A formal definition of
Bottom-up Embedded Push-Down Automata
and their tabulation technique

Miguel A. Alonso, Eric de la Clergerie and Manuel Vilares

Abstract

We provide a formal definition of Bottom-up Embedded Push-Down Au-
tomata. By removing the finite-state control, we obtain an alternative def-
inition which is adequate to define a tabulation framework for this class of
automata and to show the equivalence with respect to other models of au-
tomata accepting tree adjoining languages.

Keywords: Automata, parsing, tabulation, tree adjoining grammars.

1 Introduction

Tree adjoining grammars (TAG) [7] are an extension of context-free grammars that
use trees instead of productions as the primary representing structure. Formally,
a TAG is a 5-tuple G = (V, V7, S, I, A), where Vy is a finite set of non-terminal
symbols, Vr a finite set of terminal symbols, S € Vy is the axiom of the grammar,
I a finite set of initial trees and A a finite set of auziliary trees. I U A is the set
of elementary trees. Internal nodes are labeled by non-terminals and leaf nodes by
terminals or €, except for just one leaf per auxiliary tree (the foot) which is labeled by
the same non-terminal used as the label of its root node. The path in an elementary
tree from the root node to the foot node is called the spine of the tree.

New trees are derived by adjoining: let o be a tree containing a node N¢ labeled
by A and let 8 be an auxiliary tree whose root and foot nodes are also labeled by
A. Then, the adjoining of # at the adjunction node N¢ is obtained by excising the

Miguel A. Alonso Pardo, Departamento de Computacién, Facultad de Informética,
Universidad de La Corufia, Campus de Elvina s/n, 15071 La Corufa (Spain),
http://www.dc.fi.udc.es/"alonso/, alonso@dc.fi.udc.es

Eric Villemonte de la Clergerie, Institut National de Recherche en Informatique et en Au-
tomatique, Domaine de Voluceau, Rocquecourt, B.P. 105, 78153 Le Chesnay Cedex (France),
http://atoll.inria.fr/"clerger/, Eric.De La_Clergerie@inria.fr

Manuel Vilares Ferro, Departamento de Computacién, Facultad de Informaética,
Universidad de La Corufla, Campus de Elvila s/n, 15071 La Coruia (Spain),
http://www.dc.fi.udc.es/"vilares/, vilares@dc.fi.udc.es

This research has been partially supported by the FEDER of EU (Grant 1FD97-0047-C04-02)
and Xunta de Galicia (Grant PGIDT99X110502B).

subtree of a with root N¢, attaching 3 to N* and attaching the excised subtree to
the foot of 5.

The operation of substitution does not increase the generative power of the formal-
ism but it is usually considered when we are dealing with lexicalized tree adjoining
grammars. In this case, non-terminals can also label leaf nodes (called substitution
nodes) of elementary trees. An initial tree can be substituted at a substitution node
if its root is labeled by the same non-terminal that labels the substitution node.

Bottom-up embedded push-down automata (BEPDA) have been described in [11]
as an extension of push-down automata adequate to implement parsing strategies
for TAG in which adjunctions are recognized in a bottom-up way. In fact, BEPDA
are the dual version of embedded push-down automata (EPDA) [12, 2], a model
of automata in which adjunctions must be recognized in a top-down way. A less
informal presentation of BEPDA has been shown in [10], with some inconsistencies
between the set of allowed transitions and the set of configurations attainable.

Right-oriented linear indexed automata [9] and bottom-up 2-stack automata [5]
can be used to implement parsing strategies similiar to those of BEPDA. Both
models of automata have associated a tabulation framework allowing their execution
in polynomial time with respect to the size of the input string. In this paper we
provide a formal definition for BEPDA and then we propose an alternative definition
in order to provide a tabulation framework for this class of automata.

2 A formal definition of BEPDA

A bottom-up embedded push-down automata consists of a finite-state control, an
input tape and a stack (that we call the main stack) made up of non-empty
stacks containing stack symbols. Formally, a BEPDA is defined by a tuple

(Q,Vr, Vs, 6,q,Qr,$s) where:

e () is a finite set of states.

e V7 is a finite set of terminal symbols.

Vs is a finite set of stack symbols.

Qo € (@ is the initial state.
e r C (@ is the set of final states.
e $; € Vs is the final stack symbol.

e § is a mapping from @ x ViU {e} x ([V5)* x V& x ([Vh)* into finite subsets
of Q x Vs U{[Vs}, where [€ Vs is a new symbol used as stack separator.

