
Chapter 7An introduction touni�cation grammarsIn part II we have developed a formal theory of parsing schemata for context-freegrammars. In part III we will apply this theory in several di�erent directions.In Chapters 7{9, we discuss parsing schemata for uni�cation grammars.In Chapters 10 and 11 we use parsing schemata to de�ne Left-Corner and Head-Corner chart parsers. We will prove these to be correct as well.In Chapters 12 and 13, subsequently, we derive a parsing schema for Tomita'salgorithm as an example of an algorithm that is not item-based. As a result,we can cross-fertilize the Tomita parser with a parallel bottom-up Earley parser,yielding a parallel bottom-up Tomita parser.In Chapter 14, �nally, we discuss hard-wired implementations of parsing schemata,in the form of boolean circuits.We will extend parsing schemata with feature structures, so that schemata forparsing uni�cation grammars can be de�ned. In addition to items that describehow a parser deals with the context-free backbone of a grammar, we will extendthe schema with a notation in which one can specify how features are transferredfrom one item to the other. Thus a formalism is obtained in which feature per-colation in uni�cation grammar parsing can be controlled explicitly. Chapter 7 isa brief, informal introduction. In Chapter 8 we give a lengthy, formal treatmentof the formalism; some more practical aspects of uni�cation grammar parsing arediscussed in chapter 9.Uni�cation grammars | also called uni�cation-based grammars, constraint-based grammars, or feature structure grammars | are of central importance to135

136 7. An introduction to uni�cation grammarscurrent computational linguistics. As these formalisms are not widely knownamong computer scientists, it seems appropriate to give an introduction thatshould provide some intuition about what we are going to formalize.In 7.1 a preview is given of what parsing schemata with feature structureslook like. While keeping the notion of feature structures deliberately abstractand vague, the general idea of such a parsing schema stands out rather clear.In 7.2, subsequently, feature structures and uni�cation grammars are informallyintroduced by means of an example. We use the PATR formalismof Shieber [1986],with a tiny change in the notation. Anyone who is familiar with PATR can skip7.2.7.1 Uni�cation-based parsing schemata:a previewA thorough, formal treatment of uni�cation grammars and parsing schemata forthese grammars will be given in Chapter 8. As we will see, it requires quite somespace and e�ort to do things properly. Parsing algorithms for uni�cation grammarsconstitute a complex problem domain. A wealth of concepts is to be introduced,properly de�ned and | not the least problem | provided with clear and precisenotations. We will jump ahead now and look at a glimpse of what we are headingfor. An intuitive understanding of what we are trying to formalize may help thereader to get through the formal parts.We address the following question: \How can parsing schemata be enhancedwith any kind of information that is added to the context-free backbone of a gram-mar?" One may think of attribute grammars, uni�cation grammars, a�x gram-mars or any other formalism in which such information can be speci�ed. We willbe unspeci�c, for good reason. By refusing (for the moment) to use a particularformalism we cannot get sidetracked by all its sophisticated details.In this section we recapitulate a simple context-free parsing schema, give anexample of the use of other grammatical information, introduce (fragments of) anotation for it, and add this to the parsing schema.As an example of a context-free parsing schema we recall the Earley schemaof Example 4.32. For an arbitrary grammar G 2 CFG we de�ne a parsing systemPEarley = hI;H;Di, where I denotes the domain of Earley items; H (the hypothe-ses) encodes the string to be parsed; D comprises the deduction steps that canbe used to recognize items. Most deduction steps are of the form �; � ` �. Whenthe antecedents � and � have been recognized, then the consequent � can also berecognized. Some deduction steps have only a single antecedent. Moreover, inorder to start parsing, an initial deduction step with no antecedents is included.PEarley is de�ned byIEarley = f[A!���; i; j] j A!�� 2 P; 0 � i � jg;

