1}

where P is a boolean function, P ∶ Em+n+1 → {0, 1}. ⊣

�erefore, a yield union step set is a step set in which some of the ante-
cedent items have contiguous yields whose union is the consequent’s yield.
If we represent the antecedent and consequent items as [q, l , r], the only
constraints allowed on the le� and right positions l and r are that l should
always be less than or equal to r for all items, and that the (l , r) intervals
of some antecedents must be contiguous and their union be the interval
corresponding to the consequent. Any constraint is allowed on the entities
q and c, as denoted by P.

7.2 formal definition of the error-repair transformation 153

Example �e set of Earley Completer steps is a yield union step set with 7.09
the representation function rREarl e y de�ned above, because it can be written
as:

{[q1, i0, i1], [q2, i1, i2] ⊢ [qc , i0, i2] ∣
i0 ≤ i1 ≤ i2 ∈ (N ∪ {0}) ∧ P(q1, q2, qc) = 1}

with P(x , y, z) = (∃A, B, α, β, γ ∣ x = A → α ● Bβ, y = B → γ●, z = A →
αB ● β). ⊣

Definition Let I be a homogeneous item set, and R = E × (N ∪ {0}) × 7.10
(N ∪ {0}) an item representation set for I , with representation function
rR . If we write [a, b, c] as shorthand for rR(a, b, c), a predictive step set is a
set of deduction steps of the form

{[q1, j1, k1], [q2, j2, k2], . . . , [qn , jn , kn] ⊢
[qc , f (j1, k1, j2, k2, . . . , jn , kn), f (j1, k1, j2, k2, . . . , jn , kn)] ∣

j1, . . . , jn , k1, . . . , kn ∈ (N ∪ {0}) ∧ ji ≤ ki ∧ P(q1, q2, . . . , qn , qc) = 1},

where P is a boolean function, P ∶ En+1 → {0, 1}, and f is a nonnegative
integer function, f ∶ (N ∪ {0})2n → (N ∪ {0}). ⊣

�erefore, a predictive step set is a step set in which the consequent is a
non-anchored item. If we represent the antecedent and consequent items as
[q, l , r], the only constraints allowed on the le� and right positions l and r
are that l should always be less than or equal to r for all items, and that the
(l , r) indexes of the consequent must be equal and a function of the (l , r)
indexes of the antecedents. Any constraint is allowed on the entities q, as
denoted by P.

Example �e set of Earley Predictor steps is a predictive step set, because 7.11
it can be written as:

{[q1, j1, k1]} ⊢ [qc , f (j1, k1), f (j1, k1)] ∣
j1, k1 ∈ (N ∪ {0}) ∧ j1 ≤ k1 ∧ P(q1, qc) = 1}

where f (x , y) = y, and P(x , y) = (∃A, B, α, β, γ ∣ x = A→ α ●Bβ, y = B →
●γ) with B → ●γ a valid production in the grammar. ⊣

154 transforming standard parsers into error-repair parsers

Definition An uninstantiated parsing system (I ,K,D) is a prediction-7.12
completion parsing system if there exists a representation function rR such
that D can be written as union of sets D1 ∪ D2 ∪ . . . ∪ Dn, where each Di
is either a predictive step set or a yield union step set with respect to that
representation function.
A parsing schema S is said to be a prediction-completion parsing schema

if it maps each grammar G in a class CG to a prediction-completion parsing
system. ⊣

Example It is easy to check that the Earley, CYK and Le�-Corner pars-7.13
ing schemata are prediction-completion parsing schemata, as their sets
of deduction steps can be rewritten as the union of predictive step sets
and yield union step sets. For example, in the case of Earley, the standard
Initter and Predictor are predictive step sets, while Completer and
Scanner are yield union step sets. In the case of the Scanner step, we
can see that it is a yield union step set by rewriting it as Scanner = {[A→
α ● xβ, i , j], [x , j, k] ⊢ [A→ αx ● β, i , k]} (see footnote on page 149). ⊣

7.2.3 �e error-repair transformation (formal de�nition)

Let S = (I ,K,D) be a prediction-completion parsing system.
Let D = D1 ∪D2 ∪ . . . ∪Dn be an expression of D where each Di is either

a predictive step set or a yield union step set with respect to a representation
function rR associated to a representation set R = E × {(i , j) ∈ (N ∪ {0})×
(N ∪ {0}) ∣ i ≤ j}.�is expression must exist, by de�nition of prediction-
completion parsing system. As before, we will denote rR(e , i , j) by [e , i , j].
�e error-repair transformation of S, denotedR(S), is an error-repair

parsing system (I ′,K,D′) under the distance function d̂, where I ′ and D′

are de�ned as follows.

Items of the error-repair transformation

I ′ = I ′1 ∪ I ′2, with
I ′1 = { {(t, x) ∈ ApTrees(G) ∣ t is substring-anchored ∧

le�(t) = i ∧ right(t) = j∧
∃i′, j′ ∈ (N ∪ {0}), t′ ∈ [q, i′, j′] ∪ {є(є)} ∶ d̂(t, t′) = x} ∣

q ∈ E ∪ {є}, i , j, x ∈ (N ∪ {0}) }

7.2 formal definition of the error-repair transformation 155

and
I ′2 = { {(t, x) ∈ ApTrees(G) ∣ t is non-anchored ∧
∃i′, j′ ∈N, t′ ∈ [q, i′, j′] ∪ {є(є)} ∶ d̂(t, t′) = x} ∣

q ∈ E ∪ {є}, x ∈ (N ∪ {0}) }.

Note that I ′ satis�es the de�nition of an approximate item set if, and only
if, d̂(t1, t2) = ∞ for every t1 ∈ [q1, i1, j1], t2 ∈ [q2, i2, j2] such that q1 ≠ q2
(this can be easily proved by the triangle inequality, and it can be seen that
if this condition does not hold, there will be trees that appear in more than
one item in I ′, thus violating the de�nition). Known item sets such as the
Earley, CYK or Le�-Corner item sets meet this condition when using the
distance function d̂; since if two items have q1 ≠ q2, their respective trees
di�er in non-frontier nodes and therefore the distance between them is
always∞.

Deduction steps of the error-repair transformation

We de�ne a set R′ = (E ∪ є) × {(i , j) ∈ (N ∪ {0}) × (N ∪ {0}) ∣ i ≤
j} × (N ∪ {0}) for I ′, and call it a robust representation set for I ′.
We de�ne r′R ∶ R′ → (I ′ ∪ H) as the function that maps each tuple

(q, i , j, x) to the item:
• {(t, x) ∈ ApTrees(G) ∣ t is substring-anchored∧le�(t) = i ∧right(t) =

j ∧ ∃i′, j′ ∈ (N ∪ {0}), t′ ∈ [q, i′, j′] ∪ {є(є)} ∶ d(t, t′) = x} ∈ I ′1 , if
i ≠ j.

• {(t, x) ∈ ApTrees(G) ∣ t is non-anchored ∧∃i′, j′ ∈ (N ∪ {0}), t′ ∈
[q, i′, j′] ∪ {є(є)} ∶ d(t, t′) = x} ∈ I ′2, if i = j.

We call r′R a robust representation function for I ′, and we will denote
r′R(q, i , j, d) by Jq, i , j, dK. Note that the function r′R is trivially surjective
by construction: the images for each of the two cases of its de�nition are
I ′1 and I ′2, respectively, and each hypothesis [a, i , i + 1] ∈H is the image of
(a, i , i + 1, 0).
�e set of deduction steps of the error-repair transformation is de�ned as

D′ = CorrectHyp ∪ SubstHyp ∪ DelHyp ∪ InsHyp ∪ BegInsComb ∪
OthInsComb ∪ DistIncr ∪ D′

1 ∪ D′
2 ∪ . . . ∪ D′

n, where6

CorrectHyp = {[a, i , j] ⊢ Ja, i , j, 0K}
6 �e names of deduction steps have been shortened with respect to those given in Section
7.1.1 for space reasons.

156 transforming standard parsers into error-repair parsers

SubstHyp = {[a, i , j] ⊢ Jb, i , j, 1K ∣ b ∈ Σ}

DelHyp = {⊢ Jb, i , i , 1K ∣ b ∈ Σ}

InsHyp = {[a, i , j] ⊢ Jє, i , j, 1K ∣ b ∈ Σ}

BegInsComb = {Jє, 0, j, e1K, Jx , j, k, e2K ⊢ Jx , 0, k, e1 + e2K ∣ x ∈ Σ ∪ {є}}

OthInsClomb = {Jx , i , j, e1K, Jє, j, k, e2K ⊢ Jx , i , k, e1 + e2K ∣ x ∈ Σ ∪ {є}}

DistIncr = {Jx , i , j, eK ⊢ Jx , i , j, e + 1K ∣ x ∈ E ∪ {є}}

For each yield union step set Di of the form

Di = {[q1, i0, i1], [q2, i1, i2], . . . , [qm , im−1, im],
[c1, j1, k1], [c2, j2, k2], . . . , [cn , jn , kn] ⊢
[qc , i0, im] ∣ i0 ≤ i1 ≤ . . . ≤ im ∈ (N ∪ {0})
∧ j1, . . . , jn , k1, . . . , kn ∈ (N ∪ {0}) ∧ ji ≤ ki∧
P(q1, q2, . . . , qm , c1, c2, . . . , cn , qc) = 1}

we obtain

D′
i = {Jq1, i0, i1, e1K, Jq2, i1, i2, e2K, . . . , Jqm , im−1, im , emK,

Jc1, j1, k1, e′1K, Jc2, j2, k2, e′2K, . . . , Jcn , jn , kn , e′nK ⊢
Jqc , i0, im , e1 + . . . + emK ∣ i0 ≤ i1 ≤ . . . ≤ im ∈ (N ∪ {0})
∧ j1, . . . , jn , k1, . . . , kn , e′1 , . . . , e′n , e1, . . . , em ∈ (N ∪ {0}) ∧ ji ≤ ki∧
P(q1, q2, . . . , qm , c1, c2, . . . , cn , qc) = 1}

and for each predictive step set Di of the form

{[q1, j1, k1], [q2, j2, k2], . . . , [qn , jn , kn] ⊢
[qc , f (j1, k1, j2, k2, . . . , jn , kn), f (j1, k1, j2, k2, . . . , jn , kn)] ∣
j1, . . . , jn , k1, . . . , kn ∈ (N ∪ {0}) ∧ ji ≤ ki∧
P(q1, q2, . . . , qn , qc) = 1},

we obtain

D′
i = {Jq1, j1, k1, e1K, Jq2, j2, k2, e2K, . . . , Jqn , jn , kn , enK ⊢

Jqc , f (j1, k1, j2, k2, . . . , jn , kn), f (j1, k1, j2, k2, . . . , jn , kn), 0K ∣
j1, . . . , jn , k1, . . . , kn , e1, . . . , en ∈ (N ∪ {0})
∧ ji ≤ ki ∧ P(q1, q2, . . . , qn , qc) = 1}.

7.2 formal definition of the error-repair transformation 157

Example Consider the Earley parsing schema, with the Scanner step 7.14
rewritten in order to be a yield union step, as explained in Example 7.13. Its
error-repair transformation is given by (I ′,K,D′), where:

I ′ = I ′1 1 ∪ I ′1 2 ∪ I ′1 3 ∪ I ′21 ∪ I ′22,

I ′1 1 = JA → α ● β, i , j, eK with i < j, representing the set of substring-
anchored approximate trees (t′, e) such that le�(t′) = i, right(t′) = j, and
d̂(t′, t) = e for some t in an Earley item of the form [A→ α ● β, i′, j′] for
some i′, j′ ∈ (N ∪ {0}),

I ′1 2 = Ja, i , j, eK with i ≠ j, representing the set of substring-anchored
approximate trees (t′, e) such that le�(t′) = i, right(t′) = j, and d̂(t′, t) = e
for some t in a hypothesis of the form [a, i′, j′] for some i′, j′ ∈ (N ∪ {0}),

I ′1 3 = Jє, i , j, eK with i ≠ j, representing the set of substring-anchored
approximate trees (t′, e) such that le�(t′) = i, right(t′) = j, and d̂(t′, t) = e
for the tree t = є(є),

I ′21 = JA→ α ● β, i , i , eK, representing the set of non-anchored approx-
imate trees (t′, e) such that d̂(t′, t) = e for some t in an Earley item of the
form [A→ α ● β, i′, j′] for some i′, j′,

I ′22 = Jє, i , i , eK, representing the set of non-anchored approximate trees
(t′, e) such that d̂(t′, t) = e for t = є(є),

r′R(x , i , j, e) = Jx , i , j, eK, for all x ∈ D(P) ∪ Σ ∪ {є},

D′ = CorrectHyp ∪ SubstHyp ∪DelHyp ∪ InsHyp ∪ BegInsComb ∪
OthInsClomb ∪ DistIncr ∪ DistIncr2 ∪ DistIncr3 ∪ Initter’ ∪
Scanner’ ∪ Completer’ ∪ Predictor’, where

158 transforming standard parsers into error-repair parsers

CorrectHyp = {[a, i , j] ⊢ Ja, i , j, 0K},

SubstHyp = {[a, i , j] ⊢ Jb, i , j, 1K ∣ b ∈ Σ},

DelHyp = {⊢ Jb, i , i , 1K ∣ b ∈ Σ},

InsHyp = {[a, i , j] ⊢ Jє, i , j, 1K},

BegInsComb = {Jє, 0, j, e1K, Jx , j, k, e2K ⊢ Jx , 0, k, e1 + e2K / x ∈ Σ ∪
{є}},

OthInsClomb = {Jx , i , j, e1K, Jє, j, k, e2K ⊢ Jx , i , k, e1 + e2K / x ∈
Σ ∪ {є}},

DistIncr = {Jx , i , j, eK ⊢ Jx , i , j, e + 1K},

DistIncr2 = {JA→ α ● β, i , j, eK ⊢ JA→ α ● β, i , j, e + 1K},

DistIncr3 = {Jє, i , j, eK ⊢ Jє, i , j, e + 1K},

Initter’ = {⊢ JS → ●γ, 0, 0, 0K},

Scanner’ = {JA→ α ● xβ, i , j, e1K, Jx , j, k, e2K ⊢ JA→ αx ● β, i , k, e1 +
e2K},

Completer’ = {JA → α ● Bβ, i , j, e1K, JB → γ●, j, k, e2K ⊢ JA → αB ●
β, i , k, e1 + e2K},

Predictor’ = {JA→ α ● Bβ, i , j, e1K ⊢ JB → ●γ, j, j, 0K}. ⊣

7.3 proof of correctness of the error-repair transform-
ation

�e error-repair transformation functionRmaps prediction-completion
parsing systems to error-repair parsing systems. However, in order for this
transformation to be useful, we need it to guarantee that the robust parsers
generated will be correct under certain conditions.�is will be done in the
following two theorems.
Let S = (I ,K,D) be a prediction-completion parsing system with rep-

resentation function rR(q, i , j) = [q, i , j], and with D = D1 ∪ D2 ∪ . . . ∪ Dn
an expression of D where each Di is either a predictive step set or a yield
union step set.

7.3 proof of correctness of the error-repair transformation 159

Theorem (preservation of soundness of the transformation) 7.15
If (I ,K,D) is sound, every deduction step δ in a predictive step set

Di ⊆ D has a nonempty consequent, and for every deduction step δ in a
yield union step set Di ⊆ D of the form

Di = { [q1, i0, i1], [q2, i1, i2], . . . , [qm , im−1, im],
[c1, j1, k1], [c2, j2, k2], . . . , [cn , jn , kn] ⊢
[qc , i0, im] ∣ i0 ≤ i1 ≤ . . . ≤ im ∈ (N ∪ {0})
∧ j1, . . . , jn , k1, . . . , kn ∈ (N ∪ {0}) ∧ ji ≤ ki∧
P(q1, q2, . . . , qm , c1, c2, . . . , cn , qc) = 1}

there exists a function Cδ ∶ Trees′(G)m → Trees′(G) (tree combination
function) such that:

• If (t1, . . . , tm) is a tuple of trees inTrees(G) such that tw ∈ [qw , iw−1, iw]
(1 ≤ w ≤ m), then Cδ(t1, . . . , tm) ∈ [qc , i0, im].

• If (t1, . . . , tm) is a tuple of trees inTrees(G) such that tw ∈ [qw , iw−1, iw]
(1 ≤ w ≤ m), and (t′1 , . . . , t′m) is a tuple of contiguous yield trees such
that d̂(t′w , tw) = ew(1 ≤ i ≤ m), then d̂(Cδ(t1, . . . , tm),Cδ(t′1 , . . . , t′m)) =
Σmw=1ew , and Cδ(t′1 , . . . , t′m) is a contiguous yield tree with
yieldm(Cδ(t′1 , . . . , t′m)) = yieldm(t′1)yieldm(t′2) . . . yieldm(t′m). ⊣

�en,R(I ,K,D) is sound.

Theorem (preservation of completeness of the transformation) 7.16
If (I ,K,D) is sound and complete, thenR(I ,K,D) is complete. ⊣

Note that the condition regarding the existence of tree combination func-
tions in�eorem 7.15 is usually straightforward to verify. A yield union
step set normally combines two partial parse trees in Trees(G) in some way,
producing a new partial parse tree in Trees(G) covering a bigger portion of
the input string. In practice, the existence of a tree combination function
simply means that we can also combine in the same way trees that are not in
Trees(G), and that the obtained tree’s minimal distance to a tree in Trees(G)
is the sum of those of the original trees (i.e. the combined tree contains
the errors or discrepancies from all the antecedent trees). For example, in
the case of the Earley Completer step, it is easy to see that the function
that maps a pair of trees of the form A(α(...)Bβ) and B(γ(...)) to the com-
bined tree A(α(...)B(γ(...))β) obtained by adding the children of B in the

160 transforming standard parsers into error-repair parsers

second tree as children of B in the �rst tree is a valid combination function.
Combination functions for the remaining yield union steps in CYK, Earley
and Le�-Corner parsers are equally obvious.

7.3.1 Proof of�eorem 7.15

Let S = (I ,K,D) be a prediction-completion parsing system satisfying
the conditions of�eorem 7.15, and R(S) = (I ′,K,D′) the error-repair
transformation of S.
We de�ne a correct item in the error-repair parsing system R(S) for

a particular input string a1 . . . an as an approximate item r′R(q, i , j, e) =
Jq, i , j, eK containing an approximate tree (t, e) such that t is a contiguous
yield tree with yieldm(t) = ai+1 . . . a j (we call such an approximate tree a
correct approximate tree for that item and string). Note that a �nal item
containing such an approximate tree veri�es the de�nition of a correct �nal
item that we gave earlier.
We will prove that R(S) is sound (all valid �nal items are correct) by

proving the stronger claim that all valid items are correct.
To prove this, we take into account that a valid item is either a hypothesis

or the consequent of a deduction step with valid antecedents.�erefore, in
order to prove that valid items are correct, it su�ces to show that

(i) hypotheses are correct, and that
(ii) if the antecedents of a deduction step are correct, then the consequent

is correct.

Proving (i) is trivial, since each hypothesis [a, i − 1, i] obtained from the
functionK contains a single tree with yield ai .
To prove (ii), we will show that it holds for all the deduction step sets

in D′. Let D = D1 ∪ D2 ∪ . . . ∪ Dn be an expression of D where each Di is
either a predictive step set or a yield union step set (this expression must
exist, since S is a prediction-completion parsing system).�en the set of
deduction steps D′, used in the error-repair parsing systemR(S), can be
written as D′ = CorrectHyp ∪ SubstHyp ∪ DelHyp ∪ InsHyp ∪
BegInsComb ∪ OthInsComb ∪ DistIncr ∪ D′

1 ∪ D′
2 ∪ . . . ∪ D′

n, as
de�ned above. We will show that (ii) holds for each of the deduction step
sets Di , by proving it separately for each step set:
• For the deduction step sets D′

i , by considering two possible cases:

7.3 proof of correctness of the error-repair transformation 161

(1) D′
i comes from a yield union step set Di .

(2) D′
i comes from a predictive step set Di .

• For the �xed deduction step sets CorrectHyp, SubstHyp, etc., by
considering each set separately.

Proof for case (1)

Let us consider the �rst case, where D′
i comes from a yield union step set Di .

�en, by de�nition of the error-repair transformation, Di can be written as

Di = { [q1, i0, i1], [q2, i1, i2], . . . , [qm , im−1, im],
[c1, j1, k1], [c2, j2, k2], . . . , [cn , jn , kn] ⊢
[qc , i0, im] ∣ i0 ≤ i1 ≤ . . . ≤ im ∈ (N ∪ {0})
∧ j1, . . . , jn , k1, . . . , kn ∈ (N ∪ {0}) ∧ ji ≤ ki∧
P(q1, q2, . . . , qm , c1, c2, . . . , cn , qc) = 1},

and D′
i can be written as

D′
i = {Jq1, i0, i1, e1K, Jq2, i1, i2, e2K, . . . , Jqm , im−1, im , emK,

Jc1, j1, k1, e′1K, Jc2, j2, k2, e′2K, . . . , Jcn , jn , kn , e′nK ⊢
Jqc , i0, im , e1 + . . . + emK ∣ i0 ≤ i1 ≤ . . . ≤ im ∈ (N ∪ {0})
∧ j1, . . . , jn , k1, . . . , kn , e′1 , . . . , e′n , e1, . . . , em ∈ (N ∪ {0}) ∧ ji ≤ ki∧
P(q1, q2, . . . , qm , c1, c2, . . . , cn , qc) = 1}.

Let δ′ ∈ D′
i be a particular deduction step in this set. We will prove that,

if the antecedents of δ′ are correct, then the consequent is also correct.
Let δ ∈ Di be the deduction step in Di with the same values of q1, . . . , qm ,

i0, . . . , im , c1, . . . , cn , j1, . . . , jn , k1, . . . , kn as δ′. Let Cδ be a combination
function for this step δ, which must exist by the hypotheses of the theorem.
If the antecedents of δ′ are correct, then there exist m approximate trees

(t′w , ew) ∈ Jqw , iw−1, iw , ewK(1 ≤ w ≤ m). By de�nition of r′R, we know that
for each t′w there exists a tree tw ∈ [qw , i′w , i′′w] such that d̂(t′w , tw) = ew .
Taking into account that indexes associated to marked terminals do not
a�ect our distance d̂, we can assume, without loss of generality, that tw ∈
[qw , iw−1, iw].
By the �rst condition that Cδ must verify, we know that Cδ(t1, . . . , tn) ∈

[qc , i0, im].

162 transforming standard parsers into error-repair parsers

By the second condition, we know that d̂(Cδ(t′1 , . . . , t′n),Cδ(t1, . . . , tn)) =
Σmw=1ew .
�ese two facts imply that (Cδ(t′1 , . . . , t′n), Σmw=1ew) is a member of an

item Jqc , k1, k2, Σmw=1ewK ∈ I ′ for some k1, k2 ∈N.
By hypothesis, the antecedents of δ′ are correct, sowe know that yield(t′w) =

aiw−1+1 . . . aiw .�erefore, by the second condition of a combination func-
tion, Cδ(t′1 , . . . , t′n) is a contiguous yield tree with yield ai0 . . . aim . Hence,
we know that k1 = i0, k2 = im, and (Cδ(t′1 , . . . , t′n), Σmw=1ew) is a correct
approximate tree for the consequent item of δ′, Jqc , i0, im , Σmw=1ewK. �is
proves that the consequent of δ′ is correct.

Proof for case (2)

Let us consider the second case, where D′
i comes from a predictive step

set Di . In this case, the consequent of any deduction step δ′ ∈ D′
i is of

the form Jqc , v , v , 0K for some v. By construction of r′R, this means that
the consequent is the set of non-anchored approximate trees (t, 0) with
t ∈ [qc , k1, k2] for any k1, k2 ∈ (N ∪ {0}).
Let δ ∈ Di be the deduction step in Di with the same values of q1, . . . , qn ,

j1, . . . , jn , k1, . . . , kn as δ′.�e consequent of this step is [qc , v , v] ∈ I . By
de�nition of representation function, [qc , v , v] must be a non-anchored
item. �erefore, any tree t ∈ [qc , v , v] is non-anchored. By hypothesis,
since [qc , v , v] is a consequent of a deduction step from a predictive step
set Di ⊆ D, we know that [qc , v , v] is nonempty, so there exists at least one
non-anchored tree t ∈ [qc , v , v]. �e tree (t, 0) is a correct approximate
tree in Jqc , v , v , 0K.�erefore, the consequent of δ′ is correct.

Proof for �xed deduction step sets

We consider each deduction step set separately:

• A CorrectHyp step is of the form [a, i , j] ⊢ Ja, i , j, 0K. �e ante-
cedent of this step can only be correct in S if j = i + 1, since otherwise
it equals the empty item. If the antecedent is correct, then there exists
a hypothesis [a, j − 1, j], containing a tree a((a, j)) ∈ Trees(G). In
this case, since j = i + 1, the consequent is Ja, j − 1, j, 0K.
By de�nition of r′R, the consequent item Ja, j − 1, j, 0K is the set
of substring-anchored approximate trees (t, 0) ∈ ApTrees(G) such

7.3 proof of correctness of the error-repair transformation 163

that le�(t) = j − 1, right(t) = j, and d̂(t, u) = 0 for some u ∈
[a, k1, k2](k1, k2 ∈ (N ∪ {0})). One such tree is (a((a, j)), 0) ∈
ApTrees(G), which is trivially a correct tree for this item.�erefore,
the consequent item of CorrectHyp is correct.

• �e consequent item of a step in SubstHyp, Jb, j− 1, j, 1K, is the set of
substring-anchored approximate trees (t, 1) ∈ ApTrees(G) such that
le�(t) = j − 1, right(t) = j, and d̂(t, u) = 1 for some u ∈ [b, k1, k2].
One such tree is (b((a, j)), 0) ∈ ApTrees(G), where b((a, j)) is at
distance 1 from the tree b((b, j)) ∈ [b, j − 1, j] by a substitution
operation. �is is a correct tree for the consequent, therefore the
consequent of SubstHyp is correct. Note that the antecedent is not
used in the proof, so the transformation would still be sound with a
step ⊢ Jb, j − 1, j, 1K. We only use the antecedent to restrict the range
of j.

• In the case of DelHyp, a correct tree for the consequent is (b(є),0),
where b(є) is at distance 1 from any b((b, j)) ∈ [b, j − 1, j].

• In the case of InsHyp, a correct tree for the consequent is є((a, j)),
which is at distance 1 from є(є).

• A correct tree for the consequent of steps in BegInsComb is obtained
by appending a correct tree in the antecedent Jє, 0, j, e1K as the le�-
most child of a correct tree in the antecedent Jx , j, k, e2K.

• A correct tree for the consequent of steps in OthInsComb is ob-
tained by appending a correct tree in the antecedent Jє, j, k, e2K as
the rightmost child of a correct tree in the antecedent Jx , i , j, e1K.

• A correct tree for the consequent of steps in DistIncr is (t, e + 1),
for any approximate tree (t, e) in the antecedent Jx , i , j, eK.

As a result, we have proven that, under the theorem’s hypotheses, (ii)
holds for every deduction step.�is implies that all valid items are correct
and, therefore, thatR(S) is sound, as we wanted to prove.

7.3.2 Proof of�eorem 7.16

Let S = (I ,K,D) be a sound and complete prediction-completion parsing
system, andR(S) = (I ′,K,D′) the error-repair transformation of S. We
will prove thatR(S) is complete. Proving completeness for this deduction
system is proving that, given an input string a1 . . . an, all correct �nal items
are valid. �erefore, given a string a1 . . . an, we have to prove that every

164 transforming standard parsers into error-repair parsers

item containing an approximate tree (t, e) such that t is a marked parse
tree for a1 . . . an can be inferred from the hypotheses.
Since the robust representation function for R(S), r′R, is surjective,

we know that every �nal item in this deduction system can be written
as Jq, i , j, eK.�erefore, proving completeness is equivalent to proving the
following proposition:

Proposition Given any string a1 . . . an, every correct �nal item of the7.17
form Jq, i , j, eK is valid in the instantiated parsing system
R(S) (a1 . . . an) = (I ′,K(a1 . . . an),D′). ⊣

We will prove this proposition by induction on the parsing distance e.

Base case (e=0)

Items in the item set I ′ where the distance e is 0 can be mapped to items
from the item set I (corresponding to the original non-error-repair parser)
by the function f ∶ I ′ → I that maps ι = Jq, i , j, 0K to f (ι) = [q, i , j].
�is mapping is trivially bijective, and it is easy to see that deductions are
preserved: the deduction ι1ι2 ⊢ ιc can bemade by a step fromD′

i if and only if
the deduction f (ι1) f (ι2) ⊢ f (ιc) can be made by a step from Di . Moreover,
an item f (ι) contains a tree t if and only if ι contains the approximate tree
(t, 0), so f (ι) is a �nal item in the standard parser if and only if ι is a �nal
item in the error-repair parser. Since any correct �nal item of the form
Jq, i , j, 0K in the error-repair parser is f −1(κ) for some correct �nal item
κ = [q, i , j] in the standard parser, and we know by hypothesis that the
standard parser is complete, it follows that all �nal items with distance 0
are valid in our error-repair parser.

Induction step

Supposing that the proposition holds for a distance value e, we must prove
that it also holds for e + 1.
Let Jq, 0, n, e + 1K be a correct �nal item for the string a1 . . . an. We will

prove that this item is valid in the deduction system (I ′,K(a1 . . . an),D′).
As this item is correct for the string a1 . . . an, we know that it contains

an approximate tree (t, e + 1) where t is a tree rooted at S with yield(t) =
a1 . . . an. By de�nition of approximate tree, we know that there exists a tree
u ∈ Trees(G) such that d̂(t, u) = e + 1 or, equivalently, t ∈ Transe+1(u).

7.3 proof of correctness of the error-repair transformation 165

By de�nition of Transe+1(u), this implies that there is another tree t′ such
that t′ ∈ Transe(u) and t ∈ Trans1(t′), and this implies that there exists an
approximate tree (t′, e) such that d̂(t, t′) = 1.
Since d̂(t, t′) = 1, and yield(t) = a1 . . . an, we know that t ∈ Substitution(t′)

∪ Insertion(t′) ∪ Deletion(t′), and therefore yield(t′) must be one of the
following:
(1) a1 . . . a j−1 (b, j) a j+1 . . . an, if t ∈ Substitution(t′), 7

(2) a1 . . . a j−1 (a j+1, j) . . . (an , n − 1), if t ∈ Insertion(t′),
(3) a1 . . . a j−1 b j (a j , j + 1) (a j+1, j + 2) . . . (an , n + 1), if t ∈ Deletion(t′).

induction step, case (1) (substitution error) Suppose that
yield(t′) is of the form a1 . . . a j−1 (b, j) a j+1 . . . an. Consider the deduction
system (I ′, K(a1 . . . a j−1 b a j+1 . . . an), D′) obtained by applying our unin-
stantiated parsing system to the string a1 . . . a j−1 b a j+1 . . . an. Consider the
item in I ′ containing the approximate tree (t′, e): this item must be of the
form Jq, 0, n, eK, since d̂(t, t′) = 1 and (t, e + 1) ∈ Jq, 0, n, e + 1K (under the
distance function d̂, if trees in two items Jq1, i1, j1, e1K and Jq2, i2, j2, e2K are
at �nite distance, then q1 must equal q2).
�is item Jq, 0, n, eK is a correct �nal item in this system, since t′ is a

marked parse tree for the input string a1 . . . a j−1 b a j+1 . . . an. By the induc-
tion hypothesis, this item is also valid in this system. If we prove that the
validity of this item in the system (I ′,K(a1 . . . a j−1 b a j+1 . . . an),D′) im-
plies that the item Jq, 0, n, e+1K is valid in the system (I ′,K(a1 . . . an),D′),
the induction step will be proved for the substitution case.
�erefore, we have reduced this case of the proof to proving the following

lemma:

Lemma LetR(S) = (I ′,K,D′) be the uninstantiated parsing system ob- 7.18
tained by applying the error-repair transformation to a sound and complete
parsing system S.
Given a nonempty string a1 . . . an, and a string a1 . . . a j−1 b a j+1 . . . an(1 ≤

j ≤ n) obtained by substituting the jth terminal in the �rst string.
If Jq, 0, n, eK is a valid item in the instantiated parsing system R(S)

(a1 . . . a j−1 b a j+1 . . . an) = (I ′,K(a1 . . . a j−1 b a j+1 . . . an),D′), then

7 As our de�nition of d̂ ignores indexes associated to marked terminals, we can safely assume
that the marked terminal inserted in the frontier has the index j. In the other cases, we
follow the same principle to reindex the marked terminals.

166 transforming standard parsers into error-repair parsers

Jq, 0, n, e + 1K is valid in the instantiated parsing systemR(S)(a1 . . . an) =
(I ′, K(a1 . . . an), D′). ⊣

In order to prove this lemma, we de�ne a function f1 ∶ I ′ → I ′ as follows:

f1(Jq, i , k, eK) = Jq, i , k, eK if i > j − 1 or k < j
f1(Jq, i , k, eK) = Jq, i , k, e + 1K if i ≤ j − 1 and j ≤ k

We will prove that if ι1, ι2, . . . ιa ⊢ ιc in the instantiated parsing system (I ′,
K(a1 . . . a j−1 b a j+1 . . . an),D′), thenK(a1 . . . an)∪{ f1(ι1), f1(ι2), . . . f1(ιa)}
⊢∗ f1(ιc) in the instantiated parsing system (I ′, K(a1 . . . an), D′).
We say that ι1, ι2, . . . ιa ⊢ ιc in some instantiated parsing system if ιc can be
obtained from ι1, ι2, . . . ιa by application of a single deduction step.�ere-
fore, we will prove the implication by considering all the possible deduction
steps with which we can perform such a deduction:

• CorrectHyp:
If ι1, ι2, . . . ιa ⊢ ιc by a CorrectHyp step, then a = 2, ι1 = Ja, x −
1, x , 0K and ιc = Ja, x − 1, x , 0K. If we compute f1(ι1) and f1(ιc) de-
pending on the values of the indexes i , j, we obtain that:
if x ≠ j, f1(ι1) = Ja, x − 1, x , 0K and f1(ιc) = Ja, x − 1, x , 0K
if x = j, f1(ι1) = Ja, x − 1, x , 1K and f1(ιc) = Ja, x − 1, x , 1K
In both cases we have thatK(a1 . . . an) ∪ { f1(ι1)} ⊢∗ f1(ιc), because
f1(ι1) = f1(ιc).

