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Abstract

A proposal for text mining as a support for knowledge discovery on biological de-
scriptions is introduced. Our aim is both to sustain the curation of databases and to
offer an alternative representation frame for accessing information in the biodiversity
domain. We works on raw texts with minimum human intervention, applying natural
language processing to integrate linguistic and domain knowledge in a mathematical
model that makes it possible to capture concepts and relationships between them in
a computable form, using conceptual graphs. This provides a reasoning basis for de-
termining semantic disjointedness or subsumption, as well as sub and super-concept
relationships.
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1. Introduction

Biodiversity description provides basic understanding for decision-making about
conservation and sustainable use, affecting a wide range of sectors of both human and
economic importance, such as the chemical and agri-food industries. This supports the
interest of taxonomy, the science of describing, naming and classifying living organ-
isms in an ordered system of taxa, largely considered to be unfashionable. So, it is
often supposed that pNa barcoding is the ultimate solution to taxa identification, when
in fact the arguments in its favour are illusory even for its proponents (Goldstein and
DeSalle, 2011). People also assume that identifying species is a straightforward and
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low cost task, but that is far from being the case. We have only to realise that about 2
million species have been documented so far, which means that 80-90% of life is still
to be discovered (Wilson, 2003). Furthermore, taxonomists not only delimitate taxa
annotating descriptions for new species but also continually refine and review existing
ones. Given that the data are distributed across thousands of journals and are provided
by different researchers possibly using different vocabularies and methodologies, pur-
suing particular goals and working under varying spatio-temporal frames (Daltio and
Medeiros, 2008), taxonomy becomes a complex task of knowledge management. As a
result, there is a pressing need for capturing all this information in a way that is seman-
tic, extensible and broadly accessible, which naturally leads us to ontologies (Smith
et al., 2007). Unfortunately, their generation is too labor-intensive and time-consuming
to ever be be fully automated, the process relying on qualified experts also known as
curators.

With respect to access to information, not much has changed since the days of
Linnaeus (Ereshefsky, 2007), who proposed the use of decision trees to identify taxa.
Baptized as keys, their generation is a task reserved to curators and, while can be inte-
grated in ontologies using "is-a" links, they have their weaknesses (Taylor, 95). So,
some characteristics may have been omitted in the key due to error or absence at the
moment the description was made, such as fruit properties, making them difficult to
use. Also, identification can follow an unsuccessful path through the key, either due
to the atypical nature of the specimen or to an error in determining whether it meets a
decision criterion. This requires a return to the correct path, which is not a trivial task,
especially for non-expert users.

We can then conclude that textual descriptions are not only of interest for database
curation, but also for identifying species regardless of the user’s expertise. Thus, knowl-
edge discovery (xp) facilities are increasingly neccessary to support manual work,
which justifies the interest in text mining (t™m) techniques to perform knowledge ex-
traction (kg) tasks (Deans et al., 2012).

2. The state-of-the-art

Roughly speaking, ™ refers to the process of deriving new knowledge from text,
which is often interpreted as comprising three major tasks, namely information re-
trieval (IR), information extraction and data mining. We can distinguish two approaches:
co-occurrence and natural language processing (NLp) based T™.

2.1. Co-occurrence-based text-mining

Associations between terms are inferred on the assumption that when present in
the same sentence or abstract they are related, following a semantic model known as
bag-of-words (Bow) (Harris, 1954). The meaning of a text is represented by the mul-
tiset of its terms assuming full independence between them. Algebraic (Salton et al.,
1975) and probabilistic (Maron and Kuhns, 1960) approaches are mainly used but,
since little attention is paid to the linguistic structure, the type of association is neither
identified nor negation dealt with, and thus non-meaningful relationships can arise. To
minimize the latter, authors apply weighting criteria to rank the associations, such as



term frequency (TF), inverse document frequency (IbF) and document length (Salton
and Buckley, 1988). All the above limits the potential interest of this approach for ex-
ploratory ™ tasks, it now being used more as a baseline method against which others
are compared (Zweigenbaum et al., 2007).

2.2. NLp-based text-mining

Co-occurrence provides recall, but we need access to a wealth of background knowl-
edge in order to improve precision (Jensen et al., 2006). This places us within the
context of NLP techniques, where syntactic and semantic analyses are combined with
morphological and lexical variation through part-of-speech tagging (post), to reveal
relationships.

