
Chapter 8Parsing schemata foruni�cation grammarsThe last decade has witnessed an overwhelming amount of di�erent, but relateduni�cation grammar formalisms. Our informal introduction in Chapter 7 wasbased on PATR [Shieber, 1986], which is the smallest and simplest of these for-malisms. Unlike formalisms as LFG [Kaplan and Bresnan, 1982], GPSG [Gazdaret al., 1985] or HPSG [Pollard and Sag, 1987], PATR was not primarily designed tocapture some universal linguistic structure, but merely as a small, clean formalismthat covers the essential properties found in most other uni�cation grammars.The logical foundations of constraint-based formalisms have been discussed byKaspar and Rounds [1986], Smolka [1989, 1992] and Johnson [1991], who givevarious axiomatizations of feature structures in predicate logic. In such a log-ical approach, one describes a constraint language in which constraints can beexpressed. Such constraints are formulae in �rst-order logic with equality. Con-straints state that certain features must have certain values or be equal to certainother features. The semantic interpretation of such a formula (following Smolka)is a feature graph. The most interesting property is satis�ability . For a givenformula it has to be decided whether a feature graph exists that is a model of theconstraint.A more fundamental treatment is given by Shieber [1992], who starts with thelogical requirements for uni�cation-based grammars and then sets out to investi-gate which models would be appropriate.Our purpose, in this chapter and the next, is a rather di�erent one. We willinvestigate how, for a given class of uni�cation grammars, e�cient parsers can bedeveloped, by means of parsing schemata. Just like in the context-free case, we147



148 8. Parsing schemata for uni�cation grammarswill be concerned with the question which items one likes to derive and which rulesshould be used for that. In addition, we extend the formalismwith a notation thatallows explicit speci�cation of transfer of features between items.Parsing of uni�cation grammars is a combination of two problem areas, bothof which are complex in itself. Parsing is our primary interest, and the linguisticand logical properties of uni�cation grammars secondary. Hence we do not worryabout how to specify suitable uni�cation grammars for natural languages, norare we particularly concerned with the logical properties of various uni�cationgrammar formalisms, but we assume a simple kind of uni�cation grammar andaddress the question how e�cient parsers can be de�ned.In order to be precise we will give a detailed, formal account of our simple for-malism, that establishes thoroughly what we have presented informally in Chapter7. The results are virtually equal to those of Smolka and others, but we employ arather more computational view and do not pretend to give a general treatise onuni�cation grammars.We do not make a distinction between syntax (constraints) and semantics (fea-ture graphs); we see both domains as syntactic domains. The notion of satis�abil-ity is replaced by consistency . There is a simple isomorphism between consistentconstraints1 and well-formed feature graphs. Thus we obtain an abstract notion ofa feature structure that may materialize in two di�erent avatars: either as a graphor as a constraint. We switch representation opportunistically to the domain thatis most convenient at any given moment. For the purpose of (statically) describinga grammar, the constraint representation is the most useful. But the dynamicsof a grammar, describing how a parse is to be obtained by uni�cation of featurestructures, are easiest understood in the feature graph domain.Feature structures, both as graphs and constraint sets, are introduced in 8.1.For both representations we de�ne a lattice and prove these to be isomorphic in 8.2.For a proper formalization of how features of di�erent objects may relate to oneanother, we introduce composite feature structures in 8.3 and de�ne lattices in 8.4.This formalism is used to de�ne uni�cation grammars in 8.5. Tree compositionin Primordial Soup fashion is discussed in 8.6 and parsing schemata, �nally, arede�ned in 8.7.In 8.8, at last, we give another example. The canonical example sentence isparsed with grammar UG1 (cf. Section 7.2) using an Earley-type parsing schema(cf. Section 7.1). An overview of other grammar formalisms is presented in 8.9,related approaches are briey discussed in 8.10, and conclusions are summarizedin 8.11.1From Section 8.1 onwards, we will call these constraint sets. A constraint as a formula in�rst order logic with equality can be seen as a conjunction of a series of atomic constraints. Forour purposes it will be more convenient to describe this as a set of atomic constraints, ratherthan a conjunction.



8.1 Feature structures 1498.1 Feature structuresWe will give two di�erent formalizations of feature structures, as constraint setsand feature graphs, and prove these to be isomorphic. The attribute-value matrix(avm) notation will be used as a convenient, informal notation to denote featurestructures. The correspondence between avms, feature graphs and constraint setsis straightforward. In Figure 8.1 an avm is shown with corresponding constraintset and feature graph.In Figure 8.1(a){(c) it is exempli�ed how the information contained in an avmcan be encoded in a graph. The features are represented by edges; the atomicvalues are represented by labels of terminal vertices. Internal vertices carry nolabel; their value is the feature structure represented by the outgoing edges. Theroot vertex can be labelled with an identi�er for the object whose features arerepresented here.In order to give a formal de�nition of the domain of feature graphs, we �rstintroduce some auxiliary domains from which features and values can be drawn.De�nition 8.1 (features, constants)Fea denotes a �nite set of features. We write f; g; h; : : : for elements of Fea.Const denotes a �nite set of constants. We write c; d; e; : : : for elements of Const.It is assumed that Fea and Const are disjunct sets. Furthermore, we assume thata linear order has been de�ned on both sets Fea and Const.In the sequel we will also need sequences of features. We write �; % for elementsof Fea�. A linear order on Fea� is de�ned by the \lexicographic order" based onthe linear order of Fea:(i) � < �% for non-empty feature sequences %;(ii) �f% < �g%0 if f < g.This linear order on feature sequences will be used to de�ne a suitable normalform for constraint sets. 2We recall some useful notions from graph theory and introduce appropriatenotations.De�nition 8.2 (dags)A directed graph is a pair � = (U;E), with U a set of vertices2 and E a set ofedges. An edge is a directed pair (u; v) with u; v 2 U . Usually we write u!v for(u; v) 2 E.A (possibly empty) sequence of edges u0!u1; u1!u2; : : : ; uk�1!uk is called apath. We write u �! v for a path from u to v.2We write U rather than V for the set of vertices, because V denotes the grammar variablesN [ �.



150 8. Parsing schemata for uni�cation grammarsX 7�! 26666666666664 cat : *vhead : 264 tense : presentagr : 1 � number : singularperson : third �375subject : " head : � agr : 1 �#object : � � 37777777777775(a) an attribute value matrixf hX cati := *v ;hX head tensei := present ;hX head agr number i := singular ;hX head agr personi := third;hX subject head agr i := hX head agr i;hX objecti := [ ] g(b) a constraint setX���������+ cat ������head AAAAAUsubjectQQQQQQQQsobject�*v �������tense AAAAAAAAUagr �?head ������ agr�present �������number AAAAAUperson�singular �third(c) a feature graphFigure 8.1: Three di�erent representations of the same feature structure



8.1 Feature structures 151A directed graph is called cyclic if there is a non-empty path u �! u for somevertex u 2 U . A graph acyclic if it is not cyclic. We write dag as abbreviationfor a directed acyclic graph.A root of a graph is a vertex u such that for all v 2 U there is a path from u to v.A dag is called rooted if it has exactly one root.An edge u!v is an outgoing edge of u and and incoming edge of v.A leaf is a vertex with no outgoing edges. 2De�nition 8.3 (feature graphs)FG is the class of �nite, rooted dags with the following properties:(i) every edge is labelled with a feature;(ii) if f and g are labels of edges originating from the same vertex, then f 6= g;(iii) leaves may be (but need not be) labelled with a constant;non-leaf vertices do not carry a label.We write u f! v if u!v is labelled f ; we write u ��! v if the sequence of stepsfrom u to v is labelled with a sequence of features �. We write label(u) = c if u islabelled with constant c and label(u) = " if u carries no label.We write �(X) for a feature graph that denotes the features of some (here unspec-i�ed) object X. 2An example of a constraint set was shown in Figure 8.1(b). In the de�nitionof a constraint set, we have included a parameter X that can be used to identifyan object for which constraints are to be speci�ed. We will not use this parameterfor a while, but include it here in anticipation of composite constraint sets thatwill be de�ned in Section 8.3.De�nition 8.4 (constraint set)Let X be a (not further speci�ed) object. Constraints on X can be drawn fromdi�erent domains:� The domain of value constraints VC is de�ned byVC = fhX�i := c j � 2 Fea� ^ c 2 Constg;� The domain of existential constraints EC is de�ned byEC = fhX�i := [ ] j � 2 Fea�gwhere [ ] is a symbol that does not occur in Fea and Const;



