Chapter 8

Parsing schemata for
unification grammars

The last decade has witnessed an overwhelming amount of different, but related
unification grammar formalisms. Our informal introduction in Chapter 7 was
based on PATR [Shieber, 1986], which is the smallest and simplest of these for-
malisms. Unlike formalisms as LFG [Kaplan and Bresnan, 1982], GPSG [Gazdar
et al., 1985] or HPSG [Pollard and Sag, 1987], PATR was not primarily designed to
capture some universal linguistic structure, but merely as a small, clean formalism
that covers the essential properties found in most other unification grammars.

The logical foundations of constraint-based formalisms have been discussed by
Kaspar and Rounds [1986], Smolka [1989, 1992] and Johnson [1991], who give
various axiomatizations of feature structures in predicate logic. In such a log-
ical approach, one describes a constraint language in which constraints can be
expressed. Such constraints are formulae in first-order logic with equality. Con-
straints state that certain features must have certain values or be equal to certain
other features. The semantic interpretation of such a formula (following Smolka)
is a feature graph. The most interesting property is satisfiability. For a given
formula it has to be decided whether a feature graph exists that is a model of the
constraint.

A more fundamental treatment is given by Shieber [1992], who starts with the
logical requirements for unification-based grammars and then sets out to investi-
gate which models would be appropriate.

Our purpose, in this chapter and the next, is a rather different one. We will
investigate how, for a given class of unification grammars, efficient parsers can be
developed, by means of parsing schemata. Just like in the context-free case, we

147

148 8. Parsing schemata for unification grammars

will be concerned with the question which items one likes to derive and which rules
should be used for that. In addition, we extend the formalism with a notation that
allows explicit specification of transfer of features between items.

Parsing of unification grammars is a combination of two problem areas, both
of which are complex in itself. Parsing is our primary interest, and the linguistic
and logical properties of unification grammars secondary. Hence we do not worry
about how to specify suitable unification grammars for natural languages, nor
are we particularly concerned with the logical properties of various unification
grammar formalisms, but we assume a simple kind of unification grammar and
address the question how efficient parsers can be defined.

In order to be precise we will give a detailed, formal account of our simple for-
malism, that establishes thoroughly what we have presented informally in Chapter
7. The results are virtually equal to those of Smolka and others, but we employ a
rather more computational view and do not pretend to give a general treatise on
unification grammars.

We do not make a distinction between syntax (constraints) and semantics (fea-
ture graphs); we see both domains as syntactic domains. The notion of satisfiabil-
ity 1s replaced by consistency. There is a simple isomorphism between consistent
constraints' and well-formed feature graphs. Thus we obtain an abstract notion of
a feature structure that may materialize in two different avatars: either as a graph
or as a constraint. We switch representation opportunistically to the domain that
is most convenient at any given moment. For the purpose of (statically) describing
a grammar, the constraint representation is the most useful. But the dynamics
of a grammar, describing how a parse i1s to be obtained by unification of feature
structures, are easiest understood in the feature graph domain.

Feature structures, both as graphs and constraint sets, are introduced in 8.1.
For both representations we define a lattice and prove these to be isomorphicin 8.2.
For a proper formalization of how features of different objects may relate to one
another, we introduce composite feature structures in 8.3 and define lattices in 8.4.
This formalism is used to define unification grammars in 8.5. Tree composition
in Primordial Soup fashion is discussed in 8.6 and parsing schemata, finally, are
defined in 8.7.

In 8.8, at last, we give another example. The canonical example sentence is
parsed with grammar UG) (cf. Section 7.2) using an FEarley-type parsing schema
(cf. Section 7.1). An overview of other grammar formalisms is presented in 8.9,

related approaches are briefly discussed in 8.10, and conclusions are summarized
in 8.11.

1From Section 8.1 onwards, we will call these constraint sets. A constraint as a formula in
first order logic with equality can be seen as a conjunction of a series of atomic constraints. For
our purposes it will be more convenient to describe this as a set of atomic constraints, rather
than a conjunction.

8.1 Feature structures 149

8.1 Feature structures

We will give two different formalizations of feature structures, as constraint sets
and feature graphs, and prove these to be isomorphic. The attribute-value matrix
(AvM) notation will be used as a convenient, informal notation to denote feature
structures. The correspondence between AvMs, feature graphs and constraint sets
is straightforward. In Figure 8.1 an aAvM is shown with corresponding constraint
set and feature graph.

In Figure 8.1(a)—(c) it is exemplified how the information contained in an AvM
can be encoded in a graph. The features are represented by edges; the atomic
values are represented by labels of terminal vertices. Internal vertices carry no
label; their value is the feature structure represented by the outgoing edges. The
root vertex can be labelled with an identifier for the object whose features are
represented here.

In order to give a formal definition of the domain of feature graphs, we first
introduce some auxiliary domains from which features and values can be drawn.

Definition 8.1 (features, constants)

Fea denotes a finite set of features. We write f, g, h, ... for elements of Fea.
Const denotes a finite set of constants. We write ¢,d, e, ... for elements of Const.
It is assumed that Fea and Const are disjunct sets. Furthermore, we assume that
a linear order has been defined on both sets Fea and Const.

In the sequel we will also need sequences of features. We write w, ¢ for elements
of Fea*. A linear order on Fea® is defined by the “lexicographic order” based on
the linear order of Fea:

(i) 7 < mp for non-empty feature sequences g;

(it) wfo<mge if f<y.

This linear order on feature sequences will be used to define a suitable normal
form for constraint sets. ad

We recall some useful notions from graph theory and introduce appropriate
notations.

Definition 8.2 (DAGs)

A directed graph is a pair I' = (U, E), with U a set of vertices? and E a set of
edges. An edge is a directed pair (u,v) with u,v € U. Usually we write u—v for
(u,v) € E.

A (possibly empty) sequence of edges wp—uy, ug—us, ..., up_1—uy is called a
path. We write u — v for a path from u to v.

2We write U rather than V for the set of vertices, because V denotes the grammar variables

NUZX.

150 8. Parsing schemata for unification grammars

[cat o Ky 7

[tense: present

head . [number: singular]

person : third

subject: | head: [H
agr:

| object : []

(a) an attribute value matrix

cat) = *v,

head tense) = present,

head agr number) = singular,

head agr person) = third,

subject head agr) = (X head agr),
object) =[] }

(b) a constraint set

X

present

number person

singular third

(¢) a feature graph

Figure 8.1: Three different representations of the same feature structure

8.1 Feature structures 151

A directed graph is called cyclic if there 1s a non-empty path u — wu for some
vertex u € U. A graph acyclic if it 1s not cyclic. We write DAG as abbreviation
for a directed acyclic graph.

A root of a graph is a vertex u such that for all v € U there is a path from u to v.
A DAG is called rooted if it has exactly one root.

An edge u—wv 1s an outgoing edge of u and and incoming edge of v.

A leaf 1s a vertex with no outgoing edges. ad

Definition 8.3 (feature graphs)
FG 1s the class of finite, rooted DAGs with the following properties:

(i) every edge is labelled with a feature;
(it) if f and g are labels of edges originating from the same vertex, then f # g¢;

(it1) leaves may be (but need not be) labelled with a constant;
non-leaf vertices do not carry a label.

We write u % v if u—uv is labelled f: we write © — v if the sequence of steps
from w to v is labelled with a sequence of features . We write label(u) = ¢ if u is
labelled with constant ¢ and label(u) = ¢ if u carries no label.

We write T'(X) for a feature graph that denotes the features of some (here unspec-
ified) object X. a

An example of a constraint set was shown in Figure 8.1(b). In the definition
of a constraint set, we have included a parameter X that can be used to identify
an object for which constraints are to be specified. We will not use this parameter
for a while, but include 1t here in anticipation of composite constraint sets that

will be defined 1n Section 8.3.
Definition 8.4 (constraint set)

Let X be a (not further specified) object. Constraints on X can be drawn from
different domains:

e The domain of value constraints VC is defined by
VO = {(X7)=c | 7€ Fea* A c€ Const};

e The domain of existential constraints EC is defined by
EC = {(Xm) =[] | 7 € Fed"}

where [] is a symbol that does not occur in Fea and Const;

152 8. Parsing schemata for unification grammars

e The domain of coreference constraints C'C 1s defined by
CC = {{X7)=(Xg) | 7,0€ Fea"}.