An instantaneous configuration is a triple (¢, Y, w), where ¢ is the current state,
Y € ([V§)* represents the contents of the automaton stack and w is the part of the
input string that is yet to be read. It is important to remark that every individual
stack contained in the main stack must store at least one stack symbol. The main
stack will be empty only in the initial configuration (go, €, w).

Transitions in ¢ allow an automaton to derive a new configuration (¢’, Y/, w) from
a configuration (g, Y, aw), which is denoted (¢, Y,aw) F (¢, Y, w). The reflexive

and transitive closure of - is denoted by . There exist two different types of
transitions:

1. Transitions of the first type are of the form

(d,[2) € 5(g,a, € ¢,¢€)

and they can be applied to a configuration (¢, T, aw) to yield a configuration
(¢, Y[Z,w).

2. Transitions of the second type are of the form

(q,, Z) € 5((], a, [()jk .. |:O[z'+1, Zm ‘e Zl, |:O,/z' e |:C¥1)
where m > 0 and k£ > 47 > 0. They can be applied to a configuration

(¢, Ylag... o laZy ... Z [0 .. [, aw)

to yield a configuration
(¢, T[aZ, w)

The language accepted by final state by a BEPDA is the set w € V' of input
strings such that (go, €, w) F *(p, Y, €), where p € Qr and Y € ([VSJF)*

The language accepted by empty stack by a BEPDA is the set w € V} of input
strings such that (go, €, w) - *(g, [$/, €) for any ¢ € Q. At this point it is interesting
to observe the duality with respect to EPDA: EPDA computations start with a
stack [$o to finish with an empty stack while BEPDA computations start with an
empty stack to finish with a stack [$;.

It can be proved that for any BEPDA accepting a language L by final state there
exists a BEPDA accepting the same language by empty stack and vice versa.

Example 1 The bottom-up embedded push-down automaton defined by the tuple
({q0, 1, 92,43}, {a,b,¢,d}, {B,C, D}, 6,q0,0,%;), with § containing the transitions
shown in Fig. 1 (left box), accepts the language {a"b"c"d" | n > 0} by empty stack.
The sequence of configurations for the recognition of the input string aabbccdd is
shown in Fig. 1 (right box), where the first column shows the transition applied, the
second one the current state, the third one the contents of the stack and the fourth
column shows the part of the input string to be read. O

3 BEPDA without states

Finite-state control is not a fundamental component of push-down automata, as
the current state in a configuration can be stored in the top element of the stack
of the automaton [8]. Finite-state control can also be eliminated from bottom-up
embedded push-down automata, obtaining a new definition that considers a BEPDA
as a tuple (Vr, Vs, ©, 3o, $;) where Vr is a finite set of terminal symbols, Vs is a finite
set of stack symbols, $; € Vs is the initial stack symbol, $; € Vs is the final stack
symbol and O is a finite set of six types of transition:

(a) (QO: [D) € 5((]0: a, €, €, 6) qo aabbcedd

(@ q [D abbeedd
) (91,[C) € 6(q0, b, €, ¢, €) (@ ¢ [D[D bbeedd
(©) (q1,[C) € (g1, b,¢,6,€) ® @ [D[D[C beedd
(c) gl [D[D[C[C ccdd
(d) (g2,B) € 6(q1,¢,¢,C€) (d) ¢ [DID[C[B cdd
(€) (g2, B) € (a2 ¢, [Cre e) () ¢ [D[D[BB dd
(f) ¢ [D[B d
(f) (g5, B) € 6(gs,d, [D, BB, ¢) (h) a3

(g) (Q3a B) € 5(q3ada [D’BB’G)
(h’) (Q3: $f) € 5(Q3ada [D,B,G)

(i) (o, [$5) € 0(qo, a, €, ¢ ¢€)

Figure 1: BEPDA accepting {a"b"c"d" | n > 0} and configurations for aabbcedd

SWAP: Transitions of the form C' —— F that replace the top element of the top
stack while scanning a. The application of such a transition on a stack Y [aC
returns the stack Y[aF.

PUSH: Transitions of the form C — C F that push F onto C. The application
of such a transition on a stack Y[aC returns the stack Y[aCF.

POP: Transitions of the form C F — G that replace C and F by G. The
application of such a transition on Y [aCF returns the stack Y [aG.

WRAP: Transitions of the form C —— C, [F that push a new stack [F on the
top of the main stack. The application of such a transition on a stack YT[aC
returns the stack Y[aC[F.