152 8. Parsing schemata for uni�cation grammars� The domain of coreference constraints CC is de�ned byCC = fhX�i := hX%i j �; % 2 Fea�g:A constraint set �(X) is a �nite subset of VC � EC � CC .As an ad-hoc general notation we write hX�i := � for a constraint, where � canbe of the form c, [ ], or hX%i. 2De�nition 8.5 (closure of a constraint set)Let �(X) � VC � EC � CC be a constraint set. The closure of �(X), denotedclosure(�(X)), is the smallest set satisfying(i) if hX�i := � 2 �(X) then hX�i := � 2 closure(�(X));(ii) if hX�i := hX�0i 2 closure(�(X)) and hX�%i := � 2 closure(�(X))then hX�0%i := � 2 closure(�(X));(iii) if hX�i := hX%i 2 closure(�(X)) then hX%i := hX�i 2 closure(�(X));(iv) if hX�%i := � 2 closure(�(X)) then hX�i := [ ] 2 closure(�(X)).A constraint set �(X) is called closed if closure(�(X)) = �(X). 2Note that closure(�(X)) need not be a constraint set according to De�nition 8.4:it could be an in�nite set. If, for example, hX�i := hX�%i 2 �(X) then, by (ii)we obtain hX�%i := hX�%%i 2 �(X), hX�%%i := hX�%%%i 2 �(X), and so forth.The purpose of the existential constraints added in (iv) is to identify the exis-tence of all substructures. We will use them for the transformation of a constraintset into a graph.The closure of the constraint set in Figure 8.1(b) is shown in Figure 8.2. Theconcept of a closed constraint set is useful because it de�nes a notion of equiva-lence that corresponds to our intuitive notion of when two constraint sets specify\the same information". We call �1(X) and �2(X) equivalent if closure(�1(X)) =closure(�2(X)). Closed constraint sets thus constitute a normal form for con-straint sets, albeit a not very practical one. In the sequel we will de�ne a morepractical normal form.De�nition 8.6 (consistency)A closed constraint set �(X) is called consistent if it satis�es the following prop-erties:(i) if hX�i := c 2 �(X) and hX�i := d 2 �(X) then c = d;(ii) if hX�i := c 2 �(X) and hX�%i := � 2 �(X) then % = ";(iii) hX�%i := hX�i and hX�i := hX�%i are not in �(X) for any � and non-empty%.



8.1 Feature structures 153f hXi := [ ];hX cati := [ ];hX head i := [ ];hX head tensei := [ ];hX head agri := [ ];hX head agr numberi := [ ];hX head agr personi := [ ];hX subjecti := [ ];hX subject headi := [ ];hX subject head agr i := [ ];hX subject head agr number i := [ ];hX subject head agr personi := [ ];hX objecti := [ ];hX cati := *v ;hX head tensei := present ;hX head agr numberi := singular ;hX head agr personi := third;hX subject head agr number i := singular ;hX subject head agr personi := third ;hX head agr i := hX subject head agr i;hX subject head agr i := hX head agr i gFigure 8.2: Closure of the constraint set in Figure 8.1(b)An arbitrary constraint set �(X) is called consistent if closure(�(X)) is consistent.We write CCS for the set of consistent constraint sets. 2Corollary 8.7If �(X) 2 CCS then closure(�(X)) 2 CCS . 2De�nition 8.8 (mapping constraint sets to graphs)For each consistent constraint set �(X) 2 CCS we de�ne a graph, as follows.Vertices correspond to sets of left-hand sides of constraints. These sets, denoted[hX�i], are de�ned by[hX�i] = fhX�ig [ fhX%i j hX�i := hX%i 2 closure(�(X))g:The graph �(X) = graph(�(X)) is de�ned byU = f[hX�i] j hX�i := [ ] 2 closure(�(X))g;E = f[hX�i] f! [hX�fi] j hX�fi := [ ] 2 closure(�(X))g:The label of a vertex [hX�i] is de�ned by



154 8. Parsing schemata for uni�cation grammarslabel([hX�i]) = ( c if hX�i := c 2 closure(�(X))" otherwise . 2Lemma 8.9For each �(X) 2 CCS it holds that graph(�(X)) 2 FG.Proof. Direct from the following observations:� if [hX�fi] := [ ] 2 closure(�(X)) then also [hX�i] := [ ] 2 closure(�(X)),hence E is properly de�ned with respect to U ;� if [hX�i] f! u and [hX�i] f! v then u = v;� the graph has a root [hXi];� there are no hX�i := c and hX�i := d with c 6= d, hence each label is uniquelyde�ned;� moreover, if hX�%i := � 2 closure(�(X)) for non-empty % then the consis-tency of �(X)) guarantees that there is no hX�i := c 2 closure(�(X)), hencelabel([hX�i]) = ". 2De�nition 8.10 (mapping graphs to a constraint sets)For each feature graph �(X) 2 FG we de�ne a constraint set. To that end, welabel each vertex with an auxiliary path label . If there are several paths to avertex, we take the lowest one in lexicographical order. Formally: let r be the rootof �(X), thenpath label(u) = minf% j r %�! ug:A constraint set constraints(�(X)) is (uniquely) de�ned by�V (X) = fhXpath label(u)i := c j label(u) = cg;�E(X) = fhXpath label(u)i := [ ] j u is a leaf ^ label(u) := "g;�C(X) = fhXpath label(u)i := hX%i j r %�! u ^ % 6= path label(u)g;�(X) = �V (X) [ �E(X) [ �C(X): 2Lemma 8.11For each graph �(X) 2 FG it holds that constraints(�(X)) 2 CCS .Proof. Let �(X) 2 FG. We verify the constraints for consistency of De�nition8.6. (i) follows from the de�nition of �V (X); (ii) because in �(X) only leaves arelabelled; (iii) because the graph is acyclic. 2



8.1 Feature structures 155De�nition 8.12 (normal form)The function nf : CCS �! CCS is de�ned bynf (�(X)) = constraints(graph(�(X)):nf (�(X)) can be thought of as the normal form of a constraint set. It is, roughlyspeaking, a constraint set with constraints that are minimal in lexicographicalorder. We write nf CCS for the set of constraint sets that satisfy nf (�(X)) = �(X).2In order to compute a normal form, it is not necessary to construct a graph andthen afterward deconstruct it. An algorithm to obtain the normal form of a con-straint set is shown in Figure 8.3. It is left to the reader to verify the correctnessof this algorithm; our main concern right now is the existence of the normal form,rather than its computation.procedure normalize �(X)begin repeat each of the following stepsreplace hX�i := hX%i by hX%i := hX�iif % < �;replace hX�%i := � by hX�0%i := �if �0 < � and hX�i := hX�0i 2 �(X);delete hX�%i := hX�0%i from �(X)if hX�i := hX�0i 2 �(X) and % 6= ";delete hX�i := [ ] from �(X)if hX�%i := � 2 �(X) for some % 6= "or if hX�i = cuntil no more of these steps can be appliedend;Figure 8.3: A simple normalization procedure for constraint setsLemma 8.13When we restrict graph to constraints in normal form only, the functionsgraph : nf CCS �! FG andconstraints : FG �! nf CCS



156 8. Parsing schemata for uni�cation grammarsare bijections. Moreover, they are each other's inverse.Proof: straightforward. 28.2 Feature latticesWe will now de�ne a lattice structure for constraint sets and feature graphs. First,we recall the de�nition of a lattice.De�nition 8.14 (lattice)Let X be an arbitrary set (with elements X;Y; : : :) and v a partial order on X .The pair (X ;v) is called a lattice if(i) There is a top element T 2 X and a bottom element B 2 X such thatB v X v T for each X 2 X .(ii) For each pair of elements X;Y 2 X there is a lowest upper bound (lub),denoted X t Y , that satis�es(a) X v X t Y and Y v X t Y ;(b) for each Z such that X v Z and Y v Z it holds that X t Y v Z.(iii) For each pair of elements X;Y 2 X there is a greatest lower bound (glb),denoted X u Y , that satis�es(a) X u Y v X and X u Y v Y ;(b) for each Z such that Z v X and Z v Y it holds that Z v X u Y . 2De�nition 8.15 (nf CCSL, FGL)We de�ne a set ?CCS by?CCS= VC [ EC [ CC :(This is not a constraint set according to De�nition 8.4, as ?CCS is not �nite)We de�ne a graph ?FG = (U?; E?) byU? = r;E? = fr f! r j f 2 Feag:(This is not a feature graph according to De�nition 8.4, as ?FG is not a dag. Thevertex r can be thought of as labelled with all constants at once.)Furthermore, we extend graph and constraints bygraph(?CCS) = ?FG;



8.2 Feature lattices 157constraints(?FG) = ?CCS :We extend the domains of constraint sets and feature graphs bynf CCSL = nf CCS [ f?CCSg;FGL = FG [ f?FGg:When it is clear from the context which domain is meant, we drop the index andsimply write ? for inconsistent. 2De�nition 8.16 (subsumption)A subsumption relation v is de�ned on CCSL by�1(X) v �2(X) if closure(�1(X)) � closure(�2(X)):A subsumption relation v is de�ned on FGL by�1(X) v �2(X) if constraints(�1(X)) v constraints(�2(X)): 2Note that �(X) v ? for any �(X). It happens to be the case that ? is the topelement of the lattice structure over constraint sets. This is somewhat unfortunate,because in lattice theory ? usually denotes the bottom element. On the other hand,it is not uncommon to interpret ? as \inconsistent". This notational problem canbe solved, simply by reversing the lattice structure. If we write w and u, ratherthan v and t, we have ? as the bottom of the lattice. This is equally problematic,however, as it is not intuitively appealing to write u for a symbol that is to beinterpreted as a union of constraints. Hence we stick to the notation as introducedin De�nition 8.16.Theorem 8.17 (lattice structure)(a) (nf CCSL;v) is a lattice with bottom fhXi := [ ]g and top ?CCS.(b) (FGL;v) is a lattice with bottom graph(fhXi := [ ]g) and top ?FG.(c) graph : nf CCSL �! FGL is an isomorphism with respect to v;constraints : FGL �! nf CCSL is the inverse isomorphism.Proof.(a) The top and bottom properties are trivial.The existence of a lub for any two constraint sets �1(X); �2(X) 2 nf CCSLis shown as follows. We write �0 for closure(�1(X) [ �2(X)).If �0 is inconsistent, then ? is obviously the lub.Otherwise, assume �00 2 CCS with �1(X) v �00 and �2(X) v �00.Then closure(�1(X)) � closure(�00), and closure(�2(X)) � closure(�00).Hence �0 � closure(�00), and nf (�0) is the least upper bound in nf CCSL.The existence of a glb follows in similar fashion.