A constraint set x(X) is a finite subset of VC' x EC x CC.
As an ad-hoc general notation we write (Xm) = u for a constraint, where p can
be of the form ¢, [], or {Xg). a

Definition 8.5 (closure of a constraint set)
Let x(X) C VC x EC x CC be a constraint set. The closure of x(X), denoted
closure(y(X)), is the smallest set satisfying

) =

(i) if{(X7) = p € x(X) then (X7) = p € elosure(x(X));

(ir) if (X7) = (X7') € closure(x(X)) and (Xwg) = p € closure(x(X))
then (X7'0) = p € closure(x(X));

(iir) if (X7) = (X) € closure(x(X)) then (X o) = (Xm) € closure(x(X));
(iv) if (Xwg) = p € closure(x(X)) then (X7) =[] € closure(x(X)).
A constraint set x(X) is called closed if closure(x(X)) = x(X). a

Note that closure(x(X)) need not be a constraint set according to Definition 8.4:
it could be an infinite set. If, for example, (X7} = (Xwg) € x(X) then, by (i)
we obtain (Xwg) = (Xwpe) € x(X), (Xmoo) = (Xmpee) € x(X), and so forth.

The purpose of the existential constraints added in (iv) is to identify the exis-
tence of all substructures. We will use them for the transformation of a constraint
set into a graph.

The closure of the constraint set in Figure 8.1(b) is shown in Figure 8.2. The
concept of a closed constraint set is useful because it defines a notion of equiva-
lence that corresponds to our intuitive notion of when two constraint sets specify
“the same information”. We call x1(X) and x2(X) equivalent if closure(x1(X)) =
closure(y2(X)). Closed constraint sets thus constitute a normal form for con-
straint sets, albeit a not very practical one. In the sequel we will define a more
practical normal form.

Definition 8.6 (consistency)
A closed constraint set y(X) is called consistent if it satisfies the following prop-
erties:

(i) if(X7) =cex(X)and (X7) =d € y(X) then ¢ = d;
(i) if (X7) =ce x(X)and (X7p) = p € x(X) then g = ¢;

(it1) (Xwo) = (X7) and (X7) = (Xmg) are not in x(X) for any 7 and non-empty
0.

8.1 Feature structures 153

——

i []’

cat) = [,

head) = [1,

head tense) =[],

head agry =[],

head agr number) =[],

head agr person) =[],

subject) =[],

subject head) =[],

subject head agr) =[],

subject head agr number) =[],
subject head agr person) =[],
object) =[],

cat) = *v,

head tense) = present,

head agr number) = singular,
head agr person) = third,

subject head agr number) = singular,
subject head agr person) = third,
head agr) = (X subject head agr),
subject head agr) = (X head agr) }

R R R R R R R R R R R R R R R R R R R

Figure 8.2: Closure of the constraint set in Figure 8.1(b)

An arbitrary constraint set x(X) is called consistent if elosure(x(X)) is consistent.
We write CCS for the set of consistent constraint sets. a

Corollary 8.7
If x(X) € CCS then closure(x(X)) € CCS. a

Definition 8.8 (mapping constraint sets to graphs)
For each consistent constraint set x(X) € CCS we define a graph, as follows.
Vertices correspond to sets of left-hand sides of constraints. These sets, denoted

[(X7)], are defined by
[(Xm)] = {{(X7)} U {{(Xg) | (X7) = (Xo) € closure(x(X))}.
The graph T'(X) = graph(y(X)) is defined by
U = {[(Xm)] | (X7) =[] € closure(x(X))},
E = {[(Xm)) L [(Xxf)) | (Xnf) =[] € closure(x(X))}.
The label of a vertex [(X)] is defined by

X
X

154 8. Parsing schemata for unification grammars

¢ if (X7) =€ closure(x(X))
label([{X7)]) = {

¢ otherwise

Lemma 8.9

For each x(X) € CCS it holds that graph(x(X)) € FG.

Proof. Direct from the following observations:

o f[(Xxf)] =[] € closure(x(X)) then also (X)) =[] € closure(x(X)),
hence E is properly defined with respect to U;

o if (X)) L w and [(X)] Ly then u = v;
e the graph has a root [{X}];

e there are no (Xm) = cand (Xm) = d with ¢ # d, hence each label is uniquely
defined;

e moreover, if (Xmg) = p € closure(x(X)) for non-empty ¢ then the consis-
tency of x(X)) guarantees that there is no (Xm) = ¢ € closure(x(X)), hence
label([{X7)]) = . O

Definition 8.10 (mapping graphs to a constraint sets)

For each feature graph T'(X) € FG we define a constraint set. To that end, we
label each vertex with an auxiliary path label. If there are several paths to a
vertex, we take the lowest one in lexicographical order. Formally: let r be the root

of T'(X), then
path_label(u) = min{g | r - u}.
A constraint set constraints(I'(X)) is (uniquely) defined by
xv(X) = {{Xpathlabel(uw)) = ¢ | label(u) = ¢},
xe(X) = {(Xpath_label(u)) =[] | wis aleaf A label(u) = ¢},
xo(X) = {(Xpath_label(u)) = (Xg) | r L uAop # path_label(u)},
X(X) = xv(X) Uxe(X)Uxe(X). =

Lemma 8.11
For each graph T'(X) € FG it holds that constraints(I'(X)) € CCS.

Proof. Let I'(X) € FG. We verify the constraints for consistency of Definition
8.6. (i) follows from the definition of yv (X); (it) because in T'(X) only leaves are
labelled; (i) because the graph is acyclic. a

8.1 Feature structures 155

Definition 8.12 (normal form)
The function nf : CCS — CCS 1s defined by

nf (x(X)) = constraints(graph(x(X)).

nf (x(X)) can be thought of as the normal form of a constraint set. It is, roughly
speaking, a constraint set with constraints that are minimal in lexicographical
order. We write nfCCS for the set of constraint sets that satisfy nf(x(X)) = x(X).
O

In order to compute a normal form, 1t is not necessary to construct a graph and
then afterward deconstruct it. An algorithm to obtain the normal form of a con-
straint set is shown in Figure 8.3. It is left to the reader to verify the correctness
of this algorithm; our main concern right now is the existence of the normal form,
rather than its computation.

procedure normalize x(X)
begin
repeat each of the following steps

replace (X7) = (Xp) by (Xg) = (Xm)
if o < m;

replace (Xwo) = pu by (X7'0) = 1
if 7 < mand (X7) = (X7} € x(X);

delete (Xmg) = (X7'g) from x(X)
if (X7) = (X7') € x(X) and ¢ #¢;

delete (X7) =[] from x(X)
if (Xwo) = po € x(X) for some g # ¢
orif (Xm) =¢

until no more of these steps can be applied

end;

Figure 8.3: A simple normalization procedure for constraint sets

Lemma 8.13
When we restrict graph to constraints in normal form only, the functions

graph : nfCCS — FG and

constraints : FG — nfCCS

156 8. Parsing schemata for unification grammars

are bijections. Moreover, they are each other’s inverse.

Proof: straightforward. ad

8.2 Feature lattices

We will now define a lattice structure for constraint sets and feature graphs. First,
we recall the definition of a lattice.

Definition 8.14 (lattice)
Let X be an arbitrary set (with elements X,Y,...) and C a partial order on X.
The pair (X,) is called a lattice if

(i) There is a top element 7' € X and a bottom element B € X such that
BLC X CT foreach X € .

(it) TFor each pair of elements X, Y € X there is a lowest upper bound (lub),
denoted X LY, that satisfies

(¢) XCXUYandYCXUY,
(b) for each Z such that X £ 7 and Y C Z it holds that X UY C 7.

(it1) TFor each pair of elements X|Y € X there is a greatest lower bound (glb),
denoted X MY, that satisfies

(¢) XNYCXand XOYLCY,
(b) for each Z such that ZC X and Z C VY it holds that ZC X NY. O

Definition 8.15 (nfCCSY, FGT)
We define a set 1 ¢cg by

Lecs= VOCUECU CC.

(This is not a constraint set according to Definition 8.4, as L ¢¢s is not finite)

We define a graph Lpg = (UL, EL) by
Ul =,
EJ_:{riw“|fE}"ea}.

(This is not a feature graph according to Definition 8.4, as L pg is not a DAG. The
vertex r can be thought of as labelled with all constants at once.)
Furthermore, we extend graph and constraints by

graph(Lces) = Lrg,

8.2 Feature lattices 157

constraints(Lpg) = Leoes .

We extend the domains of constraint sets and feature graphs by
nfCCSY = nfCCS U{Lces),
FG" = FGU{Llrc}.

When 1t is clear from the context which domain is meant, we drop the index and
simply write L for inconsistent. a

Definition 8.16 (subsumption)
A subsumption relation C is defined on cest by

X1(X) C x2(X) if closure(x1(X)) C closure(x2(X)).
A subsumption relation C is defined on FGr by
I1(X) ET2(X) if constraints(T'1 (X)) E constraints(I'2(X)). m|

Note that y(X) E L for any x(X). It happens to be the case that L is the top
element of the lattice structure over constraint sets. This is somewhat unfortunate,
because in lattice theory L usually denotes the bottom element. On the other hand,
it 1s not uncommon to interpret L as “inconsistent”. This notational problem can
be solved, simply by reversing the lattice structure. If we write J and 1, rather
than C and U, we have L as the bottom of the lattice. This is equally problematic,
however, as it is not intuitively appealing to write M for a symbol that is to be
interpreted as a union of constraints. Hence we stick to the notation as introduced
in Definition 8.16.