7.1 Uni�cation-based parsing schemata: a preview 137H = f[a1; 0; 1]; : : :; [an; n� 1; n]g;DInit = f ` [S!�; 0; 0]g;DScan = f[A!��a�; i; j]; [a; j; j+ 1] ` [A!�a��; i; j + 1]g;DCompl = f[A!��B�; i; j]; [B!�; j; k] ` [A!�B��; i; k]g;DPred = f[A!��B�; i; j] ` [B!�; j; j]g;DEarley = DInit [DScan [DCompl [DPred;where H varies according to the string a1 : : :an that should be parsed. The secondpart of the usual set notation f: : : j : : :g has been deleted in most cases; byde�nition, deduction steps may only use items from I and H.We assume that the context-free backbone of a grammar is enhanced withadditional syntactic, semantic or other linguistic information. Constituents, pro-ductions, and items can have certain features1 that express information not presentin the context-free part of the grammar. This information can be of di�erent kinds.A typical use of features is the transfer of information through a parse tree. Asan example, considerIn the production S!NP VP, the semantics of S can be derived fromthe semantics of NP and VP by : : :If each word in the lexicon has some semantics associated with it, and for eachproduction it is known how the semantics of the left-hand side is to be derived fromthe right-hand side, the semantics of the sentence can be obtained compositionallyfrom its constituents.Another typical, more syntactic way in which features are used is to constrainthe set of sentences that is acceptable to the parser. A canonical example isIn the production S!NP VP, there must be (some form of) agreementbetween NP and VP.The precise nature of the agreement is irrelevant here. Either constituent will havesome features that could play a role in agreement, e.g.the noun phrase \the boy" is masculine, third person singular,but the fact that agreement is required between NP and VP is a feature of theproduction, not a feature of each of the constituents individually.Let us now enhance the Earley parser with such features. If we parse a sentence\The boy : : :", at some point we will recognize an item [S!NP�VP ; 0; 2]. We couldattach the previously stated information to the item, as follows1At this level of abstraction, the word \feature" can be replaced by \attribute", \a�x", etc.All of these stand for roughly the same concept, but refer to di�erent kinds of formalisms.

138 7. An introduction to uni�cation grammarsThe NP in [S!NP �VP ; 0; 2] is masculine, third person singular.Hence the VP that is to follow must be masculine, third person singular.Next we apply the predict step[S!NP �VP ; 0; 2] ` [VP!�*v NP ; 2; 2];in combination with a feature of the production VP!*v NP :In the production VP!*v NP, the agreement of VP is fully determinedby the agreement of *v .Combining all this information, we obtain the following item annotated with fea-tures:[V P!�*v NP ; 2; 2]VP must be masculine, third person singular;hence *v must be masculine, third person singular.Gender plays no role in verb forms in English. Demanding that the verb form bemasculine is irrelevant, but harmless. If the grammar doesn't specify gender forverb forms, it follows that every form of every verb can be used in combinationwith a masculine subject.An important concept that must be introduced here is consistency . The fea-tures of an object are called inconsistent if they contain conicting information.As an example, consider the sentence \The boy scout : : :", where \scout" is knownto be both a noun and a verb form. If we continue from the previous item andscan a *v , we would obtain[V P!*v �NP ; 2; 3]VP must be masculine, third person singular;hence *v must be masculine, third person singular.*v is either plural or �rst or second person singular.This is inconsistent and therefore not acceptable as a valid item.We need to introduce a tiny bit of notation in order to enhance the Earleyparsing schema with features. The notation will be explained, but not de�ned ina mathematical sense. We write� '0(A!�) for the features of a production A!�;� '(X) for the features of a constituent X;� '([A!���; i; j]) for the features of an item [A!���; i; j].