UNWRAP-A: Transitions unwrap-above of the form C, [F —— G that delete the
top stack [F and replace the new top element by G. The application of such
a transition on a stack Y[aC[F returns the stack Y[aG.

UNWRAP-B: Transitions unwrap-below of the form [C, F — G that delete the
stack [C placed just below the top stack and replace the top element by G.
The application of such a transition on a stack Y[C[aF returns the stack
T[aG.

(a) $o+—— $o,[D [$o aabbeedd
(b) D+ D,[D (a) [$o[D aabbeedd
(b) [$[D[D abbeedd
(¢¢ D+ D,[C (¢) [$[D[D[C bbeedd
d ¢ [C (d) [$[D[D[C[C beedd
(d) [$o[D[D[C[C[C cedd
() C— B (e) [$[DID[C[C]B cedd
(f) B— BE (f) [$[D[D[C[C[BE ccdd
(9) [C,E—=C (9) [$[D[D[C[BC cdd
(e) [$[D[D[C[BB cdd
(h) BC+— B (f) [$[D[D[C[BBE cdd
(i) [D,B+%D (9) [$o[D[D[BBC dd
(j) BD+—— B (h) [$[D[D[BB dd
(k) $0,[D+— 8y (@) [$[p[BD d
(7)) [%[D[B d
(i) [$[D
(k) [8;

Figure 2: BEPDA without finite-state control for {a"b"c"d" | n > 0}

where C, F,G € Vg, T € ([V&)*, a € V& and a € Vp U {e}. Tt can be proved that
transitions of a BEPDA with states can be emulated by transitions in © and vice
versa.

An instantaneous configuration is a pair (Y, w), where Y represents the contents
of the automaton stack and w is the part of the input string that is yet to be read.
A configuration (Y, aw) derives a configuration (Y, w), denoted (Y, aw) - (Y, w),
if and only if there exist a transition that applied to Y gives T’ and scans a from
the input string. We use F * to denote the reflexive and transitive closure of . An
input string is accepted by an BEPDA if ([$y, w) I *([$, €). The language accepted
by an BEPDA is the set of w € V; such that ([$o,w) F *([$, €).

Example 2 The bottom-up embedded push-down automaton without states de-
fined by the tuple ({a,b,c,d},{B,C,D,E, F,$,%;},0,8%,9;), with © containing
the transitions shown in Fig. 2 (left box), accepts the language {a™b"c"d" | n > 0}.
The sequence of configurations to recognize the input string aabbcedd is also shown
in Fig. 2 (right-box), where the first column shows the transition applied in each
step, the second one shows the contents of the stack and the third column shows
the part of the input string to be read. O

[INTT] $o— $o [T a €I, S=label(RY)

[FINAL] $o [T — 8, a €I, S=label(R%)

[CALL] Vi, — vy, [NI,, N, &spine(y), nil € adj(N, 1)
[SCALL] Ve, — V8, []V5—+Z N/, € spine(B), nil € adj(N’,,,)
[SEL] NIy — V7,

[PUB] Vi, — N

[RET] Vi, [N — Vi N, &spine(y), nil € adj(N,,41)
[SRET] [V, <Nﬁ—+1 — Vi NP,y €spine(B), nil € adj(N/, ;)
[SCAN] NIy - N7, NIy = a

[AdjCALL] V], +— V], ["I'—5> B € adj(N],)

[AdjRET-a] [V}, T T B € adj(N],,,)

[AGjRET-b] A), T+ VI,

—
o L

[FootCALL]| V?,O — VP stﬂ Nﬁo =F° pe adj(N:,s+1)

f
(—
[FootRET-a] [V7,, N/, +—— Ay, Nj,=F° BeadjN],,,)

[FootRET-b] AZ’S — AZ,S V?’l Nﬁo =FF pe adj(NZsH)

[SubsCALL] VI, — V1, [T* a € subs(N,,41)

7,83

[SubsRET] V1, [To+— VI, acsubs(N1)

Figure 3: Generic compilation schema for TAG

4 Compiling TAG into BEPDA

Automata are interesting for parsing because they allow us to separate two different
problems that arise during the definition of parsing algorithms: the description of
the parsing strategy and the execution of the parser. By means of automata, a
parsing strategy for a given grammar can be translated into a set of transitions
defining a (possibly non deterministic) automaton and then the automaton can be
executed using some standard technique.