• SubstHyp:
By reasoning analogously to the previous case, we obtain:
if x ≠ j, f1(ι1) = Ja, x − 1, x , 0K and f1(ιc) = Jb, x − 1, x , 1K
if x = j, f1(ι1) = Ja, x − 1, x , 1K and f1(ιc) = Jb, x − 1, x , 2K
In the �rst case, we have that we can infer f1(ιc) from f1(ι1) by a
SubstHyp step. In the second case, we can infer f1(ιc) fromK(a1 . . . an):
if we take the hypothesis Jax , x−1, x , 0K = [ax , x−1, x] ∈ K(a1 . . . an),
we can infer ιt = Jb, x − 1, x , 1K from it by using a SubstHyp step, and
then infer f (ιc) = Jb, x − 1, x , 2K from ιt by using a DistIncr step.

• DelHyp:
In this case, we always have that ιc = Jb, x , x , 1K and f1(ιc) = Jb, x , x , 1K,
and therefore f1(ιc) can be inferred directly from the empty set by a
DelHyp step.

7.3 proof of correctness of the error-repair transformation 167

• InsHyp:
In this case, we have:
if x ≠ j, f1(ι1) = Ja, x − 1, x , 0K and f1(ιc) = Jє, x − 1, x , 1K
if x = j, f1(ι1) = Ja, x − 1, x , 1K and f1(ιc) = Jє, x − 1, x , 2K
In the �rst case, we can infer f1(ιc) from f1(ι1) by a InsHyp step. In
the second case, we can infer f1(ιc) fromK(a1 . . . an): if we take the
hypothesis Jax , x − 1, x , 0K = [ax , x − 1, x] ∈ K(a1 . . . an), we can
infer ιt = Jє, x − 1, x , 1K from it by using a InsHyp step, and then infer
f (ιc) = Jє, x − 1, x , 2K from ιt by using a DistIncr step.

• BegInsComb:
In the case of BegInsComb, we have:
1. if 0 < j ≤ i1, f1(ι1) = Jє, 0, i1, e1 + 1K, f1(ι2) = Jx , i1, i2, e2K and

f1(ιc) = Jx , 0, i2, e1 + e2 + 1K.
2. if i2 < j ≤ k, f1(ι1) = Jє, 0, i1, e1K, f1(ι2) = Jx , i1, i2, e2 + 1K, and

f1(ιc) = Jx , 0, i2, e1 + e2 + 1K.
3. otherwise, f1(ι1) = Jє, 0, i1, e1K, f1(ι2) = Jx , i1, i2, e2K and f1(ιc) =

Jx , 0, i2, e1 + e2K.
In any of the three cases, f1(ιc) can be inferred from f1(ι1) and f1(ι2)
by a BegInsComb step.

• OthInsComb:
�is case is analogous to the BegInsComb case.

• DistIncr:
Reasoning as in the previous cases, we obtain that either ι1 = Jx , i , j, eK
and ιc = Jx , i , j, e + 1K, or ι1 = Jx , i , j, e + 1K and ιc = Jx , i , j, e + 2K. In
both cases, the resulting deduction can be performed by a DistIncr
step.

• D′
i coming from a predictive step set Di :
Let us consider the case of a step D′

i which comes from a predictive
step set Di .�en D′

i can be written as

D′
i = {Jq1, j1, k1, e1K, Jq2, j2, k2, e2K, . . . , Jqn , jn , kn , enK ⊢

Jqc , f (j1, k1, j2, k2, . . . , jn , kn), f (j1, k1, j2, k2, . . . , jn , kn), 0K ∣
j1, . . . , jn , k1, . . . , kn , e1, . . . , en ∈ (N ∪ {0})
∧ ji ≤ ki ∧ P(q1, q2, . . . , qn , qc) = 1}.

168 transforming standard parsers into error-repair parsers

In this case, we have that

f1(ι1) = Jq1, j1, k1, e1 + b1K
f1(ι2) = Jq2, j2, k2, e2 + b2K
⋮
f1(ιn) = Jqn , jn , kn , en + bnK

where bi can be either 0 or 1, and
f1(ιc) = Jqc , f (j1, k1, j2, k2, . . . , jn , kn), f (j1, k1, j2, k2, . . . , jn , kn), 0K.
Clearly, f1(ιc) can be inferred from f1(ι1) . . . f1(ιn) by a D′ i step.

• D′
i coming from a yield union step set Di :
In the case of a step D′

i coming from a yield union step set Di in the
non-error-repair schema, we can write D′

i as

D′
i = {Jq1, i0, i1, e1K, Jq2, i1, i2, e2K, . . . , Jqm , im−1, im , emK,

Jc1, j1, k1, e′1K, Jc2, j2, k2, e′2K, . . . , Jcn , jn , kn , e′nK ⊢
Jqc , i0, im , e1 + . . . + emK ∣ i0 ≤ i1 ≤ . . . ≤ im ∈ (N ∪ {0})
∧ j1, . . . , jn , k1, . . . , kn , e′1 , . . . , e′n , e1, . . . , em ∈ (N ∪ {0})
∧ ji ≤ ki ∧ P(q1, q2, . . . , qm , c1, c2, . . . , cn , qc) = 1}

In this case, we have

f (ι1) = Jq1, i0, i1, e1 + b j(i0, i1)K
f (ι2) = Jq2, i1, i2, e2 + b j(i1, i2)K
⋮
f (ιm) = Jqm , im−1, im , em + b j(im−1, im)K
f (ιm+1) = Jc1, j1, k1, e′1 + b j(j1, k1)K
⋮
f (ιm+n) = Jcn , jn , kn , e′n + b j(jn , kn)K,

where b j(n1, n2) is the function returning 1 if n1 < j ≤ n2 and 0
otherwise.
For the consequent, we have that

f (ιc) = Jqc , i0, im , e1 + . . . + em + b j(i0, im)K.
We know that b j(i0, im) = b j(i0, i1)+. . .+b j(im−1, im), since position
j can belong at most to one of the intervals (iw−1, iw]. If it does belong

7.3 proof of correctness of the error-repair transformation 169

to one of the intervals, it also belongs to (i0, im], so both members of
the expression equal one. On the other hand, if it does not belong to
any of the intervals (iw−1, iw], nor can it belong to (i0, im], so both
members equal zero.
�erefore, f (ιc) can be deduced from f (ι1) . . . f (ιm+n) directly by
applying the D′

i step.

With this we have proven that, for any deduction ι1, ι2, . . . ιa ⊢ ιc made
in the instantiated parsing system (I ′, K(a1 . . . a j−1 b a j+1 . . . an), D′), we
have K(a1 . . . an) ∪ { f1(ι1), f1(ι2), . . . f1(ιa)} ⊢∗ f1(ιc) in the instantiated
parsing system (I ′, K(a1 . . . an), D′).
�is implies that, if K(a1 . . . a j−1 b a j+1 . . . an) ∪ {ι1, ι2, . . . ιa} ⊢∗ ιc in

(I ′,K(a1 . . . a j−1 b a j+1 . . . an),D′), thenK(a1 . . . an)∪{ f1(ι1), f1(ι2), . . . ,
f1(ιa)} ⊢∗ f1(ιc) in (I ′, K(a1 . . . an), D′). In the particular case where
a = 0 and ιc = Jq, 0, n, eK, we have that f1(ιc) = Jq, 0, n, e + 1K is valid in
(I ′, K(a1 . . . an), D′), and therefore this proposition for that particular
case is equivalent to Lemma 7.18. �us, we have proven the substitution
case of the induction step.

induction step, case (2) (insertion error) In this case, we
have that yield(t′) = a1 . . . a j−1(a j+1, j) . . . (an , n − 1). Following a similar
reasoning to that in the previous case, we can reduce this to proving the
following lemma:

Lemma LetR(S) = (I ′,K,D′) be the uninstantiated parsing system ob- 7.19
tained by applying the error-repair transformation to a sound and complete
parsing system S.
Given a nonempty string a1 . . . an, and a string a1 . . . a j−1a j+1 . . . an (1 ≤

j ≤ n) obtained by deleting the jth terminal in the �rst string.
If Jq, 0, n − 1, eK is a valid item in the instantiated parsing system (I ′,
K(a1 . . . a j−1a j+1 . . . an), D′), then Jq, 0, n, e + 1K is valid in the instantiated
parsing system (I ′, K(a1 . . . an), D′). ⊣

�e proof, which we shall not detail, is also analogous to that of the previ-
ous case. In this case, the function that we use to map items and deductions

170 transforming standard parsers into error-repair parsers

in (I ′, K(a1 . . . a j−1a j+1 . . . an), D′) to those in (I ′, K(a1 . . . an), D′) is
the function f2 de�ned by:

f2(Jq, i , k, eK) = Jq, i , k, eK if j > k
f2(Jq, i , k, eK) = Jq, i , k + 1, e + 1K if j > i and j ≤ k
f2(Jq, i , k, dK) = Jq, i + 1, k + 1, eK if j ≤ i

induction step, case (3) (deletion error) Reasoning as in
the previous cases, we can reduce this case to the following lemma:

Lemma LetR(S) = (I ′,K,D′) be the uninstantiated parsing system ob-7.20
tained by applying the error-repair transformation to a sound and complete
parsing system S.
Given a string a1 . . . an, and a string a1 . . . a j−1 b a ja j+1 . . . an (1 ≤ j ≤ n)

obtained by inserting a terminal b in position j of the �rst string.
If Jq, 0, n + 1, eK is a valid item in the instantiated parsing system (I ′,
K(a1 . . . a j−1 b a ja j+1 . . . an), D′), then Jq, 0, n, e + 1K is valid in the instan-
tiated parsing system (I ′, K(a1 . . . an), D′). ⊣

�is lemma can be proved by using the same principles as in the previous
ones, and the following function f3:

f3(Jq, i , k, eK) = Jq, i , k, eK if j > k
f3(Jq, i , k, eK) = Jq, i , k − 1, e + 1K if j > i and j ≤ k
f3(Jq, i , k, eK) = Jq, i − 1, k − 1, eK if j ≤ i

End of the proof of�eorem 7.16

�is concludes the proof of the induction step for Proposition 7.17 and,
therefore, it is proved that our error-repair transformation preserves com-
pleteness (�eorem 7.16).

7.4 optimisation techniques

�e error-repair transformation that we have de�ned allows us to obtain
error-repair parsers from non-error-repair ones; and we have formally
shown that the error-repair parsers obtained by the transformation are

7.4 optimisation techniques 171

always correct if the starting parser satis�es certain conditions, which are
easy to verify for widely known parsers such as CYK, Earley or Le�-Corner.
However, as we can see in the Example 7.14 obtained by transforming the

Earley parser, the extra steps generated by our transformation make the se-
mantics of the resulting parser somewhat hard to understand. Furthermore,
the SubstHyp and DelHyp steps would negatively a�ect performance if
implemented directly in a deductive engine, as they generate a number of
hypotheses proportional to the size of the terminal alphabet Σ. Once we
have used our transformation to obtain a correct error-repair parser, we can
apply some simpli�cations to it in order to obtain a simpler, more e�cient
one which will generate the same items except for the modi�ed hypotheses.
�at is, we can bypass items of the form [a, i , j, e]. In order to do this:
• We remove the steps that generate items of this kind.
• For each step requiring an itemof the form [a, i , j, e] as an antecedent,
we change this requirement to the set of hypotheses of the form
[b, i1, i2] needed to generate such an item from the error hypothesis
steps.

Example Given the Scanner’ step obtained by transforming an Earley 7.21
Scanner step,

Scanner’ = {[A→ α ● aβ, i , j, e1], [a, j, k, e2] ⊢ [A→ αa ● β, i , k, e1 + e2]}

we can make the following observations:

• �e item [a, j, k, e2] can only be generated from error hypothesis
steps if e2 = k − j, e2 = k − j− 1 or e2 = k − j+ 1. It is trivial to see that
the hypothesis steps added by the transformation always preserve
this property. �erefore, we can separately consider each of these
three cases.

• �e item [a, j, k, k − j] is valid if and only if k > j.�is item can be
obtained by combining a substitution hypothesis [b, j, j + 1, 1] with
k − j − 1 insertion hypotheses [є, j + 1, j + 2, 1], . . . , [є, j + (k − j −
1), j + (k − j), 1] via OtherInsertionCombiner steps.

• �e item [a, j, k, k − j + 1] is valid if and only if k ≥ j.�is item can
be obtained by combining a deletion hypothesis [b, j, j, 1] with k − j
insertion hypotheses [є, j, j+ 1, 1], . . . , [є, j+ (k − j− 1), j+ (k − j), 1]
via OtherInsertionCombiner steps.

172 transforming standard parsers into error-repair parsers

• �e item [a, j, k, k − j − 1] is valid if and only if one of the following
holds:
1. j = 0 (therefore our item is [a, 0, k, k − 1], and thus k > 0),
and we have the hypothesis [a,w − 1,w] for w ≤ k. In this
case, the item [a, 0, k, k − 1] can be obtained by applying the
Combiner steps to a correct hypothesis and k − 1 insertion
hypotheses: [є, 0, 1, 1], [є, 1, 2, 1], . . ., [a,w − 1,w , 0], [є,w ,w +
1, 1], . . ., [є, k − 1, k].

2. j > 0 and we have the hypothesis [a, j, j + 1]. In this case, the
item [a, j, k, k − j − 1] (k must be ≥ j + 1) can be obtained
by applying the Combiner steps to a correct hypothesis and
k − 1 insertion hypotheses: [a, j, j + 1, 0], [є, j + 1, j + 2, 1], . . .,
[є, k − 1, k].

�erefore, we can change the Scanner step to the following set of steps:

• For e2 = k − j:

GeneralSubsScan = {[A→ α ● aβ, i , j, e]
⊢ [A→ αa ● β, i , k, e + k − j] ∣ k ≥ j + 1}

• For e2 = k − j + 1:

GeneralDeleScan = {[A→ α ● aβ, i , j, e]
⊢ [A→ αa ● β, i , k, e + k − j + 1] ∣ k ≥ j}

• For e2 = k − j − 1 and j = 0:

GeneralScan1 = {[A→ α ● aβ, 0, 0, e][a,w − 1,w]
⊢ [A→ αa ● β, 0, k, e + k − 1] ∣ 0 < w ≤ k}

• For e2 = k − j − 1 and j > 0:

GeneralScan2 = {[A→ α ● aβ, i , j, e], [a, j, j + 1]
⊢ [A→ αa ● β, i , k, e + k + j − 1] ∣ k ≥ j + 1}.

Note that GeneralSubsScan is equivalent to the ScanSubstituted
step in Lyon’s parser (Section 6.3) in the particular case that k = j + 1.
Similarly, GeneralDeleScan is equivalent to Lyon’s ScanDeleted when

7.4 optimisation techniques 173

k = j, and the GeneralScans are equivalent to Lyon’s Scanner when k = 1
and k = j + 1 respectively.
Insertions are repaired for greater values of k: for example, if k = j + 3 in

GeneralSubsScan, we are supposing that we scan over a substituted sym-
bol and two inserted symbols. �e order of these is irrelevant, since the
same consequent item would be obtained in any of the possible cases.
In the case of the last two steps, we are scanning over a correct symbol

and k − (j + 1) inserted symbols. In this case order matters, so we get two
di�erent steps: GeneralScan1 is used to scan any symbols inserted before
the �rst expected symbol, followed by the �rst symbol, and then any symbols
inserted between the �rst and the second expected symbols of the string.
GeneralScan2 is used to scan any expected symbol in the input string and
the symbols inserted between it and the next one. ⊣

Additionally, the DistIncr steps can be removed from the transforma-
tion in practice. �is step is needed if we are interested in completeness
with respect to the full set of correct �nal items; but, since it increases the
distance measure without modifying any tree, it is unnecessary if we are
only interested in minimal-distance parses, as is usually the case in practice.
A similar reasoning can be applied to constrain GeneralDeleScan to the
case where k = j.

Example With these simpli�cations, the parser obtained from transform- 7.22
ing the Earley parsing schemata has the following deduction steps:

Initter’ = {⊢ [S → ●γ, 0, 0, 0] ∣ S → γ ∈ P}

Completer’ = {[A→ α ● Bβ, i , j, e1], [B → γ●, j, k, e2]
⊢ [A→ αB ● β, i , k, e1 + e2]}

Predictor’ = {[A→ α ● Bβ, i , j, e] ⊢ [B → ●γ, j, j, 0] ∣ B → γ ∈ P}

GeneralSubsScan = {[A→ α ● aβ, i , j, e]
⊢ [A→ αa ● β, i , k, e + k − j] ∣ k ≥ j + 1}

GeneralDeleScan = {[A→ α ● aβ, i , j, e] ⊢ [A→ αa ● β, i , j, e + 1]}

GeneralScan1 = {[A→ α ● aβ, 0, 0, e][a,w − 1,w]
⊢ [A→ αa ● β, 0, k, e + k − 1] ∣ 0 < w ≤ k}

174 transforming standard parsers into error-repair parsers

GeneralScan2 = {[A→ α ● aβ, i , j, e], [a, j, j + 1]
⊢ [A→ αa ● β, i , k, e + k + j − 1] ∣ k ≥ j + 1}.

�is algorithm is a variant of Lyon’s parser that generates the same set of
valid items, although inference sequences are contracted because a single
GeneralScan step can deal with several inserted characters. ⊣

Example If we apply the same ideas to a CYK bottom-up parser, we obtain7.23
an error-repair parser with the following deduction steps:

Binary = {[B, i , j, e1], [C , j, k, e2] ⊢ [A, i , k, e1 + e2] ∣ A→ BC ∈ P}

SubsUnary = {⊢ [A, j, k, k − j] ∣ A→ a ∈ P ∧ k ≥ j + 1}

DeleUnary = {⊢ [A, j, j, 1] ∣ A→ a ∈ P}

GenUnary1 = {[a,w − 1,w] ⊢ [A, 0, k, k − 1] ∣ A→ a ∈ P ∧ 0 < w ≤ k}

GenUnary2 = {[a, j, j+ 1] ⊢ [A, j, k, k− j− 1] ∣ A→ a ∈ P∧k ≥ j+ 1}.⊣

7.5 discussion

In this chapter, we have used the error-repair parsing schemata introduced in
Chapter 6 to de�ne a transformation that can be applied to standard parsers
in order to obtain robust, error-repair parsers. We have formally proven
that the parsing algorithms obtained are correct if the original algorithm
satis�es certain conditions.�ese conditions are weak enough to hold for
well-known parsing schemata such as those for Earley, CYK or Le�-Corner
parsers.
�e transformation is completely systematic, enabling it to be applied

automatically by a parsing schema compiler (like the one described in
Chapter 3).�is means that, by providing such a system with a description
of a standard parsing schema, we can automatically obtain a working imple-
mentation of an error-repair parser.�is implementation can be made to
use a global or regional error-repair strategy, depending on which of the
deductive engine variants shown in Chapter 6 we con�gure the compiler to
use.

�is chapter concludes Part iii of this dissertation, in which we have
de�ned an extension of parsing schemata for the description of error-repair

7.5 discussion 175

parsers. �is new formalism provides not only a theoretical framework
for these parsers , but also a practical tool for parser developers, since the
compiler presented in Chapter 3 can be used with these extended schemata
to generate practical implementations of error-repair parsers. Additionally,
the transformation presented in the current chapter can be used to obtain
these implementations directly from non-error-repair parsing schemata.
In the following part, we de�ne another extension of parsing schemata to

provide support for dependency-based parsers, and use it both to provide
a uniform formal description of several existing dependency parsers, and
to de�ne novel algorithms for parsing mildly non-projective dependency
structures.

Part IV

PARSING SCHEMATA FOR DEPENDENCY PARSERS

8
DEPENDENCY PARSING SCHEMATA

All the parsing algorithms that we have seen until now correspond to
constituency-based parsers, since the framework of parsing schemata (Sikkel,
1997) is based on constituency trees. In this chapter we de�ne a new formal-
ism, based on parsing schemata, that can be used to describe, analyze and
compare dependency-based parsing algorithms.
We use this abstraction to describe several well-known projective and

non-projective dependency parsers from the literature, and show how it
can be used to prove the correctness of some of these parsers and establish
formal relations between them.
Additionally, we showhowa variant of these dependency parsing schemata

can be used to describe parsers for the Link Grammar formalism, and exist-
ing dependency parsers can be adapted to work with Link Grammar.

8.1 motivation

Dependency parsing consists of �nding the structure of a sentence as ex-
pressed by a set of directed links (called dependencies) between individual
words.�is is an alternative to constituency parsing, which tries to �nd a
division of the sentence intomeaningful segments called constituents, which
are then broken up into smaller constituents.
Although most research on computational linguistics has traditionally fo-

cused on constituency parsing, dependency formalisms have received wide
interest in recent years, while being successfully applied to tasks likemachine
translation (Ding and Palmer, 2005; Shen et al., 2008), textual entailment
recognition (Herrera et al., 2005), relation extraction (Culotta and Sorensen,
2004; Fundel et al., 2006) and question answering (Cui et al., 2005). De-
pendency structures directly show head-modi�er and head-complement

179

180 dependency parsing schemata

relationships which form the basis of predicate argument structure, but
are not represented explicitly in constituency trees, while providing a con-
ceptually simpler representation in which no non-lexical nodes have to
be postulated by the parser. In addition to this, some dependency parsers
are able to represent non-projective structures (McDonald et al., 2005b),
which is an important feature when parsing variable word order languages
in which discontinuous constituents are common.
�e formalism of parsing schemata, introduced by Sikkel (1997) and

described in Chapter 2 of this thesis, is a useful tool for the study of con-
stituency parsers: it provides formal, high-level descriptions of parsing
algorithms that can be used to prove their formal properties (such as cor-
rectness), establish relations between them, derive new parsers from existing
ones and obtain e�cient implementations automatically (Chapter 3).�e
formalism was initially de�ned for context-free grammars and later applied
to other constituency-based formalisms, such as tree-adjoining grammars
(see Section 4.3). However, since parsing schemata are de�ned as deduction
systems over sets of constituency trees, they cannot be used to describe
dependency parsers.
In this chapter, we de�ne an analogous formalism that can be used to

de�ne, analyze and compare dependency parsers. We use this framework
to provide uniform, high-level descriptions for a wide range of well-known
algorithms described in the literature. We also show how some of these
algorithms formally relate to each other and how we can use these relations
and the formalism itself to prove their correctness. Finally, we adapt the
framework to the related formalism of Link Grammar, which uses undir-
ected links to represent syntactic structure (Sleator and Temperley, 1991,
1993); and show how parsers for this formalism can be obtained by adapting
the schemata for existing dependency parsers.
Apart from describing and studying existing parsing algorithms, depend-

ency parsing schemata also provide a useful framework for the development
of new parsers. An example of this is given in Chapter 9, where we de�ne
novel parsing algorithms for several classes of mildly non-projective de-
pendency structures.

8.2 definition of dependency parsing schemata

In the original formulation of parsing schemata that we have seen in Chapter
2, schemata are deduction systems whose domain is a set of items, and items

8.2 definition of dependency parsing schemata 181

are de�ned as sets of partial parse trees, members of some partition of a set
Trees(G) that contains all the constituency trees licensed by a given grammar
G. Although parsing schemata were initially de�ned for context-free parsers,
they can be adapted to di�erent constituency-based grammar formalisms, by
�nding a suitable de�nition of Trees(G) for each particular formalism and
a way to de�ne deduction steps from its rules. However, since the concept
of Trees(G) and the subsequent de�nitions are based on constituency trees,
parsing schemata are not directly applicable to dependency parsing.
In spite of this problem, many of the dependency parsers described in

the literature have the property of being constructive, in the sense that they
proceed by combining smaller structures to form larger ones until they �nd
a complete parse for the input sentence.�erefore, it is possible to de�ne a
variant of parsing schemata, where these structures can be de�ned as items
and the strategies used for combining them can be expressed as inference
rules. However, in order to de�ne such a formalism we �rst have to tackle
some issues speci�c to dependency parsers:

• Traditional parsing schemata are used to de�ne grammar-based pars-
ers, in which the parsing process is guided by some set of rules which
are used to license deduction steps: for example, an Earley Predictor
step is tied to a particular grammar rule, and can only be executed if
such a rule exists. Some dependency parsers are also grammar-based:
for example, those described by Lombardo andLesmo (1996), Barbero
et al. (1998) and Kahane et al. (1998) are tied to the formalisations of
dependency grammar using context-free like rules described by Hays
(1964) and Gaifman (1965). However, many of the most widely used
algorithms (Eisner, 1996; Yamada andMatsumoto, 2003) do not use a
formal grammar at all. In these, decisions about which dependencies
to create are taken individually, using probabilistic models (Eisner,
1996) or classi�ers (Yamada and Matsumoto, 2003). To represent
these algorithms as deduction systems, we use the notion of D-rules
(Covington, 1990). D-rules are simple rules of the form a → b, which
express that word b can have a as a dependent. Deduction steps in
non-grammar-based parsers can be tied to the D-rules associated
with the links they create. In this way, we obtain a representation
of the semantics of these parsing strategies that is independent of
the particular model used to take the decisions associated with each
D-rule.

182 dependency parsing schemata

Figure 15: Representation of a dependency structure with a tree.�e arrows below
the words correspond to its associated dependency graph.

• �e fundamental structures in dependency parsing are dependency
graphs. �erefore, as items for constituency parsers are de�ned as
sets of partial constituency trees, it is tempting to de�ne items for
dependency parsers as sets of partial dependency graphs. However,
predictive grammar-based algorithms such as those of Lombardo
and Lesmo (1996) and Kahane et al. (1998) have operations which
postulate rules and cannot be de�ned in terms of dependency graphs,
since they do not do any modi�cations to the graph. In order to make
the formalism general enough to include these parsers, we de�ne
items in terms of sets of partial dependency trees as shown in Figure
15. Note that a dependency graph can always be extracted from such
a tree.

• Some of the most popular dependency parsing algorithms, like that
of Eisner (1996), work by connecting spans which can represent dis-
connected dependency graphs. Such spans cannot be represented by
a single dependency tree.�erefore, our formalism allows items to
be sets of forests of partial dependency trees, instead of sets of trees.

Taking these considerations into account, we de�ne the concepts that we
need to describe item sets for dependency parsers:
Let Σ be an alphabet of terminal symbols.

Definition Wede�ne the set of partial dependency trees (denotedD-trees),8.01
as the set of �nite trees where children of each node have a le�-to-right
ordering, each node is labelled with an element of Σ ∪ (Σ ×N), and the
following conditions hold:
• All nodes labelled with marked terminals ai ∈ (Σ ×N) are leaves,

8.2 definition of dependency parsing schemata 183

• Nodes labelled with terminals a ∈ Σ do not have more than one
daughter labelled with a marked terminal, and if they have such a
daughter node, it is labelled ai for some i ∈N,

• Le� siblings of nodes labelled with a marked terminal ak do not have
any daughter labelled a j with j ≥ k. Right siblings of nodes labelled
with a marked terminal ak do not have any daughter labelled a j with
j ≤ k. ⊣

We denote the root node of a partial dependency tree T as root(T). If
root(T) has a daughter node labelled with a marked terminal ah , we will say
that ah is the head of the tree T , denoted by head(T). If all nodes labelled
with terminals in T have a daughter labelled with a marked terminal, we
will say that T is grounded.1

Figure 15 shows a dependency tree for a sentence, together with its asso-
ciated dependency graph.�e dependency graph corresponding to a given
tree can be obtained as follows:

Definition Let T ∈ D-trees be a partial dependency tree. Its associated 8.02
dependency graph, g(T), is a graph (V , E) such that:
• V ={ai ∈ (Σ ×N) ∣ ai is the label of a node in T},
• E = {(ai , a j) ∈ (Σ ×N)2 ∣ there exist nodes C ,D in T such that D is
a daughter of C, a j is a daughter of C and ai is a daughter of D}. ⊣

We will write an edge (ai , a j) of a dependency graph as ai → a j. Each of
these edges is called a dependency link, meaning the word ai is a syntactic
dependent (or child) of a j or, conversely, that a j is the parent, governor or
head of ai .

Definition A partial dependency tree T ∈ D-trees is said to be projective 8.03
if yield(T) cannot be written as . . . ai . . . a j . . . where i ≥ j, that is, if the
marked terminals in yield(T) are ordered by their indexes. ⊣

It is easy to verify that the dependency graph g(T) is projective with
respect to the linear order of marked terminals w i , according to the usual
de�nition of projectivity found in the literature (Nivre, 2006a), if and only
if the tree T is projective: a tree with an ordered yield satis�es the condition

1 For simplicity of notation, we will o�en omit the word “partial” when referring to partial
dependency trees, since parsing schemata are always de�ned on sets of partial dependency
trees.

184 dependency parsing schemata

that the marked terminals in the yield of each of its terminal nodes form
a contiguous substring of the input sentence, which corresponds to a clas-
sical de�nition of projectivity; and the third constraint in De�nition 8.01
guarantees that trees corresponding to projective graphs must always have
their yield ordered.

Definition Apartial dependency tree T ∈ D-trees is a parse tree for a given8.04
string a1 . . . an if its yield is a permutation of a1 . . . an. If its yield is exactly
a1 . . . an, we will say it is a projective parse tree for the string. ⊣

Definition Let δ ⊆ D-trees be the set of dependency trees which are8.05
acceptable according to a given grammar G (which may be a grammar of
D-rules or of CFG-like rules, as explained above). We de�ne an item set for
dependency parsing as a set I ⊆ Π, where Π is a partition of ℘(δ). ⊣

Once we have this de�nition of an item set for dependency parsing,
the remaining de�nitions are analogous to those given in Section 2.3.2
for constituency parsing, so we will not detail them here. A dependency
parsing system is a deduction system (I ,H,D) where I is a dependency
item set as de�ned above,H is a set containing initial items or hypotheses,
and D ⊆ (℘(H ∪ I) × I) is a set of deduction steps de�ning an inference
relation ⊢.
Final items in this formalism will be those containing some forest F

containing a parse tree for some arbitrary string. An item containing such
a tree for a particular string a1 . . . an will be called a correct �nal item for
that string in the case of non-projective parsers. When de�ning projective
parsers, correct �nal items will be those containing projective parse trees for
a1 . . . an.�is distinction is relevant because the concepts of soundness and
correctness of parsing schemata are based on correct �nal items (cf. Section
2.3.3), and we expect correct projective parsers to produce only projective
structures, while non-projective parsers should �nd all possible structures
including non-projective ones.

8.3 parsing schemata for projective dependency parsers

In this section, we will show how dependency parsing schemata can be
used to describe several well-known projective dependency parsers in the
literature.

8.3 parsing schemata for projective dependency parsers 185

8.3.1 Collins (1996)

One of the most straightforward projective dependency parsing strategies
is the one described by Collins (1996), directly based on the CYK parsing
algorithm.�is parser works with dependency trees which are linked to
each other by creating links between their heads.�e schema for Collins’
parser maps every set of D-rules G and string a1 . . . an to an instantiated
dependency parsing system (ICol96,H,DCol96) such that:
• �e item set is de�ned as

ICol96 = {[i , j, h] ∣ 1 ≤ i ≤ h ≤ j ≤ n},
where an item [i , j, h] is de�ned as the set of forests containing a
single projective dependency treeT such thatT is grounded, yield(T) =
ai . . . a j and head(T) = ah.2

• For an input string a1 . . . an, the set of hypotheses is

H = {[i , i , i] ∣ 0 ≤ i ≤ n + 1},
i.e., the set of forests containing a single dependency tree of the form
ai(ai). �is same set of hypotheses can be used for all the parsers
and expressed as a standard function K, as in the constituency case,
so we will not make it explicit for subsequent schemata. Note that the
words a0 and an+1 used in the de�nition do not appear in the input:
these are dummy terminals that we will call beginning of sentence
(BOS) and end of sentence (EOS) marker, respectively; and will be
needed by some parsers.

• �e set of �nal items is {[1, n, h] ∣ 1 ≤ h ≤ n}: these items trivially
represent parse trees for the input sentence, where ah is the sentence’s
head.

• �e set of deduction steps, DCol96, is the union of the following:

R-Link:
[i , j, h1] [j + 1, k, h2]

[i , k, h2]
ah1 → ah2

2 Note that our convention for indexes in items in dependency parsing schemata is not the
same that we have used for constituency parsers: here we use indexes i , j for items which
trees whose yield spans a substring a i . . . a j of the input, following previous notation in
the dependency parsing literature (see for example Eisner and Satta (1999); Paskin (2001));
while in schemata for constituency-based parsers we used i , j for items with yields spanning
substrings a i+1 . . . a j , as usual when describing constituency parsers (Sikkel, 1997; Shieber
et al., 1995).

186 dependency parsing schemata

L-Link:
[i , j, h1] [j + 1, k, h2]

[i , k, h1]
ah2 → ah1

allowing us to join two contiguous trees by linking their heads with a
rightward or le�ward link, respectively.

As we can see, we use D-rules as side conditions for the parser’s deduction
steps, since this parsing strategy is not grammar-based. Conceptually, the
parsing schema we have just de�ned describes a recogniser: given a set of D-
rules and an input string ai . . . an, the sentence can be parsed (projectively)
under those D-rules if and only if this deduction system can infer a correct
�nal item. However, when executing this schema with a deductive engine,
we can recover the parse forest by following back pointers in the same way
as it is done with constituency parsers (Billot and Lang, 1989).
Of course, boolean D-rules are of limited interest in practice. However,

this schema provides a formalisation of a parsing strategy which is independ-
ent of the way linking decisions are taken in a particular implementation.
In practice, statistical models can be used to decide whether a step linking
words a and b (i.e., having a → b as a side condition) is executed or not, and
probabilities can be attached to items in order to assign di�erent weights
to di�erent analyses of the sentence. In this context, the side conditions
specifying D-rules provide an explicit representation of the choice points
where probabilistic decisions have to be made by the control structures ex-
ecuting the schema.�e same principle applies to the rest of D-rule-based
parsers described in this paper.

