Chapter 7

An introduction to
unification grammars

In part II we have developed a formal theory of parsing schemata for context-free
grammars. In part IIT we will apply this theory in several different directions.

In Chapters 7-9, we discuss parsing schemata for unification grammars.

In Chapters 10 and 11 we use parsing schemata to define Left-Corner and Head-
Corner chart parsers. We will prove these to be correct as well.

In Chapters 12 and 13, subsequently, we derive a parsing schema for Tomita’s
algorithm as an example of an algorithm that is not item-based. As a result,
we can cross-fertilize the Tomita parser with a parallel bottom-up Earley parser,
yielding a parallel bottom-up Tomita parser.

In Chapter 14, finally, we discuss hard-wired implementations of parsing schemata,
in the form of boolean circuits.

We will extend parsing schemata with feature structures, so that schemata for
parsing unification grammars can be defined. In addition to items that describe
how a parser deals with the context-free backbone of a grammar, we will extend
the schema with a notation in which one can specify how features are transferred
from one item to the other. Thus a formalism is obtained in which feature per-
colation in unification grammar parsing can be controlled explicitly. Chapter 7 is
a brief, informal introduction. In Chapter 8 we give a lengthy, formal treatment
of the formalism; some more practical aspects of unification grammar parsing are
discussed in chapter 9.

Unification grammars — also called unification-based grammars, constraint-
based grammars, or feature structure grammars — are of central importance to

135

136 7. An introduction to unification grammars

current computational linguistics. As these formalisms are not widely known
among computer scientists, it seems appropriate to give an introduction that
should provide some intuition about what we are going to formalize.

In 7.1 a preview is given of what parsing schemata with feature structures
look like. While keeping the notion of feature structures deliberately abstract
and vague, the general idea of such a parsing schema stands out rather clear.
In 7.2, subsequently, feature structures and unification grammars are informally
introduced by means of an example. We use the PATR, formalism of Shieber [1986],
with a tiny change in the notation. Anyone who is familiar with PATR, can skip
7.2.

7.1 Unification-based parsing schemata:
a preview

A thorough, formal treatment of unification grammars and parsing schemata for
these grammars will be given in Chapter 8. As we will see, it requires quite some
space and effort to do things properly. Parsing algorithms for unification grammars
constitute a complex problem domain. A wealth of concepts is to be introduced,
properly defined and — not the least problem — provided with clear and precise
notations. We will jump ahead now and look at a glimpse of what we are heading
for. An intuitive understanding of what we are trying to formalize may help the
reader to get through the formal parts.

We address the following question: “How can parsing schemata be enhanced
with any kind of information that s added to the context-free backbone of a gram-
mar?” One may think of attribute grammars, unification grammars, affix gram-
mars or any other formalism in which such information can be specified. We will
be unspecific, for good reason. By refusing (for the moment) to use a particular
formalism we cannot get sidetracked by all its sophisticated details.

In this section we recapitulate a simple context-free parsing schema, give an
example of the use of other grammatical information, introduce (fragments of) a
notation for it, and add this to the parsing schema.

As an example of a context-free parsing schema we recall the Earley schema
of Example 4.32. For an arbitrary grammar G € CFG we define a parsing system
Prartey = (Z, H, D), where T denotes the domain of Earley items; H (the hypothe-
ses) encodes the string to be parsed; D comprises the deduction steps that can
be used to recognize items. Most deduction steps are of the form n,{ F §. When
the antecedents 1 and ¢ have been recognized, then the consequent & can also be
recognized. Some deduction steps have only a single antecedent. Moreover, in
order to start parsing, an initial deduction step with no antecedents is included.
Prariey 1s defined by

IEarley = {[A_W'Baiaj] | A—ape P0<i< J}a

7.1 Unification-based parsing schemata: a preview 137

H

{[a1,0,1],...,[an,n— 1,n]};

DIt = {F [S—7,0,0]},

D = {[A—aeaf, i, j],[a,5,5+ 1] F [A—aap,i,j+1]},
DComrl = {[A—auBf, i, j],[B—7s, 4, k] F [A—aB.g,i, k]},
b [B—ey, 5.0l

Dpartey = D™™tu DSeany pComply pPred,

1,
DPred = {[A—auBB, 4, j]

where H varies according to the string a; . . .a, that should be parsed. The second
part of the usual set notation {... | ...} has been deleted in most cases; by
definition, deduction steps may only use items from 7 and H.

We assume that the context-free backbone of a grammar is enhanced with
additional syntactic, semantic or other linguistic information. Constituents, pro-
ductions, and items can have certain features' that express information not present
in the context-free part of the grammar. This information can be of different kinds.
A typical use of features is the transfer of information through a parse tree. As
an example, consider

In the production S— NP VP, the semantics of S can be derived from
the semantics of NP and VP by ...