7.1 Uni�cation-based parsing schemata: a preview 139The index 0 for features of productions is to indicate that these are taken straightfrom the grammar. In both other cases, features may have accumulated by trans-fer from previously recognized constituents and/or items.The features of an item comprise the features of the production and those of itsconstituents (as far as these are known yet). From an item, the features of eachconstituent mentioned in that item can be retrieved.We will not (yet) de�ne a domain of expressions in which features can be for-mulated. This is left to the imagination of the reader. We need some notation,however, to relate sets of features to one another. Combining the features of ob-jects � and � is denoted by '(�)t'(�). The square union (t) may be interpretedas conventional set union ([) if it is understood that we accumulate sets of fea-tures. Similarly, we write '(�) v '(�) (which may be interpreted as '(�) � '(�))to denote that an object � has at least all features of an object � but may haveother features as well.We will now extend the Earley parsing schema with the possibility to includefeatures of constituents, productions and items. The parsing schema is de�nedby a parsing system PEarley = hIEarley;H;DEarleyi for an arbitrary context-freegrammarG, where the set H is determined by the string to be parsed. The domainis de�ned byIEarley = f[A!���; i; j]� j A!�� 2 P ^ 0 � i � j ^'0(A!��) v '(�) ^ consistent ('(�))g;The � symbol is used only for easy reference. Subscripting [A!���; i; j] with �means that we may refer to the item as � in the remainder of the formula. Theunabbreviated, somewhat more cumbersome notation for the same de�nition isIEarley = f[A!���; i; j] j A!�� 2 P ^ 0 � i � j ^'0(A!��) v '([A!���; i; j]) ^consistent ('([A!���; i; j])) g:In words: it is mandatory that all features of a production be contained in an itemthat is based on that production. The item may have other features as well, aslong as this does not lead to an inconsistency.The deduction steps are the usual context-free deduction steps, annotated withhow the features of the consequent are determined by the features of the an-tecedents:DInit = f ` [S!�; 0; 0]� j '(�) = '0(S!)g;DScan = f[A!��a�; i; j]�; [a; j; j + 1]� ` [A!�a��; i; j + 1]�j '(�) = '(�) t '(a�)g;DCompl = f[A!��B�; i; j]�; [B!�; j; k]� ` [A!�B��; i; k]�j '(�) = '(�) t '(B�)g;

140 7. An introduction to uni�cation grammarsDPred = f[A!��B�; i; j]� ` [B!�; j; j]�j '(�) = '(B�) t '0(B!)g;DEarley = DInit [DScan [DCompl [DPred:The items have been subscripted with identi�ers �; �; � for easy reference. Thenotation '(X�) is used for those features of the item � that relate to constituentX.7.2 The example grammar UG1We will look at a very simple example of a uni�cation grammar. Our examplegrammar does not pretend to have any linguistic relevance. Moreover, the exampledeviates slightly from the usual examples as given by, e.g., Shieber [1986]. It is notour purpose to advocate the felicity of uni�cation grammars to encode linguisticphenomena, but to show how context-free backbones of natural language grammarscan be enhanced with features. Hence, we take the context-free example grammarthat has been used in chapter 2 and simply add features to that grammar.The Earley schema of the previous section is too advanced, for the time being,and we will parse strictly bottom-up in CYK fashion. If constituents B and Care known for a production A!BC, then A can be recognized and an appropriatefeature structure for it will be constructed.Di�erent features of a constituent can be stored in a feature structure. Foreach word in the language, the lexicon contains a feature structure2 . The lexiconentry for the word \catches", for example, might look as followscatches 7�! 26666666666664 cat : *vhead : 264 tense : presentagr : 1 � number : singularperson : third �375subject : " head : � agr : 1 �#object : � � 377777777777752If several di�erent feature structures coexist for the same word, we will simply treat theseas belonging to separate (homonym) words. Disjunction within feature structures is discussed inSection 9.4. While (a limited form of) disjunction is very useful for practical purposes, one canalways interpret feature structures with disjunction as a compact representation of a set of non-disjunctive feature structures. Hence, from a theoretical point of view, disallowing disjunction isno limitation to the power of the formalism.