8.3.2 Eisner (1996)

By counting the number of free variables used in each deduction step of
Collins’ parser, we can conclude that it has a time complexity ofO(n5).�is
complexity arises from the fact that a parentless word (head) may appear in
any position in the partial results generated by the parser; the complexity
can be reduced to O(n3) by ensuring that parentless words can only appear
at the �rst or last position of an item.�is is the principle behind the parser
de�ned by Eisner (1996), which is still in wide use today (Corston-Oliver
et al., 2006; McDonald et al., 2005a).�e parsing schema for this algorithm
is de�ned as follows:

8.3 parsing schemata for projective dependency parsers 187

�e item set is

IEis96 = {[i , j,True, False] ∣ 0 ≤ i ≤ j ≤ n}
∪{[i , j, False,True] ∣ 0 ≤ i ≤ j ≤ n}
∪{[i , j, False, False] ∣ 0 ≤ i ≤ j ≤ n},

where each item [i , j,True, False] is de�ned as the item [i , j, j] ∈ ICol96,
each item [i , j, False,True] is de�ned as the item [i , j, i] ∈ ICol96, and each
item [i , j, False, False] is de�ned as the set of forests of the form {T1, T2}
such that T1 and T2 are grounded, head(T1) = ai , head(T2) = a j, and ∃k ∈
N(i ≤ k < j) ∣ yield(T1) = ai . . . ak ∧ yield(T2) = ak+1 . . . a j.
Note that the �ags b, c in an item [i , j, b, c] indicate whether the words in

positions i and j, respectively, have a parent in the item or not. Items with
one of the �ags set to True represent dependency trees where the word in
position i or j is the head, while items with both �ags set to False represent
pairs of trees headed at positions i and j which jointly dominate the sub-
string ai . . . a j. Items of this kind correspond to disconnected dependency
graphs.
�e set of deduction steps is as follows3:

Initter:
[i , i , i] [i + 1, i + 1, i + 1]

[i , i + 1, False, False]

R-Link:
[i , j, False, False]
[i , j,True, False]

a i → a j

L-Link:
[i , j, False, False]
[i , j, False,True]

a j → a i

CombineSpans
[i , j, b, c] [j, k, not(c), d]

[i , k, b, d]

where the R-Link and L-Link steps establish a dependency link between
the heads of an item containing two trees (i.e., having both �ags set to False),

3 Alternatively, we could consider items of the form [i , i + 1, False, False] to be hypotheses for
this parsing schema, so we would not need an Initter step. However, we have chosen to use a
standard set of hypotheses valid for all parsers because this allows for more straightforward
proofs of relations between schemata.

188 dependency parsing schemata

producing a new item containing a single tree. �e CombineSpans step
is used to join two items that overlap at a single word, which must have a
parent in only one of the items, so that the result of joining trees coming
from both items (without creating any dependency link) is a well-formed
dependency tree.
�e set of �nal items is {[0, n, False,True]}. Note that these items repres-

ent dependency trees rooted at the BOSmarker a0, which acts as a “dummy
head” for the sentence. In order for the algorithm to parse sentences cor-
rectly, we will need to de�ne D-rules to allow a0 to be linked to the real
sentence head.

8.3.3 Eisner and Satta (1999)

Eisner and Satta (1999) de�ne an O(n3) parser for split head automaton
grammars that can be used for dependency parsing.�is algorithm is con-
ceptually simpler than that of (Eisner, 1996), since it only uses items repres-
enting single dependency trees, avoiding items of the form
[i , j, False, False].
Its item set is

IES99 = {[i , j, i] ∣ 0 ≤ i ≤ j ≤ n} ∪ {[i , j, j] ∣ 0 ≤ i ≤ j ≤ n},

where items are de�ned as in Collins’ parsing schema.
�e deduction steps for this parser are the following:

R-Link:
[i , j, i] [j + 1, k, k]

[i , k, k]
a i → ak

L-Link:
[i , j, i] [j + 1, k, k]

[i , k, i]
ak → a i

R-Combiner:
[i , j, i] [j, k, j]

[i , k, i]

L-Combiner:
[i , j, j] [j, k, k]

[i , k, k]

8.3 parsing schemata for projective dependency parsers 189

where Link steps create a dependency link between two dependency trees
spanning adjacent segments of the input, and Combiner steps join two
overlapping trees by a graph union operation that does not create new links,
similarly to the previous parser.
�e set of �nal items is {[0, n, 0]}: by convention, parse trees have a0

(the BOSmarker) as their head, as in the previous algorithm.
Note that, when described for head automaton grammars as in Eisner

and Satta (1999), this algorithm seems more complex to understand and
implement than the previous one, as it requires four di�erent kinds of
items in order to keep track of the state of the automata used by the gram-
mars. However, this abstract representation of its underlying semantics as
a dependency parsing schema shows that this parsing strategy is in fact
conceptually simpler for dependency parsing.

8.3.4 Yamada and Matsumoto (2003)

Yamada and Matsumoto (2003) de�ne a deterministic, shi�-reduce depend-
ency parser guided by support vector machines, which achieves over 90%
dependency accuracy on section 23 of the Penn treebank. Parsing schemata
are not suitable for directly describing deterministic parsers, since they work
at a high abstraction level where a set of operations are de�ned without
imposing order constraints on them. However, many deterministic parsers
can be viewed as particular optimisations of more general, nondetermin-
istic algorithms. In this case, if we represent the actions of the parser as
deduction steps while abstracting from the deterministic implementation
details, we obtain an interesting nondeterministic parser.
Actions in Yamada and Matsumoto’s parser create links between two

target nodes, which act as heads of neighbouring dependency trees. One of
the actions creates a link where the le� target node becomes a child of the
right one, and the head of a tree located directly to the le� of the target nodes
becomes the new le� target node.�e other action is symmetric, performing
the same operation with a right-to-le� link. An O(n3) nondeterministic
parser generalising this behaviour can be de�ned by using an item set

IYM03 = {[i , j] ∣ 0 ≤ i ≤ j ≤ n + 1},

190 dependency parsing schemata

where each item [i , j] is de�ned as the item [i , j, False, False] in IEis96; and
the deduction steps are as follows:

Initter:
[i , i , i] [i + 1, i + 1, i + 1]

[i , i + 1]

R-Link:
[i , j] [j, k]

[i , k]
a j → ak

L-Link:
[i , j] [j, k]

[i , k]
a j → a i

�e set of �nal items is {[0, n+1]}. In order for this set to be well-de�ned,
the grammar must have no D-rules of the form ai → an+1, i.e., it must not
allow the EOSmarker to govern any words. If this is the case, it is trivial to
see that every forest in an item of the form [0, n + 1]must contain a parse
tree rooted at the BOSmarker and with yield a0 . . . an.
As can be seen from the schema, this algorithm requires less bookkeeping

than any other of the parsers described here.

8.3.5 Lombardo and Lesmo (1996) and other Earley-based parsers

�e algorithms in the above examples are based on taking individual de-
cisions about dependency links, represented by D-rules. Other parsers, such
as that of Lombardo and Lesmo (1996), use grammars with context-free
like rules which encode the preferred order of dependents for each given
governor, as de�ned by Gaifman (1965). For example, a rule of the form
N(Det ∗ PP) is used to allow N to have Det as le� dependent and PP as
right dependent.
�e algorithm by Lombardo and Lesmo (1996) is a version of Earley’s

context-free grammar parser (Earley, 1970) using Gaifman’s dependency
grammar, and can be written by using an item set

ILomLes = {[A(α ● β), i , j] ∣ A(αβ) ∈ P ∧ 1 ≤ i ≤ j ≤ n}

where each item [A(α●β), i , j] represents the set of partial dependency trees
rooted at A, where the direct children of A are αβ, and the subtrees rooted

8.3 parsing schemata for projective dependency parsers 191

at α have yield ai . . . a j. Note that, while the trees appearing in items in
the previous algorithms are always grounded trees, Lombardo and Lesmo’s
parser uses both grounded (in items [A(α●), i , j]) and non-grounded (in
items [A(α ● β), i , j], where β is nonempty) trees.
�e deduction steps for this parsing schema are the following:

Initter:
[(●S), 1, 0]

∗(S) ∈ P

Predictor:
[A(α ● Bβ), i , j]
[B(●γ), j + 1, j]

B(γ) ∈ P

Scanner:
[A(α ● ⋆β), i , h − 1] [h, h, h]

[A(α ⋆ ●β), i , h]
ah is A

Completer:
[A(α ● Bβ), i , j] [B(γ●), j + 1, k]

[A(αB ● β), i , k]

�e �nal item set is {[(S●), 1, n]}.
As we can see, the schema for Lombardo and Lesmo’s parser resembles

the Earley constituency parser in Figure 7 (page 27), with some changes to
adapt it to dependency grammar (for example, the Scanner always moves
the dot over the head symbol ∗).
Analogously, other dependency parsing schemata based on CFG-like rules

can be obtained by modifying context-free grammar parsing schemata of
Sikkel (1997) in a similar way.�e algorithm by Barbero et al. (1998) can be
obtained from the le�-corner parser, and the one by Courtin and Genthial
(1998) is a variant of the head-corner parser.

8.3.6 Nivre (2003)

Nivre (2003) describes a shi�-reduce algorithm for projective dependency
parsing, later extended by Nivre et al. (2004). With linear-time performance
and competitive parsing accuracy (Nivre et al., 2006; Nivre and McDonald,
2008), it is one of the parsers included in the MaltParser system (Nivre et al.,
2007b), in wide use today (Nivre et al., 2007a; Surdeanu et al., 2008).

192 dependency parsing schemata

�e parser works by reading the sentence from le� to right, using a
stack and four di�erent kinds of transitions between con�gurations.�e
transition system de�ned by all the possible con�gurations and transitions
is nondeterministic, but machine learning techniques are used to train a
mechanism that selects a single transition to undertake at each state, so that
the parser becomes deterministic.
By encoding con�gurations into entities and transitions into deduction

steps, we can de�ne a simple deduction system for Nivre’s parser as follows
(where a ∶∶ B represents the stack which is the result of pushing element a
onto stack B, and ⟨⟩ represents the empty stack):

Initter
(0, ⟨⟩,∅)

Shift
(f , S ,V)

(f + 1, f ∶∶ S ,V)

L-Link
(f , l ∶∶ S ,V)

(f + 1, f ∶∶ l ∶∶ S ,V ∪ {a f → al})
a f → a l ∣/∃ a f → ak ∈ V

R-Link
(f , l ∶∶ S ,V)

(f , S ,V ∪ {al → a f })
a l → a f ∣/∃ a l → ak ∈ V

Reduce
(f , l ∶∶ S ,V)
(f , S ,V)

∃a l → ak ∈ V

Parser con�gurations are tuples (f , S ,V) where f is a position of the
input string, S is a stack and V is a set of dependency links, which will
contain a parse for the input when the system reads the complete sentence.
Note that this is a deduction system that literally describes the transitions

of the parser as de�ned in Nivre et al. (2004), but it is not a parsing schema
by the de�nitions given in this chapter, because the entities it works with
are not items4.�e antecedents and consequents in this deduction system
are parser con�gurations, but these con�gurations do not correspond to
disjoint sets of partial dependency structures (several con�gurations may

4 �is is the reason why we have represented the entities within round brackets instead of
square brackets, as we reserve the latter notation for items.

8.3 parsing schemata for projective dependency parsers 193

correspond to the same partial dependency structures), and therefore do not
conform to the de�nition of an item set. However, we can obtain a parsing
schema for Nivre’s parser by abstracting away the rules in this system that
are implementing control structures, and keeping only the parser’s tree
building logic.
First of all, note that parser con�gurations (f , S ,V) include the full set

of dependency links (V) that the algorithm has constructed up to a point.
However, the parser does not need all this information in order to take
decisions about dependency links (side conditions).�e only information
that the algorithm needs in order to take these decisions is whether elements
in the stack have been assigned a head or not. If we represent this by using
a stack of pairs (l , b), where l is the position of a word in the string and b
is a �ag equalling 1 if the word has been assigned a head or 0 if it has not,
we obtain the following simpli�ed deduction system:

Initter
(0, ⟨⟩)

Shift
(f , S)

(f + 1, (f , 0) ∶∶ S)

L-Link
(f , (l , h) ∶∶ S)

(f + 1, (f , 1) ∶∶ (l , h) ∶∶ S)
a f → a l

R-Link
(f , (l , 0) ∶∶ S)

(f , S)
a l → a f

Reduce
(f , (l , 1) ∶∶ S)

(f , S)

�is is a simple representation of the algorithm but it is still not strictly
a parsing schema, since there are entities that correspond to the same de-
pendency structures. For example, a Reduce con�guration never makes any
change to the dependency graph it is working with, it merely removes a node
from the stack meaning that we are not going to add more dependents to it.
�erefore, (f , (l , 1) ∶∶ S) and (f , S) cannot be distinct items in a schema as
de�ned in this chapter.

194 dependency parsing schemata

In order to obtain a schema, we need to abstract from the control struc-
tures used to parse the sentence (shi� and reduce) and keep only what the
parser actually does, i.e., the way in which it joins dependency structures
and builds links between them. In this case, the Reduce step is just a mech-
anism to select which of a set of possible “linkable words” is going to be
linked to the word we are currently reading. Two di�erent con�gurations
corresponding to the same partial dependency structure may have di�er-
ent lists of words in the stack depending on which Reduce steps have been
executed. In the parsing schema for Nivre’s parser, these con�gurations
will have to correspond to the same item. In order to de�ne an item set for
this parser, we have to observe which wordsmight be in the stack at each
con�guration.
Let T be a partial dependency structure. We say that a word in T is

right-linkable if it is not a dependent of any word situated to its right, and it
is not covered by any dependency link (a j is covered by the link ai → ak if
i < j < k or i > j > k).
It is easy to check that we cannot create a link between a non-right-

linkable word and any word to the right of T without violating the projectiv-
ity property in our dependency structure. When Nivre’s parser is reading a
particular word a f , we can say the following about all words to the le� of
a f (a0 . . . a f−1):

• If the word ai is not right-linkable, then it cannot be on the stack.
• If the word ai does not have a head, then it must be on the stack. (note
that words that do not have a head assigned are always right-linkable).

• If the word ai has a head and it is right-linkable, then it may be on
the stack or not (it depends on the particular transitions that we have
executed).

�erefore, we can obtain a dependency parsing schema for Nivre’s parser
by representing items with a list (instead of a stack) containing all the words
found so far which are right-linkable, and a �ag associated to each word
telling us if it has been assigned a head or not. Instead of using Reduce steps
to decide which word to choose as a head of the currently-read word, we
allow any word in the list that does not have a headless word to its right
to be the head (note that this is equivalent to performing several Reduce
transitions followed by an L-link transition).
By applying these ideas, we obtain the parsing schema where:

8.3 parsing schemata for projective dependency parsers 195

�e item set is

INiv = {[i , ⟨(i1, b1), . . . , (ik , bk)⟩]
∣ 0 ≤ i ≤ n + 1 ∧ 0 ≤ i1 ≤ . . . ≤ ik ≤ n ∧ b j ∈ {0, 1}}

where an item [i , L] represents the set of forests of the form F = (T1, . . . , Tw)
(w > 0) satisfying the following:
• �e concatenation of the yields of T1, . . . , Tw is a0 . . . ai ,
• �e heads of the trees T1, . . . , Tw−1 are the words a j ∣ (j, 0) ∈ L,
• �e head of the tree Tw is the word ai ,
• �e right-linkable words in the partial dependency graph correspond-
ing to F are the words a j ∣ (j, b) ∈ L, with b ∈ {0, 1}.

�e set of �nal items is {[n + 1, ⟨(0, 0), (v1, 1), . . . , (vk , 1)⟩] ∣ 1 ≤ v j ≤ n},
the set of items containing a forest with a single dependency tree T headed
at the dummy symbol a0, whose yield is the whole input string, and which
contains any set of right-linkable words.
�e deduction steps are as follows:

Initter:
[0, ⟨⟩]

Advance:
[i , ⟨(i1, b1), . . . , (ik , bk)⟩]

[i + 1, ⟨(i1, b1), . . . , (ik , bk), (i , 0)⟩]

L-Link:
[i , ⟨(i1, b1), . . . , (ik , bk), (l , b), (v1, 1), . . . , (vr , 1)⟩]

[i + 1, ⟨(i1, b1), . . . , (ik , bk), (l , b), (i , 1)⟩]
a i → a l

R-Link:
[i , ⟨(i1, b1), . . . , (ik , bk), (h, 0), (v1, 1), . . . , (vr , 1)⟩]

[i , ⟨(i1, b1), . . . , (ik , bk)⟩]
ah → a i

Which is a correct parsing schema describing Nivre’s parser.
Note that a nondeterministic implementation of this schema in a generic

deductive engine would have exponential complexity.�e linear complexity
in Nivre’s algorithm is achieved by using control structures that determin-
istically select a single transition at each state, which are abstracted away in
this schema representation.

196 dependency parsing schemata

Figure 16: Projective dependency structure that cannot be parsed with Covington’s
LSUP algorithm.

8.3.7 Covington’s projective parser (Covington, 2001)

Covington (2001) de�nes a non-projective dependency parser, and then
gives a projective variant of it, called Algorithm LSUP (for List-based Search
with Uniqueness and Projectivity). Unfortunately, this algorithm is not
complete as it is given in the paper, since it is not able to parse every possible
projective dependency structure.�e reason is that, when creating le�ward
links, it assumes that the head of aword ai must be a re�exive-transitive head
of the word ai−1, which is not always necessarily the case. For example, the
structure shown in Figure 16 cannot be parsed with Covington’s projective
parser, because the constraints imposed by the algorithm prevent it from
being able to �nd the head of a4.
�e MaltParser system (Nivre et al., 2007b) includes an implementation

of a variant of Covington’s LSUP parser where these constraints have been
relaxed, so that it is complete. �is implementation has the same tree
building logic than the parser by Nivre (2003), di�ering from it in the
control structures.�us, it can be considered as a di�erent implementation
of the schema provided in Section 8.3.6.

8.4 relations between dependency parsers

�e framework of parsing schemata can be used to establish relations
between di�erent parsing algorithms. �ese relations are useful to un-
derstand and compare di�erent parsers and their particular features; they
can also be used to obtain new algorithms from existing ones or to derive
formal properties of a parser (such as soundness or correctness) from the
properties of related algorithms.
Sikkel (1994) de�nes several kinds of relations between schemata, which

have been outlined in Section 2.3.4. Most of the parsers described in Section
8.3 can be related via generalisation and �ltering, as shown in Figure 17. We

8.4 relations between dependency parsers 197

Figure 17: Formal relations between several well-known dependency parsers. Ar-
rows going upwards correspond to generalisation relations, while those
going downwards correspond to �ltering.�e speci�c subtype of rela-
tion is shown in each arrow’s label, following the notation introduced in
Section 2.3.4.

do not show full formal proofs of all the relations shown in the �gure, but
we outline the proofs for some of the most interesting cases:

8.4.1 Yamada and Matsumoto (2003) srÐ→ Eisner (1996)

It is easy to see from the schema de�nitions that IYM03 ⊆ IEis96. In order
to prove the relation between these parsers, we need to verify that every
deduction step in the schema for the algorithm by Yamada and Matsumoto
(2003) can be emulated by a sequence of inferences in the one obtained
from the parser by Eisner (1996). In the case of the Initter step this is
trivial, since the Initters of both parsers are equivalent. If we write the
R-Link step of Yamada and Matsumoto’s parser in the notation we have
used for Eisner items, we have

R-Link
[i , j, False, False] [j, k, False, False]

[i , k, False, False]
a j → ak

198 dependency parsing schemata

�is can be emulated in Eisner’s parser by an R-Link step followed by a
CombineSpans step:

[j, k, False, False] ⊢ [j, k,True, False] (by R-Link),
[j, k,True, False], [i , j, False, False] ⊢ [i , k, False, False]

(by CombineSpans).

Symmetrically, the L-Link step in Yamada and Matsumoto’s parser can
be emulated by an L-Link followed by a CombineSpans in Eisner’s.�is
�nishes the proof that Eisner’s parser is a step re�nement of Yamada and
Matsumoto’s.

8.4.2 Eisner and Satta (1999) srÐ→ Eisner (1996)

In this case, if we write the R-Link step in Eisner and Satta’s parser in the
notation used for Eisner items, we have

R-Link:
[i , j, False,True] [j + 1, k,True, False]

[i , k,True, False]
a i → ak

�is inference can be emulated in Eisner’s parser as follows:

⊢ [j, j + 1, False, False] (by Initter),
[i , j, False,True], [j, j + 1, False, False] ⊢ [i , j + 1, False, False]

(by CombineSpans),
[i , j + 1, False, False], [j + 1, k,True, False] ⊢ [i , k, False, False]

(by CombineSpans),
[i , k, False, False] ⊢ [i , k,True, False] (by R-Link).

�e proof corresponding to the L-Link step is symmetric. As for the
R-Combiner and L-Combiner steps in Eisner and Satta’s parser, it is easy to
see that they are particular cases of the CombineSpans step in Eisner’s, and
therefore can be emulated by a single application of CombineSpans.
Note that, in practice, the relations in Sections 8.4.1 and 8.4.2 mean that

the parsers by Eisner and Satta (1999) and Yamada and Matsumoto (2003)
are superior that of Eisner (1996), since they generate fewer items and need
fewer steps to perform the same deductions.�ese two parsers also have

8.4 relations between dependency parsers 199

the interesting property that they use disjoint item sets (one uses items
representing trees while the other uses items representing pairs of trees);
and the union of these disjoint sets is the item set used by Eisner’s parser.
Also note that the optimisation in Yamada and Matsumoto’s parser comes
from contracting deductions in Eisner’s parser so that linking operations
are immediately followed by combining operations; while Eisner and Satta’s
parser does the opposite, forcing combining operations to be followed by
linking operations.

8.4.3 Other relations

If we generalise the linking steps in Eisner and Satta’s parser so that the
head of each item can be in any position, we obtain a correct O(n5) parser
which can be �ltered to the parser by Collins (1996) just by eliminating the
Combiner steps.
From Collins’ parser, we can obtain an O(n5) head-corner parser based

on CFG-like rules by an item re�nement in which each Collins item [i , j, h]
is split into a set of items [A(α ● β ● γ), i , j, h]. Of course, the formal
re�nement relation between these parsers only holds if the D-rules used
for Collins’ parser correspond to the CFG rules used for the head-corner
parser: for every D-rule B → A there must be a corresponding CFG-like rule
A→ . . . B . . . in the grammar used by the head-corner parser.
Although this parser uses three indices i , j, h, using CFG-like rules to

guide linking decisions makes the h indices unnecessary, so they can be
removed. �is simpli�cation is an item contraction which results in an
O(n3) head-corner parser. From here, we can follow the procedure in
Sikkel (1994) to relate this head-corner algorithm to parsers analogous to
other algorithms for context-free grammars. In this way, we can re�ne the
head-corner parser to a variant of the algorithm by de Vreught and Honig
(1989) (Sikkel, 1997), and by successive �lters we reach a le�-corner parser
which is equivalent to the one described by Barbero et al. (1998), and a
step contraction of the Earley-based dependency parser by Lombardo and
Lesmo (1996).�e proofs for these relations are the same as those described
in Sikkel (1994), except that the dependency variants of each algorithm are

200 dependency parsing schemata

simpler (due to the absence of epsilon rules and the fact that the rules are
lexicalised)5.

8.5 proving correctness

Another useful feature of the parsing schemata framework is that it provides
a formal way to de�ne the correctness of a parser (see Section 2.3.3) which
we can use to prove that our parsers are correct. Furthermore, relations
between schemata can be used to derive the correctness of a schema from
that of related ones. In this section, we will show how we can prove that the
algorithms by Yamada and Matsumoto (2003) and Eisner and Satta (1999)
are correct, and use that fact to prove the correctness of the one by Eisner
(1996).

8.5.1 Eisner and Satta (1999) is correct

In order to prove the correctness of a parser, we must prove its soundness
and completeness (see Section 2.3.3). Soundness is easy to verify in this case,
since we only need to check that every individual deduction step in the
parser infers a correct consequent item when applied to correct antecedents
(i.e., in this case, that steps always generate non-empty items that conform
to the de�nition in Section 8.3.3). �is is shown by checking that, given
two antecedents of a deduction step that contain a tree licensed by a set of
D-rules G, the consequent of the step also contains such a tree; and this can
be seen by building the tree for the consequent from the trees corresponding
to the antecedents, which is done by a graph union operation (in the case of
Combiner steps) or by linking the heads of both trees with a dependency
relation licensed by G (in the case of Link steps).
�e di�culty is proving completeness, for which we need to prove that

all correct �nal items are valid (i.e., can be inferred by the schema). To show
this, we will prove the stronger result that all correct items are valid.
We will show this by strong induction on the length of items, where the

length of an item ι = [i , k, h] is de�ned as length(ι) = k − i + 1. Correct
items of length 1 are the hypotheses of the schema (of the form [i , i , i])

5 �e names of the schemata dVH1, dVH2, dVH3 and buLC shown in Figure 17 come from
Sikkel (1994, 1997). Each of these dependency parsing schemata is a version of the hom-
onymous schema described by Sikkel, adapted for dependency parsing.

8.5 proving correctness 201

which are trivially valid. We will prove that, if all correct items of length m
are valid for all 1 ≤ m < l , then items of length l are also valid.
Let [i , k, i] be an item of length l in IES99 (thus, l = k − i + 1). If this

item is correct, then it contains a grounded dependency tree T such that
yield(T) = ai . . . ak and head(t) = ai .
By construction, the root of T is labelled ai . Let a j be the rightmost

daughter of ai in T . Since T is projective, we know that the yield of a j must
be of the form a l . . . ak , where i < l ≤ j ≤ k. If l < j, then al is the le�most
transitive dependent of a j in T , and if k > j, then we know that ak is the
rightmost transitive dependent of a j in T .
Let Tj be the subtree of T rooted at a j. Let T1 be the tree obtained from

removing Tj from T . Let T2 be the tree obtained by removing all the children
to the right of a j from Tj, and T3 be the tree obtained by removing all the
children to the le� of a j from Tj. By construction, T1 belongs to a correct
item [i , l − 1, i], T2 belongs to a correct item [l , j, j] and T3 belongs to a
correct item [j, k, j]. Since these three items have a length strictly less than
l , by the inductive hypothesis, they are valid.�is allows us to prove that
the item [i , k, i] is also valid, since it can be obtained from these valid items
by the following inferences:

[i , l − 1, i], [l , j, j] ⊢ [i , j, i] (by the L-Link step),
[i , j, i], [j, k, j] ⊢ [i , k, i] (by the L-Combiner step).
�is proves that all correct items of length l which are of the form [i , k, i]

are correct under the induction hypothesis. �e same can be proved for
items of the form [i , k, k] by symmetric reasoning, thus proving that the
parsing schema for Eisner and Satta’s parser is correct.

8.5.2 Yamada and Matsumoto (2003) is correct

In order to prove correctness of this parser, we follow the same procedure
as above. Soundness is again trivial to verify, by building forests for the
consequents of steps from those corresponding to the antecedents. To prove
completeness, we use strong induction on the length of items, where the
length of an item [i , j] is de�ned as j − i + 1.
�e induction step is proven by considering any correct item [i , k] of

length l > 2 (l = 2 is the base case here since items of length 2 are generated
by the Initter step) and proving that it can be inferred from valid antecedents
of length less than l , so it is valid. To show this, we note that, if l > 2, either

202 dependency parsing schemata

ai has at least one right dependent or ak has at least one le� dependent in
the item. Supposing that ai has a right dependent, if T1 and T2 are the trees
rooted at ai and ak in a forest in [i , k], we call a j the rightmost daughter of
ai and consider the following trees:

• V = the subtree of T1 rooted at a j,
• U1 = the tree obtained by removing V from T1,
• U2 = the tree obtained by removing all children to the right of a j
from V ,

• U3 = the tree obtained by removing all children to the le� of a j from
V .

We observe that the forest {U1,U2} belongs to the correct item [i , j],
while {U3, T2} belongs to the correct item [j, k]. From these two items, we
can obtain [i , k] by using the L-Link step. Symmetric reasoning can be
applied if ai has no right dependents but ak has at least one le� dependent,
and analogously to the case of the previous parser, we conclude that the
schema for the parser by Yamada and Matsumoto is correct.

8.5.3 Eisner (1996) is correct

By using the previous proofs and the relationships between schemata that
we explained earlier, it is easy to prove that the parser by Eisner (1996) is
correct: soundness is, as always, straightforward, and completeness can be
proven by using the properties of other algorithms. Since the set of �nal
items in Eisner (1996) and Eisner and Satta (1999) are the same, and the
former is a step re�nement of the latter, the completeness of Eisner and
Satta’s parser directly implies the completeness of Eisner’s parser.
Alternatively, we can use Yamada and Matsumoto’s parser to prove the

correctness of Eisner’s parser if we rede�ne the set of �nal items in the latter
to be items of the form [0, n + 1, False, False], which are equally valid as
�nal items since they always contain parse trees.�is idea can be applied to
transfer proofs of completeness across any re�nement relation.

8.6 parsing schemata for non-projective dependency parsers 203

8.6 parsing schemata for non-projective dependency
parsers

�e parsing schemata that we have seen up to now in this chapter corres-
pond to parsers that are restricted to projective dependency structures, i.e.,
structures in which the set of re�exive-transitive dependents of each given
node forms a contiguous substring of the input. However, the depend-
ency parsing schema formalism is general enough to handle non-projective
parsers as well. In this section, we see how several non-projective parsing
algorithms in the literature can be described as parsing schemata. More
non-projective parsers are described in the next chapter, where we introduce
novel algorithms for parsing mildly non-projective dependency structures.

8.6.1 Pseudo-projectivity

Pseudo-projective parsers can generate non-projective analyses in polyno-
mial time by using a projective parsing strategy and then postprocessing
the results to establish non-projective links.�e projective parsing strategy
can be represented by a projective dependency parsing schema like the ones
seen in Section 8.3. For example, the algorithm by Kahane et al. (1998) uses
a strategy like that of Lombardo and Lesmo (1996), but using the following
initialiser step instead of the Initter and Predictor:6

Initter:
[A(●α), i , i − 1]

A(α) ∈ P ∧ 1 ≤ i ≤ n

8.6.2 Attardi (2006) and the MHk parser

�e non-projective parser by Attardi (2006) is an extension of the algorithm
by Yamada and Matsumoto (2003) that adds additional shi� and reduce
actions to handle non-projective dependency structures.�e extra actions
allow the parser to link to nodes that are several positions deep in the stack,
which causes the creation of non-projective links. In particular, Attardi

6 �e initialisation step as reported in Kahane’s paper is di�erent from this one, as it directly
consumes a nonterminal from the input. However, using this step results in an incomplete
algorithm.�e problem can be �xed either by using the step shown here instead (bottom-up
Earley strategy) or by adding an additional step turning it into a bottom-up Le�-Corner
parser.

204 dependency parsing schemata

(2006) uses six non-projective actions: two actions to link to nodes that are
2 positions deep, another two actions for nodes that are 3 positions deep,
and a third pair of actions that generalises the previous ones to n positions
deep for any n.�us, the maximum depth in the stack to which links can
be created can be con�gured according to the actions that we allow to use.
Here we will call Attd the variant of the algorithm that allows links only up
to depth d, andAtt∞ the original, unrestricted algorithmwith the unlimited
depth actions.
Similarly to the case of Yamada and Matsumoto’s parser, a nondetermin-

istic version of the algorithm Attd can be described by a parsing schema
whose item set is

IAtt = {[h1, h2, . . . , hm] ∣ 0 ≤ h1 < . . . < hm ≤ n + 1}

where [h1, h2, . . . , hm] is the set of dependency forests of the form {T1, T2,
. . . , Tm} such that:
• T1, T2, . . . , Tm are grounded,
• head(Ti) = ah i for each i ∈N ∣ 1 ≤ i ≤ m,
• If we de�ne the projection of a node to be the set of nodes in its yield,
then the projections of the nodes h1, h2, . . . , hm are pairwise disjoint,
and their union is {ah1 , ah1+1, . . . , ahm−1, ahm}.

�e set of deduction steps for Attd is the following:

Initter:
[i , i , i] [i + 1, i + 1, i + 1]

[i , i + 1]

Combine:
[h1, h2, . . . , hm] [hm , hm+1, . . . , hp]

[h1, h2, . . . , hp]

Link:
[h1, h2, . . . , hm]

[h1, h2, . . . , hi−1, hi+1, . . . , hm]
ah i → ah j

such that 1 < i < m, 1 ≤ j ≤ m, j ≠ i , ∣ j − i∣ ≤ d .

As expected, deduction steps for Att∞ are obtained by removing the
constraint ∣ j − i∣ ≤ d from this set, since this restriction corresponds to the

8.6 parsing schemata for non-projective dependency parsers 205

maximum stack depth to which dependency links can be created in the
algorithm.
�e set of �nal items is {[0, n + 1]}. Note that, although this set is ana-

logous to the �nal item set for Yamada and Matsumoto’s parser, they are
not the same set, since an Attardi item of the form [0, n + 1]may contain
forests with non-projective dependency trees.
As can be seen by the number of indexes handled by the steps in the

schema, a nondeterministic implementation of Attd has exponential com-
plexity with respect to input length. Of course, this problem does not exist
in the implementation by Attardi (2006), since he uses control structures to
deterministically decide the transition to take at each state.
It is easy to prove that the algorithm Att∞ is a correct non-projective

parser: soundness is proven as in the previous algorithms seen in this
chapter, and completeness can be shown by reasoning that every correct
�nal item [0, n + 1] can be obtained by �rst performing n + 1 Initter steps
to obtain items [i , i + 1] for each 0 ≤ i ≤ n, then using n Combiners to join
all of these items into [0, 1, . . . , n, n+1], and then performing the Link steps
corresponding to the links in a tree contained in [0, n + 1] to obtain this
�nal item.�e algorithm Attd where d is �nite is not correct with respect
to the set of non-projective dependency structures, since it only parses a
restricted subset of them (Attardi, 2006). Note that the algorithm Attd is a
static �lter (see Section 2.3.4) of Attd+1 for every natural number d, since
the set of deduction steps of Attd is a subset of that of Attd+1.
It is possible to de�ne a variant of this parser such that its nondetermin-

istic implementation has polynomial complexity, instead of being expo-
nential. �is can be done by limiting the number of trees in each forest
contained in an item, rather than limiting stack depth. �is produces a
parsing schema describing a parser that we will callMHk (for multi-headed
with at most k heads per item) whose item set is

IMHk = {[h1, h2, . . . , hm] ∣ 0 ≤ h1 < . . . < hm ≤ n + 1 ∧ 2 ≤ m ≤ k}

where [h1, h2, . . . , hm] is de�ned as in IAtt , and the deduction steps are the
following:

Initter:
[i , i , i] [i + 1, i + 1, i + 1]

[i , i + 1]

206 dependency parsing schemata

Combine:
[h1, h2, . . . , hm] [hm , hm+1, . . . , hp]

[h1, h2, . . . , hp]
such that p ≤ k

Link:
[h1, h2, . . . , hm]

[h1, h2, . . . , hi−1, hi+1, . . . , hm]
ah i → ah j

such that 1 < i < m, 1 ≤ j ≤ m, j ≠ i .