In this section we define a generic compilation schema for tree adjoining grammars

AdjRET

SubsCALL

a

Figure 4: Meaning of compilation rules

based on a call/return model [6]. We consider each elementary tree v of a TAG as
formed by a set of context-free productions P(7y): a node N7 and its g children
Ny .. . NJ are represented by a production N7 — Ny ... Ng. The elements of the
productions are the nodes of the tree, except for the case of elements belonging to
VrU{e} in the right-hand side of production. Those elements may not have children
and are not candidates to be adjunction nodes, so we identify such nodes labeled by
a terminal with that terminal. We use 8 € adj(N7) to denote that a tree 3 € A may
be adjoined at node N7. If adjunction is not mandatory at N?, then nil € adj(N7).
If a tree @ € I may be substituted at node N7, then o € subs(N?). We consider
the additional productions T®* — R?®, T# — RP and F# — L for each initial tree o
and each auxiliary tree 3, where R is the root node of & and R? and F# are the
root node and foot node of 3, respectively.

Fig. 3 shows the compilation rules from TAG to BEPDA, where symbols V] has
been introduced to denote dotted productions. The meaning of each compilation rule
is graphically shown in Fig. 4. This schema is parameterized by N7, the information
propagated top-down with respect to the node N7, and by W’, the information
propagated bottom-up. When the schema is used to implement a top-down traversal
of elementary trees N7 = N” and N7 = [, where [is a fresh stack symbol. A
bottom-up traversal requires N' = [0 and N7 = N7. For a mixed traversal of
elementary trees, N'=N7and N7 = N7, where N7 and N7 are used to distinguish
the top-down prediction from the bottom-up propagation of a node.

With respect to adjunctions, we can observe in Fig. 3 that each stack stores
pending adjunctions with respect to the node placed on the top of the stack in a
bottom-up treatment of adjunctions: when a foot node is reached, the adjunction
node is stored on the top of the stack ([FootCALL-a]); the traversal of the elemen-

Transition BEPDA R-LIA
SWAP C+>F Cloo] = F[oo]
PUSH C+—CF Cloo] = F[ooC]

POP CF+ G FlooC] = G|oo]
UNWRAP-A C,[F- G Cloo] F[]+= G[oo]

UNWRAP-B [C,F+—— G O[] F[oo] = G[oo0]

WRAP C+% C,[F Cloo] =% Cloo] F|]

Figure 5: Equivalence between BEPDA and L-LIA

tary tree is suspended to continue with the traversal of the adjoined auxiliary tree
([FootCALL-b]); the adjunction stack is propagated through the spine ([SRET])
up to the root node ([AdjRET-a]); and then the stack element corresponding
to the auxiliary tree is eliminated to resume the traversal of the elementary tree
([AdjRET-b]). To avoid confusion, we store A} instead of V] to indicate that
an adjunction was started at node NZ s+1- A symbol A can be seen as a symbol V
waiting an adjunction to be completed.

Substitution is managed trough transitions generated by compilation rules
[SubsCALL], which start the traversal of the substituted trees, and [SubsRET],
which resume the traversal of the tree containing the substitution node once the

substituted tree has been completely traversed.

5 BEPDA and other automata for TAG

5.1 Right-oriented linear indexed automata

Linear indexed automata (LIA) [3] are an extension of push-down automata in which
each stack symbol has been associated to a list of indices. Right-oriented linear
indexed automata (R-LIA) are a subclass of linear indexed automata that can be
used to implement parsing strategies for TAG in which adjunctions are recognized
in a bottom-up way. BEPDA and R-LIA are equivalent classes of automata. Given
a BEPDA, the equivalent R-LIA is obtained by means of a simple change in the
notation: the top element of a stack is considered a stack symbol, and the rest of
the stack is considered the indices list associated to it, as is shown in Fig. 5. The
same procedure also serves to obtain the BEPDA equivalent to a given R-LIA.

5.2 Bottom-up 2—stack automata

Strongly-driven 2-stack automata (SD-2SA) [4] are an extension of push-down au-
tomata working on a pair of asymmetric stacks, a master stack and an auxiliary

BEPDA transition BU-2SA transition

SWAP CS F (m,C,e) — (m, F,¢) SWAP1
[C+% [F (w,C, =™) = (e, F, ™) SWAP2
WRAP C+* C,[F (m,C,e) = (w,CE"F,E") EWRITE

[Cc - [C,[F (w,C,e) = (w,C > F,e) >WRITE
UNWRAP-A C,[F+—~ G (e,CE™F,EF™)— (m,G,¢) =ERASE
UNWRAP-B [C,F+% G (e,C > F,e) — (e,G,¢) —ERASE
[C,XF+* G (e,C>F,X)— (e,G,¢) /ERASE
[C,F+*5 XG (e,C>F,e) = (e,G,X) \ERASE