7.2 The example grammar UG1 141features are listed in an attribute-value matrix (avm). Every word has a featurecat describing the syntactic category. \Catches" has a feature head that containssome relevant information about the verb form. Furthermore, there are featuressubject and object , describing properties of the subject and direct object of theverb. The value of a feature can be some atomic symbol (as for cat); an avm(as for head and subject), or unspeci�ed (as for object). Unspeci�ed features aredenoted by an empty avm, also called a variable. The intended meaning, in thiscase, is that the verb catches does have a direct object, but its features do notmatter.An important notion in avms is coreference (indicated by numbers containedin boxes). In the above example, the head agr feature is coreferenced with subjecthead agr , meaning that the agreement features of \catches" must be shared withthe agreement features of its subject. Note, furthermore, that an entry within anested structure of avms can be addressed by means of a feature path.A �rst, very simple lexicon for the remainder of our canonical example sentence\the cat catches a mouse" is as follows:the, a 7�! � cat : *det�cat, mouse 7�! 2664 cat : *nhead : " agr : � number : singularperson : third �#3775In order to parse the sentence, we need productions that tell us what to dowith the features when we construct constituents. The syntactic categories ofconstituents are expressed by means of features, just like all other characteristicinformation. A formal, but somewhat austere way to express the construction ofan NP from *det and *n is the following:X0!X1X2hX0 cati := NPhX1 cati := *dethX2 cati := *nhX0 head i := hX2 head i: (7.1)That is, if we have constituents X1,X2 with cat features *det and *n , respectively,we may create a new constituent with cat feature NP . Moreover, the head of X0is shared with the head of X2.33In Chapter 8 we will make a distinction between type identity (denoted=) and token identity(denoted :=). As the distinction is not very relevant here, its introduction is postponed untilSection 8.2, where we have developed the convenient terminology.

142 7. An introduction to uni�cation grammarsIn most, if not all grammars it will be the case that all constituents have a catfeature. Hence we can simplify the notation of production (7.1) toNP!*det *nhNP head i := h*n head i: (7.2)The meaning of (7.1) and (7.2) is identical; the expression hXi cati := A can bedeleted when we substitute an A forXi in the production. Thus we obtain context-free productions as usual, enhanced with so-called constraints that describe howthe feature structures of the di�erent constituents are related to one another.Hence, for the noun phrase \the cat" we may construct a feature structure withcategory NP and the head feature taken from the noun \cat:"the cat 7�! 2664 cat : NPhead : " agr : � number : singularperson : third �#3775 ;similarly for \a mouse." For the construction of a VP , in the same vein, we employthe following production annotated with constraints:VP!*v NPhVP head i := h*v head ihVP subjecti := h*v subjectih*v objecti := hNPiThe verb phrase \catches a mouse" shares its head and subject features with theverb, while the entire (feature structure of the) NP is taken to be the direct object:catches a mouse 7�! 26666666666666666664 cat : VPhead : 264 tense : presentagr : 1 � number : singularperson : third �375subject : " head : � agr : 1 �#object : 2664 cat : NPhead : " agr : � number : singularperson : third �#3775
37777777777777777775A sentence, �nally, can be constructed from an NP and VP as follows:S!NP VPhS headi := hVP head ihVP subjecti := hNP i