Theorem 8.17 (lattice structure)
(a) (nfCCS* C)is a lattice with bottom {(X) =[]} and top Lccs.
(b) (fgL, C) is a lattice with bottom graph({(X) =[]}) and top Lrg.

(¢) graph : nfCCSY — FG* is an isomorphism with respect to C;
constraints : FGL' — nfCCST is the inverse isomorphism.

Proof.

(a) The top and bottom properties are trivial.
The existence of a lub for any two constraint sets x1(X), x2(X) € nfCCS*
is shown as follows. We write x' for closure(x1(X) U x2(X)).
If ' is inconsistent, then L is obviously the lub.
Otherwise, assume x” € CCS with x1(X) C x” and x2(X) C x".
Then closure(x1(X)) C closure(x”), and closure(y2(X)) C closure&x”).
Hence x' C closure(x’), and nf(x') is the least upper bound in nfCCS™.
The existence of a ¢lb follows in similar fashion.

158 8. Parsing schemata for unification grammars

(¢) Straight from Lemma 8.13 and Definition 8.16.
(b) Direct from (a) and (¢). O

We can extend the relation C to cover the entire set of consistent constraint sets
CCS. Note, however, that (CCS U{L},C) is not a lattice, because the lub is not
uniquely defined.

Corollary 8.18
For any pair of consistent constraint sets in normal form x1(X), x2(X) € nfCCS
it holds that

X1 (X) Ux2(X) = af(xa(X) Ux2(X)) =

We have defined U as a least upper bound, derived from the subsumption relation
C. In practical applications, we see L as an operator that allows to construct new
feature structures by merging the features of existing feature structures. How such
a merge is carried out in an efficient manner is not a direct concern here. We will
come back to that issue in Chapter 9.

Having proven that normal forms of consistent constraint sets and feature
graphs are isomorphic, we can abstract from the particular representation and
simply call it a feature structure. We write ¢(X) to denote a feature structure,
or simply ¢ if it 1s not relevant which object X is characterized by the features
in . A feature structure will be interpreted in an opportunistic manner either as
feature graph or as constraint set, whatever is most convenient.

We write ¢(X).7 to denote the substructure of ¢(X) that is (in the graph repre-
sentation!) the largest subgraph of which [{X)] is the root. We write ¢(X).7 = ¢
if (in constraint set representation!) (Xx) = ¢ € closure(yp(X)).

As an informal notation for feature structures we write AvMs, feature graphs or
constraint sets. It is not required that a constraint set be in normal form. Normal
forms were important because the lattice structure is defined on normal forms, but
for any practical application any equivalent specification of a constraint set will
do as well. Hence, as we are not going to use normal forms, we do not need to
explicitly specify a linear order on Fea and Const.

With the conceptual machinery introduced so far, we can now explain the
difference between type identity and token identity. Consider the following feature
structures:

8.3 Composite feature structures 159

Then the substructures 1.f and ;.9 are called type identical: they have the
same value, but they are different structures. The substructures @s.f and ¢s.g9
are called token identical: they refer to a single structure (and have the same value
a fortiori). Note that ¢1 C ¢a, because the constraint set of g2 can be obtained
from the constraint set of ¢y by adding a constraint (i.c. (Xf) = (Xg)). The
difference between these structures comes to light when either structure is unified

with ¢ = [g: [h: e]],yieldmg

g: f: g:d
prUe = fiec C o Uy’ = h:e
g: |g:d
h:e q:

In the sequel, we write the usual equality symbol (=) for type identity and a
dotted equality symbol (=) to denote token identity. So we have ¢1.f = 1.9,
pa.f = 2.9, p2.f = pa.g, but p1.f # ¢1.9.

The difference between type identity and token identity is only relevant for
substructures. For constants it doesn’t make any difference whether a value 1s
token identical to or a copy of some given other constant.

8.3 Composite feature structures

So far we have defined feature structures, that capture the characteristic properties
of some object. It is essential, however, to add the conceptual machinery that
allows us to relate the features of different objects to one another. To this end we
introduce feature structures that describe the features of a (finite) set of objects.
Features can be shared between objects by means of token identity.

Composite constraint sets for sets of objects are only a minimal extension of
the constraint sets of Section 8.1: coreferencing is allowed between (features of)
different objects. In the domain of feature graphs, we get a set of graphs that
may share subgraphs. Or, to put it differently, we get a single graph with multiple
roots.

Definition 8.19 (multi-rooted feature graphs)

A multi-rooted feature graph is a structure T'(Xy, ..., Xy) = (U, E, R) with (U, E)
a finite DAG and R = {rq,...,rx} C U, with the following properties:

(i) every edge is labelled with a feature;

(it) if f and g are labels of edges originating from the same vertex, then f # g¢;

160 8. Parsing schemata for unification grammars

(it1) leaves may be (but need not be) labelled with a constant, non-leaf vertices
do not carry a constant label,;

(iv) TFor every u € U there is some r € R such that r — u.

We call R the root set of the graph. The size of the root set must correspond
to the number of formal parameters Xy, ..., X;; the roots can be labelled with
identifiers referring to the objects whose features are represented. Note that is
it not required that a root r; has no incoming edges. It is conceivable that one
root is the descendant of another root (and also that several roots coincide). In
that case, the features of one object are token identical with a substructure of the
features of another object.

We write MFG for the class of multi-rooted feature graphs. O

Definition 8.20 (composite constraint sets, closure)

Let Xy,..., X} denote a finite set of objects. A (composite) constraint set v (X7,
..., X1) is a finite set of constraints from the domains of value constraints, exis-
tential constraints and composite coreference constraints, defined as follows:

VC = {(X;m)=c | 1<i<k A 7€ Fed* A c€ Const},
EC = {(Xim) =[] | 1<i<k A 7€ Fea'},
CCC = {(X;m) = (Xjo) | 1<i<k A1<j<k A 7 0€ Fed'}.

The closure of a constraint set is obtained as in Definition 8.5, with X replaced
by X; or X; as appropriate. m]

Definition 8.21 (consistency)
A closed composite constraint set x(Xi,..., X}) is called consistent if it satisfies
the following properties:

(i) f{(Xim)=cex(Xy,...,Xp) and (X;m) =d € x(X1,..., Xp) then ¢ = d;
(ir) if (Xym) =ce€ x(Xy,..., Xp) and (X;me) = p € x(X1, ..., Xp) then g = ¢

(itr) (Xymo) = (X;7) and (X;m) = (X;7g) are not in x(X1,...,X}) for any i =,
and non-empty g.

An arbitrary composite constraint set y (X1, ..., Xj) is consistent if closure(x (X1,
..., X1)) is consistent.
We write CCCS for the set of consistent composite constraint sets. a

Definition 8.22 (mappings, normal form)
The mappings graph and constraints can be extended to composite constraint
sets and multi-rooted feature graphs in the obvious way (and it can be verified

8.3 Composite feature structures 161

straightforwardly that these functions are well-defined).
The function nf : CCCS — CCCS is defined by

nf(x(X1,...,Xk)) = constraints(graph(x (X1, ..., X%));
We write nfCCCS for the set of constraint sets that satisfy
nf (x(X1,..., X5) = x(X1, ..., X§). a

Definition 8.23 (substructures)

Let T(Xy,...,X%) = (U, E,{r1,...,r1}) € MFG describe the features of a set of
k objects. The feature graphs of a subset of this set of objects are described by a
subgraph, as follows.

Let {X;,..., X, } C{X1,..., Xp}.

Then T'(X;,, ..., X5,,) = (U E' {riy, ..., ri,, }) is defined by

U = {ueU | ry; — uforsome j (1 <j<m)},
F' = {u—=veF | u,vell}

Similarly, a substructure is defined for closed constraint sets?.
Let x(X1,..., X}) be a closed constraint set. A (closed) substructure
X(Xip, oo, X)) for { Xy, ..., X5} C{X1,..., X} is defined by
X(Xy, X)) = {{(Xgm)=cex(Xy,.. ., Xy) | 1<j<m}uU
(X =[] ex(X1,..., X)) | 1<j<m}pU
{(X”ﬂ') = <X“Q> € X(Xla .. an)
[1<j<mAL<I<m).

For x(X1,...,Xr) € nfCCCS and {X;,,..., X5, } C {X1,..., X} we define a
substructure y(X , Xi,,) as follows.

TEERE

Let (X1, ..., Xp) = closure(x(X1, ..., Xi));
then x(Xi,, ..., X)) = of (X' (Xiy, ., X5,))). i

Definition 8.24 (composite feature lattices)
We define a set L cocs by

Leces= VO UECU CCC.