If each word in the lexicon has some semantics associated with it, and for each
production it 1s known how the semantics of the left-hand side is to be derived from
the right-hand side, the semantics of the sentence can be obtained compositionally
from its constituents.

Another typical, more syntactic way in which features are used is to constrain
the set of sentences that is acceptable to the parser. A canonical example is

In the production S—NP VP, there must be (some form of) agreement
between NP and VP.

The precise nature of the agreement is irrelevant here. Either constituent will have
some features that could play a role in agreement, e.g.

the noun phrase ‘the boy” is masculine, third person singular,

but the fact that agreement is required between NP and VP is a feature of the
production, not a feature of each of the constituents individually.

Let us now enhance the Earley parser with such features. If we parse a sentence
“The boy ...”, at some point we will recognize an item [S—NP+VP 0,2]. We could
attach the previously stated information to the item, as follows

1 At this level of abstraction, the word “feature” can be replaced by “attribute”, “affix”, etc.
All of these stand for roughly the same concept, but refer to different kinds of formalisms.

138 7. An introduction to unification grammars

The NP in [S—NP.VP,0,2] is masculine, third person singular.
Hence the VP that is to follow must be masculine, third person singular.

Next we apply the predict step
[S—NP.VP0,2] F [VP—* NP, 2, 2],
in combination with a feature of the production VP— *v NP:

In the production VP—*v NP, the agreement of VP is fully determined
by the agreement of *v.

Combining all this information, we obtain the following item annotated with fea-
tures:

[VP—e*s NP,2,2]
VP must be masculine, third person singular;

*

hence *v must be masculine, third person singular.

Gender plays no role in verb forms in English. Demanding that the verb form be
masculine is irrelevant, but harmless. If the grammar doesn’t specify gender for
verb forms, it follows that every form of every verb can be used in combination
with a masculine subject.

An important concept that must be introduced here is consistency. The fea-
tures of an object are called inconsistent if they contain conflicting information.

As an example, consider the sentence “The boy scout ...”, where “scout” 1s known
to be both a noun and a verb form. If we continue from the previous item and
scan a *v, we would obtain

[VP—*uNP, 2,3
VP must be masculine, third person singular;

hence *v must be masculine, third person singular.

*v 1s either plural or first or second person singular.

This is inconsistent and therefore not acceptable as a valid item.

We need to introduce a tiny bit of notation in order to enhance the Earley
parsing schema with features. The notation will be explained, but not defined in
a mathematical sense. We write

o ¢o(A—a) for the features of a production A—a«;
o (X) for the features of a constituent X;

o p([A—a.f,1,j]) for the features of an item [A—aef3, 4, j].

7.1 Unification-based parsing schemata: a preview 139

The index 0 for features of productions is to indicate that these are taken straight
from the grammar. In both other cases, features may have accumulated by trans-
fer from previously recognized constituents and/or items.

The features of an item comprise the features of the production and those of its
constituents (as far as these are known yet). From an item, the features of each
constituent mentioned in that item can be retrieved.

We will not (yet) define a domain of expressions in which features can be for-
mulated. This is left to the imagination of the reader. We need some notation,
however, to relate sets of features to one another. Combining the features of ob-
jects € and 7 is denoted by (&) U ¢(n). The square union (L) may be interpreted
as conventional set union (U) if it is understood that we accumulate sets of fea-
tures. Similarly, we write ¢(€) C ¢(n) (which may be interpreted as ¢(€) C (7))
to denote that an object 1 has at least all features of an object & but may have
other features as well.

We will now extend the Earley parsing schema with the possibility to include
features of constituents, productions and items. The parsing schema is defined
by a parsing system Proricy = (L Bariey, H, Drariey) for an arbitrary context-free
grammar (&, where the set H 1s determined by the string to be parsed. The domain
is defined by

IEarley = {[Aﬁaoﬁ,i,j]g | A—afeP AN 0<i<j A
wo(A—af) C p(€) A consistent(p(€))};

The ¢ symbol is used only for easy reference. Subscripting [A—ae3, 4, j] with &
means that we may refer to the item as & in the remainder of the formula. The
unabbreviated, somewhat more cumbersome notation for the same definition is

Trariey = {[A—aef,4,j] | A—afeP N O0<i<jA
QD()(A—>O[6) E @([A_)O“ﬁa Za]]) A
consistent (p([A—asf, 1, 4])) }.

In words: it is mandatory that all features of a production be contained in an item
that 1s based on that production. The item may have other features as well, as
long as this does not lead to an inconsistency.