158 8. Parsing schemata for uni�cation grammars(c) Straight from Lemma 8.13 and De�nition 8.16.(b) Direct from (a) and (c). 2We can extend the relation v to cover the entire set of consistent constraint setsCCS . Note, however, that (CCS [ f?g;v) is not a lattice, because the lub is notuniquely de�ned.Corollary 8.18For any pair of consistent constraint sets in normal form �1(X); �2(X) 2 nf CCSit holds that�1(X) t �2(X) = nf (�1(X) [ �2(X)) 2We have de�ned t as a least upper bound, derived from the subsumption relationv. In practical applications, we see t as an operator that allows to construct newfeature structures by merging the features of existing feature structures. How sucha merge is carried out in an e�cient manner is not a direct concern here. We willcome back to that issue in Chapter 9.Having proven that normal forms of consistent constraint sets and featuregraphs are isomorphic, we can abstract from the particular representation andsimply call it a feature structure. We write '(X) to denote a feature structure,or simply ' if it is not relevant which object X is characterized by the featuresin '. A feature structure will be interpreted in an opportunistic manner either asfeature graph or as constraint set, whatever is most convenient.We write '(X):� to denote the substructure of '(X) that is (in the graph repre-sentation!) the largest subgraph of which [hX�i] is the root. We write '(X):� = cif (in constraint set representation!) hX�i := c 2 closure('(X)).As an informal notation for feature structures we write avms, feature graphs orconstraint sets. It is not required that a constraint set be in normal form. Normalforms were important because the lattice structure is de�ned on normal forms, butfor any practical application any equivalent speci�cation of a constraint set willdo as well. Hence, as we are not going to use normal forms, we do not need toexplicitly specify a linear order on Fea and Const.With the conceptual machinery introduced so far, we can now explain thedi�erence between type identity and token identity. Consider the following featurestructures:'1 = 26664f : � f : cg : d�g : � f : cg : d�37775 ; '2 = 26664 f : 1 � f : cg : d�g : 1 37775 :



8.3 Composite feature structures 159Then the substructures '1:f and '1:g are called type identical : they have thesame value, but they are di�erent structures. The substructures '2:f and '2:gare called token identical : they refer to a single structure (and have the same valuea fortiori). Note that '1 v '2; because the constraint set of '2 can be obtainedfrom the constraint set of '1 by adding a constraint (i.c. hXfi := hXgi). Thedi�erence between these structures comes to light when either structure is uni�edwith '0 = hg : �h : e�i, yielding'1 t '0 = 2666664 f : � f : cg : d�g : 24 f : cg : dh : e353777775 v '2 t '0 = 266664 f : 1 24 f : cg : dh : e35g : 1 377775 :In the sequel, we write the usual equality symbol (=) for type identity and adotted equality symbol ( :=) to denote token identity. So we have '1:f = '1:g,'2:f = '2:g, '2:f := '2:g, but '1:f 6 := '1:g.The di�erence between type identity and token identity is only relevant forsubstructures. For constants it doesn't make any di�erence whether a value istoken identical to or a copy of some given other constant.8.3 Composite feature structuresSo far we have de�ned feature structures, that capture the characteristic propertiesof some object. It is essential, however, to add the conceptual machinery thatallows us to relate the features of di�erent objects to one another. To this end weintroduce feature structures that describe the features of a (�nite) set of objects.Features can be shared between objects by means of token identity.Composite constraint sets for sets of objects are only a minimal extension ofthe constraint sets of Section 8.1: coreferencing is allowed between (features of)di�erent objects. In the domain of feature graphs, we get a set of graphs thatmay share subgraphs. Or, to put it di�erently, we get a single graph with multipleroots.De�nition 8.19 (multi-rooted feature graphs)A multi-rooted feature graph is a structure �(X1; : : : ; Xk) = (U;E;R) with (U;E)a �nite dag and R = fr1; : : : ; rkg � U , with the following properties:(i) every edge is labelled with a feature;(ii) if f and g are labels of edges originating from the same vertex, then f 6= g;



160 8. Parsing schemata for uni�cation grammars(iii) leaves may be (but need not be) labelled with a constant, non-leaf verticesdo not carry a constant label;(iv) For every u 2 U there is some r 2 R such that r �! u.We call R the root set of the graph. The size of the root set must correspondto the number of formal parameters X1; : : : ; Xk; the roots can be labelled withidenti�ers referring to the objects whose features are represented. Note that isit not required that a root ri has no incoming edges. It is conceivable that oneroot is the descendant of another root (and also that several roots coincide). Inthat case, the features of one object are token identical with a substructure of thefeatures of another object.We write MFG for the class of multi-rooted feature graphs. 2De�nition 8.20 (composite constraint sets, closure)Let X1; : : : ; Xk denote a �nite set of objects. A (composite) constraint set �(X1;: : : ; Xk) is a �nite set of constraints from the domains of value constraints, exis-tential constraints and composite coreference constraints, de�ned as follows:VC = fhXi�i := c j 1 � i � k ^ � 2 Fea� ^ c 2 Constg;EC = fhXi�i := [ ] j 1 � i � k ^ � 2 Fea�g;CCC = fhXi�i := hXj%i j 1 � i � k ^ 1 � j � k ^ �; % 2 Fea�g:The closure of a constraint set is obtained as in De�nition 8.5, with X replacedby Xi or Xj as appropriate. 2De�nition 8.21 (consistency)A closed composite constraint set �(X1; : : : ; Xk) is called consistent if it satis�esthe following properties:(i) if hXi�i := c 2 �(X1; : : : ; Xk) and hXi�i := d 2 �(X1; : : : ; Xk) then c = d;(ii) if hXi�i := c 2 �(X1; : : : ; Xk) and hXi�%i := � 2 �(X1; : : : ; Xk) then % = ";(iii) hXi�%i := hXi�i and hXi�i := hXi�%i are not in �(X1; : : : ; Xk) for any i �,and non-empty %.An arbitrary composite constraint set �(X1; : : : ; Xk) is consistent if closure(�(X1;: : : ; Xk)) is consistent.We write CCCS for the set of consistent composite constraint sets. 2De�nition 8.22 (mappings, normal form)The mappings graph and constraints can be extended to composite constraintsets and multi-rooted feature graphs in the obvious way (and it can be veri�ed



8.3 Composite feature structures 161straightforwardly that these functions are well-de�ned).The function nf : CCCS �! CCCS is de�ned bynf (�(X1; : : : ; Xk)) = constraints(graph(�(X1; : : : ; Xk));We write nf CCCS for the set of constraint sets that satisfynf (�(X1; : : : ; Xk)) = �(X1; : : : ; Xk). 2De�nition 8.23 (substructures)Let �(X1; : : : ; Xk) = (U;E; fr1; : : : ; rkg) 2 MFG describe the features of a set ofk objects. The feature graphs of a subset of this set of objects are described by asubgraph, as follows.Let fXi1 ; : : : ; Ximg � fX1; : : : ; Xkg.Then �(Xi1 ; : : : ; Xim) = (U 0; E0; fri1; : : : ; rimg) is de�ned byU 0 = fu 2 U j rij �! u for some j (1 � j � m)g;E0 = fu!v 2 E j u; v 2 U 0g:Similarly, a substructure is de�ned for closed constraint sets3.Let �(X1; : : : ; Xk) be a closed constraint set. A (closed) substructure�(Xi1 ; : : : ; Xim ) for fXi1 ; : : : ; Ximg � fX1; : : : ; Xkg is de�ned by�(Xi1 ; : : : ; Xim) = fhXij�i := c 2 �(X1; : : : ; Xk) j 1 � j � mg [fhXij�i := [ ] 2 �(X1; : : : ; Xk) j 1 � j � mg [fhXij�i := hXil%i 2 �(X1; : : : ; Xk)j 1 � j � m ^ 1 � l � mg:For �(X1; : : : ; Xk) 2 nf CCCS and fXi1 ; : : : ; Ximg � fX1; : : : ; Xkg we de�ne asubstructure �(Xi1 ; : : : ; Xim) as follows.Let �0(X1; : : : ; Xk) = closure(�(X1; : : : ; Xk));then �(Xi1 ; : : : ; Xim) = nf (�0(Xi1 ; : : : ; Xim )). 2De�nition 8.24 (composite feature lattices)We de�ne a set ?CCCS by?CCCS= VC [ EC [ CCC :As inconsistent MFG we de�ne a multi-rooted graph ?MFG= (U?; E?; R?) withan in�nite root set:U? = R? = fr1; : : :g;3We cannot simply apply the same de�nition to arbitrary constraint sets: if a feature ofsome Xij is token identical with an object that is no longer represented in the substructure,all constraints relating to that part of the deleted substructure must be taken into account aswell. Only in closed constraint sets it is guaranteed that every feature of an object is completelydescribed by constraints for that object.