Like the Attd parser,MHk parses a restricted subset of non-projective
dependency structures, such that the set of structures parsed by MHk is
always a subset of those parsed byMHk+1.�eMH∞ parser, obtained by
assuming that the number of trees per forest is unbounded, is equivalent
to Att∞, and therefore correct with respect to the set of non-projective
dependency structures.
For �nite values of k, it can easily be checked thatMHd+2 is a static �lter

of Attd , since its sets of items and deduction steps are subsets of those of
Attd .�erefore, the set of structures parsed byMHd+2 is also a subset of
those parsed by Attd .
�e computational complexity of theMHk parser is O(nk). Note that, in

the case where k = 3,MH3 is a step re�nement of the parser by Yamada and
Matsumoto (2003) that parses projective structures only, but by modifying
the bound k we can build polynomial-time algorithms that parse larger sets
of non-projective dependency structures.�eMHk parser has the property
of being able to parse any possible dependency structure as long as we make
k large enough.

8.6.3 MST parser (McDonald et al., 2005b)

McDonald et al. (2005b) present a parser which is able to �nd the best
nonprojective analysis for a given sentence in O(n2) time under a strong
independency assumption called an edge-factored model, that is, a model
where each dependency decision is assumed to be independent from all
the others (McDonald and Satta, 2007). Despite the limitations of this
model, this MST (maximum spanning tree) parser provides state-of-the-art
performance for projective and non-projective structures, and it is widely
used today (Che et al., 2008; Surdeanu et al., 2008; Nivre and McDonald,
2008).

8.6 parsing schemata for non-projective dependency parsers 207

�e parser works by considering the weighted graph formed by all the
possible dependencies between pairs of input words, and applying a max-
imum spanning tree algorithm to �nd a dependency tree covering all the
words in the sentence and maximising the sum of weights.
�e e�cient maximum spanning tree algorithm for directed graphs sug-

gested by McDonald et al. (2005b) is not constructive, in the sense that
it does not work by building structures and combining them into large
structures until it �nds the solution. Instead, the algorithm works by using
a greedy strategy to select a candidate set of edges for the spanning tree,
which may contain cycles and therefore not form a legal dependency tree.
A cycle elimination procedure is then iteratively applied to this graph until
cycles are eliminated and a legal dependency tree is obtained.
�e formalism of parsing schemata speci�es parsers in a constructive

way, by describing how partial solutions can be linked to form larger partial
solutions.�is means that the cycle elimination procedure in McDonald’s
parser cannot be described by a schema. In other words, parsing schemata
describe the logic of parsers while abstracting from control structures. In
other parsers that we have described, the correctness of the algorithm can
be guaranteed by describing the possible ways of combining intermediate
results (items), and any control structure will do as long as it executes all
the steps, and thus generates all the possible valid items. On the other hand,
in this algorithm, speci�c control structures are needed to eliminate cycles
in the generated graph, and therefore to guarantee correctness.
However, this does not mean that we cannot write a parsing schema for

McDonald’s parser. Even if control structures are essential for this algorithm
to work correctly, there is still some logic behind these control structures
which can be represented by a schema, whose item set is

IMD05 = {[i → j] ∣ 0 ≤ i ≤ n ∧ 0 ≤ j ≤ n ∧ i ≠ j} ∪ {[0, k] ∣ 0 ≤ k ≤ n},

where an item of the form [i → j] is de�ned as the set of forests containing
a single dependency tree t such that t is grounded, yield(t) = aia j or a jai ,
and head(t) = a j (this is the tree corresponding to the partial dependency
graph containing a single dependency link i → j); and an item of the
form [0, k] is de�ned as the set of forests containing a single dependency
tree t such that t is grounded, yield(t) is a permutation of a0 . . . ak and
head(t) = a0.

208 dependency parsing schemata

�e set of �nal items is {[0, n]}, as this item contains a nonprojective
parse for the whole input, rooted at the dummy head symbol a0. �e
deduction steps are as follows:

Initter:
[i , i , i] [j, j, j]

[i → j]
a i → a j

GraphBuilder:
[1→ h1] [2→ h2] . . . [k → hk]

[0, k]

�is schema is not correct by our de�nition of correctness because if we
use a generic control structure to execute it by generating every possible
inference, we would obtain some incorrect items, due to the necessity of
eliminating cycles. For example, under the set of D-rules {a1 → a2, a2 →
a1}, if we apply the GraphBuilder step to infer

GraphBuilder
[1→ 2] [2→ 1]

[0, 2]

we �nd that the generated item [0, 2] is not correct, since it does not contain
valid dependency structures under this set of rules. Obviously, the reason
for this is that we have built it by combining items that form a cycle in
the dependency graph. In order to build a working implementation of a
parser from this schema, we need control structures to disallow cycles, like
those de�ned in McDonald et al. (2005b), so that incorrect items are not
generated and the soundness property is veri�ed.
However, this representation of the parser’s logic as a schema is interesting

because it allows us to see the information that the parser is using to build
dependency structures, and this is directly related to the assumptions that
must be made when using it with a statistical model. In particular, we
can see that a �nal item representing a full dependency graph can only be
inferred from the items representing its individual dependencies, which
are generated independently of each other.�is illustrates the fact that this
parser can only use edge-factored models, i.e., models where dependency
links are considered independently of each other.
Weight information can easily be incorporated to the schema’s items as

follows:

Initter:
[i , i , i] [j, j, j]

[i → j; (wi j)]
a i → a j(w i j)

8.6 parsing schemata for non-projective dependency parsers 209

GraphBuilder:

[1→ h1; (w1)]
[2→ h2; (w2)] . . . [k → hk ; (wk)]

[0, k; (w1 +w2 + . . . +wk)]

where wi j is the weight assigned by the model to a dependency ai → a j.

8.6.4 Covington’s non-projective parser (Covington, 1990;2001)

Covington’s non-projective parsing algorithm, described brie�y in Coving-
ton (1990) and with more detail in Covington (2001) as algorithm LSU (for
List-based Search with Uniqueness), is a straightforward parser that works
by reading the input sentence from le� to right, word by word, and estab-
lishing dependency links between the currently read word and previous
words in the input. In order to do this, the parser keeps two lists: one with
all the words encountered so far, and one with those that do not yet have
a head assigned. A new word can be linked as a dependent of any of the
words in the �rst list, and as a head of any of the words in the second list.
�e parsing schema corresponding to this algorithm has an item set

ICovNP = {[i , ⟨h1, h2, . . . , hk⟩] ∣ 1 ≤ h1 ≤ . . . ≤ hk ≤ i ≤ n}

where an item [i , ⟨h1, h2, . . . , hk⟩] represents the set of forests of the form
F = {T1, T2, . . . , Tk} such that:
• Every Tj ∈ F is grounded,
• head(Tj) = ah j

, for every Tj in F,
• �e concatenation of the yields of T1, T2, . . . , Tk forms a permutation
of the string a1 . . . ai .

�e set of deduction steps is as follows:

Initter:
[1, ⟨1⟩]

Advance:
[i , ⟨h1, . . . , hk⟩]

[i + 1, ⟨h1, . . . , hk , i + 1⟩]

L-Link:
[i , ⟨h1, . . . , hk , i⟩]
[i , ⟨h1, . . . , hk⟩]

a i → a j(j < i)

210 dependency parsing schemata

R-Link:
[i , ⟨h1, . . . , h j−1, h j , h j+1, . . . , hk⟩]
[i , ⟨h1, . . . , h j−1, h j+1, . . . , hk⟩]

ah j → a i(h j < i)

�e set of �nal items is {[n, ⟨h⟩] ∣ 1 ≤ h ≤ n}, the set of items containing
a forest with a single dependency tree T headed at an arbitrary word of the
string ah, and whose yield is a permutation of the whole input string.�e
time complexity of the algorithm is exponential in the input length n.
Note that, just like in the case of the MST parser, this parsing schema

is not correct, but in this case the reason is that Covington’s algorithm
itself does not prevent the generation of cycles in the dependency graphs it
produces. As stated by Covington (2001),

“Because the parser operates one word at a time, unity can only be checked
at the end of the whole process: did it produce a tree with a single root that
comprises all of the words?”

�erefore, Covington’s LSU algorithm can produce incorrect dependency
structures, and a postprocessing mechanism is needed to determine which
of the generated structures are, in fact, valid trees. In the parsing schema,
this is re�ected by the fact that the schema is complete but not sound, since
it can produce incorrect items, and we would also need postprocessing
to determine which items are correct. Nivre (2007) uses a variant of this
algorithm in which cycle detection is used to avoid generating incorrect
structures.

8.7 parsing schemata for link grammar parsers

Link Grammar (LG), introduced by Sleator and Temperley (1991, 1993), is
a theory of syntax whose structural representation of sentences is closely
related to projective dependency representations, but with some important
di�erences, of which we highlight the following:7

7 We only provide a brief outline of Link Grammar and its relation to dependency formalisms,
in order to illustrate how LG parsers can be described with parsing schemata, and how some
dependency parsers can be adapted for LG parsing. A complete treatment of LG is beyond
the scope of this thesis: for further details, refer to Sleator and Temperley (1991, 1993). A
detailed comparison between Link Grammar and dependency formalisms can be found in
Schneider (1998).

8.7 parsing schemata for link grammar parsers 211

• Undirected links: Like dependency formalisms, Link Grammar rep-
resents the structure of sentences as a set of links between their words.
However, while dependency links are directed, the links used in LG
are undirected: there is no distinction between head and dependent.

• Cycles:�e sets of links representing the structure of sentences in LG
may contain cycles, contrary to dependency structures.

In particular, Link Grammar is a grammar-based formalism in which a
grammar G consists of a set of words, each of which is associated to a set of
linking requirements.
Given a link grammar G, a set of labelled links between the words of a

sentence a1 . . . an is said to be a linkage for that sentence if it satis�es the
following conditions:
• Planarity: the links do not cross when drawn above the words.
• Connectivity: the undirected graph de�ned by links is connected.
• Satisfaction: the links satisfy the linking requirements of all the words
in the input.

An input sentence is considered grammatical with respect to a link gram-
mar G if it is possible to build a linkage for the sentence with the grammar
G.
�e linking requirements of a word are a set of rules that specify the

labels of the links that can be established between that given word and other
words in the sentence located to its le� or to its right. Linking requirements
can include constraints on the order of the links, e.g., a requirement can
specify that a word w can be linked to two words located to its le� in such
a way that the link to the farthest (le�most) word has a particular label L2
and the link to the closest word has a label L1.
In our description of LG parsers, we will use the disjunctive form notation

described by Sleator and Temperley (1991) to denote linking requirements.
In this notation, the requirements of each word are expressed by a set of
disjuncts associated with it. Each disjunct corresponds to one particular way
of satisfying the requirements of the word, so to satisfy the requirements
of a word, it is su�cient to satisfy one of its associated disjuncts. We will
represent a disjunct for a word w as a pair of strings of the form

∆ = (R1R2 . . . Rq , L1L2 . . . Lp)

where L1, L2, . . . Lp are the labels of the links that must connect w to words
located to the le� of w, which must be monotonically increasing in distance

212 dependency parsing schemata

from w (e.g., Lp links to the le�most word that is directly linked to w), and
R1, R2, . . . Rp are the labels of the links that must connect w to words to its
right, which also must be monotonically increasing in distance fromw (e.g.,
Rq links to the rightmost word that is directly connected to w).
Parsing schemata for Link Grammar parsers can be de�ned by following

the same general principles used to de�ne them for constituency and depend-
ency formalisms. As in constituency and dependency parsing schemata,
item sets for LG parsing schemata can be de�ned as sets of partial syntactic
structures, which in this case are partial linkages:

Definition Given a link grammarG and a string a1 . . . an, a partial linkage8.06
is any edge-labeled undirected graph G such that

• �e graphG has n vertices {v1, . . . , vn}, where each vertex vi is a pair
(ai , ∆i) such that ∆i is a disjunct for ai in the grammar G,

• �e graph G is connected and satis�es the planarity requirement
with respect to the order v1, . . . , vn of the vertices (i.e., if we draw the
vertices in that order, we can draw the links above them in a way that
they do not cross).

• Given a vertex vi = (ai , ∆i) such that ∆i = (R1R2 . . . Rq , L1L2 . . . Lp),
the following conditions are satis�ed:

– Every edge {vi , v j} with j < i must be labelled Ls for some
1 ≤ s ≤ p,

– For every pair of edges {vi , v j}, {vi , vk} such that k < j < i,
we have that {vi , v j} is labelled Ls1 , {vi , vk} is labelled Ls2 , and
s1 < s2.

– Every edge {vi , v j} with j > i must be labelled Rt for some
1 ≤ t ≤ q,

– For every pair of edges {vi , v j}, {vi , vk} such that k > j > i,
we have that {vi , v j} is labelled Rt1 , {vi , vk} is labelled Rt2 , and
t1 < t2. ⊣

Informally speaking, a partial linkage is the result of choosing a partic-
ular disjunct from those available for each word in the input string, and
then adding any number of labelled links between words in such a way
that they are compatible with the requirements of the disjunct. By com-
patible we mean that, for each word ai associated with a disjunct ∆i =
(R1R2 . . . Rq , L1L2 . . . Lp), the list of labels of links connecting ai to words

8.7 parsing schemata for link grammar parsers 213

to its right, ordered from the le�most to the rightmost such word, is of
the form Ri1 , Ri2 , . . . Rir , with 0 < i1 < i2 < . . . < ir ≤ q and, symmetric-
ally, the list of labels of links connecting ai to words to its le�, ordered
from the rightmost to the le�most, is of the form L j1 , L j2 , . . . L j l , with
0 < j1 < j2 < . . . < jl ≤ p. Given such a linkage, we say that the right
linking requirements Ri1 , Ri2 , . . . Rir of the word ai are satis�ed, and the
same for the le� linking requirements L j1 , L j2 , . . . L j l of ai . Linking require-
ments that are not satis�ed (e.g. the requirement of a link Rk in the disjunct
associated with word ai , with 0 < k ≤ q, such that k ∉ {i1, . . . , ir}) are said
to be unsatis�ed.
With the de�nition of partial linkage, we can de�ne item sets for Link

Grammar in an analogous way to those de�ned for dependency parsers
(De�nition 8.05), where items come from a partition of the set of partial
linkages for a given link grammar G. With these item sets, we de�ne LG
parsing schemata analogously to the dependency and constituency cases.
As an example of an LG parsing schema, we will describe the original

Link Grammar parser by Sleator and Temperley (1991), and then we will
show how some of the projective dependency parsers seen in Section 8.3
can be adapted to obtain new parsers for this formalism.

8.7.1 Sleator and Temperley’s LG parser

�e link grammar parser by Sleator and Temperley (1991) is a dynamic
programming algorithm that builds linkages in a top-down fashion: a link
between ai and ak is always added before links between ai and a j or between
a j and ak , if i < j < k.�is contrasts with many of the dependency parsers
seen in previous sections (Eisner, 1996; Eisner and Satta, 1999; Yamada and
Matsumoto, 2003), which build dependency graphs from the bottom up.
�e item set for Sleator and Temperley’s parser is

ISlT = {[i , j, α ● β, γ ● δ, b, c] ∣ 0 ≤ i ≤ j ≤ n + 1
∧b, c ∈ {True, False} and α, β, γ, δ are strings of link labels } ,

where an item [i , j, α ● β, γ ● δ, b, c] represents the set of partial linkages
over the substring ai . . . a j of the input, where i is linked to words in that
substring by links labelled α and has right linking requirements β unsatis�ed,
j is linked to words in the substring by links labelled γ and has le� linking
requirements δ unsatis�ed, b is True if and only if there is a direct link

214 dependency parsing schemata

between ai and a j, and c is True if and only if all the inner words in the
span are transitively-re�exively linked to one of the end words ai or a j, and
have all of their linking requirements satis�ed.
Note that string positions referenced by the items in ISlT range from

0 to n + 1.�e terminal a0 corresponds to an arti�cial word (called wall)
that the LG formalism requires to be inserted at the beginning of every
input sentence, so as to be able to represent some linguistic phenomena (see
Sleator and Temperley (1991)).�erefore, we will suppose that our strings
are extended with this symbol in all our link grammar parsers. On the other
hand, the terminal an+1 is a dummy word that must not be linkable to any
other, used by the parser for convenience in the same way as in the schema
for Yamada and Matsumoto’s dependency parser (Section 8.3.4)
We will use the notation [i , α, β] as shorthand for the item [i , i , ●α, ●β,

False, True], which is an item used to select a particular disjunct for a word
ai .
�e set of deduction steps is the following:

SelectDisjunct:
[i , RqRq−1 . . . R1, LpLp−1 . . . L1]

such that ai has a disjunct ∆ = (R1R2 . . . Rq , L1L2 . . . Lp),

Initter:
[0, α, γ] [n + 1, є, є]

[0, n + 1, ●α, є, False, False]

LeftPredict:
[i , j, α ● β, γ ● δ, b1, False] [w , σ , ϕ]

[i ,w , ●β, ●ϕ, False, (w − i = 1)]
i < w < j

LeftLinkPredict (a i
b←→ aw) ∶

[i , j, α ● bβ, γ ● δ, b1, False] [w , σ , bϕ]
[i ,w , b ● β, b ● ϕ,True, (w − i = 1)]

i < w < j

RightPredict:
[i , j, α ● β, γ ● δ, b1, False] [w , σ , ϕ]

[w , j, ●σ , ●δ, False, (j −w = 1)]
i < w < j

8.7 parsing schemata for link grammar parsers 215

RightLinkPredict (aw
b←→ a j) ∶

[i , j, α ● β, γ ● bδ, b1, False] [w , bσ , ϕ]
[w , j, b ● σ , b ● δ,True, (j −w = 1)]

i < w < j

Completer:

[i , j, α ● β, γ ● δ, b1, False]
[i ,w , β●, ϕ●, b2,True]

[w , j, σ●, δ●, b3,True] [w , σ , ϕ]
[w , j, ϕ●, δ●, b1,True]

b2 ∨ b3

An annotation of the form (ai
b←→ a j) near the name of a step in this and

subsequent link grammar schemata indicates that the corresponding step
adds a link labelled b between words ai and a j, and can be used to recover
a set of complete linkages contained in a �nal item from each sequence of
deduction steps that generates it.
�e SelectDisjunct step chooses one of the available disjuncts for a

givenword ai .�e Initter step starts the top-down process by constructing
a linkage that spans the whole string a1 . . . an, but where no links have been
constructed yet. �en, the Predict and LinkPredict steps proceed by
repeatedly dividing the problem of �nding a linkage for a substring ai . . . a j
into the smaller subproblems of �nding linkages for ai . . . aw and aw . . . a j,
with i < w < j. A�er these smaller linkages have been found, they are
combined by a Completer step into a larger linkage; the �ags b and c in
items are used by the Completer step to ensure that its resulting item will
contain a valid linkage satisfying the connectivity constraint.�e algorithm
runs in time O(n3) with respect to the length of the input, since none of its
deduction steps uses more than three independent string position indexes.
�e set of �nal items is {[0, n + 1, α●, β●, b,True]}. Items of this form

contain full valid linkages for the string a0 . . . an, since having the second
boolean �ag set to True implies that their linkage for a0 . . . an+1 has at most
two connected components, andwe have assumed that the word an+1 cannot
be linked to any other, so one of the components must link a0 . . . an.

8.7.2 Adapting projective dependency parsers to Link Grammar

In this section, we take advantage of the similarities between LG linkages
and projective dependency structures to adapt some of the projective de-
pendency parsers seen in Section 8.3 to the LG formalism. In particular, we

216 dependency parsing schemata

present Link Grammar versions of the parsers by Eisner (1996), Eisner and
Satta (1999), and Yamada and Matsumoto (2003); which are obtained as
follows:

• To adapt item sets from dependency parsers to link grammar parsers,
we consider the set of dependency graphs associated to the forests
contained in each dependency item. �e corresponding LG items
will contain linkages with the same structure as these graphs. For
example, if the graphs associated to the forests in an item of the form
[i , j] in Yamada and Matsumoto’s dependency parsing schema are
dependency graphs with two distinct connected components headed
at the words ai and a j; an item [i , j] in the corresponding LG parsing
schema will contain linkages with two connected components, one
containing the word ai and the other containing a j. Note that the
notion of a head is lost in the conversion since, being undirected,
LG linkages do not make distinctions between heads and depend-
ents.�is will allow us to simplify the notation used to denote items
in some cases: for example, we do not need to make a distinction
between Eisner items of the form [i , j,True, False] and those of the
form [i , j, False,True], since their structure is the same modulo the
direction of the links.�erefore, items in the LG version of Eisner’s
parser will use a single �ag, indicating whether linkages contained in
them have one or two connected components.

• �e combining and linking steps of the dependency parsers can be
directly translated to link grammar: if the original dependency steps
always produced items containing projective dependency trees, the
resulting link grammar steps will produce items with planar linkages.
When the original dependency steps have constraints related to the
position of the head in items (like combiner steps in Eisner and Satta’s
parser, where we can combine [i , j, j] with [j, k, k] but not with
[j, k, j], for example); we ignore these constraints, considering that
any word in a linkage can be considered its “head” for the purpose of
linking it to other linkages.

• With this, we obtain a parsing schema that can �nd any acyclic link-
age for a given input string, since projective dependency parsers do
not allow cyclic structures. To allow cycles, we add steps or remove
constraints from existing steps so that the parsers are able to link two
words that are already in the same connected component of a linkage.
In the schema obtained from Eisner’s parser, this is done by allowing

8.7 parsing schemata for link grammar parsers 217

Link steps to be applied on items representing fully connected link-
ages; in the one corresponding to Eisner and Satta’s parser we allow
Combiner steps to create a link in addition to joining two linkages;
and in the one for Yamada and Matsumoto’s parser we add a step that
creates two links at the same time, combining the functionality of the
L-Link and R-Link steps.

• Finally, since Link Grammar is a grammar-based formalism where
the set of valid linkages is constrained by disjuncts associated towords,
wemust include disjunct information in items in order to enforce that
only grammatical linkages are constructed.�is is done in a similar
way as in the schema for Sleator and Temperley’s parser, but in this
case items need to specify both le� and right linking requirements for
each of their end words; since these bottom-up parsers establish links
from end words of an item to words outside the item’s span (which
can be to the le� or to the right of the span) rather than to words
inside the span (which are always to the right of the le� end word,
and to the le� of the right end word).

By applying these principles, we obtain a Link Grammar variant of the
projective dependency parser by Eisner (1996), with an item set

IEisLG = {[i , j, α1 ● β1, α2 ● β2, α3, α4, B] ∣ 0 ≤ i ≤ j ≤ n,
B ∈ {True, False} and α1, β1, α2, β2, α3, α4 are strings of link labels },

where an item of the form [i , j, α1 ● β1, α2 ● β2, α3, α4, B] represents the set
of partial linkages over the substring ai . . . a j of the input, satisfying the
following:
• All words ak , such that i < k < j, have all their linking requirements
satis�ed,

• �e word i has le� linking requirements α3 not satis�ed, and right
linking requirements α1β1, where the requirements α1 are satis�ed
by links to words within the item’s span, and the requirements β1
are not satis�ed. Requirements appear in the strings α3 and α1β1 in
increasing order of link distance,

• �e word j has right linking requirements α4 not satis�ed, and le�
linking requirements α2β2, where the requirements α2 are satis�ed
by links to words within the item’s span, and the requirements β2
are not satis�ed. Requirements appear in the strings α4 and α2β2 in
increasing order of link distance,

218 dependency parsing schemata

• �e partial linkage is connected if B equals True, or has exactly two
connected components (one containing the node ai and the other
containing a j) if B equals False.

�e set of deduction steps for this parser is as follows:

Initter:
[i , i + 1, αR , βL , αL , βR , False]

0 ≤ i ≤ n − 1

such that ai has a disjunct ∆i = (αR , αL),
and ai+1 has a disjunct ∆i+1 = (βR , βL).

Link (a i
b←→ a j):

[i , j, α1 ● bβ1, α2 ● bβ2, α3, α4, B]
[i , j, α1b ● β1, α2b ● β2, α3, α4,True]

Combine:

[i , j, α1 ● β1, α2●, α3, α4, B1]
[j, k, α4●, γ2 ● δ2, α2, δ4, B2]

[i , k, α1 ● β1, γ2 ● δ2, α3, δ4, B1 ∧ B2]
B1 ∨ B2

�ese steps perform actions analogous to those of the steps in the schema
for Eisner’s dependency parser (Section 8.3.2), with the remarkable excep-
tion that the Link step is able to build links on items that contain fully con-
nected linkages (equivalent to the [i , j,True, False] and [i , j, False,True]
items of the dependency parser). A version of the parser restricted to acyc-
lic linkages can be obtained by adding the constraint that B must equal
False in the Link step. �e set of �nal items is {[0, n, α●, β●, є, є,True]},
corresponding to the set of items containing fully connected linkages for
the whole input string.
�e LinkGrammar parser obtained from adapting the dependency parser

by Eisner and Satta (1999) has an item set

IEisSatLG = {[i , j, α1 ● β1, α2 ● β2, α3, α4] ∣ 0 ≤ i ≤ j ≤ n
and α1, β1, α2, β2, α3, α4 are strings of link labels },

where each item [i , j, α1 ● β1, α2 ● β2, α3, α4] is de�ned as the item [i , j, α1 ●
β1, α2 ● β2, α3, α4,True] in IEisLG.

8.7 parsing schemata for link grammar parsers 219

�e set of deduction steps in this case is

Initter-L:
[i , i , αR , є, αL , є]

0 ≤ i ≤ n

such that ai has a disjunct ∆i = (αR , αL).

Initter-R:
[i , i , є, αL , є, αR]

0 ≤ i ≤ n

such that ai has a disjunct ∆i = (αR , αL).

Link (a i
b←→ ak):

[i , j, γ1 ● bα1, γ2●, γ3, є]
[j + 1, k, δ1●, δ2 ● bβ2, є, δ4]

[i , k, γ1b ● α1, δ2b ● β2, γ3, δ4]

Combine:
[i , j, γ1 ● α1, γ2●, γ3, δ1] [j, k, δ1●, δ2 ● β2, γ2, δ4]

[i , k, γ1 ● α1, δ2 ● β2, γ3, δ4]

LinkAndCombine (a i
b←→ ak):

[i , j, γ1 ● bα1, γ2●, γ3, δ1]
[j, k, δ1●, δ2 ● bβ2, γ2, δ4]

[i , k, γ1b ● α1, δ2b ● β2, γ3, δ4]

�e Initter-L and Initter-R steps are used to initialise the parser with
items corresponding to linkages for a single word: two steps are used because
it may be needed to consider that single word as the le�most word of its span
(Initter-L) or as the rightmost (Initter-R), depending of the words to
which it is linked. Note that a single Initter step generating a consequent
[i , i , αR , αL , αL , αR] would not produce a correct parser, as these items
would require each of the linking requirements of the word ai to be satis�ed
twice.�e Link and Combine steps are analogous to those in the schema for
Eisner and Satta’s dependency parser (Section 8.3.3).�e LinkAndCombine
step performs an union of linkages while adding a new dependency link.
�is step is added in order to support cyclic linkages, so an acyclic version
of the parser can be obtained from removing it.
�e set of �nal items for this schema is {[0, n, α●, β●, є, є]}, equivalent

to the set of �nal items of the LG version of Eisner’s parser.

220 dependency parsing schemata

Finally, if we adapt to Link Grammar the dependency parser by Yamada
and Matsumoto (2003), we obtain a schema which uses the same item set
IEisLG as the LG variant of Eisner’s parser, and the following deduction steps:

Initter:
[i , i + 1, αR , βL , αL , βR , False]

0 ≤ i ≤ n

such that ai has a disjunct ∆i = (αR , αL),
and ai+1 has a disjunct ∆i+1 = (βR , βL).

R-Link (a j
b←→ ak):

[i , j, α1 ● β1, α2●, α3, α4b, B1]
[j, k, α4 ● b, γ2 ● bδ2, α2, δ4, B2]
[i , k, α1 ● β1, γ2b ● δ2, α3, δ4, B1]

L-Link (a i
b←→ a j):

[i , j, α1 ● bβ1, α2 ● b, α3, α4, B1]
[j, k, α4●, γ2 ● δ2, α2b, δ4, B2]

[i , k, α1b ● β1, γ2 ● δ2, α3, δ4, B2]

Two-Links (a i
b←→ a j

c←→ ak):

[i , j, α1 ● bβ1, α2 ● b, α3, α4c, B1]
[j, k, α4 ● c, γ2 ● cδ2, α2b, δ4, B2]

[i , k, α1b ● β1, γ2c ● δ2, α3, δ4,True]

�e logic of all the steps except for Two-Links is analogous to that of the
corresponding steps in the schema forYamada andMatsumoto’s dependency
parser.�e Two-Links step, that combines the functionality of the other
two Link steps, is added so as to support linkages containing cycles. An
acyclic version of the parser can be obtained by removing this step: note
that, in this case, no items with their �ag set to True can be inferred by the
schema, so we can consider that the item set contains only linkages with
two connected components, like the item set of the dependency version of
the schema.�e set of �nal items is {[0, n + 1, α●, β●, є, False]}, which are
guaranteed to contain a full linkage for a1 . . . an if the dummy symbol an+1
inserted at the end of the string is not allowed to link to any other.
It can be shown that the formal relations between these three LG parsing

schemata are the same as between their corresponding dependency pars-
ing schemata, i.e., the LG variants of Eisner and Satta’s and Yamada and
Matsumoto’s dependency parsers are step contractions of the LG variant of

8.8 discussion 221

Eisner’s parser.�ese relations are proven analogously to the dependency
case. �e three bottom-up LG parsers run in cubic time with respect to
input length, like the algorithm by Sleator and Temperley.

8.8 discussion

�e parsing schemata formalism by Sikkel (1997) has proved very useful for
describing, analyzing and prototyping parsing algorithms, but it is limited to
constituency-based parsers. In this chapter, we have de�ned a variant of the
formalism that can be used to describe dependency parsers8.�ese depend-
ency parsing schemata are general enough to describe both grammar-driven
and data-driven dependency parsers, be them projective or non-projective.
Like constituency parsing schemata, they can be used to prove the correct-
ness of parsers, �nd relations between them, or generate implementations
of them with a system like the one described in Chapter 3.�us, this variant
of the formalism makes all the advantages of parsing schemata applicable
to the family of dependency parsers, which have been extensively used for
practical parsing in recent years.
To demonstrate the theoretical uses of dependency parsing schemata, we

have used them to describe a wide range of projective and non-projective
dependency parsers from the literature. Additionally, we have clari�ed
relations between parsers which were originally described very di�erently.
For example, while Eisner (1996) presented his algorithm as a dynamic pro-
gramming algorithmwhich combines spans into larger spans, the algorithm
by Yamada and Matsumoto (2003) works by sequentially executing parsing
actions that move a focus point in the input one position to the le� or right,
(possibly) creating a dependency link. However, in the parsing schemata
for these algorithms we can see (and formally prove) that they are related:
one is a re�nement of the other.
Parsing schemata are also a formal tool that can be used to prove the

correctness of parsing algorithms.�e relationships between dependency
parsers can be exploited to derive properties of a parser from those of others,
as we have seen in several examples.
Finally, we have seen how the same general principles used to extend

parsing schemata to the realm of dependency parsing can also be applied to

8 An alternative framework that formally describes some dependency parsers is that of trans-
ition systems (McDonald and Nivre, 2007).�is model is based on parser con�gurations
and transitions, and has no clear relationship with the approach described here.

222 dependency parsing schemata

the related formalism of Link Grammar, and how new link grammar parsers
can be obtained as variants of parsing schemata for existing dependency
parsers.
However, dependency parsing schemata are not only useful to describe

and extend existing parsing algorithms: they can also be used as a theoretical
framework to de�ne new parsers.�is will be shown in the next chapter,
where we use dependency parsing schemata to de�ne novel algorithms for
several sets of mildly non-projective dependency structures.

9
MILDLY NON-PROJECTIVE DEPENDENCY PARSING

In this chapter, we use the dependency parsing schemata formalism presen-
ted in the previous chapter to present novel parsing algorithms for several
sets of mildly non-projective dependency structures, and formally prove
their correctness.
First, we de�ne a parser for well-nested structures of gap degree at most 1.

�en, we extend this algorithm to handle all well-nested structures with gap
degree bounded by a constant k.�ese algorithms have the same computa-
tional complexity as the best existing parsers for constituency formalisms
of equivalent generative power.
Finally, we de�ne another extension of the algorithm which is able to

analyse a new class of structures with gap degree up to a constant k, which
includes some ill-nested structures. �is set of structures, which we call
mildly ill-nested, includes all the gap degree k structures in a number of
dependency treebanks.