As inconsistent MFG we define a multi-rooted graph L yre= (UL, Er, R1) with
an infinite root set:

UJ_IRJ_I{Tl,...},

3We cannot simply apply the same definition to arbitrary constraint sets: if a feature of
some Xij is token identical with an object that is no longer represented in the substructure,
all constraints relating to that part of the deleted substructure must be taken into account as
well. Only in closed constraint sets it is guaranteed that every feature of an object is completely
described by constraints for that object.

162 8. Parsing schemata for unification grammars

EJ_:{T’Z'LT’]' | Ti,TjERJ_ A fEfea}.

Each vertex r; can be thought of as being labelled with all constants at once.
The functions graph and constraints are extended to map L cceos and L yrpa onto
each other.

We define the domains

nfCCCST = nfeccS U {Lcces),
M}"GL = Mng{J_MFg} O

8.4 Composite feature lattices

Before we define subsumption on composite feature structures, we must clarify the
distinction between objects and formal parameters. It is our purpose to derive a
binary operator U that can be used to unify feature structures. A feature struc-
ture p(X1,..., X)) Up(Y1,...,Y]) combines the features of both structures. It is
important to know, however, which X’s and which Y’s refer to identical objects.
Let, for example, X3 = Y, and all other X; and Y; be different. Then in the
unified feature structure ¢(Xy,..., X%) U e(Y1,...,Y7) there is (a parameter for)
an object that will contain both the features of ¢(X3) and ¢(Y2). (Note, however,
that ¢©(X3) and ¢(Y2) are separate feature structures. Features can be shared
across objects (or parameters) within a single composite feature structure, but fea-
tures can not be shared across different composite feature structures.) Hence it is
essential to know which parameters denote which objects, so that the right pairs
of features are unified when we unify two composite feature structures. Therefore
we assume the existence of a (possibly infinite but countable) domain of objects
and postulate that each parameter refers to an object.

In a practical notation, we could annotate the unification with which param-
eters should be considered to refer to the same object. The above case can be
denoted as

@(Xla .. an) I—IX3:Y2 SD(Yla .. a}/l)

As indices to the unification we write (sequences) of equalities that denote cor-
respondence between formal parameters of either argument. In the unlikely case
that all formal parameters are different we could write Uy (but this operation will
not be used in the sequel). Hence, when we write an unqualified lub symbol U it
should be clear from the context which parameters of both arguments refer to the
same object. This will usually be the case.

In practical use, we see Ll as an operator that can be used to construct new
feature structures from existing feature structures. But before we start using it,
we have to define U formally as a least upper bound in a lattice.

8.4 Composite feature lattices 163

Definition 8.25 (subsumption)
A subsumption relation C is defined on nfCCCS® as follows:

X1(X1, .., X5) E x2(Y1,..., Y1) holds if
(i) {Xy,..., Xy} C{Y1,....,V1}, and
(it) closure(x1(X1,..., X)) C closure(x2(X1,. .., Xp)).
A subsumption relation C is defined on MFG* by
D(X1,...,X3) oYy, ...,) holds if
constraints(T'1(X1, ..., Xp)) E constraints(To(Y1, ..., 7).]

Theorem 8.26 (lattice structure)
The following statement hold:

(a) (nfCCCSL, C) is a lattice with the empty constraint set as bottom and top
Leces.

(b) (MfgL, C) is a lattice with the empty graph as bottom and top L prg.

(¢) graph : nfCCCSY — MFG® is an isomorphism with respect to C;
constraints : MFGE — nfCCCS” is the inverse isomorphism.

Proof: straightforward extension of the proof of Theorem 8.17 and preceding
lemmata. i

Corollary 8.27
For consistent composite constraint sets in normal form

X1(X1, Xe), x2(Y1, ..., Y1) € nfCCCS it holds that
Xl(Xla"'an) I—I)(”:le,...7

nf(xl(Xl,...,Xk) U Xz(Yl,...,}/l)
U{{X) = () (Xin) = (V)) =

X =Y, XZ(Yla o a}/l) =

As with constraint sets and feature graphs, we will blur the distinction be-
tween composite constraint sets and multi-rooted feature graphs. We simply write
o(X1,...,X1) to denote a composite feature structure for k objects. As in 8.1
we write ® to denote both lattices (nfCCCS® C) and (MFGY). If we need
one particular representation we will pick the one that i1s easiest to work with,
depending on the circumstances.

From a composite feature structure ¢(Xy,..., X3) one can derive a feature
structure ¢(X;) for any object, by taking the appropriate substructure. As a
convenient notation we write

Pp(Xi) = w(X1,..., Xp)ly,

K3

164 8. Parsing schemata for unification grammars

to denote that a feature structure for an object X; is obtained by retrieving it
from some composite structure.

Up to now we have only attributed features to sets of objects. It is possible that
the objects themselves are contained in a structure of some kind. We call these
object structures so as avoid confusion with feature structures. Typical object
structures that we will use in the remainder of this chapter are

e A production A—a from a context-free grammar.

We write ¢(A—«) as a convenient notation for a composite feature structure
o(A, X1,...,Xt) that describes features of left-hand and right-hand side
symbols, where o« = Xq,..., X}.

o A tree (A~ a).

We write ¢({A ~ «)) as a convenient notation for a composite feature
structure p(A, ... , X1,..., Xg), where o = X3,..., Xj.

e Anitem [4 ~ a].

Items were introduced in Chapter 4 as sets of trees. Here we should see them
as abstractions of trees: We only know the root and the yield of the item;
we do not know (or do not want to know) the internal nodes. Consequently,
features can be retrieved only from the nodes that are explicitly mentioned in
the denotation of the item. Hence, a composite feature structure of an item
[A ~+ a] can be seen as a substructure of a composite feature structure of a
tree (A ~» a), from which the features of internal nodes have been deleted.

We write ¢([A ~ a]) as a convenient notation for a composite feature struc-
ture ¢(A, X1,..., Xp) where o = X3,..., Xp.

A similar interpretation will be given to various kinds of items that give
various kinds of partial specifications of trees. As an example, consider the
item [S—NP.VP,0,2], specifying the fact than an NP has been found by
scanning the first two words (but we don’t care to remember what those
words were). A feature structure ¢([S—NP.VP,0,2]) will be a composite
feature structure ¢(S, NP, VP) that denotes the appropriate substructure of
p({(S—(NP ~+ a,a,) VP)).

8.5 Unification grammars

With the lattice of (composite) feature structures, developed in in 8.1 and 8.3, we
can now formally define a unification grammar as 1t has been informally presented
in Chapter 7.

The definition of unification grammars that we present here is not the most
compact one that i1s possible. One could eliminate the context-free backbone and
let syntactic category be a feature as any other. If one abstracts from the syntactic

8.5 Unification grammars 165

category as a special feature, the definitions and notations become more terse, but
somewhat more obscure. For the sake of clarity and compatibility with the other
chapters, we will not do so.

We take it for granted that syntactic category is such a fundamental notion
that every feature structure for every constituent constraints at least a cat feature.
Hence, in order to obtain a legible notation, we continue to call nodes in a tree by
their syntactic category, like we did with context-free grammars.

Definition 8.28 (unification grammar)
A unification grammar 1s a structure

g = (G, (I)’ %0, Wa [,6:17)
The different parts of this structure are defined as follows:

e (= (N,X, P 5S)is a context-free grammar. We write V for N UX; it is not
required that N NY =), a syntactic category is allowed to be both terminal
and nonterminal.

Furthermore, P is a multiset of productions, i.e., it is allowed that a single
context-free production occurs more than one time.

o & = O(Fea,Const) is the lattice of feature structures based on a set of features
Fea and a set of constants Const. It is assumed (but not necessary) that
Fean Const = . We assume cat € Fea and V C Const, allowing for syntactic
categories to be represented in a feature structure.

e g : P—® is a function that a assigns a composite feature structure to each
production in the context-free grammar. For each production A—Xy, ..., X
1t 1s required that

wo(A).cat = A, o(X1).cat = X1, ..., @o(Xp).cat = X,

(where we write po(A) as a shorthand for ¢o(A—X1 ... X3)[4 and @o(X;)
likewise).

Different feature structures can be attributed to a single context-free pro-
duction by including the production more than once in P.*

e W is a set of lexicon entries, i.e., “real” word forms, as opposed to lexical
categories in X. It is assumed (but not necessary) that VNIW = (. We write
a,...for words in W.

o Lex is a function that assigns a set of feature structures to each word in W
(a word may have different readings). FEach ¢(a) € Lex(a) for each ¢ € W
must have a feature cat. Moreover, it is required that ¢(a).cat € X.

4 Alternatively, one could have P as a proper set and attribute a set of composite feature
structures to each production. There is no need to use multisets, then, but in the remainder of
the chapter the expression “pg(A—a)” has to be replaced by “some ¢ In ¢g(A—a)”.