162 8. Parsing schemata for uni�cation grammarsE? = fri f! rj j ri; rj 2 R? ^ f 2 Feag:Each vertex ri can be thought of as being labelled with all constants at once.The functions graph and constraints are extended to map ?CCCS and ?MFG ontoeach other.We de�ne the domainsnf CCCSL = nf CCCS [ f?CCCSg;MFGL = MFG [ f?MFGg: 28.4 Composite feature latticesBefore we de�ne subsumption on composite feature structures, we must clarify thedistinction between objects and formal parameters. It is our purpose to derive abinary operator t that can be used to unify feature structures. A feature struc-ture '(X1; : : : ; Xk) t '(Y1; : : : ; Yl) combines the features of both structures. It isimportant to know, however, which X's and which Y 's refer to identical objects.Let, for example, X3 = Y2 and all other Xi and Yj be di�erent. Then in theuni�ed feature structure '(X1; : : : ; Xk) t '(Y1; : : : ; Yl) there is (a parameter for)an object that will contain both the features of '(X3) and '(Y2). (Note, however,that '(X3) and '(Y2) are separate feature structures. Features can be sharedacross objects (or parameters) within a single composite feature structure, but fea-tures can not be shared across di�erent composite feature structures.) Hence it isessential to know which parameters denote which objects, so that the right pairsof features are uni�ed when we unify two composite feature structures. Thereforewe assume the existence of a (possibly in�nite but countable) domain of objectsand postulate that each parameter refers to an object.In a practical notation, we could annotate the uni�cation with which param-eters should be considered to refer to the same object. The above case can bedenoted as'(X1; : : : ; Xk) tX3=Y2 '(Y1; : : : ; Yl):As indices to the uni�cation we write (sequences) of equalities that denote cor-respondence between formal parameters of either argument. In the unlikely casethat all formal parameters are di�erent we could write t; (but this operation willnot be used in the sequel). Hence, when we write an unquali�ed lub symbol t itshould be clear from the context which parameters of both arguments refer to thesame object. This will usually be the case.In practical use, we see t as an operator that can be used to construct newfeature structures from existing feature structures. But before we start using it,we have to de�ne t formally as a least upper bound in a lattice.



8.4 Composite feature lattices 163De�nition 8.25 (subsumption)A subsumption relation v is de�ned on nf CCCSL as follows:�1(X1; : : : ; Xk) v �2(Y1; : : : ; Yl) holds if(i) fX1; : : : ; Xkg � fY1; : : : ; Ylg, and(ii) closure(�1(X1; : : : ; Xk)) � closure(�2(X1; : : : ; Xk)).A subsumption relation v is de�ned on MFGL by�(X1; : : : ; Xk) v �2(Y1; : : : ; Yl) holds ifconstraints(�1(X1; : : : ; Xk)) v constraints(�2(Y1; : : : ; Yl)). 2Theorem 8.26 (lattice structure)The following statement hold:(a) (nf CCCSL;v) is a lattice with the empty constraint set as bottom and top?CCCS.(b) (MFGL;v) is a lattice with the empty graph as bottom and top ?MFG.(c) graph : nf CCCSL �!MFGL is an isomorphism with respect to v;constraints :MFGL �! nf CCCSL is the inverse isomorphism.Proof: straightforward extension of the proof of Theorem 8.17 and precedinglemmata. 2Corollary 8.27For consistent composite constraint sets in normal form�1(X1; : : : ; Xk); �2(Y1; : : : ; Yl) 2 nf CCCS it holds that�1(X1; : : : ; Xk) tXi1=Yj1 ;:::;Xim=Yjm �2(Y1; : : : ; Yl) =nf (�1(X1; : : : ; Xk) [ �2(Y1; : : : ; Yl)[ fhXi1i := hYj1i; : : : ; hXim i := hYjm ig). 2As with constraint sets and feature graphs, we will blur the distinction be-tween composite constraint sets and multi-rooted feature graphs. We simply write'(X1; : : : ; Xk) to denote a composite feature structure for k objects. As in 8.1we write � to denote both lattices (nf CCCSL;v) and (MFGL;v). If we needone particular representation we will pick the one that is easiest to work with,depending on the circumstances.From a composite feature structure '(X1; : : : ; Xk) one can derive a featurestructure '(Xi) for any object, by taking the appropriate substructure. As aconvenient notation we write'(Xi) = '(X1; : : : ; Xk)jXi



164 8. Parsing schemata for uni�cation grammarsto denote that a feature structure for an object Xi is obtained by retrieving itfrom some composite structure.Up to now we have only attributed features to sets of objects. It is possible thatthe objects themselves are contained in a structure of some kind. We call theseobject structures so as avoid confusion with feature structures. Typical objectstructures that we will use in the remainder of this chapter are� A production A!� from a context-free grammar.Wewrite '(A!�) as a convenient notation for a composite feature structure'(A;X1; : : : ; Xk) that describes features of left-hand and right-hand sidesymbols, where � = X1; : : : ; Xk.� A tree hA; �i.We write '(hA ; �i) as a convenient notation for a composite featurestructure '(A; : : : ; X1; : : : ; Xk), where � = X1; : : : ; Xk.� An item [A; �].Items were introduced in Chapter 4 as sets of trees. Here we should see themas abstractions of trees: We only know the root and the yield of the item;we do not know (or do not want to know) the internal nodes. Consequently,features can be retrieved only from the nodes that are explicitly mentioned inthe denotation of the item. Hence, a composite feature structure of an item[A; �] can be seen as a substructure of a composite feature structure of atree hA; �i, from which the features of internal nodes have been deleted.We write '([A; �]) as a convenient notation for a composite feature struc-ture '(A;X1; : : : ; Xk) where � = X1; : : : ; Xk.A similar interpretation will be given to various kinds of items that givevarious kinds of partial speci�cations of trees. As an example, consider theitem [S!NP�VP ; 0; 2], specifying the fact than an NP has been found byscanning the �rst two words (but we don't care to remember what thosewords were). A feature structure '([S!NP�VP ; 0; 2]) will be a compositefeature structure '(S;NP ;VP) that denotes the appropriate substructure of'(hS!hNP ; a1a2iVP i).8.5 Uni�cation grammarsWith the lattice of (composite) feature structures, developed in in 8.1 and 8.3, wecan now formally de�ne a uni�cation grammar as it has been informally presentedin Chapter 7.The de�nition of uni�cation grammars that we present here is not the mostcompact one that is possible. One could eliminate the context-free backbone andlet syntactic category be a feature as any other. If one abstracts from the syntactic



8.5 Uni�cation grammars 165category as a special feature, the de�nitions and notations become more terse, butsomewhat more obscure. For the sake of clarity and compatibility with the otherchapters, we will not do so.We take it for granted that syntactic category is such a fundamental notionthat every feature structure for every constituent constraints at least a cat feature.Hence, in order to obtain a legible notation, we continue to call nodes in a tree bytheir syntactic category, like we did with context-free grammars.De�nition 8.28 (uni�cation grammar)A uni�cation grammar is a structureG = (G;�; '0;W;Lex):The di�erent parts of this structure are de�ned as follows:� G = (N;�; P; S) is a context-free grammar. We write V for N [�; it is notrequired that N \� = ;, a syntactic category is allowed to be both terminaland nonterminal.Furthermore, P is a multiset of productions, i.e., it is allowed that a singlecontext-free production occurs more than one time.� � = �(Fea; Const) is the lattice of feature structures based on a set of featuresFea and a set of constants Const. It is assumed (but not necessary) thatFea\Const = ;. We assume cat 2 Fea and V � Const, allowing for syntacticcategories to be represented in a feature structure.� '0 : P!� is a function that a assigns a composite feature structure to eachproduction in the context-free grammar. For each production A!X1; : : : ; Xkit is required that'0(A):cat = A; '0(X1):cat = X1; : : : ; '0(Xk):cat = Xk(where we write '0(A) as a shorthand for '0(A!X1 : : :Xk)jA and '0(Xi)likewise).Di�erent feature structures can be attributed to a single context-free pro-duction by including the production more than once in P .4� W is a set of lexicon entries, i.e., \real" word forms, as opposed to lexicalcategories in �. It is assumed (but not necessary) that V \W = ;. We writea; : : : for words in W .� Lex is a function that assigns a set of feature structures to each word in W(a word may have di�erent readings). Each '(a) 2 Lex (a) for each a 2 Wmust have a feature cat. Moreover, it is required that '(a):cat 2 �.4Alternatively, one could have P as a proper set and attribute a set of composite featurestructures to each production. There is no need to use multisets, then, but in the remainder ofthe chapter the expression \'0(A!�)" has to be replaced by \some ' in '0(A!�)".