7.2 The example grammar UG1 143The sentence shares its head with the VP . The subject feature of the VP is sharedwith all features of the NP . Note that (by coreference) the subject of the verbphrase has (head) agreement third person singular. An NP can be substituted forthe subject only if it has the same agreement. If the NP were to have a featurehhead agr numberi with value plural , then the S would obtain both singular andplural as values for its hhead agr numberi feature (because it is shared with thehsubject head agr numberi feature of the VP , which is shared with the hheadagr numberi feature of the VP). Such a clash of values would constitute aninconsistency, as discussed in Section 7.1. As a feature structure for S we obtainthe cat catches a mouse 7�! 266664 cat : Shead : 264 tense : presentagr : � number : singularperson : third �375377775The entire sentence appears to have less features than its constituing parts NPand VP . That is because some features were present only to guarantee agreementbetween subject and verb. As the sentence has been produced, the agreementmust have been okay, hence there is no need to retain this information explicitlyin the feature structure for an S.Above we have shown how syntactic constraints can be incorporated into thefeatures of a grammar. We will also give an example of how semantic informationcan be collected from the lexicon and transferred upwards to contribute to thesemantics of the sentence. We will use a very simple uni�cation grammar UG1. Arelevant part of the lexicon for UG1 is shown in Figure 7.1, the productions anno-tated with constraints are shown in Figure 7.2 The head of each feature structureis extended with a feature trans(lation), which is only a �rst, easy step towardstranslation of the constituent to its corresponding semantics. The translation of averb is a predicate with the (translation of the) subject as �rst argument and the(translation of the) object as second argument.The production NP!*det *n has been extended with another clause, statingthat the head trans features of *det and *n are to be shared. Thus we obtain, forexamplea mouse 7�! 26666664 cat : NPhead : 26664 agr : � number : singularperson : third �trans : � pred : mousedet : � � 3777537777775 :Because the translation of the subject and object are used as arguments for thetranslation of the verb, the relevant properties of subject and object are moved

144 7. An introduction to uni�cation grammarsthe 7�! 24 cat : *dethead : h trans : � det : +�i35a 7�! 24 cat : *dethead : h trans : � det : ��i35cat 7�! 266664 cat : *nhead : 264 agr : � number : singularperson : third �trans : � pred : cat� 375377775mouse 7�! 266664 cat : *nhead : 264 agr : � number : singularperson : third �trans : � pred : mouse� 375377775
catches 7�! 266666666666666666666666666666664

cat : *vhead : 26666666666664 tense : presentagr : 1 � number : singularperson : third �trans : 266664 pred : catcharg1: 2 � �arg2: 3 � �377775 37777777777775subject : 26664 head : 2664 agr : 1trans : 2 377537775object : " head : � trans : 3 �#
377777777777777777777777777777775Figure 7.1: Part of the lexicon for UG1

7.2 The example grammar UG1 145S!NP VPhS head i := hVP head ihVP subjecti := hNP iVP!*v NPhVP head i := h*v head ihVP subjecti := h*v subjectih*v objecti := hNPiNP!*det *nhNP head i := h*n head ih*n head transi := h*det head transiFigure 7.2: Some productions of UG1upward to a feature structure for the entire sentence. The reader may verify that,following the same steps as before, we obtainthe cat catches a mouse 7�! 266666666666666664 cat : Shead : 266666666666664 tense : presentagr : � number : singularperson : third �trans : 2666664 pred : catcharg1: � pred : catdet : + �arg2: � pred : mousedet : � �3777775377777777777775377777777777777775 :Other features can be added likewise. We can add a modi�er feature to thetranslation, in which modi�ers like adjectives, adverbs and prepositional phrasescan be stored. For a noun phrase \the very big, blue cat" we could envisage afeature structure as in Figure 7.3.A noun phrase can include any number of modi�ers, hence these are stored bymeans of a list . More sophisticated feature structure formalisms as, e.g., HPSG[Pollard and Sag, 1988], have special constructs for lists. Such constructs areconvenient for notation, but not necessary. As shown in Figure 7.3, lists canbe expressed in the basic formalism as well. In Section 9.5 a more complicatedexample is shown where lists are used for subcategorization of verbs.

146 7. An introduction to uni�cation grammars2666666666666666666666666664
cat : NPhead : 2666666666666666666666664

agr : � number : singularperson : third �trans : 2666666666666666664 pred : catdet : +mod : 26666666666664 �rst : 266664 trans : bigmod : 264�rst : � trans : verymod : no �rest : no 375377775rest : 264�rst : � trans : bluemod : no �rest : no 375 377777777777753777777777777777775
3777777777777777777777775
3777777777777777777777777775Figure 7.3: feature structure of \the very big, blue cat"