Figure 6: Correspondence between BEPDA and BU-2SA

stack. These stacks are partitioned into sessions. Computations in each session are
performed in one of two modes write and erase. A session starts in mode write and
switches at some point to mode erase. In mode write (resp. erase), no element can
be popped from (resp. pushed to) the master stack. Switching back from erase to
write mode is not allowed. Bottom-up 2-stack automata (BU-2SA) [5] are a projec-
tion of SD-2SA requiring the emptiness of the auxiliary stack during computations
in mode write. When a new session is created in a BU-2SA, a mark [is left on the
master stack, other movements performed in write mode leaving a mark >. These
marks are popped in erase mode.

The full set of BU-2SA transitions is shown in Fig. 6. Transitions of type SWAP2
are equivalent to [C' —— [F in BEPDA, compound transitions obtained from the
consecutive application of C — C, [F’ and [C, F' —* F, where F’ is a fresh stack
symbol. In a similar way, transitions of type ,ERASE are translated into com-
pound transitions formed by an UNWRAP-B and a POP transition, and transitions
of type \ERASE are translated into the composition of UNWRAP-B and PUSH
transitions. Slightly different is the case for transitions of type >WRITE, equiva-
lent to [C —% [C, [F transitions in BEPDA, which are obtained as the consecutive
application of [C' —— [C" and C' — C', [F, an additional transition C’, [G P K
for each transition C, [G s K in the automaton, and an additional transition
C', G 2 K for each transition [C, G K , where C' is a fresh stack symbol.

As a consequence, it is possible to build a BEPDA for any given BU-2SA.
However, the reverse is not always true: PUSH and POP transitions can only be
translated into BU-2SA if they are merged with an UNWRAP-B transition. So, a
BEPDA implementing a shift-reduce strategy (requiring the use of PUSH and POP

transitions in combination with UNWRAP-A transitions') can not be translated
into a BU-25A.

L A linear indexed automata implementing a LR-like strategy for linear indexed grammars using
this kind of transitions is described in [1].

6 Tabulation

The direct execution of BEPDA may be exponential with respect to the length of
the input string and may even loop. To get polynomial complexity, we must avoid
duplicating computations by tabulating traces of configurations called #tems. The
amount of information to keep in an item is the crucial point to determine to get
efficient executions.

In order to define items and attending to the form of the transitions, we can
classify derivations of BEPDA into the following two types:

Call derivations. Correspond to the placement of an unitary stack onto the top
of the main stack:

(T [B,aiﬂ .. .CLn) F *(T [C, Ajy1-- .CLn)

where B,C € Vs and Y € ([V)*.These derivations are independent of Y and
so they can be represented by items

[B:iacaja_ | _a_a_ﬂ_]

Return derivations. Correspond to the placement of a non-unitary stack onto the
top of the main stack:

(Y [B,ait1...ay)

(Y [B Y1 [D,apy1---a5)

FH(Y [B Y1 [aE,a41---an)

FH(Y [aXC a1 .. ay)
where B,C,D,E, X € Vg, a € Vg, T, T, € ([VS*)* The two occurrences of
a denote the same stack in the sense that « is neither consulted nor modified

through derivation. These derivations are independent of T but not with
respect to the subderivation

(LD, aps1---an) F*([aE,ag11 - - - ay)
so they can be represented in compact form by items

[B7?:707j7X | D7pJE7q]

To combine items, we use the following set of inference rules. Each rule is of the
form sk yrans, meaning that if all antecedents 7; are present and there exists the
transition trans, then the consequent item 7' should be generated.

[B’i’C’j’X | D’p’E’Q]
[B7iJFJk7X | D7p7E7Q]

C s F

I:B’Z'i C,jJX | D’p’E’q]

C+% CF
[B,i, F,k,C | B,i,C, j]
[B,1,F,j,C | D,p, E,q]
[D,p,E,C],X’|O,’U,,P,’U] CF a\G
[B,i,G,k, X" | O,u, P,] o
[B,Z',C,j,X | Dap:an] a
C—C,|F
[F:kaF’k’_|_’_a_a_] ’[
[kaaFlakla_‘_v_a_a_]
[B,4,C,j,X | D,p, E,q| Cr= C,[F

[B,i,G,1,X | D,p,E, | C.[F % G

[F7 k’ F’) k,’X | D’p’ E’ Q]
[Baiacaja_‘_a_:_a_] C'L>C;[F
[B,i,G,I,X | D,p,E,q] [C,F'+*G

where k=jifa=¢, k=j+1ifa=qaj, =K ifb=ecand =k +1if b= ap 1.