9.1 motivation

For reasons of computational e�ciency, many practical implementations
of dependency parsing are restricted to projective structures, in which the
subtree rooted at each word must cover a contiguous substring of the sen-
tence. However, some natural language sentences do not verify this con-
straint, and therefore cannot be analysed correctly by projective parsers.
�ese non-projective sentences appear in many languages (Havelka, 2007),
being particularly frequent in free word order languages such as Czech.
Unfortunately, parsing without the projectivity constraint is computation-
ally complex: although it is possible to parse non-projective structures in
quadratic time with respect to the input length under a model in which each

223

224 mildly non-projective dependency parsing

dependency decision is independent of all the others (as in the parser by
McDonald et al. (2005b), whose schema has been shown in Section 8.6.3),
the problem is intractable in the absence of this assumption (McDonald
and Satta, 2007).
Nivre and Nilsson (2005) observe that most non-projective dependency

structures appearing in practice are “close” to being projective, since they
contain only a small proportion of non-projective arcs. �is has led to
the study of classes of dependency structures that lie between projective
and unrestricted non-projective structures (Kuhlmann and Nivre, 2006;
Havelka, 2007). Kuhlmann (2007) investigates several such classes, based on
well-nestedness and gap degree constraints (Bodirsky et al., 2005), relating
them to lexicalised constituency grammar formalisms. Speci�cally, he shows
that: linear context-free rewriting systems (LCFRS) with fan-out k (Vijay-
Shanker et al., 1987; Satta, 1992) induce the set of dependency structures
with gap degree at most k − 1; coupled context-free grammars in which the
maximal rank of a nonterminal is k (Hotz and Pitsch, 1996) induce the set of
well-nested dependency structures with gap degree at most k− 1; and �nally,
LTAGs (Joshi and Schabes, 1997b) induce the set of well-nested dependency
structures with gap degree at most 1.
�ese results establish that there must be polynomial-time dependency

parsing algorithms for well-nested structures with bounded gap degree,
since such parsers exist for their corresponding lexicalised constituency-
based formalisms. However, as it has been observed by Kuhlmann and
Nivre (2006) thatmost of the non-projective structures in treebanks are well-
nested and have a small gap degree, developing e�cient dependency parsing
strategies for these sets of structures has considerable practical interest, since
we would be able to parse these sentences directly with dependencies in a
data-driven manner, rather than indirectly by constructing intermediate
constituency grammars and extracting dependencies from constituency
parses.
We address this problem with the following contributions:

• We de�ne a parsing algorithm for well-nested dependency struc-
tures of gap degree 1, and prove its correctness.�e parser runs in
time O(n7), the same complexity as the best existing algorithms for
LTAG (Eisner and Satta, 2000), and can be optimised to O(n6) in the
non-lexicalised case.

• We generalise the previous algorithm to any well-nested dependency
structure with gap degree at most k in time O(n5+2k).

9.2 preliminaries 225

• We generalise the previous parsers to be able to analyse not only
well-nested structures, but also ill-nested structures with gap degree
at most k satisfying certain constraints1, in time O(n4+3k).

• We characterise the set of structures covered by this parser, which we
callmildly ill-nested structures, and show that it includes all the trees
present in a number of dependency treebanks.

9.2 preliminaries

To simplify the notation and proofs, since the parsers de�ned in this chapter
only use grounded dependency trees and they do not work with forests
containing more than one tree, items in their schemata will be given as sets
of partial dependency trees de�ned only on terminal nodes, rather than the
forests of trees with marked and unmarked terminals used in Chapter 8.
In this context, a dependency graph for a string a1 . . . an is a graph G =

(V , E), where V = {a1, . . . , an} and E ⊆ V ×V . We write the edge (ai , a j)
as ai → a j, meaning that the word ai is a syntactic dependent (or a child) of
a j or, conversely, that a j is the governor (parent) of ai . We write ai →⋆ a j to
denote that there exists a (possibly empty) path from ai to a j.�e projection
of a node ai , denoted ⌊ai⌋, is the set of re�exive-transitive dependents of ai ,
that is: ⌊ai⌋ = {a j ∈ V ∣ a j →⋆ ai}. In contexts where we refer to di�erent
graphs that may share nodes, we will use the notation ⌊ai⌋G to denote the
projection of a node ai in the graph G. An interval (with endpoints i and j)
is a set of the form [i , j] = {ak ∣ i ≤ k ≤ j}. We will denote the cardinality
of a set S as #(S), and the di�erence of two sets S1, S2 as S1 ∖ S2.
A dependency graph is said to be a tree if it is:
1. acyclic: a j ∈ ⌊ai⌋ implies ai → a j /∈ E; and
2. each node has exactly one parent, except for one node which we call
the root or head.

A graph satisfying these conditions and having a vertex setV ⊆ {a1, . . . , an}
is a partial dependency tree for the string a1 . . . an. Given a dependency tree
T = (V , E) and a node u ∈ V , the subtree induced by the node u is the
graph Tu = (⌊u⌋, Eu) where Eu = {ai → a j ∈ E ∣ a j ∈ ⌊u⌋}.

1 Parsing unrestricted ill-nested structures, even when the gap degree is bounded, is NP-
complete: these structures are equivalent to LCFRS for which the recognition problem is
NP-complete (Satta, 1992)

226 mildly non-projective dependency parsing

Note that items that use this de�nition of partial dependency trees can
easily be converted to sets of forests of dependency trees with marked and
unmarked terminals, obtaining schemata compatible with the de�nitions in
Chapter 8, as follows: given an input string a1 . . . an, each dependency tree
U with its head in ah is converted to the unique forest containing a single
tree T such that
• the root node of T is ah,
• if the dependents of a node ai in U are al1al2 . . . alp , ar1ar2 . . . arq ,
with l1 < l2 < . . . < lp < i < r1 < r2 < . . . < rq; then the children of ai
in T are al1al2 . . . alpaiar1ar2 . . . arq .

By construction, the tree obtained from this conversion is in the set
D-trees de�ned in the previous chapter (De�nition 8.01).
We now de�ne the concepts of gap degree and well-nestedness (Kuhl-

mann and Nivre, 2006), which will be used to characterise the sets of mildly
non-projective dependency structures used by the parsers in this chapter.
Let T be a partial dependency tree for the string a1 . . . an:

Definition We say that T is projective if ⌊ai⌋ is an interval for every word9.01
ai . ⊣

�us, the dependency tree T is projective if every node in the structure
dominates a contiguous substring of the sentence.

Definition �e gap degree of a particular node ak in T is theminimum g ∈9.02
(N ∪ {0}) such that ⌊ak⌋ can be written as the union of g + 1 intervals; that
is, the number of discontinuities in ⌊ak⌋.�e gap degree of the dependency
tree T is the maximum among the gap degrees of its nodes. ⊣

Note that T has gap degree 0 if and only if T is projective.

Definition �e subtrees induced by nodes ap and aq are interleaved if9.03
⌊ap⌋∩⌊aq⌋ = ∅ and there are nodes ai , a j ∈ ⌊ap⌋ and ak , al ∈ ⌊aq⌋ such that
i < k < j < l . A dependency tree T is well-nested if it does not contain two
interleaved subtrees,and a tree that is not well-nested is said to be ill-nested.⊣

Note that projective trees are always well-nested, but well-nested trees
are not always projective.

9.3 the WG1 parser 227

9.3 the WG1 parser

We now de�neWG1, a polynomial-time parser for well-nested dependency
structures of gap degree at most 1.

9.3.1 Parsing schema for WG1

�e schema for theWG1 parser is de�ned as follows:
�e item set is IWG1 = I1 ∪ I2, with

I1 = {[i , j, h, ◇, ◇] ∣ i , j, h ∈N, 1 ≤ h ≤ n, 1 ≤ i ≤ j ≤ n,
h ≠ j, h ≠ i − 1},

where each item of the form [i , j, h, ◇, ◇] represents the set of all well-nested
partial dependency trees2 with gap degree at most 1, rooted at ah , and such
that ⌊ah⌋ = {ah} ∪ [i , j], and

I2 = {[i , j, h, l , r] ∣ i , j, h, l , r ∈N, 1 ≤ h ≤ n, 1 ≤ i < l ≤ r < j ≤ n,
h ≠ j, h ≠ i − 1, h ≠ l − 1, h ≠ r}

where each item of the form [i , j, h, l , r] represents the set of all well-nested
partial dependency trees rooted at ah such that ⌊ah⌋ = {ah}∪([i , j]∖[l , r]),
and all the nodes (except possibly h) have gap degree at most 1. We call
items of this form gapped items, and the interval [l , r] the gap of the item.
Note that the constraints h ≠ j, h ≠ i + 1, h ≠ l − 1, h ≠ r are added to
items to avoid redundancy in the item set. Since the result of the expression
{ah} ∪ ([i , j] ∖ [l , r]) for a given head can be the same for di�erent sets of
values of i , j, l , r, we restrict these values so that we cannot get two di�erent
items representing the same dependency structures. Items ι violating these
constraints always have an alternative representation that does not violate
them, that we can express with a normalising function nm(ι) as follows:

nm([i , j, j, l , r]) = [i , j − 1, j, l , r] (if r ≤ j − 1 or r = ◇),
or [i , l − 1, j, ◇, ◇] (if r = j − 1).

nm([i , j, l − 1, l , r]) = [i , j, l − 1, l − 1, r](if l > i + 1),
or [r + 1, j, l − 1, ◇, ◇] (if l = i + 1).

2 In this and subsequent schemata, we use D-rules to express parsing decisions, so partial
dependency trees are assumed to be taken from the set of trees licensed by a set of D-rules.

228 mildly non-projective dependency parsing

nm([i , j, i − 1, l , r]) = [i − 1, j, i − 1, l , r].

nm([i , j, r, l , r]) = [i , j, r, l , r − 1] (if l < r),
or [i , j, r, ◇, ◇] (if l = r).

nm([i , j, h, l , r]) = [i , j, h, l , r] for all other items.

When de�ning the deduction steps for this and other parsers, we assume
that they always produce normalised items. For clarity, we do not explicitly
write this in the deduction steps, writing ι instead of nm(ι) as antecedents
and consequents of steps.
�e set of initial items (hypotheses) is de�ned as the set

H = {[h, h, h, ◇, ◇] ∣ h ∈N, 1 ≤ h ≤ n},

where each item [h, h, h, ◇, ◇] represents the set containing the trivial partial
dependency tree consisting of a single node ah and no links. �is same
set of hypotheses can be used for all the parsers, so we do not make it
explicit for subsequent schemata. Note that initial items are separate from
the item set IWG1 and not subject to its constraints, so they do not require
normalisation.
�e set of �nal items for strings of length n inWG1 is de�ned as the set

F = {[1, n, h, ◇, ◇] ∣ h ∈N, 1 ≤ h ≤ n},

which is the set of the items in IWG1 containing dependency trees for the
complete input string (from position 1 to n), with their head at any word
ah.
Finally, the deduction steps of theWG1 parser are the following:

Link Ungapped:
[h1, h1, h1, ◇, ◇] [i2, j2, h2, ◇, ◇]

[i2, j2, h1, ◇, ◇]
ah2 → ah1

such that ah2 ∈ [i2, j2] ∧ ah1 ∉ [i2, j2],

Link Gapped:
[h1, h1, h1, ◇, ◇] [i2, j2, h2, l2, r2]

[i2, j2, h1, l2, r2]
ah2 → ah1

such that ah2 ∈ [i2, j2] ∖ [l2, r2] ∧ ah1 ∉ [i2, j2] ∖ [l2, r2],

9.3 the WG1 parser 229

Combine Ungapped:
[i , j, h, ◇, ◇] [j + 1, k, h, ◇, ◇]

[i , k, h, ◇, ◇]

Combine Opening Gap:
[i , j, h, ◇, ◇] [k, l , h, ◇, ◇]

[i , l , h, j + 1, k − 1]
such that j < k − 1,

Combine Keeping Gap Left:
[i , j, h, l , r] [j + 1, k, h, ◇, ◇]

[i , k, h, l , r]

Combine Keeping Gap Right:
[i , j, h, ◇, ◇] [j + 1, k, h, l , r]

[i , k, h, l , r]

Combine Closing Gap:
[i , j, h, l , r] [l , r, h, ◇, ◇]

[i , j, h, ◇, ◇]

Combine Shrinking Gap Centre:
[i , j, h, l , r] [l , r, h, l2, r2]

[i , j, h, l2, r2]

Combine Shrinking Gap Left:
[i , j, h, l , r] [l , k, h, ◇, ◇]

[i , j, h, k + 1, r]

Combine Shrinking Gap Right:
[i , j, h, l , r] [k, r, h, ◇, ◇]

[i , j, h, l , k − 1]

�eWG1 parser proceeds bottom-up, by building dependency subtrees
and joining them to form larger subtrees, until it �nds a complete depend-
ency tree for the input sentence.�e logic of the parser can be understood
by considering how it infers the item corresponding to the subtree induced
by a particular node, given the items for the subtrees induced by the direct
dependents of that node. Suppose that, in a complete dependency analysis
for a sentence a1 . . . an, the word ah has ad1 . . . adp as direct dependents
(i.e. we have dependency links ad1 → ah , . . . , adp → ah). �en, the item

230 mildly non-projective dependency parsing

corresponding to the subtree induced by ah is obtained from the ones cor-
responding to the subtrees induced by ad1 . . . adp by:

1. applying the Link Ungapped or Link Gapped step to each of the
items corresponding to the subtrees induced by the direct dependents,
and to the hypothesis [h, h, h, ◇, ◇].�is allows us to infer p items
representing the result of linking each of the dependent subtrees to
the new head ah;

2. applying the various Combine steps to join all of the items obtained
in the previous step into a single item.�e Combine steps perform a
union operation between subtrees.�erefore, the result is a depend-
ency tree containing all the dependent subtrees, and with all of them
linked to h: this is the subtree induced by ah.

�is process is applied repeatedly to build larger subtrees, until, if the
parsing process is successful, a �nal item is found containing a dependency
tree for the complete sentence.

9.3.2 Proof of correctness for WG1

To prove that the WG1 parsing schema is correct, we need to prove its
soundness (all valid �nal items are correct) and completeness (all correct
�nal items are valid).�is will be done by the usual method explained in
Section 2.3.3 of de�ning a set of correct items for the schema, in such a way
that �nal items in this set satisfy the general de�nition of correct �nal items
(Section 8.2); and then proving the stronger claims that all valid items are
correct and all correct items are valid.
To de�ne the set of correct items forWG1, we will �rst provide a de�nition

of the trees that these items must contain: let T be a well-nested partial
dependency tree headed at a node ah. We will call such a tree a valid tree
for the algorithmWG1 if it satis�es the following conditions:

(1) ⌊ah⌋ is either of the form {ah} ∪ [i , j] or {ah} ∪ ([i , j] ∖ [l , r]).
(2) All the nodes in T have gap degree at most 1 except for ah, which can
have gap degree up to 2.

Given an input string a1 . . . an and a set of D-rules G, we say that an item
of the form [i , j, h, ◇, ◇] ∈ IWG1 is correct if it contains a valid tree T rooted
at ah, such that ⌊ah⌋ = {ah} ∪ [i , j], and all the edges in T are licensed by
G.

9.3 the WG1 parser 231

We say that an item of the form [i , j, h, l , r] ∈ IWG1 is correct if it contains
a valid tree T headed at ah , such that ⌊ah⌋ = {ah} ∪ ([i , j] ∖ [l , r]), and all
the edges in T are licensed by G.
�roughout the proof we will suppose that all items are normalised, that

is, [i , j, h, l , r] should always be read as nm([i , j, h, l , r]), although we will
omit the nm function most of the time for clarity.
Since a �nal item inWG1 has the form [1, n, h, ◇, ◇], a correct �nal item

for this algorithm will contain at least one valid tree rooted at a head ah and
with ⌊ah⌋ = [1, n].�is treemust be well-nested because it is valid, andmust
have gap degree ≤ 1 because the de�nition of a valid tree implies that every
node except for ah has gap degree ≤ 1, and the fact that ⌊ah⌋ = [1, n] implies
that ah has gap degree 0.�erefore, a correct �nal item for an input string
contains at least one well-nested parse of gap degree ≤ 1 for that string.
Proving the correctness of theWG1 parser amounts to proving its sound-

ness and completeness.

Soundness

Proving the soundness of theWG1 parser is showing that all valid �nal items
(that is, �nal items that can be obtained from the hypotheses by applying
some sequence of deduction steps) are correct.
We will do this by proving the stronger claim that all valid items are

correct. Since all valid items are either hypotheses or obtained by applying
a deduction step to other valid items, it su�ces to show that

(i) hypotheses are correct, and
(ii) if the antecedents of a deduction step inWG1 are correct, then the

consequent is also correct.

�e proof of (i) is trivial, since any hypothesis [h, h, h, ◇, ◇] contains the
valid dependency tree consisting of a single node (ah) and no links.
In order to prove (ii), given a set of D-rules G, we must prove that if

the antecedents of a deduction step are items containing a valid tree for
WG1 licensed by the D-rules in G, then the consequent must also contain a
valid tree forWG1 licensed by G. In order for a tree to be valid, it must be
well-nested, with ⌊ah⌋ of the form {ah}∪[i , j] or {ah}∪([i , j]∖[l , r]), and
with all the nodes having gap degree at most 1 except for the head, which
may have gap degree up to 2.

232 mildly non-projective dependency parsing

By de�nition of items inWG1, all trees contained in items must satisfy
the conditions of a valid tree. �erefore, proving soundness in this case
amounts to proving that if the antecedents of a step are nonempty, then the
consequent is nonempty.
�is can be seen step by step: in the case of a Link Gapped step cre-

ating a dependency ah2 → ah1 , a tree Tc for the consequent item can be
obtained from a tree Ta taken from the second antecedent ([i2, j2, h2, l2, r2])
by linking its head (which is ah2 by construction of the antecedent) to ah1 .
Condition (1) of a valid tree is satis�ed by construction, since the projection
of the head of Tc is the result of adding ah1 to the projection of ah2 in Ta,
and this projection is of the form [i2, j2] ∖ [l2, r2] by construction of the
antecedent and by the constraint imposed by the step on ah2 . Besides, since
by this same constraint we know that Ta must have gap degree 1, the tree Tc
that we obtain for the consequent satis�es the condition that all of its nodes
have gap degree 1 (since their projections are the same as in the antecedent
tree) except for its head, that may have gap degree 2 (since its projection is
that of the head node of Ta, plus a new node ah1 that may increase the gap
degree at most by one).�e new link appearing in the consequent itemmust
be licensed by our set of D-rules G, by the side condition of the step. Finally,
the well-nestedness constraint is also preserved, since the subtrees induced
by nodes in Tc are the same as those in Ta except for the one induced by ah1 ,
which cannot interleave with any other as it contains them all.�erefore, if
the antecedents of a Link Gapped step are nonempty, we conclude that the
consequent is also nonempty, since it contains the valid tree Tc .�e same
reasoning can be applied to the Link Ungapped step.
In the case of Combine steps, a tree Tc for the consequent item can be

obtained from the union of two trees Ta and Tb , each taken from one of the
antecedent items, and having a common head ah . In this case, no new links
are created, so the consequent tree is obviously permitted by the D-rules
G if the antecedent trees are. Condition (1) of a valid tree is satis�ed by
construction, since the required projection of the head for a valid tree in
the consequent of a Combine is the union of those for the antecedents, and
by checking the steps one by one we can see that their constraints guarantee
that this union satis�es the condition.�e gap degree of the head in Tc is
guaranteed to be at most 2 by this condition (1), and the gap degree of the
rest of the nodes in Tc is guaranteed to be less than or equal 1 because their
induced subtrees are the same as in the antecedent tree Ta or Tb in which
they appeared (note that, by construction of the antecedents of Combine

9.3 the WG1 parser 233

steps, the only node that appears both in Ta and Tb is ah, so the rest of the
nodes in Tc can only come from one of the antecedent trees).�erefore, (2)
also holds. Regarding well-nestedness, we note that the subtree induced by
the head of the consequent tree cannot interleave with any other, and the
rest of the subtrees are the same as in the antecedent trees.�us, since the
subtrees in each antecedent tree did not interleave among themselves (Ta
and Tb are well-nested), the only way in which the consequent tree could
be ill-nested would be having a subtree of one antecedent tree interleaving
with a subtree of the other antecedent tree.�is can be checked step by step,
and in every single Combiner step we can see that two subtrees coming
from each of the antecedent trees cannot interleave. As an example, in a
Combine Closing Gap step:

Combine Closing Gap:
[i , j, h, l , r] [l , r, h, ◇, ◇]

[i , j, h, ◇, ◇]

In order for a subtree in the second antecedent to be able to interleave
with a subtree in the �rst antecedent, it would need to have nodes in the
interval [l , r] and nodes in the set [1, i − 1]∪ [j+ 1, n], but this is impossible
by construction, since the projection of a tree in the second antecedent is of
the form {ah} ∪ [l , r].
Analogous reasoning can be applied for the rest of the Combiner steps,

concluding that all of them preserve well-nestedness. With this we have
proven (ii), and therefore the soundness of theWG1 parser.

Order annotations

In the completeness proof forWG1, we will use the concept of order annota-
tions (Kuhlmann, 2007; Kuhlmann and Möhl, 2007). Here we will outline
the concept and some properties relevant to the proof, a more detailed
discussion can be found in Kuhlmann (2007).
Order annotations are strings that encode the precedence relation between

the nodes of a dependency tree: if we take a dependency tree with its words
unordered and decorate each node with an order annotation, we will ob-
tain a particular ordering for the words. Order annotations are related
to projectivity, gap degree and well-nestedness: there exists a set of order
annotations that, when applied to nodes in any structure, will result in an
ordering of the nodes that satis�es projectivity, and the same can be said

234 mildly non-projective dependency parsing

about the properties of well-nestedness and having gap degree bounded by
a given constant k. In addition to this, order annotations are closely related
to the way in which the parsers de�ned in this chapter construct subtrees
with their Combine steps, and this will make them useful for proving their
correctness.
Let T be a dependency structure for a string a1 . . . an, and ak a node in T .

Let ad1 . . . adp be the direct dependents of ak in T , ordered by the position of
the le�most element in their projection, i.e. min{i ∣ ai ∈ ⌊adu ⌋} < min{ j ∣
a j ∈ ⌊adv ⌋} if and only if u < v.
�e order annotation for a node ak is a string over the alphabet {0, 1, . . . , p}

∪ {“,”} obtained from the following process:
• Build a string x(T , ak) = x1x2 . . . xn, where xk = 0, xi = u if ai ∈

⌊adu ⌋, and xi =“,” (comma) otherwise (i.e. if ai ∉ ⌊ak⌋).
• �e order annotation for ak , ô(T , ak), is the string obtained by col-
lapsing all adjacent occurences of the same symbol in x(T , ak) into
a single occurence, and removing all leading and trailing commas.3

By construction, order annotations have the following property:

Property If the order annotation for a node ak is a string ô(T , ak) =9.04
o1 . . . oq, then there exist unique natural numbers i1 < i2, . . . < iq+1 such
that:
• If the symbol 0 appears in position v in ô(T , ak), then iv = k and
iv+1 = k + 1.

• If a symbol s ∈ (N ∖ {0}) appears in positions v1, . . . , vr in ô(T , ak),
then the projection of the sth dependent of ak in T is {[iv1 , iv1+1 −
1]} ∪ {[iv2 , iv2+1 − 1]} ∪ . . . ∪ {[ivr , ivr+1 − 1]}. ⊣

In particular, it can be checked that i1 is always the index associated to
the le�most node in ⌊ak⌋, iq+1 the index associated to the rightmost node in
⌊ak⌋ plus 1, and for each iv such that 1 < v ≤ q, the di�erences dv = (iv − i1)
correspond to the positions in the intermediate string x(T , ak) such that
the dvth symbol in x(T , ak) di�ers from the (dv + 1)th.
By using this property to reason about the projections of a dependency

tree’s nodes, we can show the following, more particular properties:

3 Note that we use a slightly di�erent notation from Kuhlmann (2007): for simplicity in the
proofs, we say that each node has a single annotation of the form α1 , α2 , . . . , αn instead
of saying that it has a list of annotations α1 , α2 , . . . αn . Of course, the di�erence is merely
notational.

9.3 the WG1 parser 235

Property A node ak has gap degree g in a dependency structure T if, and 9.05
only if, the comma symbol (,) appears g times in ô(T , ak).
(Corollary 1)�e gap degree of a dependency structure T is themaximum

value among the number of commas in the order annotations of each of its
nodes.
(Corollary 2) A dependency structure is projective if, and only if, none

of the order annotations associated to its nodes contain a comma. ⊣

Property If a natural number s > 0 appears g+ 1 times in an order annota- 9.06
tion ô(T , ak), then the sth direct child of ak (in the ordering mentioned
earlier) has gap degree g, and therefore the dependency structure T has gap
degree at least g. ⊣

Property A dependency structure T is ill-nested if, and only if, it contains 9.07
at least one order annotation of the form . . . a . . . b . . . a . . . b . . ., for some
a, b ∈N. Otherwise, T is well-nested. ⊣

�ese properties allow us to de�ne the sets of structures verifying well-
nestedness and/or bounded gap degree only in terms of their order annota-
tions. Sets that can be characterised in this way are said to be algebraically
transparent (Kuhlmann, 2007).

Completeness

Proving completeness of theWG1 parser is proving that all correct �nal
items inWG1 are valid. We will show this by proving the following, stronger
claim:

Lemma Let T be a partial dependency tree headed at a node ah, which is 9.08
a valid tree forWG1.�en:
(a) If ⌊ah⌋ = {ah} ∪ [i , j], then the item [i , j, h, ◇, ◇] containing T is a
valid item in theWG1 parser.

(b) If ⌊ah⌋ = {ah} ∪ ([i , j] ∖ [l , r]), then the item [i , j, h, l , r] containing
T is a valid item in theWG1 parser.

It is clear that this lemma implies the completeness of the parser: a �nal
item [1, n, h, ◇, ◇] is correct only if it contains a tree rooted at ah with gap
degree at most 1 and projection [1, n]. Such a tree is in case (a) of Lemma
9.08, implying that the correct �nal item [1, n, h, ◇, ◇] is valid.�erefore,
this lemma implies that all correct �nal items are valid, and therefore that
WG1 is complete.

236 mildly non-projective dependency parsing

Proof of Lemma 9.08

We will prove Lemma 9.08 by strong induction on #(⌊ah⌋). In order to do
this, we will show that Lemma 9.08 holds for valid trees T rooted at ah such
that #(⌊ah⌋) = 1, and then we will prove that if Lemma 9.08 holds for every
valid tree T ′ such that #(⌊ah⌋) < N , then it also holds for all trees T such
that #(⌊ah⌋) = N .

base case Let T be a valid tree rooted at a node ah , such that #(⌊ah⌋) =
1. Since T has only one node, it must be the trivial dependency tree consist-
ing of the single node ah. In this case, Lemma 9.08 trivially holds because
the initial item [h, h, h, ◇, ◇] contains this tree, and initial items are valid
by de�nition.

induction step Let T be a valid partial dependency tree rooted at a
node ah, such that #(⌊ah⌋) = N (for some N > 1).
Wewill prove that, if Lemma9.08 holds for every valid partial dependency

tree T ′ rooted at a′h such that #(⌊a′h⌋) < N , then it also holds for T .
Let ad1 . . . adp be the direct children of ah in T , ordered by the index of

their le�most transitive dependent, i.e., for every i and j such that 1 ≤ i <
j ≤ p, thenmin{k ∣ ak ∈ ⌊ad i ⌋} < min{k ∣ ak ∈ ⌊ad j⌋}.
We know that p ≥ 1 because if #(⌊ah⌋) > 1, then ah must have at least one

dependent. We now consider two cases: p = 1 and p > 1. In the case where
p = 1, consider the subtree of T induced by ad1 . Since #(⌊ad1⌋) = N − 1, we
know by induction hypothesis that the item corresponding to this tree is
valid.�is item is:

• [i , j, d1, ◇, ◇], if ⌊ad1⌋ is of the form {ad1} ∪ [i , j], with d1 ∈ [i , j]4.
In this case, applying a Link step to this item and the initial item
[h, h, h, ◇, ◇] (which is valid by de�nition), with the D-rule ad1 → ah
(which must exist in order for T to be valid); we obtain [i , j, h, ◇, ◇],
which is the item corresponding to ah by Lemma 9.08.

• [i , j, d1, h, h], if ⌊ad1⌋ is of the form {ad1}∪([i , j]∖{ah}). In this case,
applying a Link step to this item and the initial item [h, h, h, ◇, ◇]
(which is valid by de�nition), with the D-rule ad1 → ah (which must

4 Note that the situation where the projection is of this form but with d1 ∉ [i , j] is covered by
the third case in this list if d1 < i− 1 or d1 > j+ 1; or by this same case if d1 = i− 1 or d1 = j+ 1,
by rewriting the projection in the equivalent form {ad1} ∪ [i − 1, j] or {ad1} ∪ [i , j + 1],
respectively.

9.3 the WG1 parser 237

exist, as in the previous case); we obtain [i , j, h, ◇, ◇]5, which is the
item corresponding to ah by Lemma 9.08.

• [i , j, d1, l , r], if ⌊ad1⌋ is of the form {ad1}∪([i , j]∖[l , r]). In this case,
applying a Link step to this item and the initial item [h, h, h, ◇, ◇]
(which is valid by de�nition), with the D-rule ad1 → ah; we obtain
[i , j, h, l , r]; which is the item corresponding to ah by Lemma 9.08.

With this, we have proven the induction step for the case where p = 1
(the head node of our partial dependency tree has a single direct child). It
now remains to prove it for p > 1 (the head node has more than one direct
dependent).
In order to show this, let ô(T , ah) be the order annotation associated to

the head node ah in the tree T . By construction, ô(T , ah)must be a string
of symbols in the alphabet {0} ∪ {1} ∪ . . . ∪ {p} ∪ {, }; containing a single
appearance of the symbol 0. Additionally, by the de�nition of a valid tree
and Property 9.06 of order annotations, ô(T , ah)must contain either 1 or 2
appearances of each symbol 1 through p (since more than 2 appearances
of a symbol q could only occur if adq had gap degree ≥ 2). And, from the
possible forms of ⌊ah⌋ in a valid tree, we know that ô(T , ah)must have one
of the following forms, where α and β are (possibly empty) strings that only
contain symbols in {1} ∪ . . . ∪ {p} (not zeros or commas):
(i) α0β
(ii) α, β0γ
(iii) α0β, γ
(iv) 0, α, β
(v) α, β, 0
(vi) α, 0, β

Note that, by Property 9.05 of order annotations, the �rst case corresponds
to a tree where the head has gap degree 0, in the next two cases the head
has gap degree 1, and the last three are the cases where the gap degree of
the head is 2: in these three latter cases, the constraint that ⌊ah⌋must be
of the form {ah} ∪ ([i , j] ∖ [l , r]) for the tree T to be valid implies that
the symbol 0 representing the head in the annotation must be surrounded
by commas. If we have a gap degree 2 annotation of any other form (for
example α0, β, γ, for nonempty α); the projection of ah does not meet this

5 Note that this item is the normalisation of [i , j, h, h, h].

238 mildly non-projective dependency parsing

constraint.�is can be seen by using Property 9.04 of order annotations to
obtain this projection.
Taking these considerations into account, we will now divide the proof in

di�erent cases and subcases based on ô(T , ah), starting with its �rst symbol:
1. If ô(T , ah) begins with the symbol 1:

a) If there are no more appearances of the symbol 1 in ô(T , ah):
�en we consider the following trees:
• T1:�e tree obtained by taking the subtree induced by ad1
(which by Property 9.04must have a yield of the form [i , j],
as the symbol 1 appears only once in ô(T , ah)), and adding
the node ah and dependency ad1 → ah to it.

• T2:�e tree obtained by taking the union of subtrees in-
duced by ad2 . . . adp , and adding the node ah and depend-
encies ad2 → ah , . . . , adp → ah to it.

And we divide this case into three further cases:
i. If ô(T , ah) does not contain any comma:�en, by Prop-
erty 9.046, the projection of ah in T2 will be of the form
[j + 1, k] ∪ {ah}. By applying the induction hypothesis
to T1 and T2, we know that the items [i , j, h, ◇, ◇] and
[j+ 1, k, h, ◇, ◇] are valid.�erefore, the item [i , k, h, ◇, ◇]
is also valid because it can be obtained from these two items
by applying a CombineUngapped step. As in this case the
projection of ah in T is [i , k] ∪ [h], this item [i , k, h, ◇, ◇]
is the item containing the tree T , and its validity proves
Lemma 9.08 in this particular subcase.

ii. If ô(T , ah) contains at least one comma, and the second
symbol in ô(T , ah) is a comma:�en ô(T , ah)must be of
the form ii, iv or vi; and the projection of ah in T2 will be of
the form [i2, k] ∪ {ah}, for i2 > j + 1.�erefore, we know
by the induction hypothesis that the items [i , j, h, ◇, ◇]
(for T1) and [i2, k, h, ◇, ◇] (for T2) are valid, and by ap-
plying CombineOpening Gap to these items, we obtain
[i , k, h, j + 1, i2 − 1], which is the item containing the tree
T .

6 In the remainder of the proof, we will always use Property 9.04 of order annotations to relate
them to projections; so we will not mention it explicitly in subsequent cases.

9.3 the WG1 parser 239

iii. If ô(T , ah) contains at least one comma, but the second
symbol in ô(T , ah) is not a comma:
A. First, in the case that ô(T , ah) contains exactly one
comma, then it is of the form 1β1, β2, where either β1
or β2 contains the symbol 0 and neither of them is
empty. In this case, we can see that the projection of
ah in T2 is of the form {ah} ∪ [j + 1, l − 1] ∪ [r + 1, k],
so by induction hypothesis the item [j + 1, k, h, l , r]
is valid. We apply Combine Keeping Gap Right to
[i , j, h, ◇, ◇] (which is valid by T1 as in the previous
cases) and [j+1, k, h, l , r] to obtain [i , k, h, l , r], which
is the item containing T .

B. Second, in the case where ô(T , ah) contains two com-
mas, then it is of the form 1β1, 0, β2 or 1β1, β2, 0.�en
the projection of ah in T2 will again be of the form
{ah} ∪ [j + 1, l − 1] ∪ [r + 1, k], so we can follow the
same reasoning as in the previous case to show that
the item [i , k, h, l , r] containing T is valid.

b) If there is a second appearance of the symbol 1 in ô(T , ah):
�en ô(T , ah) is of the form 1β11β2. Due to the well-nestedness
constraint, we know that there is no symbol s ∈ {1} ∪ {2} ∪
. . . ∪ {p} that appears both in β1 and in β2. �is allows us to
consider the following trees:
• T1:�e tree obtained by taking the subtree induced by ad1
(which must have a yield of the form [i , l − 1] ∪ [r + 1, j],
as the symbol 1 appears twice in ô(T , ah)), and adding the
node ah and dependency ad1 → ah to it.

• T2:�e tree obtained by taking the union of subtrees in-
duced by adb1 . . . adbq , where b1 . . . bq are the non-comma,
non-zero symbols appearing in β1, and adding the node
ah and dependencies adb1 → ah , . . . , adbq → ah to it.

• T3:�e tree obtained by taking the union of subtrees in-
duced by adc1 . . . adcq , where c1 . . . cq are the non-comma,
non-zero symbols appearing in β2, and adding the node
ah and dependencies adc1 → ah , . . . , adcq → ah to it.