The deduction steps are the usual context-free deduction steps, annotated with
how the features of the consequent are determined by the features of the an-
tecedents:

Dinit = [[S—+7,0,0]s | (&) = @o(S—7)},

DS = {[A—awaf, i,y [0, 5+ 1 b [A—oasf,i,j + 1

| (&) = o(n) Uela)},
Compl {[A—a.Bg,1,jl,, [B—7e. 5, k¢ b [A—aB.g,1, ke

| (&) = w(n) Ue(Be)},

140 7. An introduction to unification grammars

DPTéd = {[A_>O[°Bﬁaiaj]77 l_ [B_“Pya.]a.]]f
| #(§) = »(By) Upo(B—7)},

DInit U DScan U DCompl U DPred.

DEarley

The items have been subscripted with identifiers &, 7, for easy reference. The
notation ¢(X,) is used for those features of the item 7 that relate to constituent

X.

7.2 The example grammar UG

We will look at a very simple example of a unification grammar. Our example
grammar does not pretend to have any linguistic relevance. Moreover, the example
deviates slightly from the usual examples as given by, e.g., Shieber [1986]. Tt is not
our purpose to advocate the felicity of unification grammars to encode linguistic
phenomena, but to show how context-free backbones of natural language grammars
can be enhanced with features. Hence, we take the context-free example grammar
that has been used in chapter 2 and simply add features to that grammar.

The Earley schema of the previous section is too advanced, for the time being,
and we will parse strictly bottom-up in CYK fashion. If constituents B and C'
are known for a production A—BC', then A can be recognized and an appropriate
feature structure for 1t will be constructed.

Different features of a constituent can be stored in a feature structure. For
each word in the language, the lexicon contains a feature structure?. The lexicon
entry for the word “catches”, for example, might look as follows
_ . x -

cat v

[tense: present

head ..1 number: singular

agr !

catches person : third
—

subject: | head: [H
agr:

| object : []

2If several different feature structures coexist for the same word, we will simply treat these
as belonging to separate (homonym) words. Disjunction within feature structures is discussed in
Section 9.4. While (a limited form of) disjunction is very useful for practical purposes, one can
always interpret feature structures with disjunction as a compact representation of a set of non-
disjunctive feature structures. Hence, from a theoretical point of view, disallowing disjunction is
no limitation to the power of the formalism.

7.2 The example grammar UG 141

features are listed in an attribute-value matriz (AvM). Every word has a feature
cat describing the syntactic category. “Catches” has a feature head that contains
some relevant information about the verb form. Furthermore, there are features
subject and object, describing properties of the subject and direct object of the
verb. The value of a feature can be some atomic symbol (as for cat); an avm
(as for head and subject), or unspecified (as for object). Unspecified features are
denoted by an empty AvM, also called a variable. The intended meaning, in this
case, 18 that the verb catches does have a direct object, but its features do not
matter.

An important notion in AVMs is coreference (indicated by numbers contained
in boxes). In the above example, the head agr feature is coreferenced with subject
head agr, meaning that the agreement features of “catches” must be shared with
the agreement features of its subject. Note, furthermore, that an entry within a
nested structure of AvMs can be addressed by means of a feature path.

A first, very simple lexicon for the remainder of our canonical example sentence
“the cat catches a mouse” is as follows:

the, a — [cat: *det]

cat : *n

cat, mouse —— number: singular
head: | agr: .
person : third

In order to parse the sentence, we need productions that tell us what to do
with the features when we construct constituents. The syntactic categories of
constituents are expressed by means of features, just like all other characteristic
information. A formal, but somewhat austere way to express the construction of
an NP from *det and *n is the following:

X0—>X1 X2
(Xo cat) = NP
(X1 cat) = *det (7.1)
(Xq cat) = *n
(Xo head) = (X4 head).

That is, if we have constituents X, X5 with cat features *det and *n, respectively,
we may create a new constituent with cat feature NP. Moreover, the head of Xg
is shared with the head of X5.3

3In Chapter 8 we will make a distinction between type identity (denoted =) and token identity
(denoted =). As the distinction is not very relevant here, its introduction is postponed until
Section 8.2, where we have developed the convenient terminology.

142 7. An introduction to unification grammars

In most, if not all grammars it will be the case that all constituents have a cat
feature. Hence we can simplify the notation of production (7.1) to

NP—*det *n

(NP head) = (*n head). (7.2)

The meaning of (7.1) and (7.2) is identical; the expression (X; cat) = A can be
deleted when we substitute an A for X; in the production. Thus we obtain context-
free productions as usual, enhanced with so-called constraints that describe how
the feature structures of the different constituents are related to one another.
Hence, for the noun phrase “the cat” we may construct a feature structure with
category NP and the head feature taken from the noun “cat:”

cat : NP

the cat — head - | number: singular ;
S person : third

similarly for “a mouse.” For the construction of a VP, in the same vein, we employ
the following production annotated with constraints:

VP—*y NP
(VP head) = (*v head)
(VP subject) = (*v subject)
(*v object) = (NP)

The verb phrase “catches a mouse” shares its head and subject features with the
verb, while the entire (feature structure of the) NP is taken to be the direct object:

[cat : VP T
[tense: present

head . [number: singular]

ar person : third

catches a mouse +— subject: | head: [agr' H

[cat : NP

object :) | number: singular
head: [agr. [person : third H

A sentence, finally, can be constructed from an NP and VP as follows:

S—NP VP
(S head) = (VP head)
(VP subject) = (NP)

7.2 The example grammar UG, 143

The sentence shares its head with the VP. The subject feature of the VP is shared
with all features of the NP. Note that (by coreference) the subject of the verb
phrase has (head) agreement third person singular. An NP can be substituted for
the subject only if it has the same agreement. If the NP were to have a feature
(head agr number) with value plural, then the S would obtain both singular and
plural as values for its (head agr number) feature (because it is shared with the
(subject head agr number) feature of the VP, which is shared with the (head
agr number) feature of the VP). Such a clash of values would constitute an
inconsistency, as discussed in Section 7.1. As a feature structure for .S we obtain

cat : S

tense: present

the cat catches a mouse —— .
head : | number: singular

ar person : third

The entire sentence appears to have less features than its constituing parts NP
and VP. That is because some features were present only to guarantee agreement
between subject and verb. As the sentence has been produced, the agreement
must have been okay, hence there is no need to retain this information explicitly
in the feature structure for an S.

Above we have shown how syntactic constraints can be incorporated into the
features of a grammar. We will also give an example of how semantic information
can be collected from the lexicon and transferred upwards to contribute to the
semantics of the sentence. We will use a very simple unification grammar UG;. A
relevant part of the lexicon for UG is shown in Figure 7.1, the productions anno-
tated with constraints are shown in Figure 7.2 The head of each feature structure
is extended with a feature trans(lation), which is only a first, easy step towards
translation of the constituent to its corresponding semantics. The translation of a
verb is a predicate with the (translation of the) subject as first argument and the
(translation of the) object as second argument.

The production NP— *det *n has been extended with another clause, stating
that the head trans features of *det and *n are to be shared. Thus we obtain, for
example

cat : NP
number: singular
agr .
a mouse — person : third
head : i
| pred: mouse
trans: [det o]

Because the translation of the subject and object are used as arguments for the
translation of the verb, the relevant properties of subject and object are moved

144 7. An introduction to unification grammars

cat : *det
the —
head: [tmns: [det: —1—]]
[cat : *det T
? — head : [tmns: [det: —]]
[cat : *n q
_a .o number: singular] |
cat T head : g person : third
| trans: [pred: cat] |
[cat : *n q
I | number: singular 1
mouse = head : ar - person : third
| trans: [pred: mouse] |
[cat o Ky .
[tense: present y
wor - number: singular
g person : third
head pred : catch
trans: | argl: []
catches +— .
arg?: []
subject: | head: agr -
2
trans:
object : | head: [H
trans:

Figure 7.1: Part of the lexicon for UG

7.2 The example grammar UG, 145

S—NP VP
(S head) = (VP head)
(VP subject) = (NP)

VP—*y NP
(VP head) = (*v head)
(VP subject) = (*v subject)
(*v object) = (NP)

NP—*det *n
(NP head) = (*n head)
(*n head trans) = (*det head trans)

Figure 7.2: Some productions of UG

upward to a feature structure for the entire sentence. The reader may verify that,
following the same steps as before, we obtain

cat : S 1

[tense: present
[number: singular
agr ,
| person @ third
the cat catches a mouse —— [pred: catch

head: pred : cat

argl:
trans: I [det L+]

[pred: mouse]

arg?2: det - —

Other features can be added likewise. We can add a modifier feature to the
translation, in which modifiers like adjectives, adverbs and prepositional phrases
can be stored. For a noun phrase “the very big, blue cat” we could envisage a
feature structure as in Figure 7.3.

A noun phrase can include any number of modifiers, hence these are stored by
means of a list. More sophisticated feature structure formalisms as, e.g., HPSG
[Pollard and Sag, 1988], have special constructs for lists. Such constructs are
convenient for notation, but not necessary. As shown in Figure 7.3, lists can
be expressed in the basic formalism as well. In Section 9.5 a more complicated
example is shown where lists are used for subcategorization of verbs.

146

7. An introduction to unification grammars

[cat : NP 1
I [number: singular 1
ar | person @ third
[pred: cat 1
det : +
[[trans: big 1
head : trans: very
i: :
Irans - firs mod : first [mod D no]
mod - rest . no
[trans: blue
rest : first: [mod T no]
_rest I no

Figure 7.3: feature structure of “the very big, blue cat”

