VERIFICATION OF MORPHOLOGICAL
ANALYZERS

Manuel Vilares Ferro
vilares@dc.fi.udc.es

Jorge Grana Gil
grana@dc.fi.udc.es

Fidel Cacheda Seijo
Computer Science Department
University of Corunna, Campus de Elvina s/n
15071 A Coruna, Spain

cacheda@dc.fi.udc.es

Abstract

This paper is a reflection on the use of verification
tools in morphological analyzers. The growing
complexity of taggers poses serious problems for the
software engineer in order to verify the correctness
of the tagging procedure. In this context, our goal
is to integrate this kind of facility to check for the
exact properties of the system.

Key Words: Morphological Analysis, Verification
Tools, Safety.

INTRODUCTION

There are few things more frustating than spending a
great deal of time debugging errors in an application.
The existence of a tool which allows for verify the
properties of a morphological analyzer, leads to more
safe systems at the same time that modeling effort is
saved. This kind of facility is specially useful in the
implementation of taggers for inflectional languages
with non-trivial morphology.

Most of practical studies on verification tools
are related with the concept of finite automaton
(FA) [2, 3, 6]. This represents an adequate starting
point for our work, since most of authors bet
on FA’s as the most efficient and general way to
deal with the problem of tagging computationally.
However, the use of FA’s poses some problems in
relation with the maintenance of the system in
a context that probably continuously evolves. In
effect, they represent the operational interpretation
of a set of morphological rules to decide how
to tag each word encountered. This implies a
lost of declarative power and make the study
of segmentation phenomena difficult, which is of

This work was partially supported by the Autonomous
Government of Galicia under project XUGA20403B95.

interest when some kind of unexpected behavior
is detected. So, we are interested in verification
methods combining modularity in the description of
the system and flexibility in the verified properties,
such as AuTo [3]. AUTO computes small-scale
models of finite transition systems, as it is the case
for FA’s. These reduced systems are quotiens of the
one under study, up to generalized bisimulation [4,
5]. The parameter of the reduction is a user-defined
abstraction criterion [1], which embodies a particular
point of view on a system. So, one is able to build a
variety of quotiens of a same system, which are small
enough to verify particular properties.

A GUIDELINE EXAMPLE

To illustrate our work, we consider the case of
Spanish, an inflectional language, as a running
example throughout this paper. Spanish shows a
great variety of morphological processes, particularly
non-concatenative ones, which make it adequate
for our purposes. Most representative features are
in verbs. We summarize some of the outstanding
problems we have to deal with:

1. A highly complex conjugation paradigm, with
nine simple tenses and nine compound tenses,
both on the six different persons. If we add the
Present Imperative with two forms, Infinitive,
Compound Infinitive, Gerund, Compound
Gerund, and Participle with four forms, then
118 inflected forms are possible for each verb.

2. Irregularities in both verb stems and endings.
Very common verbs, such as hacer (to do),
have up to seven different stems: hac-er,
hag-o, hic-e, haré, hiz-o, haz, hech-o.
Approximately 30% of Spanish verbs are
irregular. We have implemented 39 groups of
irregular verbs.

3. Verbal forms with enclitic pronouns at the end.
This can produce changes in the stem due to the
presence of accents: da (give), dame (give me),
damelo (give it to me). We have implemented
forms even with three enclitic pronouns, like
traetemelo (bring it for you and me). Here,
the analysis has to segment the word and return
four tokens.

This complexity suggests the necessity to interface
the morphological analysis with a formal proof
system which allows us to verify easily the properties
demanded, as well as to recovery the system from
unexpected states.

Taking up the introduction of the tagger, we

propose the fields for token, together with their
possible values, i.e. the tag set, showed in Table 1.

[Field [Values
Word
Lemma
Category Adjective
Adverb Exclamatory, modifier,

nuclear, relative
nuclear & modifier.

Conjunction Coordinate & subordinate,
subordinate que,
coordinate.

Determiner Alterizer, article,

cardinal, demonstrative,
comparative, possesive,
interrogative, ordinal,

non combinable quantifier,
relative totalizer,
combinable quantifier.

Idiom
Preposition
Pronoun Alterizer, atonic,
combinable quantifier,
comparative, relative,
enclitic atonic personal,
enclitic tonic personal,
interrogative, ordinal,
non combinable, cardinal,
quantifier, possessive,
tonic totalizer
demonstrative.
Punctuation
Mark
Noun Common proper.
To be
To have
Unknown
Verb
Gender Masculine, feminine,
masculine & feminine neutral.
Number Singular, plural singular & plural.
Mode Indicative, subjunctive,
imperative, infinitive,
gerund participle.

Verbal tense Present, imperfect in “ra”,

imperfect in “se”, simple perfect,
future, conditional, perfect past,
pluperfect in “ra”, pluperfect in “se”,
perfect future perfect conditional,

anterior past.