Note that T2 or T3 may be empty trees, since it is possible that
the strings β1 or β2 do not contain any symbol except for zeros

240 mildly non-projective dependency parsing

and commas. However, both trees cannot be empty at the same
time, since in that case we would have p = 1.
With this, we divide this case into further cases:
i. If β1 does not contain any comma:�en, by construction
and by the well-nestedness constraint, we know that the
projection of ah in T2 is of the form {ah} ∪ [l , r]. Apply-
ing the induction hypothesis to T1, we know that the item
[i , j, h, l , r] is valid, and applying it to T2, we know that
[l , r, h, ◇, ◇] is also valid. By applying a CombineClosing
Gap step to these items, we obtain that ι = [i , j, h, ◇, ◇] is
valid. Now, we divide into further cases according to the
form of β2:
A. If T3 is empty (β2 is empty except for a possible 0 sym-
bol), then we are done, as [i , j, h, ◇, ◇] is already the
item containing the tree T .

B. If β2 does not contain a comma, then the projection
of ah in T3 is of the form {ah}∪ [j+ 1, k], so by induc-
tion hypothesis the item [j + 1, k, h, ◇, ◇] is valid. By
applying CombineUngapped to this item and ι, we
obtain [i , k, h, ◇, ◇], the item containing the tree T .

C. If β2 contains one or two commas, then the projection
of ah in T3 is of the form {ah}∪[j+1, l ′−1]∪[r′+1,m],
and by induction hypothesis, [j+ 1, k, h, l ′, r′] is valid.
By applying Combine Keeping Gap Right to this
item and ι, we get that [i , k, h, l ′, r′] is valid, and this
is the item containing the tree T in this case.

ii. If β1 contains a single symbol, and it is a comma: In this
case, T2 is empty, but we know that T3 must be nonempty
(since p > 1) and it must either have no commas, or be of
the form β3, 0, corresponding to the expression v. In any of
these cases, we know that the projection of ah in T3 will be
of the form {ah}∪ [j+ 1, k].�erefore, applying the induc-
tion hypothesis to T1 we know that the item [i , j, h, l , r]
is valid, and with T3 we know that [j + 1, k, h, ◇, ◇] is also
valid. By applying the Combine Keeping Gap Left step
to these two items, we obtain [i , k, h, l , r], the item con-
taining the tree T .

9.3 the WG1 parser 241

iii. If β1 is of the form “, β3”, where β3 is not empty and does
not contain commas: then, by construction and by the well-
nestedness constraint, we know that the projection of ah in
T2 is of the form {ah}∪ [l ′, r], with l < l ′ ≤ r; so the items
[i , j, h, l , r] (for T1) and [l ′, r, h, ◇, ◇] (for T2) are valid. By
applying Combine Shrinking Gap Right to these two
items, we obtain that ι = [i , j, h, l , l ′ − 1] is a valid item.
Now, if β2 is empty, we are done: ι is the item containing the
tree T . And if β2 is nonempty, then it must either contain
no commas, or be of the form β4, 0 (corresponding to the
expression v). In any of these cases, we know that the
projection of ah in T3 will be of the form {ah} ∪ [j + 1, k].
So, by induction hypothesis, the item [j + 1, k, h, ◇, ◇] is
valid; and by applying Combine Keeping Gap Left to ι
and this item we obtain that [i , k, h, l , l ′ − 1] is valid: this
is the item containing the tree T in this case.

iv. If β1 is of the form “β3,”, where β3 is not empty and does
not contain commas, this case is symmetric with respect to
the last one: in this case, the projection of ah in T2 is of the
form {ah} ∪ [l , r′], with l ≤ r′ < r; and the step Combine
Shrinking Gap Left is applied to the item [l , r′, h, ◇, ◇]
(for T2) and the item [i , j, h, l , r] (for T1), obtaining ι =
[i , j, h, r′+1, r]. As in the previous case, if β2 is emptywe do
not need to do anything else, and if it is nonempty we apply
Combine Keeping Gap Left to obtain [i , k, h, r′ + 1, r],
the item containing T .

v. If β1 is of the form “β3, β4”, where β3 and β4 are not empty
and do not contain commas: in this case, by construction
and by the well-nestedness constraint, we know that the
projection of ah in T2 is of the form {ah} ∪ [l , l ′ − 1] ∪
[r′ + 1, r], with l < l ′ ≤ r′ < r. With this, this case is ana-
logous to the previous two cases: from T1 we know that
the item [i , j, h, l , r] is valid, and we combine it with the
item [l , r, h, l ′, r′] (from T2), in this case using Combine
Shrinking Gap Centre. With this, we obtain that the
item ι = [i , j, h, l ′, r′] is valid. If β2 is empty, this is the
item containing the tree T . If not, we make the same reas-
oning as in the two previous cases to conclude that the item

242 mildly non-projective dependency parsing

[j + 1, k, h, ◇, ◇] is valid, and we combine it with ι by the
Combine Keeping Gap Left step to obtain [i , k, h, l ′, r′],
the item containing T .

vi. If β1 contains two commas: in this case, by construction
of the valid tree T , β1 must be of the form β3, 0, β4, where
β3 and β4 may or may not be empty. So we divide into
subcases:
A. If β3 and β4 are both empty, we apply the same reason-
ing as in case 1-b-ii, except that in this case we know
that β2 cannot contain any commas.

B. If β3 is empty and β4 is nonempty, we apply the same
reasoning as in case 1-b-iii, except that in this case we
know that β2 cannot contain any commas.

C. If β3 is nonempty and β4 is empty, we apply the same
reasoning as in case 1-b-iv, except that in this case we
know that β2 cannot contain any commas.

D. If neither β3 nor β4 are empty, we apply the same reas-
oning as in case 1-b-v, except that in this case we know
that β2 cannot contain any commas.

2. If ô(T , ah) begins with the symbol 0:
a) If ô(T , ah) begins with 01, we can apply the same reasonings
as in case 1, because the expressions for the projections do not
change.

b) If ô(T , ah) begins with 0 followed immediately by a comma,
then we have an annotation of the form iv: 0, α, β. In this case,
we can apply symmetric reasoning considering the last symbol
of ô(T , ah) instead of the �rst (note that the case α, β, 0 has
already been proven as part of case 1, and all the steps in the
schema are symmetric).

As this covers all the possible cases of the order annotation ô(T , ah), we
have completed the proof of the induction step for Lemma 9.08, and this
concludes the proof of completeness for theWG1 parsing schema.

9.3.3 Computational complexity

�e time complexity ofWG1 isO(n7), as the step Combine ShrinkingGap
Centre works with 7 free string positions.�is complexity with respect

9.3 the WG1 parser 243

to the length of the input is as expected for this set of structures, since
Kuhlmann (2007) shows that they are equivalent to LTAG, and the best
existing parsers for this formalism also perform in O(n7) (Eisner and Satta,
2000)7. Note that the Combine step which is the bottleneck only uses the
7 indexes, and not any other entities like D-rules, so its O(n7) complexity
does not have any additional factors due to grammar size or other variables.
It is possible to build a variant of this parser with time complexity O(n6),

as with parsers for unlexicalised TAG, if we work with unlexicalised D-
rules specifying the possibility of dependencies between pairs of categories
instead of pairs of words. In order to do this, we expand the item set with
unlexicalised items of the form [i , j,C , l , r], where C is a category, apart
from the existing items [i , j, h, l , r]. Steps in the parser are duplicated, to
work both with lexicalised and unlexicalised items, except for the Link steps,
which always work with a lexicalised item and an unlexicalised hypothesis
to produce an unlexicalised item, and the Combine Shrinking Gap steps,
which can work only with unlexicalised items. Steps are added to obtain
lexicalised items from their unlexicalised equivalents by binding the head to
particular string positions. Finally, we need certain variants of the Combine
Shrinking Gap steps that take 2 unlexicalised antecedents and produce a
lexicalised consequent; an example is the following:

Combine Shrinking Gap Centre L:

[i , j,C , l , r]
[l + 1, r,C , l2, r2]
[i , j, l , l2, r2]

cat(a l)=C

Although this version of the algorithm reduces time complexity with
respect to the length of the input to O(n6), it also adds a factor related to
the number of categories, as well as constant factors due to usingmore kinds
of items and steps than the originalWG1 algorithm.�is, together with the
advantages of lexicalised dependency parsing, may mean that the original
WG1 algorithm is more practical than this version.

7 Although standard TAG parsing algorithms run in time O(n6) with respect to the input
length, they also have a complexity factor related to grammar size. Eisner and Satta (2000)
show that, in the case of lexicalised TAG, this factor is a function of the input length n; hence
the additional complexity.

244 mildly non-projective dependency parsing

9.4 the WGk parser

�eWG1 parsing schema can be generalised to obtain a parser for all well-
nested dependency structures with gap degree bounded by a constant k(k ≥
1), which we callWGk parser. In order to do this, we extend the item set so
that it can contain items with up to k gaps, and modify the deduction steps
to work with these multi-gapped items.

9.4.1 Parsing schema for WGk

�e item set for theWGk parsing schema is

IWGk = {[i , j, h, ⟨(l1, r1), . . . , (lg , rg)⟩]}

where i , j, h ∈ (N ∪ {0}), 0 ≤ g ≤ k, 1 ≤ h ≤ n, 1 ≤ i ≤ j ≤ n , h ≠ j, h ≠ i − 1;
and for each p ∈ {1, 2, . . . , g}: lp , rp ∈N, i < lp ≤ rp < j, rp < lp+1 − 1, h ≠ lp − 1,
h ≠ rp.
An item [i , j, h, ⟨(l1, r1), . . . , (lg , rg)⟩] represents the set of all well-nested

partial dependency trees rooted at ah such that ⌊ah⌋ = {ah} ∪ ([i , j] ∖
⋃g

p=1[lp , rp]), where each interval [lp , rp] is called a gap. �e constraints
h ≠ j, h ≠ i + 1, h ≠ lp − 1, h ≠ rp are added to avoid redundancy, and
normalisation is de�ned as inWG1.�e set of �nal items is de�ned as the
set F = {[1, n, h, ⟨⟩] ∣ h ∈N, 1 ≤ h ≤ n}. Note that this set is the same as in
WG1, as these are the items that we denoted [1, n, h, ◇, ◇] in the previous
parser.
�e parser has the following deduction steps:

Link:
[h1, h1, h1, ⟨⟩] [i2, j2, h2, ⟨(l1, r1), . . . , (lg , rg)⟩]

[i2, j2, h1, ⟨(l1, r1), . . . , (lg , rg)⟩]
ah2 → ah1

such that ah2 ∈ [i2, j2] ∖
g
⋃
p=1

[lp , rp] ∧ ah1 ∉ [i2, j2] ∖
g
⋃
p=1

[lp , rp].

Combine Opening Gap ∶
[i , lq − 1, h, ⟨(l1, r1), . . . , (lq−1, rq−1)⟩]
[rq + 1,m, h, ⟨(lq+1, rq+1), . . . , (lg , rg)⟩]

[i ,m, h, ⟨(l1, r1), . . . , (lg , rg)⟩]

9.4 the WGk parser 245

such that g ≤ k ∧ lq ≤ rq .

Combine Keeping Gaps ∶
[i , j, h, ⟨(l1, r1), . . . , (lq , rq)⟩]

[j + 1,m, h, ⟨(lq+1, rq+1), . . . , (lg , rg)⟩]
[i ,m, h, ⟨(l1, r1), . . . , (lg , rg)⟩]

such that g ≤ k.

Combine Shrinking Gap Left ∶
[i , j, h, ⟨(l1, r1), . . . , (lq , rq), (l ′, rs), (ls+1, rs+1), . . . , (lg , rg)⟩]

[l ′, ls − 1, h, ⟨(lq+1, rq+1), . . . , (ls−1, rs−1)⟩]
[i , j, h, ⟨(l1, r1), . . . , (lg , rg)⟩]

such that g ≤ k.

Combine Shrinking Gap Right:

[i , j, h, ⟨(l1, r1), . . . , (lq−1, rq−1), (lq , r′), (ls , rs), . . . , (lg , rg)⟩]
[rq + 1, r′, h, ⟨(lq+1, rq+1), . . . , (ls−1, rs−1)⟩]

[i , j, h, ⟨(l1, r1), . . . , (lg , rg)⟩]
such that g ≤ k.

Combine Shrinking Gap Centre ∶
[i , j, h, ⟨(l1, r1), . . . , (lq , rq), (l ′, r′), (ls , rs), . . . , (lg , rg)⟩]

[l ′, r′, h, ⟨(lq+1, rq+1), . . . , (ls−1, rs−1)⟩]
[i , j, h, ⟨(l1, r1), . . . , (lg , rg)⟩]

such that g ≤ k.

As expected, theWG1 parser corresponds toWGk when we make k = 1.
WGk works in the same way asWG1, except for the fact that Combine steps
can create items with more than one gap8.

8 In all the parsers described in this chapter, Combine steps may be applied in di�erent
orders to produce the same result, causing spurious ambiguity. InWG1 andWGk , this can
be avoided when implementing the schemata, by adding �ags to items so as to impose a
particular order on the execution of these steps.

246 mildly non-projective dependency parsing

9.4.2 Proof of correctness for WGk

�e proof of correctness forWGk is analogous to that ofWG1, but gener-
alising the de�nition of valid trees to a higher gap degree. A valid tree in
WGk can be de�ned as a partial dependency tree T , headed at a word ah of
the input sentence, such that

(1) ⌊ah⌋ is of the form {ah} ∪ ([i , j] ∖⋃g
p=1[lp , rp]), with 0 ≤ g ≤ k,

(2) All the nodes in T have gap degree at most k except for ah, which can
have gap degree up to k + 1.
With this, we can de�ne correct items and correct �nal items analogously

to their de�nition inWG1.
Soundness is proven as inWG1: changing the constraints for nodes so

that any node can have gap degree up to k and the head of a correct tree
can have gap degree k + 1, the same reasonings can be applied to this case.
Completeness is proven by induction on #(⌊ah⌋), just as inWG1. �e

base case is the same as inWG1, and for the induction step, we also consider
the direct children ad1 . . . adp of ah.�e case where p equals 1 is proven by
using Linker steps just as inWG1. In the case for p ≥ 1, we also base our
proof in the order annotation ô(T , ah), but we have to take into account
that the set of possible annotations is larger when we allow the gap degree
to be greater than 1, so we must take into account more cases in this part of
the proof.
In particular, an order annotation ô(T , ah) for a valid tree forWGk can

contain up to k + 1 commas and up to k + 1 appearances of each symbol
in {1} ∪ . . . ∪ {p}; since the head of such a tree can have gap degree at
most k + 1 and the rest of its nodes are limited to gap degree k. If the head
has gap degree exactly k + 1 (i.e., if ô(T , ah) contains k + 1 commas); then
the constraint on the form of ⌊ah⌋ in valid trees implies that the symbol 0
cannot be contiguous to any non-comma symbol in ô(T , ah).
With this, the cases 1a) of the completeness proof forWG1 can be directly

used forWGk , only taking into account that ô(T , ah) can contain up to
k + 1 commas. As a consequence of this, instead of Combine Keeping
Gap Right we use a general Combine Keeping Gaps step with more than
one gap allowed in its rightmost antecedent item. In the cases 1b), we
need to take into account that the symbol 1 can appear up to k + 1 times
in ô(T , ah). We write ô(T , ah) as 1β11β2 . . . 1βg+1(g ≤ k) and do with each
βi (for i < g + 1) the same case analysis as we do with β1 in theWG1 case,

9.5 parsing ill-nested structures 247

and with βg+1 the same case analysis as with β2 in theWG1 case. Each of
these cases is proven as inWG1, with the di�erence that each string βi can
contain more than one comma, so that instead of the Combine Shrinking
Gap steps inWG1 we need to use the general Combine Shrinking Gap
steps inWGk , which allow their inner items to have more than one gap. In
the same way, the cases in which we used Combine Keeping Gap steps in
the proof forWG1 are solved by using the general Combine Keeping Gap
step inWGk .

9.4.3 Computational complexity

�eWGk parser runs in timeO(n5+2k): as in the case ofWG1, the deduction
step with most free variables is Combine Shrinking Gap Centre, and
in this case it has 5 + 2k free indexes. Again, this complexity result is in
line with what could be expected from previous research in constituency
parsing: Kuhlmann (2007) shows that the set of well-nested dependency
structures with gap degree at most k is closely related to coupled context-
free grammars in which the maximal rank of a nonterminal is k + 1; and the
constituency parser de�ned by Hotz and Pitsch (1996) for these grammars
also adds an n2 factor for each unit increment of k. Note that a small value
of k should be enough to cover the vast majority of the non-projective
sentences found in natural language treebanks. For example, the Prague
Dependency Treebank (Hajič et al., 2006) contains no structures with gap
degree greater than 4.�erefore, aWG4 parser would be able to analyse all
the well-nested structures in this treebank, which represent 99.89% of the
total. Increasing k beyond 4 would not produce further improvements in
coverage.

9.5 parsing ill-nested structures

�eWGk parser analyses dependency structures with bounded gap degree
as long as they are well-nested.�is covers the vast majority of the struc-
tures that occur in natural-language treebanks (Kuhlmann andNivre, 2006),
but there is still a signi�cant minority of sentences that contain ill-nested
structures. Unfortunately, the general problem of parsing ill-nested struc-
tures is NP-complete, even when the gap degree is bounded: this set of
structures is closely related to LCFRS with bounded fan-out and unboun-

248 mildly non-projective dependency parsing

ded production length, and parsing in this formalism has been proven to
be NP-complete (Satta, 1992). �e reason for this high complexity is the
problem of unrestricted crossing con�gurations, appearing when dependency
subtrees are allowed to interleave in every possible way. However, just as it
has been noted that most non-projective structures appearing in practice
are only “slightly” non-projective (Nivre and Nilsson, 2005), we characterise
a sense in which the structures appearing in treebanks can be viewed as
being only “slightly” ill-nested. In this section, we generalise the algorithms
WG1 andWGk to parse a proper superset of the set of well-nested structures
in polynomial time; and give a characterisation of this new set of structures,
which includes all the structures in several dependency treebanks.

9.5.1 �e MG1 and MGk parsers

�eWGk parser for well-nested structures presented previously is based on
a bottom-up process, where Link steps are used to link completed subtrees
to a head, and Combine steps are used to join subtrees governed by a
common head to obtain a larger structure. As WGk is a parser for well-
nested structures of gap degree up to k, its Combiner steps correspond to
all the ways in which we can join two sets of sibling subtrees meeting these
constraints, and having a common head, into another.�erefore, this parser
does not use Combiner steps that produce interleaved subtrees, since these
would generate items corresponding to ill-nested structures.
We obtain a polynomial parser for a wider set of structures of gap degree

at most k, including some ill-nested ones, by having Combiner steps rep-
resenting every way in which two sets of sibling subtrees of gap degree at
most k with a common head can be joined into another, including those
producing interleaved subtrees, like the steps for gap degree 1 shown in
Figure 18. Note that this does not mean that we can build every possible ill-
nested structure: some structures with complex crossed con�gurations have
gap degree k, but cannot be built by combining two structures of that gap
degree. More speci�cally, our algorithm will be able to parse a dependency
structure (well-nested or not) if there exists a binarisation of that structure
that has gap degree at most k.�e parser implicitly works by �nding such a
binarisation, since Combine steps are always applied to two items and no
intermediate item generated by them can exceed gap degree k (not counting
the position of the head in the projection).

Definition Let a1 . . . an be a string, and T a partial dependency tree9.09

9.5 parsing ill-nested structures 249

headed at a node ah . A binarisation of T is a tree B in which each node has
at most two children, and such that:
(a) Each node in B can be either unlabelled, or labelled with a word ai .
Note that several nodes may have the same label (in contrast with the
de�nition of a dependency graph, where the set of nodes is the set of
words itself, so a word cannot appear twice in the graph).

(b) A node labelled ai is a descendant of a j in B if and only if ai →⋆ a j in
T . ⊣

�e projection of a node in a binarisation is the set of re�exive-transitive
children of that node. With this, we can de�ne the gap degree of a binarisa-
tion in the same way as that of a dependency structure. If we denote by ⌊n⌋T
the projection of a node n in a tree T , the condition (b) of a binarisation
can be rewritten as follows: ai ∈ ⌊a j⌋B ⇔ ai ∈ ⌊a j⌋T .

Definition A dependency structure ismildly ill-nested for gap degree k if 9.10
it has at least one binarisation of gap degree ≤ k. Otherwise, we say that it is
strongly ill-nested for gap degree k. ⊣

It can be shown that the set of mildly ill-nested structures for gap degree
k includes all well-nested structures with gap degree up to k.
We de�neMG1, a parser for mildly ill-nested structures for gap degree 1,

as follows:

• the item set is the same as that ofWG1, except that items can now
contain any mildly ill-nested structures for gap degree 1, instead of
being restricted to well-nested structures; and

• deduction steps are the same as in WG1, plus the additional steps
shown in Figure 18.�ese extra Combine steps allow the parser to
combine interleaved subtrees with simple crossing con�gurations.
�e MG1 parser still runs in O(n7), as these new steps do not use
more than 7 string positions.

In order to generalise this algorithm to mildly ill-nested structures for
gap degree k, we need to add a Combine step for every possible way of
joining two structures of gap degree at most k into another. �is can be
done in a systematic way by considering a set of strings over an alphabet
of three symbols: a and b to represent intervals of words in the projection
of each of the structures, and g to represent intervals that are not in the
projection of either of the structures, and will correspond to gaps in the

250 mildly non-projective dependency parsing

Combine Interleaving:
[i , j, h, l , r] [l , k, h, r + 1, j]

[i , k, h, ◇, ◇]

Combine Interleaving Gap C:
[i , j, h, l , r] [l , k, h,m, j]

[i , k, h,m, r]
m < r + 1

Combine Interleaving Gap L:
[i , j, h, l , r] [l , k, h, r + 1, u]

[i , k, h, j + 1, u]
u > j

Combine Interleaving Gap R:
[i , j, h, l , r] [k,m, h, r + 1, j]

[i ,m, h, l , k − 1]
k > l

Figure 18: Additional steps to turn theWG1 parser into theMG1 parser.

[ia1 , iap+1 − 1, h, ⟨(ia1+1, ia2 − 1), . . . , (iap−1+1, iap − 1)⟩]
[ib1 , ibq+1 − 1, h, ⟨(ib1+1, ib2 − 1), . . . , (ibq−1+1, ibq − 1)⟩]

[imin(a1 ,b1), imax(ap+1,bq+1) − 1, h, ⟨(ig1 , ig1+1 − 1), . . . , (igr , igr+1 − 1)⟩]

for each string of length n with a’s located at positions a1 . . . ap(1 ≤ a1 <
. . . < ap ≤ n), b’s at positions b1 . . . bq(1 ≤ b1 < . . . < bq ≤ n), and g’s at
positions g1 . . . gr(2 ≤ g1 < . . . < gr ≤ n − 1), such that 1 ≤ p ≤ k, 1 ≤ q ≤ k,
0 ≤ r ≤ k − 1, p + q + r = n, and the string does not contain more than one
consecutive appearance of the same symbol.

Figure 19: General form of theMGk Combine step.

9.5 parsing ill-nested structures 251

joined structure.�e legal combinations of structures for gap degree k will
correspond to strings where symbols a and b each appear at most k + 1
times, g appears at most k times and is not the �rst or last symbol, and there
is no more than one consecutive appearance of any symbol. Given a string
of this form, the corresponding Combine step is given by the expression
in Figure 19. As a particular example, the Combine Interleaving Gap C
step in Figure 18 can be obtained from the string abgab.
�erefore, we de�ne the parsing schema for MGk , a parser for mildly

ill-nested structures for gap degree k, as the schema where

• the item set is the same as that ofWGk , except that items can now
contain any mildly ill-nested structures for gap degree k, instead of
being restricted to well-nested structures; and

• the set of deduction steps consists of a Link step as the one inWGk ,
plus a set of Combine steps obtained as expressed in Figure 19.

9.5.2 Complexity

As the string used to generate a Combiner step can have length at most
3k+2, and the resulting step contains an index for each symbol of the string
plus two extra indexes, it is easy to see that theMGk parser has complexity
O(n3k+4) with respect to the length of the input.9

�e item and deduction step sets of anMGk parser are always supersets
of those ofWGk . In particular, the steps forWGk are those obtained from
strings that do not contain abab or baba as a scattered substring.

9.5.3 Proof of correctness for MGk

In order to prove the correctness of theMGk parser, we will �rst introduce
some properties of binarisations that arise as corollaries of their de�nition
(9.09). If a tree B is a binarisation of a (partial) dependency tree T headed
at ah, then we have that:

(i) A node ai appears in T if and only if a node labelled ai appears in B,

9 Note that this expression denotes the complexity of the particularMGk parser obtained
for a given value of k: if we consider k as a variable, we have to add an additional O(33k)
complexity factor, since the number of di�erent Combiner steps that can be applied to a
given item grows exponentially with k.

252 mildly non-projective dependency parsing

(ii) ⌊ai⌋B = ⌊ai⌋T ,
(iii) If the root of B is labelled, then its label is ah.

Properties (i) and (ii) are direct consequences of condition (b) of the
de�nition of a binarisation. Property (iii) is obtained from (b) and property
(i): the label of the root node of B cannot be an ad ≠ ah because this would
require ah to be a transitive dependent of ad in T . �ese properties of
binarisations will be used throughout the proof.
As for the previous algorithms, we will start the proof by de�ning the

sets of valid trees and correct items for this algorithm, which we will use to
prove soundness and completeness.
Let T be a partial dependency tree headed at a node ah . We will call such

a tree a valid tree for the algorithmMGk if it satis�es the following:

(1) ⌊ah⌋ is of the form {ah} ∪ ([i , j] ∖⋃g
p=1[lp , rp]), with 0 ≤ g ≤ k,

(2) �ere exists a binarisation of T such that all the nodes in it have gap
degree at most k except for its root node, which can have gap degree up
to k + 1.
Note that, since by property (ii) a binarisation cannot decrease the gap

degree of a tree, condition (2) implies that all the nodes in T must have gap
degree at most k except for ah, which can have gap degree at most k + 1.
�at is, the de�nition of a valid tree in this case is as inWGk , but chan-

ging the well-nestedness constraint to the weaker requirement of having a
binarisation of gap degree k (except for the particular case of the root node,
which can have gap degree k + 1). As inWG1 andWGk , we will say that an
item is correct if it contains some valid tree T licensed by a set of D-rules G,
and throughout the proof we will suppose that all items are normalised.
Given an input string a1 . . . an, a correct �nal item forMGk will have the

form [1, n, h, ⟨⟩], and contain at least one valid tree T rooted at a head ah
and with ⌊ah⌋ = [1, n], which is a complete parse for the input. Since in a
tree contained in an item of this form the projection of the head cannot
have any gaps and thus the head has gap degree 0, we have that there exists
a binarisation of T such that every one of its nodes, including the head, has
gap degree at most k.�erefore, T is mildly ill-nested for gap degree k and,
more generally, �nal items inMGk only contain mildly ill-nested trees for
gap degree k, as expected.
To prove correctness of theMGk parser, we need to prove its soundness

and completeness.

9.5 parsing ill-nested structures 253

Soundness

As in the proofs for the previous algorithms, we prove soundness of the
MGk parser by showing that (i) hypotheses are correct, and (ii) if the ante-
cedents of a deduction step inWG1 are correct, then the consequent is also
correct. (i) is trivial, since each hypothesis in theMGk parser contains a
tree consisting of a single node ah, which is trivially a valid tree.
To show (ii), given a set ofD-rulesG, wemust prove that if the antecedents

of a deduction step are items containing a valid tree forMGk licensed by the
D-rules in G, then the consequent must also contain a valid tree forMGk
licensed by G. In order to do this, we obtain a valid tree for the consequent
item of each step from a valid tree for each of its antecedents exactly in the
same way as inWGk : by adding a new head node and linking the head of
the antecedent tree to it, for Link steps, and by considering the union of
the trees corresponding to the antecedents, for Combine steps.
We can show that the resulting tree is licensed by G and that it satis�es

the condition (1) of a valid tree in the same way as we did inWG1 andWGk .
So, to prove soundness, it only remains to show that the resulting tree has a
binarisation verifying the gap degree constraint (2).
To prove this, we show that a binarisation satisfying (2) of the tree corres-

ponding to the consequent item can be constructed from the corresponding
binarisations of the antecedent items. We will prove the stronger claim that
such a binarisation can be constructed, with the additional constraints that:

(3) its root node must be labelled (therefore, by one of the properties of
binarisations, its label corresponds to the head node of the original tree)
and can have at most one direct child, and that

(4) the binarisation can only contain more than one node labelled ah if the
item is of the form [i , j, h, ⟨(l1, r1) . . . (lg , rg)⟩] such that ah ∈ ([i , j] ∖
⋃g

p=1[lp , rp]).
In the case of each Link step adding a link ad → ah, such a binarisation

can be constructed by taking the binarisation Ba corresponding to the non-
initial antecedent item, and linking its head to a new node labelled ah .�e
resulting tree is a binarisation of the consequent tree, and it satis�es (2)
because the head can have gap degree at most k + 1 (by construction of the
antecedents of Link steps, the antecedent item must have a binarisation
whose head does not have gap degree greater than k, and linking it to a new
head adds atmost one gap); and the rest of the nodes have gap degree atmost
k because their projections do not change with respect to the binarisation

254 mildly non-projective dependency parsing

of the antecedent tree. �is binarisation trivially veri�es (3), because its
root node is labelled ah and has the head of the Ba as its only child, and (4)
because it can only contain one node labelled ah, which is the root, as ah
cannot appear in Ba.
In the case of Combiner steps, if B1 and B2 are the binarisations corres-

ponding to the antecedent items, we can construct a binarisation for the
consequent Bc from B1 and B2 as follows:

• If the consequent item is of the form [i , j, h, ⟨(l1, r1) . . . (lg , rg)⟩] such
that ah ∉ ([i , j]∖⋃g

p=1[lp , rp]), then we take the binarisations B1 and
B2, we remove their head nodes labelled ah from them, we link the
direct children of that head in each of the two binarisations (which
must be two, d1 and d2, since B1 and B2 verify condition (3)) to a fresh
unlabelled node, and �nally we link this unlabelled node to ah.�is
tree Bc is a binarisation for the tree in the consequent item obtained
by performing the union of two trees in the antecedent items. It can
be shown that the projection of ah in Bc satis�es condition (1) by
construction, following the same reasoning as in the proof forWG1.
And we can see that Bc also meets the constraints of (2) because:

– �e projection of ah in Bc is the union of the projections of
ah in B1 and B2, which by construction of the consequent of
Combiner steps, and property (ii) of binarisations, must be
of the form ⌊ah⌋Bc = {ah} ∪ ([i , j] ∖⋃g

p=1[lp , rp]) with g ≤ k.
Since the gap degree of ([i , j] ∖⋃g

p=1[lp , rp]) cannot exceed k,
the gap degree of ⌊ah⌋Bc cannot exceed k + 1.

– �e fresh unlabelled node thatwe have added does not dominate
any node labelled ah. We know this because no antecedent
item cannot be of the form described in (4), since if one of the
antecedent items were of that form, then the consequent item
would be of that form too, by construction of consequent items.
�erefore, for the binarisations corresponding to antecedent
items, we know that they contain a single node labelled ah , and
thus our unlabelled node does not dominate any node labelled
ah .�erefore, the projection of this nodemust be ⌊ah⌋Bc ∖{ah},
which in this case equals ([i , j] ∖⋃g

p=1[lp , rp]) with g ≤ k, and
therefore the node has gap degree ≤ k.

– �e rest of the nodes in Bc have the same projection as they had
in B1 or B2, so they have gap degree ≤ k.

9.5 parsing ill-nested structures 255

It can be seen that this binarisation also satis�es (3) and (4) because,
by construction, it has a single node labelled ah which is its root, and
this node has a single child.

• If the consequent item is of the form [i , j, h, ⟨(l1, r1) . . . (lg , rg)⟩]
such that ah ∈ ([i , j] ∖⋃g

p=1[lp , rp]), then we take the binarisations
B1 and B2, we remove their head nodes labelled ah from them, we
link the direct children of that head in each of the two binarisations
(which must be two nodes, d1 and d2, as B1 and B2 satisfy (3)) to a
fresh node labelled ah , and �nally we link this node to another node
also labelled ah.�e obtained tree Bc is a binarisation for the valid
tree in the consequent item obtained by performing the union of two
trees in the antecedent items. It satis�es condition (1) by construction,
as in the previous case, and meets the constraints of (2) because:

– By construction, the projection of both fresh nodes labelled ah
in this case is ⌊ah⌋B1 ∪ ⌊ah⌋B2 , and by the hypothesis of this case
we know that that projection is of the form ⌊ah⌋Bc = ([i , j] ∖
⋃g

p=1[lp , rp]), and therefore has gap degree at most k.
– �e rest of the nodes in Bc have the same projection as they had
in B1 or B2, so they have gap degree ≤ k.

�is binarisation trivially veri�es (3), and it also meets (4) because the
item associated to the consequent is of the form that allows several
nodes to be labelled ah.

With this, we have proven that if anMGk step is applied to correct ante-
cedents, it produces correct consequents, and we conclude the soundness
proof forMGk .