2.2.1. Syntactic modelling

We distinguish three models on the basis of the strategy applied to represent the
meaning: semantic, constraint-based logical and dependency grammars (pG). The for-
mer (Brown and Burton, 1975) fills semantic templates according to sentence patterns.
Most proposals (Shah et al., 2005) rely on context-free grammars, including regular
ones (Miotto et al., 2005). The lack of contextual sensitivity favours non-determinism,
often reduced by the consideration of restrictive sublanguages (Friedman et al., 2001)
or domain-specific heuristics (Sekimizu et al., 1998), which do not go to the heart of
the problem and impose the use of specialised grammars. This justifies the interest in
formalisms with richly structured lexicons, such as head-driven phrase structure gram-
mars (Creary and Pollard, 1985), although their applicability is questionable when the
elements involved in the relevant constructions are not definable in strongly configu-
rational terms (Levine, 2006). Alternatively, mildly context-sensitive grammars (McSG)
have acquired popularity in the sphere of NLp (Nesson et al., 2010) due not only to
their lexical sensitivity (Schabes et al., 1988), but also to their capacity to deal with
certain cross- and long-distance dependencies in polynomial time and space through
the treatment of non-determinism in dynamic programming (de la Clergerie, 2010).
This makes it possible to save all parses, postponing the resolution of ambiguities to a
semantic stage.

Logical approaches look for the expressiveness of first-order logic (For) through
rules associating predicates and semantic constraints by unification, providing parsing
as deduction. The most popular one (Mungall, 2004; Taylor, 95) refers to definite
clause grammars (Pereira and Warren, 1980), which pose problems of maintenance
due to the fixed arity in predicates, meaning thatif we wish to extend a grammar each
rule must be changed.

Both semantic and constraint-based logical grammars serve as a kernel for phrase
structure parsers, which break sentences into constituents and can lead to complex
structures that neither adapt well to languages with free term order (Covington, 1990),
nor look for relationships close to semantic interpretation (Gardent and Kallmeyer,
2003). In contrast, dependency parsing captures the relations between a term and
its dependents, simplifying the description and extending (Fundel et al., 2007) the
use of G (Tesniere, 1959). However, polynomial time is only achieved in certain
cases (Gémez et al., 2009), which suggests that T™ should combine information from



both dependencies and constituents, looking for a trade-off between syntactic informa-
tion and ease of phrase extraction. Here we can take advantage of the lexicalized tree
adjoining grammars (TaG) (Joshi, 1969), a type of mcsc for which the derivation con-
troller can be interpreted as a dependency graph (Candito and Kahane, 1998), allowing
the modelling of a dependency parser from rich constituency information. To give this
approach a practical sense it is necessary to reduce the combinatorial explosion of trees
associated to lexicalization and extended domain of locality, which can be solved by
means of tree factorization (de la Clergerie, 2010).

2.2.2. Semantic modeling

We seek to support searching and reasoning facilities, but at the same time ex-
press content in a form that is logically precise, humanly readable and computation-
ally tractable (Sowa, 1984). This takes us away from formalisms such as region alge-
bras (Clarke et al., 1995), which require structured texts (Miyao et al., 2006), and leads
us to focus on the so called knowledge-based ones: description logics (pL) and network-
based systems. The former (Baader et al., 2003) use a variant of FoL, in which reasoning
amounts to verifying logical consequence, which provides a decidable and declarative
basis for kp. In network-based proposals, knowledge is represented by means of graph-
like structures, and reasoning is accomplished by procedures that manipulate them. We
here include semantic networks (Richens, 1956) and frames (Minsky, 1974), both of
which suffer from the absence of a well defined semantics that translates into a lack of
declarative power (Bjorne et al., 2009), including difficulty in handling negation. More
recently, conceptual graphs (cG) (Sowa, 1976) have the expressing power of FoL. This
justifies the consideration of decidable fragments such as the simple conceptual graphs
(sG), which correspond to existentially quantified conjunctions of atoms. Reasoning is
then introduced on the basis of a graph morphism called projection (Baget and Mug-
nier, 2002), which proves to be both sound and complete with regard to deduction.