166 8. Parsing schemata for unification grammars

We write UG for the class of unification grammars G that satisfy the above prop-
erties. ad

One could argue whether the lexicon is part of the grammar or a separate
structure. The size of the grammar is reduced tremendously when the lexicon
is not contained in the grammar. It is somewhat artificial, however, to assume a
grammar with production features ¢q existing independently of a lexicon (W, Lex).
The trend in unification grammars i1s that more and more information is stored
in the lexicon, and the productions merely serve to prescribe concatenation and
feature unification.

The reason for introducing an alphabet W, consisting of words with lexicon
entries, is the following. In context-free parsing of natural languages it is standard
use to consider the word categories, rather than the words from the lexicon, as ter-
minal symbols. In Chapters 2 and 3 we have introduced the notational convention
that leaves a,b,...1n a parse tree indicate a terminal symbol, while leaves a, b, ...
indicate that these leaves correspond to words from the actual sentence that has
to be parsed. In Chapter 2 the underlined terminal symbols were added to the
grammar in the following way:

e for the ¢-th word of the sentence, extra productions a—a; are added for each
possible lexical category of that word.

Verification that a word occurs in the sentence, therefore, could be expressed in
terms of tree operations. For each auxiliary production we can supply a feature
structure structure (in constraint set notation)

pola—a;) = {{a) = (a;)}.

These auxiliary productions are not part of the grammar, but an implementation
technique that is used to construct the parse of a given sentence. We will stick to
this notation, for the moment, because it allows us to express the difference be-
tween terminals that have been matched with the sentence and those that haven’t
been matched yet.

When we abstract from trees to items, in Section 8.7, we will simply have
initial items of the form [a, j — 1, j] with a feature structure p(a) € Lex(a;). The
careful distinction between matched leaves and non-matched leaves will no longer
be relevant then.

Grammars may include e-productions. In Section 3.1 we defined trees in such
a way that an e-production generates a leaf labelled . Throughout the remainder
of this chapter we will simply assume that such leaves labelled ¢ are not decorated
with any features. With this restriction, an arbitrary production A—a in all the
following definitions also applies to A—-«.

Definition 8.29 (decorated trees)
A decorated tree is a pair (1, (7)) with 7 € Trees(G) (cf. Definition 3.10.(i7))

8.5 Unification grammars 167

and ¢(7) a composite feature structure for the nodes in , satisfying the following
conditions

(i) for each node A with children « there is some A—a« € P such that
po(A—a) C p(A—a);

(it) for each node a with child g; it holds that ¢(a) = ¢(g;);
(it1) for each node g; there is some ¢'(a;) € Lex(a;) such that ¢'(a;) C ¢(a;).

We write DTrees(G) for the set of decorated trees for some unification grammar

g. O

In 8.6, like in Chapter 2, we will construct parse trees by means of composition
of smaller trees. Any tree can be composed from atomic trees. When a new tree is
created that is a composition of two existing trees, its features will be merged. In
this way, context-free parse trees can be obtained that are decorated with feature
structures. We should make sure, however, that the feature structure of a parse
tree contains only “adequate” features (in a sense to be made precise shortly)
which are derived from the productions and lexicon. One can always extend the
decoration of a tree by adding new features out of the blue. For a decorated parse
tree, it should be required that no unnecessary features have sneaked in. The
following definition rules out “over-decorated” trees.

Definition 8.30 (adequately decorated trees)

We define adequate decoration of trees by induction on the tree structure.” Let
(G € UG be a unification grammar and (7,¢(7)) a decorated tree. The adequacy
of the decoration ¢(7) is defined as follows, depending on the form of 7:°

5The reader might wonder why we do not give a direct definition of a minimally decorated
tree. One could call (7, »(7)) minimally decorated if there is no decoration ¢’(7) # (7) such that
©'(7) C ¢(7). The problem is, however, that adequately decorated trees need not be minimal.
As an example, consider a grammar with the following productions:

A—B, o(B)=[f:al], (8.1)
A—B, ¢(B)=[g:10], (8.2)
B—C, ¢(B)=|[g:b]. (8.3)

A tree (A ~» C') composed from the elementary trees of productions (8.1) and (8.3) is decorated
adequately, but not minimal.

In a practical grammar, it is likely that every adequately decorated tree is also minimally deco-
rated. One could rule out grammars that allow non-minimal adequate decoration by additional
constraints on the features of the productions and lexicon. This is not very relevant for the
current discussion, therefore we bypass the issue with a definition of adequacy that is based on
what ought to be proper composition of decorated trees.

6See Definition 3.8 for various forms of linear tree notation.

168

8. Parsing schemata for unification grammars

e 7= {(a—g;) (i.e. 7 matches a terminal with a word in the sentence).
Then the decoration is adequate if (a) = ¢(a;) € Lez(a;).

e 7= {(A—a) (i.e. 7 covers a single production).
Then the decoration is adequate if (1) = po(A—a).

o 7= {(A—={a~ f)) (ie., a production {A—a) constitutes the top of the

tree).

Let o« = Xy ... Xy, 8= B1...0k, such that (X; ~ ;) is a subtree of 7 for
1<i<k.

We distinguish between degenerate subtrees, having a single node X; = §;
and no edges and nondegenerate subtrees having more than one node and
at least one edge. The (only) adequate decoration for a degenerate subtree
is the empty feature structure.

Then ¢(7) is an adequate decoration if there are adequately decorated trees

((A=a), ¢'((A=a))),
(X1~ B1), @' (X~ B)))s ooy (X~ B)y ' (X~ i)

such that

p({(A={a~) = ¢'((A—=a)) U ¢'((X1~p1)) U...
U @' ((Xg ~ B)).

Definition 8.31 (parse tree)

Let G be a unification grammar, @, ..., astring in W*. A parse {ree for a; ...

i1s an adequately decorated tree of the form

n)))

I

((S’\’*Q1~~~Qn>, @((S’wgl...
with (S ~a,...a,)) # L.

Definition 8.32 (result)

Let ({S ~ a5...4a,), o({S ~ a;...a,))) be a parse for the sentence a; ...

The feature structure

P(S) = p((S~ay...a,))lg

1s called a result of the sentence.

12

I

O

In context-free parsing, parse trees are delivered as results. For unification
grammars, it 1s assumed that the feature structure of the sentence symbol S con-
tains all relevant information. The parse tree is not an interesting object as such,
it serves only to compute ¢(S). Hence we can rephrase the parsing problem as

follows.

8.6 Composition of decorated trees 169

The parsing problem, given sentence a; ...a, € W* and a grammar G,
is to find all results ¢(S5).

Unlike the context-free case, we can also define a reversed problem.”

The generation problem, given a grammar G and a feature structure
©(9), is to find a sentence a; ...a, € W* for which ¢(S5) is a result.

In principle it should be possible to use a single unification grammar both for
parsing and generation. If a grammar is to be used in both directions, it must
be guaranteed that both the parsing algorithm and the generation algorithm halt.
A unification grammar that is designed for use in a parser typically will not halt
when used for generation. Reversible unification grammars, that can be used in
either direction, are studied in by Appelt [1987], Shieber [1988], Shieber et al.
[1990], Gerdemann [1991], and van Noord [1993].

8.6 Composition of decorated trees

In 8.5 we have defined what a valid parse tree is, but not yet how such a tree can
be computed. We will now define an operator for tree composition. Using this
operator, one can create ever larger and larger trees from the initial trees based
on grammar productions and lexicon. Thus, in the framework of Chapter 2, we
have a primordial soup populated with adequately decorated trees.

The primordial soup 1s sound if all parse trees for the sentence that may appear
are adequately decorated and complete if all adequately decorated parse trees can
be constructed.

We define a decorated tree composition operator <i; and extend that to a
nondeterministic operator by dropping the index ¢. For technical reasons, the
context-free tree composition operator is defined slightly differently from the way
it was done in Chapter 2. (The difference is merely notational, the trees that can
be composed are the same).

Definition 8.33 (context-free tree composition)
For a context-free grammar GG and any ¢ € IN a partial function

<;: Trees(G) x Trees(G) — Trees(G)

is defined as follows. Let 7 = (Xg ~ X;...X3) and 0 = (Yp ~ Y1...¥}) be
context-free trees in Trees((G). Then

{ <X0’\/->X1...XZ'_1 <XZ’\/->Y1}/1>XZ+1X]€> leZ:YO,
T 0 =

undefined otherwise.