Completeness

Proving completeness for theMGk parser consists of proving that all correct
�nal items are valid. We will show this by proving the following, stronger
claim:

Proposition Let T be a partial dependency tree headed at node ah, and 9.11
valid forMGk .�en, if ⌊ah⌋ = {ah} ∪ ([i , j] ∖⋃g

p=1[lp , rp]), for g ≤ k, the
item [i , j, h, ⟨(l1, r1), . . . , (lg , rg)⟩] containing T is valid under this parser.⊣

It is clear that this proposition implies the completeness of the parser: a
�nal item [1, n, h, ⟨⟩] is correct only if it contains a tree rooted at ah, valid

256 mildly non-projective dependency parsing

forMGk and with projection ⌊ah⌋ = [1, n]. By Proposition 9.11, having such
a tree implies that the correct �nal item [1, n, h, ⟨⟩] is valid.�erefore, this
proposition implies that all correct �nal items are valid, and thus thatMGk
is complete.
Since valid trees for the MGk parser must be mildly ill-nested for gap

degree k, every valid tree must have at least one binarisation where every
node has gap degree ≤ k except possibly the head, that can have gap degree
k + 1. We will call a binarisation satisfying this property a well-formed
binarisation forMGk .
Using this, we can prove Proposition 9.11 if we prove the following lemma:

Lemma Let B be a well-formed binarisation of a partial dependency tree9.12
T , headed at a node ah and valid for MGk . If the projection of ah in T
is ⌊ah⌋T = ⌊ah⌋B = {ah} ∪ ([i , j] ∖ ⋃g

p=1[lp , rp]), for g ≤ k, the item
[i , j, h, ⟨(l1, r1), . . . , (lg , rg)⟩] containing T is valid under this parser. ⊣

Proof of Lemma 9.12

Wewill prove this lemmaby induction on the number of nodes ofB (denoted
#B). In order to do this, we will show that Lemma 9.12 holds for well-formed
binarisations B of trees T rooted at ah such that #B = 1, and then we will
prove that if Lemma 9.12 holds for every well-formed binarisation B′ such
that #B′ < N , then it also holds for binarisations B such that #B = N .

base case Let B be a well-formed binarisation of a partial dependency
tree T , rooted at a node ah and valid for MGk , and such that #B = 1. In
this case, since B has only one node, it must be a binarisation of the trivial
dependency tree consisting of the single node ah .�us, Lemma 9.12 trivially
holds because the initial item [h, h, h, ⟨⟩] contains this tree, and initial items
are valid by de�nition.

induction step Let B be a well-formed binarisation of some partial
dependency tree T , headed at node ah and valid forMGk , such that ⌊ah⌋T =
{ah} ∪ ([i , j] ∖⋃g

p=1[lp , rp])), and #B = N ; and suppose that Lemma 9.12
holds for every well-formed binarisation B′ of a tree T ′ such that #B′ < N .
We will prove that Lemma 9.12 holds for B.
In order to do this, we consider di�erent cases depending on the number

and type of children of the head node labelled ah in B:

9.5 parsing ill-nested structures 257

• If ah has a single child in B, and it is a node labelled ad (ad ≠ ah):
then, the subtree B′ induced by ad in B is a binarisation of some tree
T ′, such that ⌊ad⌋T′ = ⌊ah⌋T ∖ {ah} (note that no nodes labelled ah
can appear in B′, since ah cannot be a dependent of ad). As #B′ < N
and B′ is well-formed because all its nodes are non-head nodes of
B; by applying the induction hypothesis, we obtain that the item ι =
[i , j, d , ⟨(l1, r1), . . . , (lg , rg)⟩] (which contains T ′ by construction)
is valid.�e item [i , j, h, ⟨(l1, r1), . . . , (lg , rg)⟩] containing T can be
obtained from ι and the initial item [h, h, h, ⟨⟩] by a Link step, and
therefore it is valid, so we have proven Lemma 9.12 in this case.

• If ah has a single child in B, and it is an unlabelled node: call this
unlabelled node n.�en, the subtree B′ obtained from removing n
from B and linking its children directly to ah is a binarisation of the
same tree as B. We know that B′ is well-formed because its non-head
nodes have the same projections as in B and therefore must have gap
degree ≤ k and, as B is well-formed, n has gap degree ≤ k, so the
subtree created by linking the children of n to ah can have gap degree
at most k + 1, and it only will have degree k + 1 if ⌊ah⌋B′ ∖ {ah} has
k gaps. As B and B′ are well-formed binarisations of the same tree,
if Lemma 9.12 holds for B′, it also must hold for B. As we know that
#B′ < N (since it contains one less node than B), Lemma 9.12 holds
for B′ by the induction hypothesis, so this case is proven.

• If ah has a single child in B, and it is a node labelled ah: then, the
subtree B′ induced by this single child node is a binarisation of the
same tree as B. We know that B′ is well-formed because its nodes
have the same projections as they had in B, and therefore they must
all have gap degree ≤ k by the well-formedness of B. Reasoning as
in the previous case, since B and B′ are binarisations of the same
tree and we know that Lemma 9.12 holds for B′ by the induction
hypothesis, this implies that it holds for B as well.

• If ah has two children in B: in this case, regardless of whether the
direct children of ah are labelled or unlabelled nodes, we call them c1
and c2 and consider two partial dependency trees B′1 and B′2:

– B′1 is the tree obtained by taking the subtree induced by c1 and
linking its head c1 to ah,

– B′2 is the tree obtained by taking the subtree induced by c2 and
linking its head c2 to ah.

258 mildly non-projective dependency parsing

We know that all the nodes in B′1 and B′2, except for the head, must
have gap degree ≤ k because their projection in B′1 and B′2 is the
same as their projection in B, which is a well-formed binarisation.
We know that ah must have degree ≤ k + 1 in B′1 and B′2 because, by
construction, ⌊ah⌋B′1 = ⌊c1⌋B ∪ {ah}, and ⌊c1⌋B has gap degree ≤ k;
and a similar reasoning can be made in B′2.�us, we have that B′1 and
B′2 are well-formed binarisations.
By applying the induction hypothesis to B′1 and B′2, we obtain that
the items containing their associated dependency trees T ′1 and T ′2
are valid. By construction, since c1 has gap degree ≤ k in B′1 and c2
has gap degree ≤ k in B′2, the projection of ah in the trees T ′1 and T ′2
obtained by unbinarising B′1 and B′2 by removing the unlabelled and
redundant nodes will be the union of g1 and g2 intervals respectively,
for g1, g2 ≤ k + 1. We also know that the union of the projections of
ah in T ′1 and T ′2 is the union of gc ≤ k + 1 intervals, and is the same as
the projection of ah in T .�erefore, as the indexes of the Combiner
steps inMGk correspond to all the ways in which two unions of up
to k + 1 intervals each can be combined into another by performing
their union, we know that the item that contains T can be obtained
from the items containing T ′1 and T ′2 by a Combiner step, and thus
this item is valid, concluding the completeness proof.

9.5.4 Mildly ill-nested dependency structures

�eMGk algorithm de�ned in the previous section allows us to parse any
mildly ill-nested structure for a given gap degree k in polynomial time. We
have characterised the set of mildly ill-nested structures for gap degree k as
those that have a binarisation of gap degree ≤ k. Since a binarisation of a
dependency structure cannot have lower gap degree than the original struc-
ture, the set of mildly ill-nested structures for gap degree k only contains
structures with gap degree at most k. Furthermore, by the relation between
MGk andWGk , we know that it contains all the well-nested structures with
gap degree up to k.
Figure 20 shows an example of a structure that has gap degree 1, but

is strongly ill-nested for gap degree 1.�is is one of the smallest possible
such structures: by generating all the possible trees up to 10 nodes (without
counting a dummy root node located at position 0), it can be shown that all

9.5 parsing ill-nested structures 259

Language

Structures

Total

Non-projective

Total

By gap degree By nestedness

Gap
deg.
1

Gap
d.
2

Gap
d.
3

Gap
d.
> 3

Well-
Nested

Mildly
Ill-
Nest.

Strongly
Ill-
Nest.

Arabic 2,995 205 189 13 2 1 204 1 0
Czech 87,889 20,353 19,989 359 4 1 20,257 96 0
Danish 5,430 864 854 10 0 0 856 8 0
Dutch 13,349 4,865 4,425 427 13 0 4,850 15 0
Latin 3,473 1,743 1,543 188 10 2 1,552 191 0

Portuguese 9,071 1,718 1,302 351 51 14 1,711 7 0
Slovene 1,998 555 443 81 21 10 550 5 0
Swedish 11,042 1,079 1,048 19 7 5 1,008 71 0
Turkish 5,583 685 656 29 0 0 665 20 0

Table 13: Counts of dependency trees classi�ed by gap degree, and mild and strong
ill-nestedness (for their gap degree); appearing in treebanks for Arabic
(Hajič et al., 2004), Czech (Hajič et al., 2006), Danish (Kromann, 2003),
Dutch (van der Beek et al., 2002), Latin (Bamman and Crane, 2006),
Portuguese (Afonso et al., 2002), Slovene (Džeroski et al., 2006), Swedish
(Nilsson et al., 2005) and Turkish (O�azer et al., 2003; Atalay et al., 2003).

Figure 20: One of the smallest strongly ill-nested dependency structures. �is
structure has gap degree 1, but is only mildly ill-nested for gap degree
≥ 2.

the structures of any gap degree k with length smaller than 10 are well-nested
or only mildly ill-nested for that gap degree k.
Even if a structure T is strongly ill-nested for a given gap degree, there

is always some m ∈ N such that T is mildly ill-nested for m (since every
dependency structure can be binarised, and binarisations have �nite gap
degree). For example, the structure in Figure 20 is mildly ill-nested for gap

260 mildly non-projective dependency parsing

degree 2.�erefore,MGk parsers have the property of being able to parse
any possible dependency structure as long as we make k large enough.
In practice, structures like the one in Figure 20 do not seem to appear

in dependency treebanks. We have analysed treebanks for nine di�erent
languages, obtaining the data presented in Table 13. None of these treebanks
contain structures that are strongly ill-nested for their gap degree.�erefore,
in any of these treebanks, theMGk parser can parse every sentence with
gap degree at most k.

9.6 discussion

Using the dependency parsing schemata framework described in Chapter
8, we have de�ned a parsing algorithm for well-nested dependency struc-
tures with bounded gap degree. In terms of computational complexity, this
algorithm is comparable to the best parsers for related constituency-based
formalisms: when the gap degree is at most 1, it runs in O(n7), like the fast-
est known parsers for LTAG, and can be made O(n6) if we use unlexicalised
dependencies. When the gap degree is greater than 1, the time complexity
goes up by a factor of n2 for each extra unit of gap degree, as in parsers
for coupled context-free grammars. Most of the non-projective sentences
appearing in treebanks are well-nested and have a small gap degree, so this
algorithm directly parses the vast majority of the non-projective construc-
tions present in natural languages, without requiring the construction of a
constituency grammar as an intermediate step.
Additionally, we have de�ned a set of structures for any gap degree k

which we call mildly ill-nested.�is set includes ill-nested structures veri-
fying certain conditions, and can be parsed in O(n3k+4) with a variant of
the parser for well-nested structures. �e practical interest of mildly ill-
nested structures can be seen in the data obtained from several dependency
treebanks, showing that all of the ill-nested structures in them are mildly ill-
nested for their corresponding gap degree.�erefore, our O(n3k+4) parser
can analyse all the gap degree k structures in these treebanks.
�e set of mildly ill-nested structures for gap degree k are de�ned as

the set of structures that have a binarisation of gap degree at most k.�is
de�nition is directly related to the way the MGk parser works, since it
implicitly �nds such a binarisation. An interesting line of future work
would be to �nd an equivalent characterisation of the set of mildly ill-
nested structures which is more grammar-oriented and would provide

9.6 discussion 261

a more linguistic insight into these structures. Another research direction,
which we are currently working on, is exploring how variants of theMGk
parser’s strategy can be applied to the problem of binarising LCFRS (Gómez-
Rodríguez et al., 2009b).

Part V

CONCLUSIONS

10
CONCLUSIONS

�e main goal of this thesis was to provide theoretical and practical ex-
tensions to the parsing schemata framework by Sikkel (1997), broadening
its applicability to practical parsing and using it to solve problems in re-
search areas currently being addressed by the computational linguistics
community. A variety of approaches and methods were used to achieve
this goal, including so�ware engineering (Chapter 3), empirical analyses
(Chapters 4, 5, 6) and formal approaches (Chapters 6, 7, 8, 9).
In Part ii, we addressed a limitation arising when using the formal frame-

work of parsing schemata to design parsing algorithms for practical settings:
although their high level of abstraction makes schemata useful to reason
about formal properties of parsers, they do not su�ce when it is necessary
to evaluate parsers in practice. In this case, a working implementation of
the parsers must be obtained, and the e�ciency of such an implementa-
tion depends on decisions about data and control structures that are not
represented in the schema. Our approach to this problem was to design
an implement a compiler able to make these decisions automatically, by
performing a static analysis of parsing schemata in order to determine a set
of suitable indexes on items that, when combined with a generic control
structure, ensures that the resulting implementation will achieve a compu-
tational complexity comparable to that of ad-hoc implementations. �e
interest of this system is that it allows a parser developer to automatically
obtain working prototypes of parsing algorithms, e�cient enough to be
used with real-sized natural language grammars, from formal speci�cations
of the parsers in the form of schemata.�e system works with schemata
for several grammar formalisms, and more can be supported through an
extensibility mechanism that allows the user to de�ne custom notational
elements.

265

266 conclusions

A�er presenting this parsing schema compiler, we demostrated its use by
applying it to schemata describing several well-known constituency parsers,
both for context-free grammars (CFG) and tree-adjoining grammars (TAG),
and performing empirical studies to compare their performance. In a �rst
study, we used the system to generate implementations of three popular
parsers for CFG and used them to analyse sentences with three natural
language grammars taken from real-life corpora. We then did an experiment
with TAG, in which we compiled schemata describing four di�erent well-
known TAG parsers from the literature, and compared their implementations
by parsing sentences with the XTAG English Grammar: to the best of
our knowledge, this was the �rst comparison of TAG parsing algorithms
performed with real-sized grammars rather than “toy” grammars. From
the performance results obtained from the experiments, we observed that
the best choice of a parsing algorithm for a particular application strongly
depends on the nature of the sentences to be parsed and the grammar to be
used, so it is useful to use a tool like this compiler to quickly prototype and
test several parsers in order to �nd the best one for a particular application.
Apart from these studies with real natural language grammars, we also

performed a comparison of TAG andCFG algorithms on arti�cially-generated
grammars.�is study provided further insight into the in�uence of factors
like string length and grammar size in performance, since using arti�cial
grammars allowed us to vary them freely. Among our conclusions, we
observed that both factors can be in�uential on �nal parsing performance,
and grammar size becomes particularly important when using real-sized
TAG.
In Part iii of the thesis, we presented error-repair parsing schemata, an

extension of the parsing schemata formalism which can be used to de�ne
error-repair parsers that can provide analyses for ungrammatical sentences.
Since the original formulation of parsing schemata was based on the assump-
tion that all the intermediate results generated by parsers must conform to
the rules of a given grammar, it was necessary to rede�ne the underlying
concepts behind schemata in order to obtain a variant to support these ro-
bust parsers.�e obtained formalism extends to error-repair parsers all the
advantages that regular parsing schemata provide for regular parsers: not
only we can describe, analyse and compare error-repair parsers and study
their formal properties, but also obtain implementations of them with the
compiler presented in Part ii.�ese implementations can be con�gured to

conclusions 267

use global, regional or local error-repair strategies by changing the control
structures used to schedule inferences.
As an example of these applications of the formalism, we used it to de-

scribe a well-known error-repair parser from the literature, to prove its
correctness, and to generate implementations of it with global and regional
error-repair strategies, measuring their performance.
Additionally, we de�ned a general transformation technique that can

be used to add error-repair capabilities to parsing algorithms that do not
have them. �is method transforms correct parsing schemata meeting
certain conditions into correct error-repair parsing schemata. Since the
transformation is totally systematic, it can be applied automatically as a
preprocessing step before compiling a schema, so that the compiler de�ned
previously can be used to obtain working implementations of error-repair
parsers from standard parsing schemata without error-repair functionality.
Part iv of the thesis extended parsing schemata in a di�erent direction,

by de�ning a variant of the formalism that can represent dependency-based
parsers.�is required a rede�nition of the core concepts behind the pars-
ing schemata theory, which was originally limited to constituency parsers.
�is extension, called dependency parsing schemata, is attractive given the
increasing interest that dependency-based parsers have received in recent
years, since it provides a common formal framework that can be used to
describe, relate and prove the correctness of a wide range of such parsers;
as well as obtaining working implementations of them with the compiler
described earlier.
We demonstrated the use of dependency parsing schemata by using

them to describe a wide variety of dependency parsing algorithms from the
literature, including projective and non-projective, grammar-driven and
data-driven, graph-based and transition-based parsers. We used the formal
tools provided by the formalism to prove the correctness of some of the
parsers, as well as to establish formal relations between parsers that had been
described very di�erently in their original formulations. We also showed
how the same ideas that led to the generalisation of parsing schemata to
dependency parsing could be adapted to other formalisms, by de�ning
schemata for Link Grammar (LG) parsers and obtaining LG variants of some
well-known dependency parsers.
Finally, we used the dependency parsing schemata formalism to solve

the open problem of e�ciently parsing mildly non-projective dependency
structures.�is is a relevant problem for practical parsing, since these sets

268 conclusions

of structures strike a good balance between coverage and e�ciency, as they
cover a vast majority of the structures observed in treebanks while being
polynomially parsable.
We de�ned an algorithm that can parse any well-nested dependency

structure with gap degree bounded by a constant k with time complexity
O(n2k+5) (with n being the length of the input), the same achieved by the
existing parsers for constituency formalisms of similar generative power. Ad-
ditionally, we de�ned a wider set of structures that we call mildly ill-nested
for a given gap degree k, and a variant of the previous parser that can parse
them in time O(n3k+4).�e practical relevance of this set of structures can
be seen in the data obtained from several dependency treebanks, showing
that all the sentences contained in them are contained in it, and thus they
are parsable with this algorithm.

10.1 future work

�e results presented in this thesis open up several interesting directions
for future work:

• While the parsing schema compiler introduced in Chapter 3 generates
e�cient implementations of parsers in terms of computational com-
plexity, it should be possible to optimise it more in order to obtain
faster absolute runtimes. For instance, a possible aspect that allows
for further optimisation is the order in which indexes are considered
when the generated implementations check for items conforming to
a given speci�cation: slight improvements in runtime are obtained if
the most o�en used indexes are considered �rst, since this minimises
the amount of false “if ” conditions that have to be checked. �us,
it should be possible to improve performance by gathering data in
runtime and changing this order dynamically, prioritising the indexes
that get used most frequently.

• Although the error-repair parsing schemata formalism described
in Chapter 6 is de�ned for any class of constituency grammars, the
practical examples that we explored were all context-free grammar
parsers. An interesting line of work would be to apply this formal-
ism to tree-adjoining grammars, obtaining and implementing TAG
parsers able to behave robustly in the presence of ungrammatical
sentences.�e transformation presented in Chapter 7 could be used

10.1 future work 269

to systematically obtain schemata for these parsers from existing TAG
parsing schemata, a�er extending the de�nition of yield union step
sets to support the discontinuous yields that can appear in TAG items.
Due to the overhead of TAG parsing over CFG parsing, the parsers so
obtained would probably be too ine�cient to be used with real-sized
grammars under a global error-repair strategy, but they could be used
in realistic conditions by applying a local or regional repair strategy.

• It would be interesting to add probabilistic models or machine learn-
ing techniques to make linking decisions to the parsers for mildly
non-projective dependency structures de�ned in Chapter 9, and test
their performance and accuracy on real examples, comparing them
to other projective and non-projective dependency parsers.

• �e de�nition of mildly ill-nested dependency structures given in
Chapter 9 is closely related with the way theMGk parser works. It
would be interesting to �nd a more grammar-oriented de�nition
of these structures that would provide linguistic insight into them,
and to study whether it is possible or not to �nd strongly ill-nested
structures in natural languages.

• Another interesting research direction, which we are currently work-
ing on, is to apply variants of theMGk parser’s strategy to the related
problem of binarising linear context-free rewriting systems, reducing
the number of nonterminals in their productions to improve pars-
ing e�ciency. In Gómez-Rodríguez et al. (2009b), an algorithm is
presented to solve this problem, whose strategy tomerge nonterminal
symbols is directly related to the way in which theMGk Combiner
steps join dependency subtrees.

In a broader sense, the results presented in this thesis can facilitate the
use of linguistic resources (and, in particular, syntactic information) in ap-
plications that work with written natural language text, such as information
retrieval, information extraction and question answering systems.

BIBLIOGRAPHY

Susana Afonso, Eckhard Bick, Renato Haber, and Diana Santos. 2002.
“Floresta sintá(c)tica”: a treebank for Portuguese. In Proceedings of the 3rd
International Conference on Language Resources and Evaluation (LREC
2002), pages 1968–1703. ELRA, Paris, France. (Cited on page 259.)

Alfred V. Aho, Ravi Sethi, and Je�rey D. Ullman. 1986. Compilers: principles,
techniques, and tools. Addison-Wesley Longman Publishing Co., Inc.,
Boston, MA, USA. (Cited on page 31.)

Miguel A. Alonso, David Cabrero, Éric Villemonte de la Clergerie, and
Manuel Vilares. 1999. Tabular algorithms for TAG parsing. In Proceed-
ings of the Ninth Conference of the European Chapter of the Association
for Computational Linguistics (EACL-99), pages 150–157. Association for
Computational Linguistics, Morristown, NJ, USA. (Cited on pages 8, 87,
89, 96, 100, and 104.)

MiguelA.Alonso, ÉricVillemonte de laClergerie, Víctor J. Díaz, andManuel
Vilares. 2004. Relating tabular parsing algorithms for LIG and TAG. In
Harry Bunt, John Carroll, Giorgio Satta (eds.), New developments in
parsing technology, pages 157–184. Kluwer Academic Publishers, Norwell,
MA, USA. (Cited on page 8.)

Miguel A. Alonso and Víctor J. Díaz. 2003a. Parsing tree adjoining gram-
mars and tree insertion grammars with simultaneous adjunctions. In
Proceedings of 8th International Workshop on Parsing Technologies (IWPT
2003), pages 19–30. ACL/SIGPARSE. (Cited on page 87.)

Miguel A. Alonso and Víctor J. Díaz. 2003b. Variants of mixed parsing of
TAG and TIG. Traitement Automatique des Langues, 44(3):41–65. (Cited
on page 44.)

Carlos Amaral, Adán Cassan, Helena Figueira, André Martins, Afonso
Mendes, Pedro Mendes, Cláudia Pinto, and Daniel Vidal. 2008. Prib-
eram’s question answering system in QA@CLEF 2007. In Advances in
Multilingual and Multimodal Information Retrieval: 8th Workshop of

271

272 bibliography

the Cross-Language Evaluation Forum (CLEF 2007) , volume 5152 of Lec-
ture Notes in Computer Science, pages 364–371. Springer-Verlag, Berlin-
Heidelberg-New York. (Cited on page 6.)

Nart B. Atalay, Kemal O�azer, and Bilge Say. 2003.�e annotation process in
the Turkish treebank. In Proceedings of EACL Workshop on Linguistically
Interpreted Corpora (LINC-03), pages 243–246. Association for Computa-
tional Linguistics, Morristown, NJ, USA. (Cited on page 259.)

Giuseppe Attardi. 2006. Experiments with a multilanguage non-projective
dependency parser. In Proceedings of the 10th Conference on Computa-
tional Natural Language Learning (CoNLL-X), pages 166–170. Association
for Computational Linguistics, Morristown, NJ, USA. (Cited on pages 203
and 205.)

David Bamman and Gregory Crane. 2006. �e design and use of a Latin
dependency treebank. In Proceedings of the Fi�h Workshop on Treebanks
and Linguistic�eories (TLT 2006), pages 67–78. Institute of Formal and
Applied Linguistics, Prague, Czech Republic. (Cited on page 259.)

Cristina Barbero, Leonardo Lesmo, Vincenzo Lombardo, and Paola Merlo.
1998. Integration of syntactic and lexical information in a hierarchical
dependency grammar. In Proceedings of COLING-ACL ’98 Workshop on
Processing of Dependency-Based Grammars, pages 58–67. Association for
Computational Linguistics, Morristown, NJ, USA. (Cited on pages 181,
191, and 199.)

Leonoor van der Beek, Gosse Bouma, Robert Malouf, and Gertjan van
Noord. 2002. �e Alpino dependency treebank. In Language and Com-
puters, Computational Linguistics in the Netherlands 2001. Selected Papers
from the Twel�h CLIN Meeting, pages 8–22. Rodopi, Amsterdam, the
Netherlands. (Cited on page 259.)

Eberhard Bertsch and Mark-Jan Nederhof. 1999. On failure of the pruning
technique in “Error repair in shi�-reduce parsers”. ACM Transactions on
Programming Languages and Systems, 21(1):1–10. (Cited on page 139.)

Sylvie Billot and Bernard Lang. 1989. �e structure of shared forest in
ambiguous parsing. In Proceedings of the 27th Annual Meeting of the Asso-
ciation for Computational Linguistics (ACL’89), pages 143–151. Association
for Computational Linguistics, Morristown, NJ, USA. (Cited on pages 9,
23, 74, and 186.)

bibliography 273

Manuel Bodirsky, Marco Kuhlmann, and Mathias Möhl. 2005. Well-nested
drawings as models of syntactic structure (extended version). Technical
report, Saarland University. (Cited on page 224.)

Patrice Bonhomme and Patrice Lopez. 2000. Resources for lexicalized
tree adjoining grammars and XML encoding: TagML. In Proceedings of
the 2nd International Conference on Language Resources and Evaluation
(LREC 2000). ELRA, Paris, France. (Cited on page 89.)

Gosse Bouma, Jori Mur, Gertjan van Noord, Lonneke van der Plas, and
Jörg Tiedemann. 2005. Question answering for Dutch using dependency
relations. In Accessing Multilingual Information Repositories: 6th Work-
shop of the Cross-Language Evaluation Forum (CLEF 2005), volume 4022
of Lecture Notes in Computer Science, pages 370–379. Springer-Verlag,
Berlin-Heidelberg-New York. (Cited on page 6.)

Bob Carpenter. 1992. �e logic of typed feature structures. Cambridge
University Press, New York, NY, USA. (Cited on pages 45, 54, 84, and 90.)

JohnA.Carroll. 1993. Practical uni�cation-based parsing of natural language.
Technical report no. 314, University of Cambridge, Computer Laboratory,
England. PhD�esis. (Cited on pages 75 and 100.)

Carl Cerecke. 2002. Repairing syntax errors in LR-based parsers. Australian
Computer Science Communications, 24(1):17–22. (Cited on page 118.)

Wanxiang Che, Zhenghua Li, Yuxuan Hu, Yongqiang Li, Bing Qin, Ting
Liu, and Sheng Li. 2008. A cascaded syntactic and semantic dependency
parsing system. In Proceedings of the 12th Conference on Computational
Natural Language Learning (CoNLL 2008), pages 238–242. Association for
Computational Linguistics, Morristown, NJ, USA. (Cited on page 206.)

JohnChen andK. Vijay-Shanker. 2000. Automated extraction of TAGs from
the Penn treebank. In Proceedings of the Sixth International Workshop on
Parsing Technologies (IWPT 2000), pages 65–76. ACL/SIGPARSE. (Cited
on page 86.)

David Chiang. 2005. A hierarchical phrase-based model for statistical
machine translation. InACL ’05: Proceedings of the 43rdAnnualMeeting of
the Association for Computational Linguistics, pages 263–270. Association
for Computational Linguistics, Morristown, NJ, USA. (Cited on page 6.)

274 bibliography

Noam Chomsky. 1956. �ree models for the description of language. IRI
Transactions on Information�eory, 2(3):113–124. (Cited on page 81.)

Noam Chomsky. 1959. On certain formal properties of grammars. Informa-
tion and Control, 2:137–167. (Cited on pages 22 and 81.)

Éric Villemonte de la Clergerie. 2005. DyALog: a tabular logic programming
based environment for NLP. In Proceedings of 2nd International Work-
shop on Constraint Solving and Language Processing (CSLP’05). Barcelona,
Spain. (Cited on page 44.)

Michael John Collins. 1996. A new statistical parser based on bigram lexical
dependencies. In Proceedings of the 34th AnnualMeeting of the Association
for Computational Linguistics (ACL’96), pages 184–191. Association for
Computational Linguistics, Morristown, NJ, USA. (Cited on pages 185
and 199.)

Rafael Corchuelo, José A. Pérez, Antonio Ruiz, and Miguel Toro. 2002.
Repairing syntax errors in LRparsers. ACMTransactions on Programming
Languages and Systems, 24(6):698–710. (Cited on page 118.)

Simon Corston-Oliver, Anthony Aue, Kevin Duh, and Eric Ringger. 2006.
Multilingual dependency parsing using Bayes PointMachines. In Proceed-
ings of the Human Language Technology Conference of the North American
Chapter of the Association for Computational Linguistics (NAACL HLT
2006), pages 160–167. Association for Computational Linguistics, Morris-
town, NJ, USA. (Cited on page 186.)

Jacques Courtin and Damien Genthial. 1998. Parsing with dependency rela-
tions and robust parsing. In Proceedings of COLING-ACL ’98Workshop on
Processing of Dependency-Based Grammars, pages 88–94. Association for
Computational Linguistics, Morristown, NJ, USA. (Cited on page 191.)

Michael A. Covington. 1990. A dependency parser for variable-word-order
languages. Technical Report AI-1990-01, University of Georgia, Athens,
GA. (Cited on pages 181 and 209.)

Michael A. Covington. 2001. A fundamental algorithm for dependency
parsing. In Proceedings of the 39th Annual ACM Southeast Conference,
pages 95–102. ACM, New York, NY, USA. (Cited on pages 196, 209,
and 210.)

bibliography 275

Hang Cui, Renxu Sun, Keya Li, Min-Yen Kan, and Tat-Seng Chua. 2005.
Question answering passage retrieval using dependency relations. In
SIGIR ’05: Proceedings of the 28th Annual International ACM SIGIR Con-
ference on Research and Development in Information Retrieval, pages
400–407. ACM, New York, NY, USA. (Cited on page 179.)

Aron Culotta and Je�rey Sorensen. 2004. Dependency tree kernels for
relation extraction. InACL ’04: Proceedings of the 42nd Annual Meeting of
the Association for Computational Linguistics, pages 423–429. Association
for Computational Linguistics,Morristown, NJ, USA. (Cited on page 179.)

J.P.M. de Vreught and H.J Honig. 1989. A tabular bottom-up recognizer.
Report 89-78, Del� University of Technology, Del�, the Netherlands.
(Cited on page 199.)

Víctor J. Díaz and Miguel A. Alonso. 2000. Comparing tabular parsers for
tree adjoining grammars. In David S. Warren, Manuel Vilares, Leandro
Rodríguez Liñares, and Miguel A. Alonso, editors, Proceedings of the 2nd
Workshop on Tabulation in Parsing and Deduction (TAPD 2000), pages
91–100. University of Vigo, Spain. (Cited on pages 44, 73, and 89.)

Víctor J. Díaz, Vicente Carrillo, and Miguel Toro. 1998. Elementary tree
representation. In Proceedings of the 1stWorkshop on Tabulation in Parsing
and Deduction (TAPD 98), pages 10–15. INRIA Rocquencourt, France.
(Cited on page 87.)

Yuan Ding and Martha Palmer. 2005. Machine translation using probab-
ilistic synchronous dependency insertion grammars. In ACL ’05: Pro-
ceedings of the 43rd Annual Meeting of the Association for Computational
Linguistics, pages 541–548. Association for Computational Linguistics,
Morristown, NJ, USA. (Cited on page 179.)

SašoDžeroski, Tomaž Erjavec, Nina Ledinek, Petr Pajas, Zdeněk Žabokrtský,
and Andreja Žele. 2006. Towards a Slovene dependency treebank. In
Proceedings of the 5th International Conference on Language Resources and
Evaluation (LREC 2006), pages 1388–1391. ELRA, Paris, France. (Cited on
page 259.)

Jay Earley. 1970. An e�cient context-free parsing algorithm. Communic-
ations of the ACM, 13(2):94–102. (Cited on pages 7, 11, 22, 23, 74, 100,
and 190.)

276 bibliography

Jason Eisner. 1996. �ree new probabilistic models for dependency parsing:
An exploration. In Proceedings of the 16th International Conference on
Computational Linguistics (COLING-96), pages 340–345. ACL / Morgan
Kaufmann, San Francisco, CA, USA. (Cited on pages 181, 182, 186, 188,
197, 198, 200, 202, 213, 216, 217, and 221.)

Jason Eisner. 2000. Bilexical grammars and their cubic-time parsing al-
gorithms. In Harry Bunt and Anton Nijholt, editors, Advances in Prob-
abilistic and Other Parsing Technologies, pages 29–62. Kluwer Academic
Publishers, Dordrecht, the Netherlands. (Cited on page 7.)

Jason Eisner, Eric Goldlust, and Noah A. Smith. 2004. Dyna: A declarative
language for implementing dynamic programs. In Proceedings of the
42nd Annual Meeting of the Association for Computational Linguistics
(ACL 2004) (Companion Volume), pages 218–221. Association for Com-
putational Linguistics, Morristown, NJ, USA. (Cited on page 44.)

Jason Eisner and Giorgio Satta. 1999. E�cient parsing for bilexical context-
free grammars and head automaton grammars. In Proceedings of the 37th
Annual Meeting of the Association for Computational Linguistics (ACL’99),
pages 457–464. Association for Computational Linguistics, Morristown,
NJ, USA. (Cited on pages 185, 188, 189, 198, 200, 202, 213, 216, and 218.)

Jason Eisner and Giorgio Satta. 2000. A faster parsing algorithm for lexic-
alized tree-adjoining grammars. In Proceedings of the 5th Workshop on
Tree-Adjoining Grammars and Related Formalisms (TAG+5), pages 14–19.
Université Paris 7, Paris, France. (Cited on pages 224 and 243.)

Katrin Fundel, Robert Kü�ner, and Ralf Zimmer. 2006. RelEx—Relation
extraction using dependency parse trees. Bioinformatics, 23(3):365–371.
(Cited on page 179.)

Haim Gaifman. 1965. Dependency systems and phrase-structure systems.
Information and Control, 8:304–337. (Cited on pages 7, 181, and 190.)

Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. 1995.
Design Patterns – Elements of Reusable Object-Oriented So�ware. Addison-
Wesley, Reading, MA, USA. (Cited on pages 55 and 58.)

Carlos Gómez-Rodríguez, Miguel A. Alonso, and Manuel Vilares. 2006a.
Estudio comparativo del rendimiento de analizadores sintácticos para

bibliography 277

gramáticas de adjunción de árboles. Procesamiento del Lenguaje Natural,
37:179–186. (Cited on page 15.)

Carlos Gómez-Rodríguez, Miguel A. Alonso, and Manuel Vilares. 2006b.
Generating XTAG parsers from algebraic speci�cations. In Proceedings
of TAG+8, the Eighth International Workshop on Tree Adjoining Grammar
and Related Formalisms, pages 103–108. Association for Computational
Linguistics, Morristown, NJ, USA. (Cited on page 14.)

Carlos Gómez-Rodríguez, Miguel A. Alonso, and Manuel Vilares. 2006c.
On theoretical and practical complexity of TAGparsers. In ShulyWintner
(ed.), Proceedings of FG 2006: �e 11th conference on Formal Grammar,
volume of FG Online Proceedings, pages 87–101. CSLI publications, Stan-
ford, CA, USA. (Cited on page 14.)