166 8. Parsing schemata for uni�cation grammarsWe write UG for the class of uni�cation grammars G that satisfy the above prop-erties. 2One could argue whether the lexicon is part of the grammar or a separatestructure. The size of the grammar is reduced tremendously when the lexiconis not contained in the grammar. It is somewhat arti�cial, however, to assume agrammar with production features '0 existing independently of a lexicon (W;Lex).The trend in uni�cation grammars is that more and more information is storedin the lexicon, and the productions merely serve to prescribe concatenation andfeature uni�cation.The reason for introducing an alphabet W , consisting of words with lexiconentries, is the following. In context-free parsing of natural languages it is standarduse to consider the word categories, rather than the words from the lexicon, as ter-minal symbols. In Chapters 2 and 3 we have introduced the notational conventionthat leaves a; b; : : : in a parse tree indicate a terminal symbol, while leaves a; b; : : :indicate that these leaves correspond to words from the actual sentence that hasto be parsed. In Chapter 2 the underlined terminal symbols were added to thegrammar in the following way:� for the i-th word of the sentence, extra productions a!ai are added for eachpossible lexical category of that word.Veri�cation that a word occurs in the sentence, therefore, could be expressed interms of tree operations. For each auxiliary production we can supply a featurestructure structure (in constraint set notation)'0(a!ai) = fhai := haiig:These auxiliary productions are not part of the grammar, but an implementationtechnique that is used to construct the parse of a given sentence. We will stick tothis notation, for the moment, because it allows us to express the di�erence be-tween terminals that have been matched with the sentence and those that haven'tbeen matched yet.When we abstract from trees to items, in Section 8.7, we will simply haveinitial items of the form [a; j � 1; j] with a feature structure '(a) 2 Lex (aj). Thecareful distinction between matched leaves and non-matched leaves will no longerbe relevant then.Grammars may include "-productions. In Section 3.1 we de�ned trees in sucha way that an "-production generates a leaf labelled ". Throughout the remainderof this chapter we will simply assume that such leaves labelled " are not decoratedwith any features. With this restriction, an arbitrary production A!� in all thefollowing de�nitions also applies to A!".De�nition 8.29 (decorated trees)A decorated tree is a pair (�; '(� )) with � 2 Trees(G) (cf. De�nition 3.10.(iii))



8.5 Uni�cation grammars 167and '(� ) a composite feature structure for the nodes in � , satisfying the followingconditions(i) for each node A with children � there is some A!� 2 P such that'0(A!�) v '(A!�);(ii) for each node a with child ai it holds that '(a) := '(ai);(iii) for each node ai there is some '0(ai) 2 Lex (ai) such that '0(ai) v '(ai).We write DTrees(G) for the set of decorated trees for some uni�cation grammarG. 2In 8.6, like in Chapter 2, we will construct parse trees by means of compositionof smaller trees. Any tree can be composed from atomic trees. When a new tree iscreated that is a composition of two existing trees, its features will be merged. Inthis way, context-free parse trees can be obtained that are decorated with featurestructures. We should make sure, however, that the feature structure of a parsetree contains only \adequate" features (in a sense to be made precise shortly)which are derived from the productions and lexicon. One can always extend thedecoration of a tree by adding new features out of the blue. For a decorated parsetree, it should be required that no unnecessary features have sneaked in. Thefollowing de�nition rules out \over-decorated" trees.De�nition 8.30 (adequately decorated trees)We de�ne adequate decoration of trees by induction on the tree structure.5 LetG 2 UG be a uni�cation grammar and (�; '(� )) a decorated tree. The adequacyof the decoration '(� ) is de�ned as follows, depending on the form of � :65The reader might wonder why we do not give a direct de�nition of a minimally decoratedtree. One could call (�;'(�)) minimallydecorated if there is no decoration'0(�) 6= '(�) such that'0(�) v '(�). The problem is, however, that adequately decorated trees need not be minimal.As an example, consider a grammar with the following productions:A!B; '(B) = [f : a]; (8.1)A!B; '(B) = [g : b]; (8.2)B!C; '(B) = [g : b]: (8.3)A tree hA; Ci composed from the elementary trees of productions (8.1) and (8.3) is decoratedadequately, but not minimal.In a practical grammar, it is likely that every adequately decorated tree is also minimally deco-rated. One could rule out grammars that allow non-minimal adequate decoration by additionalconstraints on the features of the productions and lexicon. This is not very relevant for thecurrent discussion, therefore we bypass the issue with a de�nition of adequacy that is based onwhat ought to be proper composition of decorated trees.6See De�nition 3.8 for various forms of linear tree notation.



168 8. Parsing schemata for uni�cation grammars� � = ha!aii (i.e. � matches a terminal with a word in the sentence).Then the decoration is adequate if '(a) := '(ai) 2 Lex (ai).� � = hA!�i (i.e. � covers a single production).Then the decoration is adequate if '(� ) = '0(A!�).� � = hA!h� ; �ii (i.e., a production hA!�i constitutes the top of thetree).Let � = X1 : : :Xk, � = �1 : : :�k, such that hXi ; �ii is a subtree of � for1 � i � k.We distinguish between degenerate subtrees, having a single node Xi = �iand no edges and nondegenerate subtrees having more than one node andat least one edge. The (only) adequate decoration for a degenerate subtreeis the empty feature structure.Then '(� ) is an adequate decoration if there are adequately decorated trees(hA!�i; '0(hA!�i));(hX1 ; �1i; '0(hX1 ; �1i)); : : : ; (hXk ; �ki; '0(hXk ; �ki))such that'(hA!h�; �ii) = '0(hA!�i) t '0(hX1 ; �1i) t : : :t '0(hXk ; �ki): 2De�nition 8.31 (parse tree)Let G be a uni�cation grammar, a1 : : :an a string inW �. A parse tree for a1 : : : anis an adequately decorated tree of the form(hS ; a1 : : :ani; '(hS ; a1 : : : ani))with '(hS ; a1 : : :ani) 6= ? : 2De�nition 8.32 (result)Let (hS ; a1 : : : ani; '(hS ; a1 : : :ani)) be a parse for the sentence a1 : : :an.The feature structure'(S) = '(hS ; a1 : : : ani)jSis called a result of the sentence. 2In context-free parsing, parse trees are delivered as results. For uni�cationgrammars, it is assumed that the feature structure of the sentence symbol S con-tains all relevant information. The parse tree is not an interesting object as such,it serves only to compute '(S). Hence we can rephrase the parsing problem asfollows.



8.6 Composition of decorated trees 169The parsing problem, given sentence a1 : : :an 2W � and a grammar G,is to �nd all results '(S).Unlike the context-free case, we can also de�ne a reversed problem.7The generation problem, given a grammar G and a feature structure'(S), is to �nd a sentence a1 : : : an 2W � for which '(S) is a result.In principle it should be possible to use a single uni�cation grammar both forparsing and generation. If a grammar is to be used in both directions, it mustbe guaranteed that both the parsing algorithm and the generation algorithm halt.A uni�cation grammar that is designed for use in a parser typically will not haltwhen used for generation. Reversible uni�cation grammars, that can be used ineither direction, are studied in by Appelt [1987], Shieber [1988], Shieber et al.[1990], Gerdemann [1991], and van Noord [1993].8.6 Composition of decorated treesIn 8.5 we have de�ned what a valid parse tree is, but not yet how such a tree canbe computed. We will now de�ne an operator for tree composition. Using thisoperator, one can create ever larger and larger trees from the initial trees basedon grammar productions and lexicon. Thus, in the framework of Chapter 2, wehave a primordial soup populated with adequately decorated trees.The primordial soup is sound if all parse trees for the sentence that may appearare adequately decorated and complete if all adequately decorated parse trees canbe constructed.We de�ne a decorated tree composition operator �i and extend that to anondeterministic operator by dropping the index i. For technical reasons, thecontext-free tree composition operator is de�ned slightly di�erently from the wayit was done in Chapter 2. (The di�erence is merely notational, the trees that canbe composed are the same).De�nition 8.33 (context-free tree composition)For a context-free grammar G and any i 2 IN a partial function�i: Trees(G)� Trees(G) �! Trees(G)is de�ned as follows. Let � = hX0 ; X1 : : :Xki and � = hY0 ; Y1 : : : Yli becontext-free trees in Trees(G). Then� �i � = ( hX0 ; X1 : : :Xi�1 hXi ; Y1 : : :YliXi+1 : : :Xki if Xi = Y0;unde�ned otherwise:7Wedekind [1988] has given such a de�nition for the generation problem in Lexical-FunctionalGrammar