"Wedekind [1988] has given such a definition for the generation problem in Lexical-Functional
Grammar

170 8. Parsing schemata for unification grammars

In a more practical interpretation, we interpret <i; as an operator to create new
trees from existing trees, rather than as a function. We drop the index ¢ and
obtain a nondeterministic operator <. a

Definition 8.34 (decorated tree composition)
For a feature grammar G and any ¢ € IN a partial function

<l;: DTrees(G) x DTrees(G) — DTrees(G)

is defined as follows. Let (7,¢(7)) and (o, ¢(0)) be decorated trees with 7 =
(Xg~ X1...Xp)and 0 = (Yy ~ Y1 ...Y7). Then

undefined if 7 <; ¢ is undefined

(1,0(7)) < (0,90(0)) = or (1) Ux,=y, (o) = L,

(1< o, o(7)Ux,=v, ¢(c)) otherwise.

As in Definition 8.33 we may drop the index ¢ and interpret <1 as a nondeterministic
operator.
We write (1, 0(7)) < (0, ¢(0)) = L if the composition is not defined for any i. O

The next lemma states that composition of adequately decorated trees yields
an adequately decorated tree. This result will not come as a surprise. But to be
formally correct it is necessary to state it as a separate result. Adequate decoration
was defined inductively by expanding a production tree with adequately decorated
trees. It follows easily (but not by definition) that arbitrary tree composition of
adequately decorated trees yields an adequately decorated tree.

Lemma 8.35

Let (r,¢(7)) € DTrees(G) and (o,9(0)) € DTrees(G) be adequately decorated
trees. If (1,0(7)) < (0,9(0)) € DTrees(G) then (7,¢(7)) < (o,¢(0)) is also
adequately decorated.

Proof: by induction on the size of (1, ¢(7)) < (o, ¢(7)).

Let 7 = (A—{a ~ 8)), a = X1... X}, 8 = B1... 5 as in Definition 8.30. In
the composed tree 7 <1 ¢, some leaf in some §; is unified with the root of o. Let
¢ ({X; ~ ;) be the adequate decoration of {(X; ~ ;) from which the adequacy
of ¢(7) is derived. Then, using the induction hypothesis, we find that

(Xi~ B;) <o, @' ((Xi~ 8;)) U (o))

= ((Xi~ 8i), ¢ ({Xi ~ Bi))) < (0,9(0))
is adequate. Tt is easily verified that (7, ¢(7)) < (6, ¢(c)) is obtained by compo-
sition of ({A—a), ¢'({A—a))) with ((X1 ~ 51), ¢’ ({(X1 ~ 1)), ..., ({(Xiz1 ~
Biz1), ¢ ({Xic1 ~ Bic1))), ((Xi ~ Bi) < o, @’(((Xz’ ~ Pi)) Ue(a), ((Xipr ~

Bi1), @' ((Xig1 ~ Bix1))), -, ((Xk ~ Br), ' ({(Xx ~ Bg))), as in Definition
8.30. -

8.7 Parsing schemata for unification grammars 171

Theorem 8.36 (correctness of primordial soup for decorated trees)
A decorated tree (7,¢(7)) with 7 = (S ~ a;...a,) that is obtained by tree
composition < from decorated trees of the forms

((A—a), po(A—a))) and

((a—g;), pla—a;))) with (a;) € Lex(a;) and p(a) = p(a;)

is adequate. Moreover, each adequately decorated parse can be constructed from
such trees.

Proof.

The soundness (context-free parse trees are adequately decorated) is a direct con-
sequence of Lemma 8.35. Tt is trivial to prove (with induction on the size of the
tree) that all adequately decorated trees can be composed, hence completeness
follows a fortiori. ad

8.7 Parsing schemata for unification grammars

In 8.5 we have introduced unification grammars and 8.6 we have proven that the
Primordial Soup framework for decorated trees is sound and complete. Integrating
all this into context-free parsing schemata is mainly a matter of notation.

There is, however, a single important difference between parsing schemata for
context-free grammars and unification grammars, with far-reaching consequences.
In the context-free case any item needs to be recognized only once. When an
already recognized item is recognized again, it should be ignored. For unification
grammars, in contrast, a single item context-free item can be recognized multiple
times, each time with a different decoration. These are to be regarded as different
objects. Hence we may face the situation that a parsing schema with only a finite
set of valid context-free items may yield infinitely many decorations to these items.

At this very abstract level we will not worry about infinitely many decorations
for a single context-free item. There are various ways to construct parsing algo-
rithms that recognize only a relevant finite subset of valid decorated items. This
will be discussed at more length in Chapter 9.

We will first formulate a parsing schema UG that formalized what we did in
Section 7.2: Constituents are recognized purely bottom-up. This can be regarded
as the canonical parsing schema for unification grammars.

A domain of items can be defined by adding feature structures to the usual
CYK items. We could write

Tve = {l(X,p(X)),ij] | XeV AN0<i<i A (X)#L}

where ¢(X) is obtained by restricting the composite feature structure of the tree
(X~ ;41 ...4;) to the features of the top node. Throughout the remainder of

172 8. Parsing schemata for unification grammars

this chapter items are decorated with feature structures, therefore we do not need
to mention ¢(X) explicitly in the notation of an item. Hence we write [X, 4, j] as
usual, rather than [(X, (X)), ¢, j].

The hypotheses represent all feature structures offered by the lexicon for all
words in the sentence:

H = {[a,j—1,5] | ¢(a) € Lex(a;)}. (8.4)

Schema 8.37 (UG)
It is obvious, however, that deduction steps for productions with larger right-hand
sides can be added in similar fashion.

For an arbitrary unification grammar G € UG we define a parsing system Ppyg =
(Zve, H, Dug) by

Tvg = {[X,ijl | X eV A0<i<j A o(X)# LY

DZl = {[Xl’io’il]a"'a[Xkaik—l;ik] F [A,io,ik]
| A—=X1.. X €P AN k>1A
p(A) = (po(A=X1 ... Xp) Up(X1) U. .. Up(Xi)| 4},
D = {F[4,j,j] | A=ce P N p(A) = po(A—e)},

Dye = D2Z'UDs,
and H as in (8.4).

Many unification grammars that have been written to cover (parts of) natural
languages have only productions that are unary or binary branching. In that case,
the definition of D can be simplified to:

DM = {[X,i,j] b [A,ij]
| A=X € P A ¢(A) = (po(A=X) U p(X))|4 },

DE = {[X,i,j],[Vj, k] = [Ai k] | A=XY €PA
P(A) = (po(A=XY) U p(X) Up(Y))l4},
Sets of deduction steps D) for other values of k can be added likewise. a

It is not necessarily the case that the parsing schema UG yields a finite set
of decorated items for an arbitrary grammar and sentence; even worse, the pars-
ing problem for an arbitrary unification grammar is undecidable. Several suffi-
cient conditions that guarantee finiteness of the UG schema are known from the
literature,® but no general necessary and sufficient condition is known. Hence we

8The off-line parsability constraint [Bresnan and Kaplan, 1982] and the stronger notion of
depth-boundedness [Haas, 1989] guarantee a finiteness.

8.7 Parsing schemata for unification grammars 173

simply assume that a grammar G has been defined in such a way that the pars-
ing schema UG will halt. For unification grammars designed for parsing natural
languages this does not seem to be problem. The underlying idea is that the
meaning of a sentence, that will be captured somewhere in the result, is derived
compositionally from the meaning words, via intermediate constituents; there is
little reason to write a grammar such that ever more meaning is added to the same
constituent.

In the sequel, we will assume that a unification grammar G has the property
that for any string only a finite number of valid decorated items exists. How the
grammar writer guarantees that this is the case (for example by making sure that
one of the sufficient conditions is kept) is of no concern to us here. When we
discuss other parsing schemata, the finiteness issue will come up again. Adding
other fancy kinds of deduction steps — notably top-down prediction of features
— may jeopardize the finiteness. In such a case we will show for a newly defined
schema P that if a parsing system UG(G) halts, then P(G) will also halt. In other
words, the finiteness in bottom-up direction is the responsibility of the grammar
writer, whereas the finiteness in top-down direction is the responsibility of the
parser constructor.

Earley-type parsers for unification grammars that incorporate top-down pre-
diction are discussed, among others, by Shieber [1985a], Haas [1989], and Shieber
[1992]. In Chapter 11 a head-driven parsing schema will be defined that starts
parsing those words that can be expected to yield features that are most restric-
tive for top-down prediction.

We will now look at an Earley parser, formalizing what has been informally
explained in Section 7.1. A domain of items for the Earley schema is properly

described by
IEarley(UG) = {[(A_>0“6a QD(A_>0[°B))a Za.]] | (85)
A—afeP AN 0<i<j A
po(A—af) C p(A—asf) A

p(A—asf) # L b
In order to simplify the notation, we attach identifiers to items. When an item
is subscripted with a symbol &, 7, (, ..., this symbol can be used in the remainder

of the expression to identify the item. Moreover, we write ¢(&) for the feature
structure @(A—a.f) of an item [(A—aef, p(A—a.f)),,jle. Furthermore, as
with the CYK items, we do not mention the feature structure explicitly in the
item. Thus we simplify (8.5) to

IEarley(UG) = {[A_>a°ﬁaiaj]§ | AHO‘BE PAO<i<jA (86)
po(A—aB) TN (&) #L)

Another useful notational convention is the following. Rather than writing ¢(€)|
for the feature structure of X derived from some composite feature structure within
an item &, we write (X).