Carlos Gómez-Rodríguez, Miguel A. Alonso, and Manuel Vilares. 2007a.
Generation of indexes for compiling e�cient parsers from formal spe-
ci�cations. In Roberto Moreno-Díaz, Franz Pichler, and Alexis Quesada-
Arencibia, editors, Computer Aided Systems�eory, volume 4739 of Lec-
ture Notes in Computer Science, pages 257–264. Springer-Verlag, Berlin-
Heidelberg-New York. (Cited on page 15.)

Carlos Gómez-Rodríguez, Miguel A. Alonso, and Manuel Vilares. 2007b.
Técnicas deductivas para el análisis sintáctico con corrección de errores.
Procesamiento del Lenguaje Natural, 39:13–20. (Cited on page 15.)

Carlos Gómez-Rodríguez, Miguel A. Alonso, and Manuel Vilares. 2009a.
A general method for transforming standard parsers into error-repair
parsers. In Alexander Gelbukh, editor, Computational Linguistics and
Intelligent Text Processing, volume 5449 of Lecture Notes in Computer
Science, pages 207–219. Springer-Verlag, Berlin-Heidelberg-New York.
(Cited on page 14.)

Carlos Gómez-Rodríguez, John Carroll, and David Weir. 2008a. A de-
ductive approach to dependency parsing. In Proceedings of the 46th
Annual Meeting of the Association for Computational Linguistics: Human
Language Technologies (ACL’08:HLT), pages 968–976. Association for
Computational Linguistics, Morristown, NJ, USA. (Cited on page 14.)

Carlos Gómez-Rodríguez, Marco Kuhlmann, Giorgio Satta, andDavidWeir.
2009b. Optimal reduction of rule length in linear context-free rewriting

278 bibliography

systems. In Proceedings of NAACL HLT 2009: the Conference of the
North American Chapter of the Association for Computational Linguistics.
Association for Computational Linguistics, Morristown, NJ, USA. In
press. (Cited on pages 16, 261, and 269.)

Carlos Gómez-Rodríguez and Giorgio Satta. 2009. An optimal-time binar-
ization algorithm for linear context-free rewriting systems with fan-out
two. In Proceedings of Joint conference of the 47th Annual Meeting of the
Association for Computational Linguistics and the 4th International Joint
Conference on Natural Language Processing of the Asian Federation of
Natural Language Processing (ACL-IJCNLP 2009). Association for Com-
putational Linguistics, Morristown, NJ, USA. In press. (Cited on page 16.)

Carlos Gómez-Rodríguez, Jesús Vilares, and Miguel A. Alonso. 2005a.
Compilación e�ciente de esquemas de análisis sintáctico. In Actas de
PROLE 2005, V Jornadas sobre Programación y Lenguajes, pages 175–184.
�omson-Paraninfo, Madrid, Spain. (Cited on page 16.)

Carlos Gómez-Rodríguez, Jesús Vilares, and Miguel A. Alonso. 2005b. Gen-
eración automática de analizadores sintácticos a partir de esquemas de
análisis. Procesamiento del Lenguaje Natural, 35:401–408. (Cited on
page 15.)

Carlos Gómez-Rodríguez, Jesús Vilares, and Miguel A. Alonso.
2006d. Automatic generation of natural language parsers from
declarative speci�cations. In Proceedings of the �ird Starting
AI Researchers’ Symposium (STAIRS 2006), pages 159–160. IOS
Press, Amsterdam, the Netherlands. Long version available at
http://www.grupocole.org/GomVilAlo2006a_long.pdf. (Cited on
pages 15 and 76.)

Carlos Gómez-Rodríguez, Jesús Vilares, andMiguel A. Alonso. 2007c. Com-
piling declarative speci�cations of parsing algorithms. In RolandWagner,
Norman Revell, and Günther Pernul, editors, Database and Expert Sys-
tems Applications, volume 4653 of Lecture Notes in Computer Science,
pages 529–538. Springer-Verlag, Berlin-Heidelberg-New York. (Cited on
page 14.)

Carlos Gómez-Rodríguez, Jesús Vilares, and Miguel A. Alonso. 2007d. Pro-
totyping e�cient natural language parsers. In Proceedings of Recent Ad-

bibliography 279

vances in Natural Language Processing (International Conference RANLP
2007), pages 246–250. (Cited on page 14.)

Carlos Gómez-Rodríguez, Jesús Vilares, and Miguel A. Alonso. 2009c.
A compiler for parsing schemata. So�ware: Practice and Experience,
39(5):441–470. (Cited on page 13.)

Carlos Gómez-Rodríguez, David Weir, and John Carroll. 2008b. Parsing
mildly non-projective dependency structures. Technical Report CSRP
600, Department of Informatics, University of Sussex. Extended version
of the homonymous paper in EACL-09. (Cited on page 15.)

Carlos Gómez-Rodríguez, David Weir, and John Carroll. 2009d. Parsing
mildly non-projective dependency structures. In Proceedings of the 12th
Conference of the European Chapter of the Association for Computational
Linguistics (EACL-09), pages 291–299. Association for Computational
Linguistics, Morristown, NJ, USA. (Cited on page 14.)

Dick Grune and Ceriel J.H. Jacobs. 2008. Parsing Techniques. A Practical
Guide— Second edition. Springer Science+BusinessMedia, Berlin. (Cited
on page 118.)

Jan Hajič, Jarmila Panevová, Eva Hajičová, Jarmila Panevová, Petr Sgall,
Petr Pajas, Jan Štěpánek, Jiří Havelka, and Marie Mikulová. 2006. Prague
Dependency Treebank 2.0. CDROM CAT: LDC2006T01, ISBN 1-58563-
370-4. Linguistic Data Consortium. (Cited on pages 247 and 259.)

Jan Hajič, Otakar Smrž, Petr Zemánek, Jan Šnaidauf, and Emanuel Beška.
2004. Prague Arabic dependency treebank: Development in data and
tools. In Proceedings of the NEMLAR International Conference on Arabic
Language Resources and Tools, pages 110–117. (Cited on page 259.)

Jiří Havelka. 2007. Beyond projectivity: Multilingual evaluation of con-
straints and measures on non-projective structures. In ACL 2007: Pro-
ceedings of the 45th Annual Meeting of the Association for Computational
Linguistics, pages 608–615. Association for Computational Linguistics,
Morristown, NJ, USA. (Cited on pages 223 and 224.)

David Hays. 1964. Dependency theory: a formalism and some observations.
Language, 40:511–525. (Cited on pages 7 and 181.)

280 bibliography

Jesús Herrera, Anselmo Peñas, and Felisa Verdejo. 2005. Textual entailment
recognition based on dependency analysis and WordNet. InMachine
Learning Challenges, volume 3944 of Lecture Notes in Computer Science,
pages 231–239. Springer-Verlag, Berlin-Heidelberg-New York. (Cited on
pages 6 and 179.)

Günter Hotz and Gisela Pitsch. 1996. On parsing coupled-context-free
languages. �eoretical Computer Science, 161(1-2):205–233. (Cited on
pages 224 and 247.)

RinyHuybregts. 1984.�e weak inadequacy of context-free phrase structure
grammars. In Ger de Haan, Mieke Trommelen, and Wim Zonneveld,
editors, Van periferie naar kern, pages 81–99. Foris, Dordrecht, the Neth-
erlands. (Cited on page 80.)

Stephen C. Johnson. 1975. YACC: Yet another compiler compiler. Computer
Science Technical Report 32, AT&T Bell Laboratories, Murray Hill, New
Jersey, USA. (Cited on page 43.)

Aravind K. Joshi. 1985. Tree Adjoining Grammars: How much context-
sensitivity is required to provide reasonable structural descriptions? In
David R. Dowty, Lauri Karttunen, andArnoldM. Zwicky, editors,Natural
Language Parsing, pages 206–250. Cambridge University Press. (Cited
on pages 7, 80, and 81.)

Aravind K. Joshi. 1987. An introduction to tree adjoining grammars. In
Alexis Manaster-Ramer, editor,Mathematics of Language, pages 87–115.
John Benjamins Publishing Co., Amsterdam/Philadelphia. (Cited on
page 81.)

Aravind K. Joshi, Leon S. Levy, and Masako Takahashi. 1975. Tree Ad-
junct Grammars. Journal of Computer and System Sciences, 10(2):136–163.
(Cited on page 81.)

Aravind K. Joshi and Yves Schabes. 1997a. Tree-Adjoining Grammars. In
Grzegorz Rozenberg and Arto Salomaa, editors, Handbook of Formal
Languages, volume 3, pages 69–123. Springer, Berlin-Heidelberg-New
York. (Cited on pages 80 and 81.)

Aravind K. Joshi and Yves Schabes. 1997b. Tree-adjoining grammars. In
Handbook of Formal Languages, vol. 3: Beyond Words, pages 69–123.
Springer-Verlag New York, Inc., New York, NY, USA. (Cited on page 224.)

bibliography 281

AravindK. Joshi, K. Vijay-Shanker, andDavid J.Weir. 1991.�e convergence
of mildly context-sensitive grammar formalisms. In Peter Sells, Stuart M.
Shieber, and�omas Wasow, editors, Foundational Issues in Natural
Language Processing, pages 31–81. MIT Press, Cambridge, MA, USA.
(Cited on pages 7 and 81.)

Sylvain Kahane, Alexis Nasr, and Owen Rambow. 1998. Pseudo-projectivity:
A polynomially parsable non-projective dependency grammar. In Pro-
ceedings of the 36th Annual Meeting of the Association for Computational
Linguistics and the 17th International Conference on Computational Lin-
guistics (COLING-ACL’98), pages 646–652. ACL / Morgan Kaufmann,
San Francisco, CA, USA. (Cited on pages 181, 182, and 203.)

Tadao Kasami. 1965. An e�cient recognition and syntax algorithm for
context-free languages. Scienti�c Report AFCRL-65-758, Air Force Cam-
bridge Research Lab., Bedford, Massachussetts. (Cited on pages 11, 22, 52,
74, and 100.)

Walter Kasper, Bernd Kiefer, Hans U. Krieger, C. J. Rupp, and Karsten L.
Worm. 1999. Charting the depths of robust speech parsing. In Proceedings
of the 37th Annual Meeting of the Association for Computational Linguist-
ics (ACL’99), pages 405–412. Association for Computational Linguistics,
Morristown, NJ, USA. (Cited on pages 7 and 117.)

Martin Kay. 1980. Algorithm schemata and data structures in syntactic
processing. Technical Report CSL-80-12, Xerox PARC, Palo Alto, CA,
USA. (Cited on pages 38 and 47.)

Ik-Soon Kim and Kwang-Moo Choe. 2001. Error repair with validation in
LR-based parsing. ACM Transactions on Programming Languages and
Systems, 23(4):451–471. (Cited on page 118.)

Matthias T. Kromann. 2003. �e Danish dependency treebank and the
underlying linguistic theory. In Proceedings of the 2nd Workshop on
Treebanks and Linguistic�eories (TLT), pages 217–220. Växjö University
Press, Växjö, Sweden. (Cited on page 259.)

Marco Kuhlmann. 2007. Dependency Structures and Lexicalized Grammars.
Doctoral dissertation, SaarlandUniversity, Saarbrücken, Germany. (Cited
on pages 224, 233, 234, 235, 243, and 247.)

282 bibliography

Marco Kuhlmann and Mathias Möhl. 2007. Mildly context-sensitive de-
pendency languages. In Proceedings of the 45th Annual Meeting of the
Association for Computational Linguistics (ACL 2007), pages 160–167. As-
sociation for Computational Linguistics, Morristown, NJ, USA. (Cited
on page 233.)

Marco Kuhlmann and Joakim Nivre. 2006. Mildly non-projective depend-
ency structures. InProceedings of the COLING/ACL 2006Main Conference
Poster Sessions, pages 507–514. Association for Computational Linguistics,
Morristown, NJ, USA. (Cited on pages 224, 226, and 247.)

Vladimir I. Levenshtein. 1966. Binary codes capable of correcting deletions,
insertions, and reversals. Soviet Physics Doklady, 10(8):707–710. (Cited
on page 123.)

Yanhong A. Liu and Scott D. Stoller. 2003. From Datalog rules to e�cient
programs with time and space guarantees. In Proceedings of the Fi�h
ACM-SIGPLAN International Conference on Principles and Practice of
Declarative Programming (PPDP 2003), pages 172–183. ACM Press, New
York, NY, USA. (Cited on page 44.)

Vincenzo Lombardo and Leonardo Lesmo. 1996. An Earley-type recognizer
for dependency grammar. In Proceedings of the 16th International Confer-
ence on Computational Linguistics (COLING 96), pages 723–728. ACL /
Morgan Kaufmann, San Francisco, CA, USA. (Cited on pages 181, 182,
190, 199, and 203.)

Gordon Lyon. 1974. Syntax-directed least-errors analysis for context-free
languages: a practical approach. Communications of the ACM, 17(1):3–14.
(Cited on pages 118, 125, 127, 135, 139, and 144.)

Christopher D. Manning and Hinrich Schütze. 1999. Foundations of Stat-
istical Natural Language Processing. MIT Press, Cambridge, MA, USA.
(Cited on page 74.)

David A. McAllester. 1999. On the complexity analysis of static analyses.
In SAS ’99: Proceedings of the 6th International Symposium on Static
Analysis, volume 1694 of Lecture Notes in Computer Science, pages 312–
329. Springer-Verlag, Berlin-Heidelberg-New York. (Cited on page 44.)

Ryan McDonald, Koby Crammer, and Fernando Pereira. 2005a. Online
large-margin training of dependency parsers. In ACL ’05: Proceedings of

bibliography 283

the 43rd Annual Meeting of the Association for Computational Linguistics,
pages 91–98. Association for Computational Linguistics, Morristown, NJ,
USA. (Cited on page 186.)

Ryan McDonald and Joakim Nivre. 2007. Characterizing the errors of
data-driven dependency parsing models. In Proceedings of the 2007 Joint
Conference on Empirical Methods in Natural Language Processing and
Computational Natural Language Learning (EMNLP-CoNLL 2007), pages
122–131. Association for Computational Linguistics, Morristown, NJ, USA.
(Cited on page 221.)

Ryan McDonald, Fernando Pereira, Kiril Ribarov, and Jan Hajič. 2005b.
Non-projective dependency parsing using spanning tree algorithms. In
HLT/EMNLP 2005: Proceedings of the conference on Human Language
Technology and Empirical Methods in Natural Language Processing, pages
523–530. Association for Computational Linguistics, Morristown, NJ,
USA. (Cited on pages 180, 206, 207, 208, and 224.)

Ryan McDonald and Giorgio Satta. 2007. On the complexity of non-
projective data-driven dependency parsing. In IWPT 2007: Proceedings
of the 10th International Conference on Parsing Technologies, pages 121–132.
Association for Computational Linguistics, Morristown, NJ, USA. (Cited
on pages 206 and 224.)

Bruce J. McKenzie, Corey Yeatman, and Lorraine de Vere. 1995. Error repair
in shi�-reduce parsers. ACM Transactions on Programming Languages
and Systems, 17(4):672–689. (Cited on pages 8 and 139.)

Chris Mellish. 1989. Some chart-based techniques for parsing ill-formed
input. In Proceedings of the 27th Annual Meeting of the Association for
Computational Linguistics (ACL’89), pages 102–109. Association for Com-
putational Linguistics, Morristown, NJ, USA. (Cited on page 118.)

Robert C.Moore. 2000. Improved le�-corner chart parsing for large context-
free grammars. In Proceedings of the 6th International Workshop on
Parsing Technologies (IWPT 2000), pages 171–182. ACL/SIGPARSE. (Cited
on page 143.)

Mark-Jan Nederhof. 1997. Solving the correct-pre�x property for TAGs. In
Tilman Becker and Hans-Ulrich Krieger, editors, Proceedings of the Fi�h
Meeting on Mathematics of Language, pages 124–130. DFKI, Saarbrücken,
Germany. (Cited on page 87.)

284 bibliography

Mark-Jan Nederhof. 1999. �e computational complexity of the correct-
pre�x property for TAGs. Computational Linguistics, 25(3):345–360.
(Cited on pages 87, 89, 95, 96, 100, and 104.)

Jens Nilsson, Johan Hall, and Joakim Nivre. 2005. MAMBA meets TIGER:
Reconstructing a Swedish treebank from antiquity. In Proceedings of
NODALIDA 2005 Special Session on Treebanks, pages 119–132. Samfunds-
litteratur, Frederiksberg, Denmark. (Cited on page 259.)

Joakim Nivre. 2003. An e�cient algorithm for projective dependency
parsing. In Proceedings of the 8th International Workshop on Parsing
Technologies (IWPT 03), pages 149–160. ACL/SIGPARSE. (Cited on
pages 191 and 196.)

Joakim Nivre. 2006a. Inductive Dependency Parsing (Text, Speech and
Language Technology). Springer-Verlag New York, Inc., Secaucus, NJ,
USA. (Cited on page 183.)

Joakim Nivre. 2006b. Two strategies for text parsing. Journal of Linguistics,
19:440–448. (Cited on page 7.)

Joakim Nivre. 2007. Incremental non-projective dependency parsing. In
Proceedings of NAACL HLT 2007: the Annual Conference of the North
American Chapter of the Association for Computational Linguistics, pages
396–403. Association for Computational Linguistics, Morristown, NJ,
USA. (Cited on page 210.)

Joakim Nivre, Johan Hall, Sandra Kübler, Ryan McDonald, Jens Nilsson,
Sebastian Riedel, and Deniz Yuret. 2007a. �e CoNLL 2007 shared task
on dependency parsing. In Proceedings of the CoNLL Shared Task Session
of EMNLP-CoNLL 2007, pages 915–932. (Cited on page 191.)

Joakim Nivre, Johan Hall, and Jens Nilsson. 2004. Memory-based depend-
ency parsing. In Proceedings of the 8th Conference on Computational
Natural Language Learning (CoNLL-2004), pages 49–56. Association for
Computational Linguistics, Morristown, NJ, USA. (Cited on pages 191
and 192.)

Joakim Nivre, Johan Hall, Jens Nilsson, Atanas Chanev, Gülşen Eryiğit,
Sandra Kübler, Stetoslav Marinov, and Erwin Marsi. 2007b. MaltParser:
A language-independent system for data-driven dependency parsing.

bibliography 285

Natural Language Engineering Journal, 13(2):99–135. (Cited on pages 7,
191, and 196.)

Joakim Nivre, Johan Hall, Jens Nilsson, Gülşen Eryiğit, and Stetoslav
Marinov. 2006. Labeled pseudo-projective dependency parsing with
support vector machines. In Proceedings of the 10th Conference on Com-
putational Natural Language Learning (CoNLL-X), pages 221–225. Associ-
ation for Computational Linguistics, Morristown, NJ, USA. (Cited on
page 191.)

Joakim Nivre and Ryan McDonald. 2008. Integrating graph-based and
transition-based dependency parsers. In Proceedings of the 46th An-
nual Meeting of the Association for Computational Linguistics: Human
Language Technologies (ACL-08: HLT), pages 950–958. Association for
Computational Linguistics, Morristown, NJ, USA. (Cited on pages 191
and 206.)

Joakim Nivre and Jens Nilsson. 2005. Pseudo-projective dependency pars-
ing. In ACL ’05: Proceedings of the 43rd Annual Meeting of the Association
for Computational Linguistics, pages 99–106. Association for Computa-
tional Linguistics, Morristown, NJ, USA. (Cited on pages 224 and 248.)

Kemal O�azer, Bilge Say, Dilek ZeynepHakkani-Tür, andGökhan Tür. 2003.
Building a Turkish treebank. In A. Abeille, ed., Building and Exploiting
Syntactically-annotated Corpora, pages 261–277. Kluwer, Dordrecht, the
Netherlands. (Cited on page 259.)

Mark A. Paskin. 2001. Cubic-time parsing and learning algorithms for gram-
matical bigram models. Technical Report UCB/CSD-01-1148, University
of California at Berkeley, Berkeley, CA, USA. (Cited on page 185.)

Juan C. Perez-Cortes, Juan C. Amengual, Joaquim Arlandis, and Ra-
fael Llobet. 2000. Stochastic error-correcting parsing for OCR post-
processing. In ICPR ’00: Proceedings of the International Conference on
Pattern Recognition, page 4405. IEEE Computer Society, Los Alamitos,
CA, USA. (Cited on page 118.)

Daniel J. Rosenkrantz and Philip M. Lewis II. 1970. Deterministic Le�
Corner parsing. In Conference Record of 1970 Eleventh Annual Meeting on
Switching and Automata�eory, pages 139–152. IEEE Computer Society,
Los Alamitos, CA, USA. (Cited on pages 54, 74, and 100.)

286 bibliography

Geo�rey Sampson. 1994.�e Susanne corpus, release 3. School of Cognitive
andComputing Sciences, University of Sussex, Falmer, Brighton, England.
(Cited on pages 75 and 100.)

Anoop Sarkar. 2000. Practical experiments in parsing using tree adjoining
grammars. In Proceedings of the 5th International Workshop on Tree
Adjoining Grammars and Related Formalisms (TAG+5), pages 193–198.
Université Paris 7, Paris, France. (Cited on pages 89, 97, and 103.)

Giorgio Satta. 1992. Recognition of linear context-free rewriting systems.
In Proceedings of the 30th Annual Meeting of the Association for Computa-
tional Linguistics (ACL’92), pages 89–95. Association for Computational
Linguistics, Morristown, NJ, USA. (Cited on pages 224, 225, and 248.)

Yves Schabes. 1994. Le� to right parsing of lexicalized tree-adjoining gram-
mars. Computational Intelligence, 10(4):506–515. (Cited on pages 91, 96,
100, and 104.)

Yves Schabes and Aravind K. Joshi. 1991. Parsing with lexicalized tree
adjoining grammar. In Masaru Tomita, editor, Current Issues in Pars-
ing Technologies, chapter 3, pages 25–47. Kluwer Academic Publishers,
Norwell, MA, USA. (Cited on pages 94 and 109.)

Gerold Schneider. 1998. A Linguistic Comparison of Constituency, Depend-
ency, and Link Grammar. M.Sc. thesis, University of Zurich. (Cited on
page 210.)

Jan J. Schoorl and Simon Belder. 1990. Computational linguistics at Del�:
A status report, Report WTM/TT 90–09. Del� University of Technology,
Applied Linguistics Unit. (Cited on pages 75 and 100.)

Libin Shen, Jinxi Xu, and Ralph Weischedel. 2008. A new string-to-
dependency machine translation algorithm with a target dependency
language model. In Proceedings of the 46th Annual Meeting of the As-
sociation for Computational Linguistics: Human Language Technologies
(ACL-08: HLT), pages 577–585. Association for Computational Linguist-
ics, Morristown, NJ, USA. (Cited on pages 6 and 179.)

Stuart M. Shieber. 1985. Evidence against the context-freeness of natural
language. Linguistics and Philosophy, 8(3):333–343. (Cited on page 80.)

bibliography 287

StuartM. Shieber, Yves Schabes, and Fernando C.N. Pereira. 1995. Principles
and implementation of deductive parsing. Journal of Logic Programming,
24:3–36. (Cited on pages 8, 9, 38, 44, 46, 138, and 185.)

Klaas Sikkel. 1994. How to compare the structure of parsing algorithms. In
G. Pighizzini and P. San Pietro, editors, Proceedings of ASMICSWorkshop
on Parsing �eory. Milano, Italy, Oct 1994, pages 21–39. University of
Milan, Italy. (Cited on pages 35, 36, 196, 199, and 200.)

Klaas Sikkel. 1997. Parsing Schemata — A Framework for Speci�cation and
Analysis of Parsing Algorithms. Texts in�eoretical Computer Science —
An EATCS Series. Springer-Verlag, Berlin-Heidelberg-New York. (Cited
on pages 3, 4, 5, 8, 11, 24, 28, 76, 113, 117, 118, 151, 179, 180, 185, 191, 199, 200,
221, and 265.)

Klaas Sikkel. 1998. Parsing schemata and correctness of parsing algorithms.
�eoretical Computer Science, 199(1–2):87–103. (Cited on pages 34 and 131.)

Daniel Sleator and Davy Temperley. 1991. Parsing English with a Link
Grammar. Technical report, Carnegie Mellon University, Pittsburgh, PA,
USA. (Cited on pages 13, 180, 210, 211, 213, and 214.)

Daniel Sleator and Davy Temperley. 1993. Parsing English with a Link
Grammar. In Proceedings of the�ird International Workshop on Pars-
ing Technologies (IWPT’93), pages 277–292. ACL/SIGPARSE. (Cited on
pages 13, 180, and 210.)

Peter van der Spek, Nico Plat, and Cornelis Pronk. 2005. Syntax error repair
for a Java-based parser generator. ACM SIGPLAN Notices, 40(4):47–50.
(Cited on page 118.)

Mihai Surdeanu, Sanda Harabagiu, John Williams, and Paul Aarseth. 2003.
Using predicate-argument structures for information extraction. In ACL
’03: Proceedings of the 41st Annual Meeting of the Association for Computa-
tional Linguistics, pages 8–15. Association for Computational Linguistics,
Morristown, NJ, USA. (Cited on page 6.)

Mihai Surdeanu, Richard Johansson, Adam Meyers, Lluís Màrquez, and
JoakimNivre. 2008.�e CoNLL-2008 shared task on joint parsing of syn-
tactic and semantic dependencies. In Proceedings of the 12th Conference

288 bibliography

on Computational Natural Language Learning (CoNLL-2008), pages 159–
177. Association for Computational Linguistics, Morristown, NJ, USA.
(Cited on pages 191 and 206.)

K.Vijay-Shanker andAravindK. Joshi. 1985. Some computational properties
of tree adjoining grammars. In Proceedings of the 23rd Annual Meeting
of the Association for Computational Linguistics (ACL’85), pages 82–93.
Association for Computational Linguistics, Morristown, NJ, USA. (Cited
on pages 7, 81, 87, 96, 100, and 104.)

K. Vijay-Shanker and Aravind K. Joshi. 1988. Feature structures based tree
adjoining grammars. InCOLING-88: Proceedings of the 12th International
Conference on Computational Linguistics, volume 2, pages 714–719. Asso-
ciation for Computational Linguistics, Morristown, NJ, USA. (Cited on
pages 90, 93, and 96.)

K. Vijay-Shanker, David J. Weir, and Aravind K. Joshi. 1987. Characterizing
structural descriptions produced by various grammatical formalisms. In
Proceedings of the 25th Annual Meeting of the Association for Computa-
tional Linguistics (ACL’87), pages 104–111. Association for Computational
Linguistics, Morristown, NJ, USA. (Cited on pages 81 and 224.)

Jesús Vilares, Miguel A. Alonso, and Manuel Vilares. 2008. Extraction of
complex index terms in non-English IR: A shallow parsing based ap-
proach. Information Processing and Management, 44(4):1517–1537. (Cited
on page 6.)

Jesús Vilares, Carlos Gómez-Rodríguez, and Miguel A. Alonso. 2005. Man-
aging syntactic variation in text retrieval. In DocEng ’05: Proceedings
of the 2005 ACM Symposium on Document Engineering, pages 162–164.
ACM, New York, NY, USA. (Cited on page 16.)

Jesús Vilares, Carlos Gómez-Rodríguez, and Miguel A. Alonso. 2006a. En-
foques sintáctico y pseudo-sintáctico para la recuperación de informa-
ción en español. In Alejandro Sobrino and José Ángel Olivas, editors,
Recuperación de información textual: aspectos lógicos y ecológicos — Text
Information Retrieval: So�-Computing and Ecological Aspects, pages 127–
137. Servizo de Publicacións e Intercambio Cientí�co, Universidade de
Santiago de Compostela, Spain. (Cited on page 16.)

Jesús Vilares, Carlos Gómez-Rodríguez, and Miguel A. Alonso. 2006b. Syn-
tactic and pseudo-syntactic approaches for text retrieval. In Vicente P.

bibliography 289

Guerrero-Bote, editor, Current Research in Information Sciences and Tech-
nologies: multidisciplinary approaches to global information systems. Pro-
ceedings of the First International Conference on Multidisciplinary Inform-
ation Sciences and Technologies — InSciT 2006, pages 104–108. Open
Institute of Knowledge, Badajoz, Spain. (Cited on page 17.)

Manuel Vilares, Víctor M. Darriba, and Francisco J. Ribadas. 2001. Re-
gional least-cost error repair. In CIAA ’00: Revised Papers from the
5th International Conference on Implementation and Application of Auto-
mata, volume 2088 of Lecture Notes in Computer Science, pages 293–301.
Springer-Verlag, London, UK. (Cited on page 140.)

Manuel Vilares, Victor M. Darriba, and Miguel A. Alonso. 2002. Searching
for asymptotic error repair. In Jean-Marc Champarnaud and Denis
Maurel, editors, Implementation and Application of Automata, volume
2608 of LectureNotes in Computer Science, pages 276–281. Springer, Berlin-
Heidelberg. (Cited on page 140.)

Manuel Vilares, Víctor M. Darriba, Jesús Vilares, and Francisco J. Ribadas.
2004. A formal frame for robust parsing. �eoretical Computer Science,
328:171–186. (Cited on pages 118 and 140.)

Sreenivas Viswanadha. 2006. Java Compiler Compiler (JavaCC):�e Java
parser generator. URL: https://javacc.dev.java.net/. (Cited on
pages 43, 45, and 51.)

David J. Weir. 1988. Characterizing Mildly Context-Sensitive Grammar
Formalisms. Ph.D. thesis, University of Pennsylvania, Philadelphia, USA.
(Cited on page 81.)

FrankWilcoxon. 1945. Individual comparisons by ranking methods. Bio-
metrics Bulletin, 1(6):80–83. (Cited on page 92.)

XTAG Research Group. 2001. A lexicalized tree adjoining grammar for
English. Technical Report IRCS-01-03, IRCS, University of Pennsylvania.
(Cited on pages 10, 73, 80, 89, 97, 100, and 108.)

Hiroyasu Yamada and Yuji Matsumoto. 2003. Statistical dependency ana-
lysis with support vector machines. In Proceedings of 8th International
Workshop on Parsing Technologies (IWPT 2003), pages 195–206. ACL/SIG-
PARSE. (Cited on pages 7, 181, 189, 197, 198, 200, 203, 206, 213, 216, 220,
and 221.)

https://javacc.dev.java.net/

290 bibliography

Daniel H. Younger. 1967. Recognition and parsing of context-free languages
in time n3. Information and Control, 10(2):189–208. (Cited on pages 7, 11,
22, 52, 74, and 100.)

	Abstract
	Resumen
	Acknowledgments
	Contents
	List of Figures
	List of Tables
	Acronyms
	Introduction and Preliminaries
	Introduction
	Motivation
	Background
	Parsing
	Robustness in grammar-driven parsers
	Parsing schemata

	Summary of the thesis
	Contributions
	Structure of the thesis

	Publications

	Preliminaries
	Context-free grammars
	Parsing algorithms and schemata
	Formal definition of parsing schemata
	Deduction systems
	Parsing systems and parsing schemata
	Correctness of parsing schemata
	Relations between parsing schemata

	Advantages of parsing schemata

	Compiling Parsing Schemata
	A compiler for parsing schemata
	Motivation and goals
	Design goals
	Related work

	System architecture
	Architecture of the generated code
	Reading schemata
	Code generation
	Element types
	Deduction step classes
	Representation of items in the generated code
	Visitors for code generation
	Search specifications

	Indexing
	Static analysis and index descriptors
	Generation of indexing code
	Indexing deduction steps

	Discussion

	Comparing constituency parsers in practical settings
	Parsing natural language with CFGs
	Parsing natural language with TAGs
	Tree-adjoining grammars
	Substitution and adjunction
	Properties of TAG

	Parsing schemata for TAG
	Parsing schemata for the XTAG English grammar
	Grammar conversion
	Feature structure unification
	Tree filtering

	Comparing several parsers for the XTAG grammar
	Discussion

	Practical complexity of TAG parsers
	Parsing with artificial TAGs
	Overhead of TAG parsing over CFG parsing
	Discussion

	Parsing Schemata for Error-Repair Parsers
	Error-repair parsing schemata
	Motivation
	Error repair in parsing schemata
	Defining error-repair parsing schemata
	A distance function for edit distance based repair

	Lyon's error-repair parser
	Lyon is correct

	Obtaining minimal distance parses
	From global to regional error repair
	Global vs. regional parsing performance

	Discussion

	Transforming standard parsers into error-repair parsers
	From standard parsers to error-repair parsers
	The transformation

	Formal definition of the error-repair transformation
	Some properties of trees and items
	Some properties of deduction steps
	The error-repair transformation (formal definition)

	Proof of correctness of the error-repair transformation
	Proof of Theorem 7.15
	Proof of Theorem 7.16

	Optimisation techniques
	Discussion

	Parsing Schemata for Dependency Parsers
	Dependency parsing schemata
	Motivation
	Definition of dependency parsing schemata
	Parsing schemata for projective dependency parsers
	Collins (1996)
	Eisner (1996)
	Eisner and Satta (1999)
	Yamada and Matsumoto (2003)
	Lombardo and Lesmo (1996) and other Earley-based parsers
	Nivre (2003)
	Covington's projective parser (Covington, 2001)

	Relations between dependency parsers
	Yamada and Matsumoto (2003) sr Eisner (1996)
	Eisner and Satta (1999) sr Eisner (1996)
	Other relations

	Proving correctness
	Eisner and Satta (1999) is correct
	Yamada and Matsumoto (2003) is correct
	Eisner (1996) is correct

	Parsing schemata for non-projective dependency parsers
	Pseudo-projectivity
	Attardi (2006) and the MHk parser
	MST parser (McDonald et al., 2005b)
	Covington's non-projective parser (Covington, 1990;2001)

	Parsing schemata for Link Grammar parsers
	Sleator and Temperley's LG parser
	Adapting projective dependency parsers to Link Grammar

	Discussion

	Mildly non-projective dependency parsing
	Motivation
	Preliminaries
	The WG1 parser
	Parsing schema for WG1
	Proof of correctness for WG1
	Computational complexity

	The WGk parser
	Parsing schema for WGk
	Proof of correctness for WGk
	Computational complexity

	Parsing ill-nested structures
	The MG1 and MGk parsers
	Complexity
	Proof of correctness for MGk
	Mildly ill-nested dependency structures

	Discussion

	Conclusions
	Conclusions
	Future work

	Bibliography