170 8. Parsing schemata for uni�cation grammarsIn a more practical interpretation, we interpret �i as an operator to create newtrees from existing trees, rather than as a function. We drop the index i andobtain a nondeterministic operator �. 2De�nition 8.34 (decorated tree composition)For a feature grammar G and any i 2 IN a partial function�i: DTrees(G) �DTrees(G) �! DTrees(G)is de�ned as follows. Let (�; '(� )) and (�; '(�)) be decorated trees with � =hX0 ; X1 : : :Xki and � = hY0 ; Y1 : : :Yli. Then(�; '(� )) �i (�; '(�)) = 8>><>>: unde�ned if � �i � is unde�nedor '(� ) tXi=Y0 '(�) =?;(� �i �; '(� ) tXi=Y0 '(�)) otherwise:As in De�nition 8.33 we may drop the index i and interpret � as a nondeterministicoperator.We write (�; '(� )) � (�; '(�)) =? if the composition is not de�ned for any i. 2The next lemma states that composition of adequately decorated trees yieldsan adequately decorated tree. This result will not come as a surprise. But to beformally correct it is necessary to state it as a separate result. Adequate decorationwas de�ned inductively by expanding a production tree with adequately decoratedtrees. It follows easily (but not by de�nition) that arbitrary tree composition ofadequately decorated trees yields an adequately decorated tree.Lemma 8.35Let (�; '(� )) 2 DTrees(G) and (�; '(�)) 2 DTrees(G) be adequately decoratedtrees. If (�; '(� )) � (�; '(�)) 2 DTrees(G) then (�; '(� )) � (�; '(�)) is alsoadequately decorated.Proof: by induction on the size of (�; '(� )) � (�; '(�)).Let � = hA!h� ; �ii, � = X1 : : :Xk, � = �1 : : : �k as in De�nition 8.30. Inthe composed tree � � �, some leaf in some �i is uni�ed with the root of �. Let'0(hXi ; �ii) be the adequate decoration of hXi ; �ii from which the adequacyof '(� ) is derived. Then, using the induction hypothesis, we �nd that(hXi ; �ii � �; '0(hXi ; �ii) t '(�))= (hXi ; �ii; '0(hXi ; �ii)) � (�; '(�))is adequate. It is easily veri�ed that (�; '(� )) � (�; '(�)) is obtained by compo-sition of (hA!�i; '0(hA!�i)) with (hX1 ; �1i; '0(hX1 ; �1i)); : : : ; (hXi�1 ;�i�1i; '0(hXi�1 ; �i�1i)); (hXi ; �ii � �; '0(hXi ; �ii) t '(�)); (hXi+1 ;�i+1i; '0(hXi+1 ; �i+1i)); : : : ; (hXk ; �ki; '0(hXk ; �ki)); as in De�nition8.30. 2



8.7 Parsing schemata for uni�cation grammars 171Theorem 8.36 (correctness of primordial soup for decorated trees)A decorated tree (�; '(� )) with � = hS ; a1 : : :ani that is obtained by treecomposition � from decorated trees of the forms(hA!�i; '0(A!�i)) and(ha!aii; '(a!aii)) with '(ai) 2 Lex (ai) and '(a) := '(ai)is adequate. Moreover, each adequately decorated parse can be constructed fromsuch trees.Proof.The soundness (context-free parse trees are adequately decorated) is a direct con-sequence of Lemma 8.35. It is trivial to prove (with induction on the size of thetree) that all adequately decorated trees can be composed, hence completenessfollows a fortiori. 28.7 Parsing schemata for uni�cation grammarsIn 8.5 we have introduced uni�cation grammars and 8.6 we have proven that thePrimordial Soup framework for decorated trees is sound and complete. Integratingall this into context-free parsing schemata is mainly a matter of notation.There is, however, a single important di�erence between parsing schemata forcontext-free grammars and uni�cation grammars, with far-reaching consequences.In the context-free case any item needs to be recognized only once. When analready recognized item is recognized again, it should be ignored. For uni�cationgrammars, in contrast, a single item context-free item can be recognized multipletimes, each time with a di�erent decoration. These are to be regarded as di�erentobjects. Hence we may face the situation that a parsing schema with only a �niteset of valid context-free items may yield in�nitely many decorations to these items.At this very abstract level we will not worry about in�nitely many decorationsfor a single context-free item. There are various ways to construct parsing algo-rithms that recognize only a relevant �nite subset of valid decorated items. Thiswill be discussed at more length in Chapter 9.We will �rst formulate a parsing schema UG that formalized what we did inSection 7.2: Constituents are recognized purely bottom-up. This can be regardedas the canonical parsing schema for uni�cation grammars.A domain of items can be de�ned by adding feature structures to the usualCYK items. We could writeIUG = f[(X;'(X)); i; j] j X 2 V ^ 0 � i � j ^ '(X) 6=?gwhere '(X) is obtained by restricting the composite feature structure of the treehX ; ai+1 : : :aji to the features of the top node. Throughout the remainder of



172 8. Parsing schemata for uni�cation grammarsthis chapter items are decorated with feature structures, therefore we do not needto mention '(X) explicitly in the notation of an item. Hence we write [X; i; j] asusual, rather than [(X;'(X)); i; j].The hypotheses represent all feature structures o�ered by the lexicon for allwords in the sentence:H = f[a; j � 1; j] j '(a) 2 Lex (aj)g: (8.4)Schema 8.37 (UG)It is obvious, however, that deduction steps for productions with larger right-handsides can be added in similar fashion.For an arbitrary uni�cation grammar G 2 UG we de�ne a parsing system PUG =hIUG;H;DUGi byIUG = f[X; i; j] j X 2 V ^ 0 � i � j ^ '(X) 6=?g;D�1 = f[X1; i0; i1]; : : : ; [Xk; ik�1; ik] ` [A; i0; ik]j A!X1 : : :Xk 2 P ^ k � 1 ^'(A) = ('0(A!X1 : : :Xk) t '(X1) t : : :t '(Xk))jAg;D" = f ` [A; j; j] j A!" 2 P ^ '(A) = 'o(A!")g;DUG = D�1 [D";and H as in (8.4).Many uni�cation grammars that have been written to cover (parts of) naturallanguages have only productions that are unary or binary branching. In that case,the de�nition of D can be simpli�ed to:D(1) = f[X; i; j] ` [A; i; j]j A!X 2 P ^ '(A) = ('0(A!X) t '(X))jA g;D(2) = f[X; i; j]; [Y j; k] ` [A; i; k] j A!XY 2 P ^'(A) = ('0(A!XY ) t '(X) t '(Y ))jAg;DUG = D(1) [D(2):Sets of deduction steps D(k) for other values of k can be added likewise. 2It is not necessarily the case that the parsing schema UG yields a �nite setof decorated items for an arbitrary grammar and sentence; even worse, the pars-ing problem for an arbitrary uni�cation grammar is undecidable. Several su�-cient conditions that guarantee �niteness of the UG schema are known from theliterature,8 but no general necessary and su�cient condition is known. Hence we8The o�-line parsability constraint [Bresnan and Kaplan, 1982] and the stronger notion ofdepth-boundedness [Haas, 1989] guarantee a �niteness.



8.7 Parsing schemata for uni�cation grammars 173simply assume that a grammar G has been de�ned in such a way that the pars-ing schema UG will halt. For uni�cation grammars designed for parsing naturallanguages this does not seem to be problem. The underlying idea is that themeaning of a sentence, that will be captured somewhere in the result, is derivedcompositionally from the meaning words, via intermediate constituents; there islittle reason to write a grammar such that ever more meaning is added to the sameconstituent.In the sequel, we will assume that a uni�cation grammar G has the propertythat for any string only a �nite number of valid decorated items exists. How thegrammar writer guarantees that this is the case (for example by making sure thatone of the su�cient conditions is kept) is of no concern to us here. When wediscuss other parsing schemata, the �niteness issue will come up again. Addingother fancy kinds of deduction steps | notably top-down prediction of features| may jeopardize the �niteness. In such a case we will show for a newly de�nedschema P that if a parsing systemUG(G) halts, then P(G) will also halt. In otherwords, the �niteness in bottom-up direction is the responsibility of the grammarwriter, whereas the �niteness in top-down direction is the responsibility of theparser constructor.Earley-type parsers for uni�cation grammars that incorporate top-down pre-diction are discussed, among others, by Shieber [1985a], Haas [1989], and Shieber[1992]. In Chapter 11 a head-driven parsing schema will be de�ned that startsparsing those words that can be expected to yield features that are most restric-tive for top-down prediction.We will now look at an Earley parser, formalizing what has been informallyexplained in Section 7.1. A domain of items for the Earley schema is properlydescribed byIEarley(UG) = f[(A!���; '(A!���)); i; j] jA!�� 2 P ^ 0 � i � j ^'0(A!��) v '(A!���) ^'(A!���) 6=? g; (8.5)In order to simplify the notation, we attach identi�ers to items. When an itemis subscripted with a symbol �; �; �; : : :, this symbol can be used in the remainderof the expression to identify the item. Moreover, we write '(�) for the featurestructure '(A!���) of an item [(A!���; '(A!���)); i; j]�. Furthermore, aswith the CYK items, we do not mention the feature structure explicitly in theitem. Thus we simplify (8.5) toIEarley(UG) = f[A!���; i; j]� j A!�� 2 P ^ 0 � i � j ^'0(A!��) v '(�) ^ '(�) 6=? g; (8.6)Another useful notational convention is the following. Rather than writing '(�)jXfor the feature structure ofX derived from some composite feature structure withinan item �, we write '(X�).