Computation start with the initial item [$o,0,%0,0,— | —, —, —,—]. An input
string a; ...a, has been recognized if the final item [$o,0,$;,n,— | —, —, —, —] is
present. It can be proved that handling items with the inference rules is equivalent
to applying the transitions on the whole stacks.

The space complexity of the proposed tabulation technique with respect to the
length of the input string is O(n*), due to every item stores four positions of the
input string. The worst case time complexity is O(nf).

7 Conclusion

We have provided a formal definition of bottom-up embedded push-down automata.
We have also shown that finite-state control can be eliminated, obtaining a new
definition in which transitions are in a form useful to describe compilation schemata
for TAG and suitable for tabulation. The resulting definition has been shown to be
equivalent to right-oriented linear indexed automata and a superset of bottom-up
2-stack automata with respect to the parsing strategies that can be described in
both models of automata.

References

[1] Miguel A. Alonso, Eric de la Clergerie, and Manuel Vilares. Automata-based
parsing in dynamic programming for Linear Indexed Grammars. In A. S.
Narin’yani, editor, Proc. of DIALOGUE’97 Computational Linguistics and its
Applications International Workshop, pages 2227, Moscow, Russia, June 1997.

2]

3]

[4]

[5]

[6]

[7]

8]

[9]

[10]

[11]

[12]

Miguel A. Alonso, Eric de la Clergerie, and Manuel Vilares. A redefinition
of Embedded Push-Down Automata. In Proc. of 5th International Workshop
on Tree Adjoining Grammars and Related Formalisms (TAG+5), pages 19-26,
Paris, France, May 2000.

Miguel A. Alonso, Mark-Jan Nederhof, and Eric de la Clergerie. Tabulation of
automata for tree adjoining languages. Grammars, Forthcoming.

Eric de la Clergerie and Miguel A. Alonso. A tabular interpretation of a class
of 2-Stack Automata. In COLING-ACL’98, 36th Annual Meeting of the As-
sociation for Computational Linguistics and 17th International Conference on
Computational Linguistics, Proceedings of the Conference, volume II, pages
1333-1339, Montreal, Quebec, Canada, August 1998. ACL.

Eric de la Clergerie, Miguel A. Alonso, and David Cabrero Souto. A tabular
interpretation of bottom-up automata for TAG. In Proc. of Fourth International
Workshop on Tree-Adjoining Grammars and Related Frameworks (TAG+4),
pages 42—45, Philadelphia, PA, USA, August 1998.

Eric de la Clergerie and Francgois Barthélemy. Information flow in tabular
interpretations for generalized Push-Down Automata. Theoretical Computer
Science, 199(1-2):167-198, 1998.

Aravind K. Joshi and Yves Schabes. Tree-adjoining grammars. In Grze-
gorz Rozenberg and Arto Salomaa, editors, Handbook of Formal Lan-
guages. Vol 3: Beyond Words, chapter 2, pages 69-123. Springer-Verlag,
Berlin/Heidelberg/New York, 1997.

Bernard Lang. Towards a uniform formal framework for parsing. In Masaru
Tomita, editor, Current Issues in Parsing Technology, pages 153-171. Kluwer
Academic Publishers, Norwell, MA, USA, 1991.

Mark-Jan Nederhof. Linear indexed automata and tabulation of TAG pars-
ing. In Proc. of First Workshop on Tabulation in Parsing and Deduction
(TAPD’98), pages 1-9, Paris, France, April 1998.

Owen Rambow. Formal and Computational Aspects of Natural Language Syn-
tax. PhD thesis, University of Pennsylvania, 1994. Available as IRCS Report
94-08 of the Institute of Research in Cognitive Science, University of Pennsyl-
vania.

Yves Schabes and K. Vijay-Shanker. Deterministic left to right parsing of
tree adjoining languages. In Proc. of 28th Annual Meeting of the Association
for Computational Linguistics, pages 276-283, Oittsburgh, Pennsylvania, USA,
June 1990. ACL.

K. Vijay-Shanker. A Study of Tree Adjoining Grammars. PhD thesis, University
of Pennsylvania, January 1988. Available as Technical Report MS-CIS-88-
03 LINC LAB 95 of the Department of Computer and Information Science,
University of Pennsylvania.