Person First, second third.
Determination | Definite indefinite.
Case Nominative, accusative, dative,

accusative & dative case preposition.

Comparison Equality, superiority & inferiority

non comparative,

Table 1: Tag set

The tagger proposed shows a linear time
complexity. As a reference, taking as physical
support a Sun SPARCstation 10, the middle speed
has been of 2700 words taggered per second.

VERIFICATION BY REDUCTION

The verification method we want to advocate in
this paper is based on reductions of a global FA.
These collapse states of the automaton to reach
sizes reasonable enough to be outprinted and well
understood. So, we can center our attention only
around relevant information.

Tracing facilities

A crucial feature of our proposal is to establish
valid mechanisms to make it possible to observe
the behavior during tagging [3]. Due to complexity
and great size of current systems, it is not possible,
in practice, to correct errors and even detect them
without help. So, for example, the FA implementing
our running example for Spanish has more than 9000

states.

From the global FA, the verification process lets
the user obtain the path, that is, the set of states
visited by the tagger, for a given word, and check its
correctness. For example, in the case of the word
ténselo (hold it for him, her or them or tauten
it), a morphological analyzer without additional
contextual information could return two possible
taggings:

Word: "t’en”
Verb, Imperative Present, Second, Singular,
2 Enclitic Pronouns, "tener"
Word: "se"
Enclitic Pronoun, Atonic, Feminine & Masculine,
Third, Singular & Plural, "’el"
Word: "lo"
Enclitic Pronoun, Atonic, Masculine, Third,
Singular, Accusative, "’el"

and also

Word: "t’ense"
Verb, Imperative Present, Second, Singular,
1 Enclitic Pronoun, "tensar"
Word: "lo"
Enclitic Pronoun, Atonic, Masculine, Third,
Singular, Accusative, "’el"

It seems strange that this word can correspond to
two verbs which are so different, first with one
enclitic pronoun, and after with two. However,
by passing the word through the analyzer with the
debugging option, we obtain the following paths:

0 st1

-- t --> 1 st431

-- ACCENT --> 3 st1626

-- e --> 5 st2874

-- n --> 8 CLIT_IMP_SING2_st251
--> 12 st1121

--> 18 CLIT_IMP_SING22_st253
23 CLITGEN2_st331

--> 26 st1318

1
1
o Ho n
1
1
v

0 st1

--t --> 1 st431

-- ACCENT --> 3 st1626

-- e --> b5 st2874

--n --> 7 st4404

-- s --> 11 CLIT_IMP_CONJ1_st285
e --> 15 CLIT_IMP_CORT12_st279
-- 1 --> 21 CLITGEN1_st329

o —--> 24 st1314

both equivalents to the reduced FA in Fig. 1. The
partial view produced by this query let us check

that the tagging is correct, and also validate that
the treatment units involved are working correctly.

7] tenselo.atg .f'usrr’lm:a\l_mm'tadeI|J1.f’!_]a\lena\..f'ga_lena\..f’lexil:allr'rI

i

stl

= | -

Figure 1: Reduced FA for the query ténselo

At the end, the goal is not only to guarantee the
correctness of any of the current treatment units for
the inflections, but also the new ones introduced by
the user. In this way, we can minimize the set of
errors present in the final application.

Improving maintenance

To illustrate this aspect, we assume that we have
implemented a new version of the morphological
analyzer. This last one should increase the power
of the previous system, but the updating has
unconsciously introduced an erroneous pattern. Due
to this, the word ténselo is not recognized by the
new release. Our goal is to detect these kinds of
bugs in compile time, which may be of helpful for
the incremental developing of taggers.

A way to do that is to compare patterns. So,
we can take automatically out them from the old
tagger' and verify whether they are present, or not,
in the new model. When this process deals with the
case of the pattern corresponding to ténselo, that

1That we assume correct.

o | tensilo.atg Ausrflocal_mortadelol/galena/galenas

=
skl
329
s£2018
st2531
CLIT_IHP_SIHG2_st109
s£759 l
CLIT_IHP_SING22_std5
CLITGENZ_st.278
st1654
/

J“L——————————————J -

Figure 2: Reduced FA for the query ténsilo

we shall reference as pattern, the verifier produces
the following output:

Q@ obseqd(new-model,pattern);;

error outgoing labels:

no states in automaton-2 with same outgoing labels
than states in itil

number of iteration(s): 1
False : Bool

which indicates that it1 contains the list of
problematic states. We can now to see them:

Q@ show itl;;
{5} : List of Integer

from which we deduce that the fifth state in the path,
the state st759, represents somewhere an erroneous
option in the new model. We can make this evident
by showing the transitions in the pattern explored:

Q@ explore(new—model);;

State O

stl

--t --> 1: st329

#7765

State 5

st759

-— i --> 6: CLIT_IMP_SING22_st458

which locates the bug in the transition labeled i,
as it is shown in Fig. 2. This puts into evidence
that we have implemented a pattern recognition for
ténsilo, a word with no meaning in Spanish.