174 8. Parsing schemata for uni�cation grammarsSchema 8.38 (Earley(UG))For an arbitrary uni�cation grammar G 2 UG a parsing system PEarley(UG) =hIEarley(UG);H;DEarley(UG)i is de�ned by IEarley(UG) as in (8.6);DInit = f ` [S!�; 0; 0]� j '(�) = '0(S!)g;DScan = f[A!��a�; i; j]�; [a; j; j + 1]� ` [A!�a��; i; j + 1]�j '(�) = '(�) t '(a�)g;DCompl = f[A!��B�; i; j]� ; [B!�; j; k]� ` [A!�B��; i; k]�j '(�) = '(�) t '(B� )g;DPred = f[A!��B�; i; j]� ` [B!�; j; j]�j '(�) = '(B�) t '0(B!)g;DEarley(UG) = DInit [DScan [DCompl [DPred;=and H as in (8.4). 2A uni�cation grammar G for which UG(G) is �nite, may cause an in�nitenumber of top-down predictions. A simple way to solve this (and the standardway to parse a uni�cation grammar with a conventional active chart parser) is tolimit the top-down prediction to the context-free backbone and replace DPred byDPred0 = f [A!��B�; i; j]� ` [B!�; j; j]� j '(�) = '0(B!) g:It is not di�cult to show that the modi�ed Earley schema yields only �nitely manydi�erent decorated items if theUG schema is known to do so. In Chapter 9 we willinvestigate more sophisticated techniques to prevent in�nitely many decorationsfor a single context-free item.We have given two examples of parsing schemata for uni�cation grammars.It is clear that other context-free parsing schemata can be extended with featurestructures in similar fashion.8.8 The example revisitedWe return to the example of Section 7.2 and show how the schema Earley(UG)can be used to parse our example sentence. The lexicon and productions for thecat catches a mouse were shown in �gures 7.1 and 7.2 on pages 144 and 145. In aPATR-style grammar, the composite feature structures '0 are typically denoted bya constraint set. Here we will represent all feature structures, single and composite,by avms.In an Earley item of the form [A!���; i; j], we are interested only in thefeatures of A and �. Features of A will be used to transfer information upwards



8.8 The example revisited 175through a parse tree (when an item [A!���; i; k] is used at some later stage as theright operand of a predict step). Features of � that are known already are used asa �lter to guarantee that � will be of \the right kind" in whatever sense imposedby those features. The features of � need not be remembered. Features of � thatare of interest for the remainder of the parsing process will have been shared withA or �, other features are irrelevant. Our purpose, here, is to construct a resultingfeature for S, rather than a context-free parse.We start with an item [S!�NP VP ; 0; 0], supplied with the features from'0(S!NP VP). The decorated item is shown in Figure 8.4.[S!�NP VP ; 0; 0]S 7�! 24 cat : Shead : 1 35NP 7�! 2 � cat : NP�VP 7�! 266664 cat : VPhead : 1 � �subject : 2 377775Figure 8.4: The initial itemNo features are predicted for the subject (other than that its category shouldbe NP). Hence, an item [NP!�*det *n ; 0; 0] is predicted that is decorated with'0(NP!*det *n). For the sake of brevity we skip the deduction steps[NP!�*det *n; 0; 0]; [*det; 0; 1] ` [NP!*det�*n ; 0; 1];[NP!*det�*n; 0; 1]; [*n; 1; 2] ` [NP!*det *n�; 0; 2];the reader may verify that the decorated item [NP!*det *n�; 0; 2] as displayed inFigure 8.5 is obtained. A complete step combines the items of Figures 8.4 and 8.5into a decorated item [S!NP�VP ; 0; 2] as shown in Figure 8.6. The features ofthe NP have been included in the VP through coreferencing.From Figure 8.6 we predict an item [VP!�*v NP ; 2; 2], as shown in Figure8.7. The subject feature that is shared between VP and *v causes the subjectinformation to be passed down to the verb. Consequently, a verb can be acceptedonly if it allows a subject in third person singular. This is indeed the case for



176 8. Parsing schemata for uni�cation grammars[NP!*det *n�; 0; 2]NP 7�! 26666664 cat : NPhead : 26664 agr : � number : singularperson : third �trans : � pred : catdet : + � 3777537777775Figure 8.5: A completed NP[S!NP �VP ; 0; 2]S 7�! 24 cat : Shead : 1 35VP 7�! 266666666666664 cat : VPhead : 1 � �subject : 26666664 cat : NPhead : 26664 agr : � number : singularperson : third �trans : � pred : catdet : + � 3777537777775377777777777775Figure 8.6: Complete applied to Figures 8.4 and 8.5



8.8 The example revisited 177
[VP!�*v NP ; 2; 2]VP 7�! 26664 cat : VPhead : 1subject : 2 37775*v 7�! 2666666666666666664 cat : *vhead : 1 � �subject : 2 26666664 cat : NPhead : 26664 agr : � number : singularperson : third �trans : � pred : catdet : + � 3777537777775object : 3

3777777777777777775NP 7�! 3 � cat : NP�Figure 8.7: Predict applied to Figure 8.6



178 8. Parsing schemata for uni�cation grammars
[VP!*v�NP ; 2; 3]
VP 7�! 266666666666666666666666666666664

cat : VPhead : 266666666664 tense : presentagr : 1trans : 26664 pred : catcharg1: 2arg2: 3 37775377777777775subject : 266666664 cat : NPhead : 266664agr : 1 � number : singularperson : third �trans : 2 � pred : catdet : + � 377775377777775object : 3
377777777777777777777777777777775NP 7�! 264 cat : NPhead : � trans : 3 �375Figure 8.8: Scan applied to Figure 8.7 and \catches" on page 144



8.9 Other grammar formalisms 179the initial item [*v ; 2; 3], decorated with the lexicon entry for catches on page 144.Hence we obtain the item [VP!*v �NP ; 2; 3] with a decoration as shown in Figure8.8. The *v entry has been deleted, as its salient features are also contained inthe VP feature structure. Note that hNP head transi is now coreferenced withhVP head trans arg2i, through the coreference in the (no longer visible) featurestructure of the verb.We can continue to deduce decorated items in similar fashion. It is left to thereader to verify that application of the deduction steps[VP!*v �NP ; 2; 3] ` [NP!�*det *n ; 3; 3];[NP!�*det *n; 3; 3]; [*det; 3; 4] ` [NP!*det�*n ; 3; 4];[NP!*det�*n; 3; 4]; [*n; 4; 5] ` [NP!*det *n�; 3; 5];[VP!*v �NP ; 2; 3]; [NP!*det *n�; 3; 5]; ` [VP!*v NP�; 2; 5];[S!NP�VP ; 0; 2]; [VP!*v NP�; 2; 5] ` [S!NP VP �; 0; 5]results in a decorated �nal item as shown in Figure 8.9.[S!NP VP�; 0; 5]S 7�! 266666666666666664 cat : Shead : 266666666666664 tense : presentagr : � number : singularperson : third �trans : 2666664 pred : catcharg1: � pred : catdet : + �arg2: � pred : mousedet : � �3777775377777777777775377777777777777775Figure 8.9: A �nal item8.9 Other grammar formalismsWe will briey mention some di�erent kinds of uni�cation grammars and thendiscuss the related formalisms of attribute grammars and a�x grammars.



180 8. Parsing schemata for uni�cation grammarsThe earliest type of uni�cation grammar is De�nite Clause Grammar (DCG),de�ned by Pereira and Warren [1980]. DCG is based on terms rather than fea-ture structures. It is inextricably linked with the programming language Prolog[Clocksin and Mellish, 1981]. DCG, basically, o�ers some additional syntacticsugar for encoding grammars directly into Prolog.In the last decade, a variety of grammar formalisms based on feature struc-ture uni�cation has emerged. The Computational Linguistics community hasbeen enriched with Lexical-Functional Grammar (LFG) [Kaplan and Bresnan,1982], Functional Uni�cation Grammar (FUG) [Kay, 1979, 1985], GeneralizedPhrase Structure Grammar (GPSG) [Gazdar et al., 1985], PATR9 [Shieber 1986],Categorial Uni�cation grammar (CUG) [Uszkoreit 1986], Uni�cation Categorialgrammar (UCG) [Zeevat et al., 1987], Head-Driven Phrase Structure Grammar(HPSG) [Pollard and Sag, 1987, 1993], Uni�cation-based Tree Adjoining Gram-mars (UTAG) [Vijaj-Shanker et al., 1991]. This list is not exhaustive.The word \grammar" that appears in all these formalisms, has subtly di�erentmeanings in di�erent cases. On the one hand, one can see grammar as a formalismthat has no meaning per se, but can be used to encode grammars for whateverpurpose. Typical examples of this class are DCG, FUG and PATR. On the otherhand, one can interpret grammar as a description of phenomena that occur innatural language. Such a grammar does not only o�er a formalism but, moreimportantly, also a linguistic theory that is expressed by means of that formalism.Typical examples of this class are LFG, GPSG and HPSG. We will further discussthis in Chapter 15.The feature structure formalism that we have used here is taken from the 1986version of PATR (with exception of the extension to composite feature structures).It was designed by Shieber to be the most simple feature structure formalism,containing only the bare essentials. A lot of bells and whistles can be added, ofcourse. The use of lists, which is admittedly cumbersome in PATR notation, canbe simpli�ed by introducing a special list notation. We have used untyped featurestructures: any feature can have any value. In a typed feature structure formalism,the value of a feature is restricted to particular types speci�cally de�ned for thatfeature. A useful extension to increase the e�ciency of uni�cation grammarparsingis coverage of disjunctive feature structures. We will come back to this in Chapter9. We have stipulated | as in PATR| that feature graphs contain no cycles. Thepractical reason is that it simpli�es the uni�cation algorithms, and cyclic featurestructures seem to have little linguistic relevance. In HPSG, the feature formalismdoes not explicitly ban cycles, but in the 1988 version [Pollard and Sag, 1987] theysimply did not occur in any of the types prescribed for HPSG grammars. The9The formalism is called PATR-II, to be precise, and quite di�erent from a �rst version ofPATR that has fallen into oblivion (and hence the letters \PATR" in PATR-II no longer forman acronym).