174 8. Parsing schemata for unification grammars

Schema 8.38 (Earley(UG))
For an arbitrary unification grammar G € UG a parsing system Ppypeyva) =

<IEa7‘ley(UG), H, DEarley(UG)> is defined by IEarley(UGg) as in (86),

Dinit = {I—[S—n'y,0,0]g | @(g):§00(5_>7)}a
pSean = {[A—a.aB,i, jly, [a, 5,5+ 1; F [A—aadB,i,j+ 1]¢
| (&) = w(n) Up(a)},
) Compl = {[A—a.BB,i,jly, [B—7e,j, k¢ b [A—aB3,i, k)¢
| ¢(&) = ¢(n) Ue(B)},
pPred = {[A—a.BB,i,j], F [B—y, 7,4l

| gp(f) = @(Bn) u QDQ(B—V}/)}’
DEarley(UG) —pInit |y pScan (j pCompl DPred;
and H as in (8.4). 5

A unification grammar G for which UG(G) is finite, may cause an infinite
number of top-down predictions. A simple way to solve this (and the standard
way to parse a unification grammar with a conventional active chart parser) is to
limit the top-down prediction to the context-free backbone and replace D¢ by

DFred — { [A—auBB,i,jl, b [B—ey,5,5le | ¢(€) = po(B—7) }.

It is not difficult to show that the modified Earley schema yields only finitely many
different decorated items if the UG schema is known to do so. In Chapter 9 we will
investigate more sophisticated techniques to prevent infinitely many decorations
for a single context-free item.

We have given two examples of parsing schemata for unification grammars.
It is clear that other context-free parsing schemata can be extended with feature
structures in similar fashion.

8.8 The example revisited

We return to the example of Section 7.2 and show how the schema Earley(UG)
can be used to parse our example sentence. The lexicon and productions for the
cat catches a mouse were shown in figures 7.1 and 7.2 on pages 144 and 145. In a
PATR-style grammar, the composite feature structures ¢q are typically denoted by
a constraint set. Here we will represent all feature structures, single and composite,
by AVMS.

In an Earley item of the form [A—asB, 14, 7], we are interested only in the
features of A and 3. Features of A will be used to transfer information upwards

8.8 The example revisited 175

through a parse tree (when an item [A—af., i, k] is used at some later stage as the
right operand of a predict step). Features of 5 that are known already are used as
a filter to guarantee that 7 will be of “the right kind” in whatever sense imposed
by those features. The features of « need not be remembered. Features of o that
are of interest for the remainder of the parsing process will have been shared with
A or 3, other features are irrelevant. Qur purpose, here, is to construct a resulting
feature for S, rather than a context-free parse.

We start with an item [S—+NP VP,0,0], supplied with the features from
wo(S—NP VP). The decorated item is shown in Figure 8.4.

[S—.NP VP,0,0]

cat : S

S —
head :

NP — [cat: NP]
cat VP

VP +— head []

‘

subject:

Figure 8.4: The initial item

No features are predicted for the subject (other than that its category should
be NP). Hence, an item [NP—«*det *n,0,0] is predicted that is decorated with
wo(NP—*det *n). For the sake of brevity we skip the deduction steps

[NP—ds*det *n,0,0], [*det,0,1] F [NP—*detse*n,0,1],
[NP—*dete*n,0,1], [*n,1,2] & [NP—*det *n.,0,2];

the reader may verify that the decorated item [NP— *det *n.,0, 2] as displayed in
Figure 8.5 is obtained. A complete step combines the items of Figures 8.4 and 8.5
into a decorated item [S—NP+VP,0,2] as shown in Figure 8.6. The features of
the NP have been included in the VP through coreferencing.

From Figure 8.6 we predict an item [VP—+*v NP, 2, 2], as shown in Figure
8.7. The subject feature that is shared between VP and *v causes the subject
information to be passed down to the verb. Consequently, a verb can be accepted
only if it allows a subject in third person singular. This is indeed the case for

176 8. Parsing schemata for unification grammars

[NP—*det *n.,0,2]

cat : NP
number: singular
agr .
NP — person : third
head : i
| pred: cat
trans: [det -]

Figure 8.5: A completed NP

[S—NP.VP,0,2]

cat : S
S —
| head:
[catl : VP]
head H
cat : NP
VP +— o
number: singular
biect ar - person : third
subject: | .)
| prea: cat
trans: [det -]

Figure 8.6: Complete applied to Figures 8.4 and 8.5

177

8.8 The example revisited

[VP—.*y NP, 2,2]

[cat : VP
VP r— head
‘
L subject :
[cat - Fy 7
head []
cat : NP
* 2 | number: singular
v subject : head - wr: [person . third
trans: [sz ft]
‘
| object :]
NP +— [cat: NP]

Figure 8.7: Predict applied to Figure 8.6

178 8. Parsing schemata for unification grammars

[VP—*5 NP, 2, 3]

[cat VP 1
[tense: present T
agr
head - pred : catch
trans: | argl:
,
N i arg?: |
[cat : NP 1
number: singular
biect : ar - person : third
subject: | .
) pred: cat
trans: [det -]
‘
| object .
cat : NP
NP
T head : []
trans:

Figure 8.8: Scan applied to Figure 8.7 and “catches” on page 144

8.9 Other grammar formalisms 179

the initial item [*v, 2, 3], decorated with the lexicon entry for catches on page 144.
Hence we obtain the item [VP—*ve NP, 2, 3] with a decoration as shown in Figure
8.8. The *v entry has been deleted, as its salient features are also contained in
the VP feature structure. Note that (NP head trans) is now coreferenced with
(VP head trans arg2), through the coreference in the (no longer visible) feature
structure of the verb.

We can continue to deduce decorated items in similar fashion. It is left to the
reader to verify that application of the deduction steps

[VP—*0.NP,2,3] F [NP—.*det *n,3,3],

[NP—s*det *n,3,3], [*det,3,4] &+ [NP—*dets*n,3,4],
[NP—*dete*n,3,4], [*n,4,5] & [NP—*det *n.,3,5],
[VP—*.NP,2,3], [NP—*det *n.,3,5], F [VP—* NP.,2,5],
[S—NP.VP,0,2], [VP—*s NP+,2,5] F [S—NP VP.,0,5]

results in a decorated final item as shown in Figure 8.9.

[S—NP VP.,0,5]

cat : S
[tense: present

[number: singular]
agr

" | person : third

S — [pred: catch

head :
argl: [pred: cat]
trans: det : +

pred : mouse]

arg?2: [det _

Figure 8.9: A final item

8.9 Other grammar formalisms

We will briefly mention some different kinds of unification grammars and then
discuss the related formalisms of attribute grammars and affix grammars.

180 8. Parsing schemata for unification grammars

The earliest type of unification grammar is Definite Clause Grammar (DCGQG),
defined by Pereira and Warren [1980]. DCG is based on terms rather than fea-
ture structures. It is inextricably linked with the programming language Prolog
[Clocksin and Mellish, 1981]. DCG, basically, offers some additional syntactic
sugar for encoding grammars directly into Prolog.

In the last decade, a variety of grammar formalisms based on feature struc-
ture unification has emerged. The Computational Linguistics community has
been enriched with Lexical-Functional Grammar (LFG) [Kaplan and Bresnan,
1982], Functional Unification Grammar (FUG) [Kay, 1979, 1985], Generalized
Phrase Structure Grammar (GPSG) [Gazdar et al., 1985], PATR® [Shieber 1986],
Categorial Unification grammar (CUG) [Uszkoreit 1986], Unification Categorial
grammar (UCQG) [Zeevat et al., 1987], Head-Driven Phrase Structure Grammar
(HPSG) [Pollard and Sag, 1987, 1993], Unification-based Tree Adjoining Gram-
mars (UTAG) [Vijaj-Shanker et al., 1991]. This list is not exhaustive.

The word “grammar” that appears in all these formalisms, has subtly different
meanings in different cases. On the one hand, one can see grammar as a formalism
that has no meaning per se, but can be used to encode grammars for whatever
purpose. Typical examples of this class are DCG, FUG and PATR. On the other
hand, one can interpret grammar as a description of phenomena that occur in
natural language. Such a grammar does not only offer a formalism but, more
importantly, also a linguistic theory that is expressed by means of that formalism.
Typical examples of this class are LFG, GPSG and HPSG. We will further discuss
this in Chapter 15.