TRACING A GUESSER

A verification tool for finite transition systems is
necessarily capable to manipulate paths in FA’s.
This allows us to model a simple protocol to face up
to situations where the lack of information obstructs
the normal development of the morphological
recognition process.

Let’s assume, for example, that we want to
introduce a new verb into the lexicon. As we have

seen, the verbal paradigm in Spanish is not trivial,
and it would not be strange that the user ignores
the group to which the verb belongs. At this point,
it would be desirable to integrate in the system a
facility to guide the user in such a task. Using AuTo,
we can explore all the paths between two different
states, as well as to accede to relevant states. So,
it 1s easy for the user to start from the initial state
corresponding to a given verbal model, and recover
the labels in the paths corresponding to the verbal
endings. Concatenating the stem of the verb to
those endings, we automatically obtain the set of
all the verbal forms on which the user can contrast

the requested information.

The following example proves that the verb
amar (to love) is regular, and belongs to the first
conjugation in Spanish. In the same manner, we
shall prove that the verb jugar ({0 play) is not
regular, since the form jugé is not correct. We shall
show the verification process step by step. First, we
load the FA containing the morphological analyzer,
that we have baptized lexgalena:

@ set aut=include-fc2-automaton "lexgalena';;
aut : Automaton

We recover V1, the initial state for the first
conjugation, in order to obtain a reduction of the
glogal FA that we call conj1Z:

@ set conji=

subautomaton(aut,car(structure (ant,"Vi")));;
conjl : Automaton

Finally, we capture the labels in the paths from
V1 to all the final states in the first conjugation, and
catenate them to the stem AM of the verb.

Q@ catenate-stem("AM",get-endings-list(conji));;
{ ... ; AM’E; AMASTE; AM’0; ...} : List of String

where catenate-stem and get-endings-list are
functions implemented by using the resources of
AuTo, and “...” has been used to abbreviate the
output for this paper. In this case, all verbal forms
have resulted correct. As a consequence, amar is a

regular verb of the first conjugation.
Following a similar process, we catenate the stem
JUG of jugar to the precedent set of endings.

Q@ catenate-stem("JUG",get-endings-list(conji));;
{ ... ; JUG’E; JUGASTE; JUG’0; ...} : List of String

In this case, the form JUG’E is not correct, which
implies that jugar does not belong to this model.
Although the preceding example could be qualified
as naive, it 1llustrates a simple approach to
implement an automatic generator of derivated
forms, applicable to any kinds of words. In the same
manner, we can consider a similar reasoning to solve
another aspects of the question. This is, for example,
the case of error recovery during the transmission of
a text, when some characters are lost or ill-formed.
At this point, the system must assure completely
recovering, and resuming the recognition process at
the point of each error, so as not to miss detecting

2By first conjugation.

any subsequent errors. In effect, often an error in the
morphological analysis of a text involves the skipping
of large portions of it for subsequent treatment. This
means that any additional errors that were skipped
over will go undetected until future analysis of the
same text, which surcharges the time required for
debugging.

CONCLUSION

The approach presented in this paper allows
verification of morphological analyzers by computing
reductions. These reductions are parametrized by
criteria chosen by the user, reflecting the aspect he
wants to put in evidence, for which the correctness
of the recognition procedure must be verified.

One of the major services of every lexicon ought
to be to provide as much information as possible
about errors, because of the complexity of actual
implementations, and the natural evolution suffered
by these kinds of systems. The goal is to minimize
the time dedicated to debug the system. So, our
discussion has a practical sense.

As an additional advantage, our proposal is based
on the capability to reduce general FA’s. This
implies that it is independent of the particular
implementation of the system, which solves the
problem of portability and reduces costs.

References

[1] G. Boudol. Notes on Algebraic Calculi of Processes.
Logics and Models for Concurrent Systems. Springer-
Verlag, 1985.

[2] G. Boudol, V. Roy, R. de Simone, and D. Vergamini.
Process calculi, from theory to practice: Verification
tools. In Automatic Verification Methods for Finite State
Systems, LNCS 407, pages 1-10. Springer-Verlag, 1990.

[3] E.Madelaine and D. Vergamini. AUTO: A verification tool
for distributed systems using reduction of finite automata
networks. In Proc. FORTE’89 Conference, Vancouver,
1989.

[4] R. Milner. A calculus of communicating systems,
volume 92 of Lecture Notes in Computer Science.
Springer-Verlag, 1980.

[5] D. Park. Concurrency and automata on finite sequences.
Lecture Notes in Computer Science, 104:167—-183, 1981.

[6] V. Roy. AUTOGRAPH: Un outil de visualisation pour
les calculs de processus. PhD thesis, Université de Nice-
Sophia Antipolis, France, 1990.