8.9 Other grammar formalisms 1811993 version of HPSG [Pollard and Sag, 1993], however, has somewhat di�erenttypes and found an application for cyclic structures. Some linguists argue thatthe head of a noun phrase is the determiner, rather than the noun (the so-calledDP hypothesis). In the latest version of HPSG, this matter is solved by lettingboth the determiner and the noun regard themselves as head of the NP and eachother as a subordinate constituent. Hence either constituent is subordinate to asubordinate structure of itself.Uni�cation grammars are related to attribute grammars, introduced by Knuth[1968, 1971], that have been used in compiler construction for 25 years. There aresome basic di�erences between attribute grammars and uni�cation grammars, butfrom a formal point of view there is little objection to call both constraint-basedformalisms. The di�erence between both formalisms is to a large extent a di�erencein culture: attribute grammars are typically used by computer scientists to denotethe semantics of programming languages, while uni�cation grammars are typicallyused by computational linguists to capture syntactic and semantic properties ofnatural languages.Attribute grammars stem from the age that higher programming languagesall were imperative languages. The basic statement is the assignment: a value,obtained from evaluating an expression, is assigned to an identi�er. Expressionscan be functions (i.e. sub-programs computing a value) of arbitrary sophistication.Within the imperative programming paradigm, therefore, it is the most naturalapproach to de�ne attributes of a constituent as functions of other attributes ofother constituents. The constraints in an attribute grammar can be thought ofassignments:10hattributei := hexpressioniwhere hexpressioni is a function of attributes of other symbols in the same pro-duction.Uni�cation grammars, in comparison draw heavily upon the declarative pro-gramming style as incorporated in Prolog. A Prolog clause foo(X,Y) speci�esthe relation between X and Y. If X is instantiated then foo can be used to assigna value to a variable Y, and reversed, if Y is instantiated then a variable X canget a value by calling foo11. Similarly, in uni�cation grammars we specify (com-mutative) equations that have to be true. In which order the features have to10One could use attribute grammars also within the functional programming paradigm. Lazyevaluation can be used to solve some dependency problems easier and more elegantly than in theimperative paradigm, but the central notion of functional dependency remains.11In the actual practice of Prolog programming, however, few clauses do really allow this.There is a di�erence between speci�cation and computation: it is very well possible that theProlog gets stuck in an in�nite loop of the \wrong" argument is uninstantiated. This is similarto the fact that a uni�cation grammar designed for parsing typically can't be used for generation,although the general formalism is bidirectional.



182 8. Parsing schemata for uni�cation grammarsbe computed is irrelevant, it is not even possible to express such considerationswithin the formalism.Research on attribute grammars, therefore, tends to focus on other issues thanresearch on uni�cation grammars. A classical issue is that of noncircularity : ifthere is a circle of attributes in a parse tree that are all functionally dependenton each other, then it is impossible to compute a decoration for the tree. Anoften used su�cient (but not necessary) condition is that of L-attributedness. Anattribute grammar is L-attributed, informally speaking, if all attributes can becomputed in a single pass in a top-down left-to-right walk through a context-freeparse tree. A subclass that is particularly useful in compiler construction is theclass of LR-attributed grammars. These, roughly speaking, allow the attributed tobe computed on the y by an LR parser. The literature contains a host of di�er-ent parsing algorithms for LR-attributed grammars. See, e.g., Jones and Madsen[1980], Pohlmann [1983], Nakata and Sassa [1986], Sassa et al. [1987], and Tarhio[1988]). Each one de�nes a particular class of grammars on which it is guaranteedto work correctly. All these classes are subtly di�erent, however, because they de-pend on the guts of the proposed algorithm. A taxonomy is presented by op denAkker, Melichar and Tarhio [1980]. A fundamental treatment of attribute evalua-tion during generalized LR parsing (cf. Chapter 12) is given by Oude Luttighuisand Sikkel [1992, 1993].\There are no fundamental di�erences between a�x grammars [: : :] and at-tribute grammars [: : :]", Koster [1991a] remarks in an article on a�x grammarsfor programming languages. \The two formalisms di�er in origin and notation,but they are both formalizations of the same intuition: the extension of parserswith parameters".A�x grammars are a particular kind of two-level or van Wijngaarden grammars[van Wijngaarden, 1965], and were formalized by Koster [1971]. One can see thecontext-free productions of an a�x grammar as production schemata, de�ning setsof productions for di�erent combinations of a�x values that can be attributed tothe symbols involved in the production. Hence, even though grammars writtenas an a�x grammar can be automatically translated to attribute grammars, andreversed, the basic formalism of a�x grammars is more general, because its lacksthe predominant concern with functional dependency.Uni�cation grammars with a �nite feature lattice can be formulated directlyas a�x grammars (so-called A�x Grammars over a Finite Lattice (AGFL), seeKoster [1991b] for a simple introduction). Typically linguistic phenomena thatcan be modelled with �nite feature lattices, or a �nite domain of typed featurestructures, are conjugation (i.e. the di�erent forms of a verb) and declination(forms of nouns, adjectives, etc.,)The main di�erence between a�x grammars and both attribute grammars anduni�cation grammars is again a cultural one. The school of a�x grammars hasits own followers and its own formalism, but the work done in that area can be



8.10 Related approaches 183formulated in terms of attribute grammars or uni�cation grammars as well.8.10 Related approachesSome explicit parsing algorithms for uni�cation grammars have been given inthe literature. Haas [1989] gives a GHR algorithm (i.e. Graham, Harrison, andRuzzo's optimization of Earley's algorithm, cf. Example 6.18) for grammars basedon terms. Shieber [1992] gives an Earley parser for a general class of uni�cationgrammars, rather than just the PATR-formalism. The notation of Shieber [1992]| as opposed to the PATR variant of [Shieber, 1986], on which our treatmentof uni�cation grammars is based | allows for explicit control of feature percola-tion within productions; a production A!X1 : : :Xk is a structure with features0; : : : ; k that address the separate constituents. Our concept of multi-rooted fea-ture structures for describing feature sharing between di�erent objects is moregeneral, because it can deal with arbitrary object structures.The subject discussed here has some clear links with Shieber [1992], but wehave taken a rather di�erent perspective. Whereas Shieber gives a most generalaccount of uni�cation grammars and discusses only a single parsing algorithm, wehave used just a simple uni�cation grammar but given a formalism that allows tospecify arbitrary parsing algorithms in a precise but conceptually clear manner.8.11 ConclusionThe main contribution of this chapter is the combination of parsing schemata anduni�cation grammars in a single framework. Using the proper notation, parsingschemata for uni�cation grammars are a straightforward extension of context-freeparsing schemata. The hardest task was in fact to come up with a proper notation.Both parsing algorithms and uni�cation grammars are complex problem domainson their own. In order to combine them into a single framework, a large conceptualmachinery and a rich notation is needed. It is for good reason that most articlesin the literature are speci�c in one domain, and informal in the other.Context-free parsing is a computational problem area. A parse tree can bede�ned as an object that satis�es certain properties, but the only way to �nd theseproperties for a given sentence is to actually construct the parse tree. From thispoint of view, attribute grammars are the more natural way to extend context-freeparsing with constraints and semantic functions. Decorating a tree with attributes(whether simultaneously or in a second pass) is indeed application of functions.The literature on uni�cation grammars, on the other hand, has a strong focuson the declarative character of such a grammar. One describes the constraints thatare implied by the grammar, and the properties of individual words in the lexicon.The theory leans heavily on logic, hence the prime operational concern is thatconstraints can be expressed in a subset of �rst-order logic that allows automatic



184 8. Parsing schemata for uni�cation grammarsconstraint resolution. This being proven, one can leave the act of satisfying theconstraints to an appropriate machine. From this point of view it makes senseto concentrate on the static aspects of the grammar, rather than on the dynamicaspects of how to construct a parse.The dynamics of uni�cation and resolution sec have been studied extensivelyin the literature. It constitutes an auxiliary domain that is used as a tool inthe construction of parsers for uni�cation grammars, often in the form of theProlog programming language. We have added a simple formalism that allowsexplicit speci�cation of the dynamics of feature structure propagation in parsingalgorithms.