The feature structure formalism that we have used here is taken from the 1986
version of PATR (with exception of the extension to composite feature structures).
It was designed by Shieber to be the most simple feature structure formalism,
containing only the bare essentials. A lot of bells and whistles can be added, of
course. The use of lists, which is admittedly cumbersome in PATR notation, can
be simplified by introducing a special list notation. We have used untyped feature
structures: any feature can have any value. In a typed feature structure formalism,
the value of a feature is restricted to particular types specifically defined for that
feature. A useful extension to increase the efficiency of unification grammar parsing
is coverage of disjunctive feature structures. We will come back to this in Chapter
9.

We have stipulated — as in PATR — that feature graphs contain no cycles. The
practical reason is that it simplifies the unification algorithms, and cyclic feature
structures seem to have little linguistic relevance. In HPSG, the feature formalism
does not explicitly ban cycles, but in the 1988 version [Pollard and Sag, 1987] they
simply did not occur in any of the types prescribed for HPSG grammars. The

9The formalism is called PATR-II, to be precise, and quite different from a first version of
PATR that has fallen into oblivion (and hence the letters “PATR” in PATR-II no longer form

an acronym).

8.9 Other grammar formalisms 181

1993 version of HPSG [Pollard and Sag, 1993], however, has somewhat different
types and found an application for cyclic structures. Some linguists argue that
the head of a noun phrase is the determiner, rather than the noun (the so-called
DP hypothesis). In the latest version of HPSG, this matter is solved by letting
both the determiner and the noun regard themselves as head of the NP and each
other as a subordinate constituent. Hence either constituent is subordinate to a
subordinate structure of itself.

Unification grammars are related to attribute grammars, introduced by Knuth
[1968, 1971], that have been used in compiler construction for 25 years. There are
some basic differences between attribute grammars and unification grammars, but
from a formal point of view there is little objection to call both constraint-based
formalisms. The difference between both formalismsis to a large extent a difference
in culture: attribute grammars are typically used by computer scientists to denote
the semantics of programming languages, while unification grammars are typically
used by computational linguists to capture syntactic and semantic properties of
natural languages.

Attribute grammars stem from the age that higher programming languages
all were imperative languages. The basic statement is the assignment: a value,
obtained from evaluating an expression, is assigned to an identifier. Expressions
can be functions (i.e. sub-programs computing a value) of arbitrary sophistication.
Within the imperative programming paradigm, therefore, it is the most natural
approach to define attributes of a constituent as functions of other attributes of
other constituents. The constraints in an attribute grammar can be thought of
assignments:'°

(attribute) := (expression)

where (expression) is a function of attributes of other symbols in the same pro-
duction.

Unification grammars, in comparison draw heavily upon the declarative pro-
gramming style as incorporated in Prolog. A Prolog clause foo(X,Y) specifies
the relation between X and Y. If X is instantiated then foo can be used to assign
a value to a variable Y, and reversed, if Y i1s instantiated then a variable X can
get a value by calling fooll. Similarly, in unification grammars we specify (com-
mutative) equations that have to be true. In which order the features have to

190ne could use attribute grammars also within the functional programming paradigm. Lazy
evaluation can be used to solve some dependency problems easier and more elegantly than in the
imperative paradigm, but the central notion of functional dependency remains.

11In the actual practice of Prolog programming, however, few clauses do really allow this.
There is a difference between specification and computation: it is very well possible that the
Prolog gets stuck in an infinite loop of the “wrong” argument is uninstantiated. This is similar
to the fact that a unification grammar designed for parsing typically can’t be used for generation,
although the general formalism is bidirectional.

182 8. Parsing schemata for unification grammars

be computed is irrelevant, it is not even possible to express such considerations
within the formalism.

Research on attribute grammars, therefore, tends to focus on other issues than
research on unification grammars. A classical issue is that of noncircularity: if
there is a circle of attributes in a parse tree that are all functionally dependent
on each other, then it is impossible to compute a decoration for the tree. An
often used sufficient (but not necessary) condition is that of L-attributedness. An
attribute grammar is L-attributed, informally speaking, if all attributes can be
computed in a single pass in a top-down left-to-right walk through a context-free
parse tree. A subclass that is particularly useful in compiler construction is the
class of LR-attributed grammars. These, roughly speaking, allow the attributed to
be computed on the fly by an LR parser. The literature contains a host of differ-
ent parsing algorithms for LR-attributed grammars. See, e.g., Jones and Madsen
[1980], Pohlmann [1983], Nakata and Sassa [1986], Sassa et al. [1987], and Tarhio
[1988]). Each one defines a particular class of grammars on which it is guaranteed
to work correctly. All these classes are subtly different, however, because they de-
pend on the guts of the proposed algorithm. A taxonomy is presented by op den
Akker, Melichar and Tarhio [1980]. A fundamental treatment of attribute evalua-
tion during generalized LR parsing (c¢f. Chapter 12) is given by Oude Luttighuis
and Sikkel [1992, 1993].

“There are no fundamental differences between affix grammars [...] and at-
tribute grammars [...]”, Koster [1991a] remarks in an article on affix grammars
for programming languages. “The two formalisms differ in origin and notation,
but they are both formalizations of the same intuition: the extension of parsers
with parameters”.

Affix grammars are a particular kind of two-level or van Wiyngaarden grammars
[van Wijngaarden, 1965], and were formalized by Koster [1971]. One can see the
context-free productions of an affix grammar as production schemata, defining sets
of productions for different combinations of affix values that can be attributed to
the symbols involved in the production. Hence, even though grammars written
as an affix grammar can be automatically translated to attribute grammars, and
reversed, the basic formalism of affix grammars is more general, because its lacks
the predominant concern with functional dependency.

Unification grammars with a finite feature lattice can be formulated directly
as affix grammars (so-called Affix Grammars over a Finite Lattice (AGFL), see
Koster [1991b] for a simple introduction). Typically linguistic phenomena that
can be modelled with finite feature lattices, or a finite domain of typed feature
structures, are conjugation (i.e. the different forms of a verb) and declination
(forms of nouns, adjectives, etc.,)

The main difference between affix grammars and both attribute grammars and
unification grammars is again a cultural one. The school of affix grammars has
its own followers and its own formalism, but the work done in that area can be

8.10 Related approaches 183

formulated in terms of attribute grammars or unification grammars as well.

8.10 Related approaches

Some explicit parsing algorithms for unification grammars have been given in
the literature. Haas [1989] gives a GHR algorithm (i.e. Graham, Harrison, and
Ruzzo’s optimization of Earley’s algorithm, c¢f. Example 6.18) for grammars based
on terms. Shieber [1992] gives an Earley parser for a general class of unification
grammars, rather than just the PATR-formalism. The notation of Shieber [1992]
— as opposed to the PATR, variant of [Shieber, 1986], on which our treatment
of unification grammars is based — allows for explicit control of feature percola-
tion within productions; a production A—X; ... Xy is a structure with features
0,...,%k that address the separate constituents. Our concept of multi-rooted fea-
ture structures for describing feature sharing between different objects 1s more
general, because it can deal with arbitrary object structures.

The subject discussed here has some clear links with Shieber [1992], but we
have taken a rather different perspective. Whereas Shieber gives a most general
account of unification grammars and discusses only a single parsing algorithm, we
have used just a simple unification grammar but given a formalism that allows to
specify arbitrary parsing algorithms in a precise but conceptually clear manner.

8.11 Conclusion

The main contribution of this chapter is the combination of parsing schemata and
unification grammars in a single framework. Using the proper notation, parsing
schemata for unification grammars are a straightforward extension of context-free
parsing schemata. The hardest task was in fact to come up with a proper notation.
Both parsing algorithms and unification grammars are complex problem domains
on their own. In order to combine them into a single framework, a large conceptual
machinery and a rich notation is needed. It is for good reason that most articles
in the literature are specific in one domain, and informal in the other.
Context-free parsing is a computational problem area. A parse tree can be
defined as an object that satisfies certain properties, but the only way to find these
properties for a given sentence is to actually construct the parse tree. From this
point of view, attribute grammars are the more natural way to extend context-free
parsing with constraints and semantic functions. Decorating a tree with attributes
(whether simultaneously or in a second pass) is indeed application of functions.
The literature on unification grammars, on the other hand, has a strong focus
on the declarative character of such a grammar. One describes the constraints that
are implied by the grammar, and the properties of individual words in the lexicon.
The theory leans heavily on logic, hence the prime operational concern is that
constraints can be expressed in a subset of first-order logic that allows automatic

184 8. Parsing schemata for unification grammars

constraint resolution. This being proven, one can leave the act of satisfying the
constraints to an appropriate machine. From this point of view it makes sense
to concentrate on the static aspects of the grammar, rather than on the dynamic
aspects of how to construct a parse.

The dynamics of unification and resolution sec have been studied extensively
in the literature. It constitutes an auxiliary domain that is used as a tool in
the construction of parsers for unification grammars, often in the form of the
Prolog programming language. We have added a simple formalism that allows
explicit specification of the dynamics of feature structure propagation in parsing
algorithms.