The graph structure of cG seems to provide a greater expressiveness than the tree
one of most pL (Delteil and Faron, 2002), with two substantial differences between both
formalisms. The former refers to the incorporation of both a terminological and an
assertional language in pL, while cc directly represents knowledge in a graphical way.
The second is that pL are characterized by the universally quantified role restriction,
which is not present in cc. All of this justifies the interest aroused by cG in the NLP
community (Baader et al., 2003), while pL are mostly widely known as the basis of
ontology languages in areas such as biology and the semantic web (Horrocks, 2005).
Thus, cG seem to be better adapted for Tv, but exploiting their properties depends on
the ability to access environments in which they can be automatically generated from
source documents, something natural to dependency parse relations (Parapatics and
Dittenbach, 2009).

2.3. Our contribution

In order to provide full T™ capabilities, we describe an NLp-based KE protocol that
uses sG as semantic representation. The proposal is organized as a chain of lexical,
syntactic and semantic analysis, our contribution focusing on this latter task. Here,
we describe a knowledge adquisition process on primary relationships between tokens



identified by a dependency parse built from the output of a post system and a lexical-
ixed TaG with a high degree of tree-factorization interpreted in dynamic programming.

FLORE DU CAMEROUN

18. AFZELIA Smith

Trans. Linn. Soe. 4: 221 (1798), nom. cons.; OQriver, FTA 2: 301 (1871);
Lioxaro, Reinwardtia 1 (1) : 61 {1950); FCB 31 350, fig. 27 (1952); Keav,
Kew Bull. 91 266 (1954).

Base des stipules intrapétiolaire, persistante, épaisse. Feuilles
a folioles opposées. Péticlules tordus. Fleurs en grappes ou en
panicules. Bractéoles concaves, enveloppant les trés jeunes bou-
tons, mais rapidement caduques (sauf Afzelia bracteata d’Afrique
occidentale). Réceptacle long ou trés long. Sépales /4, imbriqués.
Pétale 1 grand, 4 longuement onguiculé; les autres rudimentaires
ou nuls. Etamines fertiles 7(-8), presque libres, a longs filets
exserts. Staminodes souvent 2, trés petits. Stipe de I'ovaire soudé
4 la paroi du réceptacle. Nombreux ovules.

Fruits épais, oblongs, s'ouvrant en 2 fortes valves ligneuses,
lisses, bosselées, sans nervures saillantes, & face interne garnie
d’un tissu spongieux dans lequel sont logées les graines. Graines
épaisses, munies d’un arille coloré basilaire.

Espi:ce-TYPE : A. africana Smith ex Pers.

Genre paléotropical, comptant une quinzaine d’espéces
surtout africaines. Dans les domaines camerouno-gabonais et
congolais il est représenté par 2 espéces de grands arbres, connues
commercialement sous le nom de Doussié : A, bipindensis (Doussié
rouge), A. pachyloba (Doussié blanc), absentes du domaine libéro-
ivorien.

En revanche dans ce dernier, on rencontre deux arbres
moyens, A. bracteata et A. bella. Dans le domaine périphérique
septentrional apparait un arbre moyen, A. africana, qui est plutdt
caractéristique des foréts séches denses et des galeries forestiéres
soudano-guinéennes. A. bella var. gracilior, en Cote d’Ivoire, est
un arbre; au Gabon, au Cameroun, au Congo la var. bella n’est
plus qu'un arbuste des sous-bois. Au sud de I'équateur appa-
raissent d’autres espéces des galeries forestiéres, des savanes
boisées et des foréts claires australes : A. cuanzensis et A. Peturei.

A.AUBREVILLE. — LEGUMINEUSES - CESALPINIOIDEES

Les 4 espéces qui nous intéressent au Cameroun se séparent
ainsi

CrLEF DES ESPRCES

t. Folioles ne dépassant pas 6 X 2,5cm, 5-10 paires; réceptacle de
1,5-2 cm. Gousses réniformes; graines atteignant 5 cm de long,
& arille JAUNE GILEOM. ¢\t vttt 1. A. pachyioba.
1", Folioles de plus de 6 X 2,5 em, pouvant atteindre 15 X 8,5 cm.
2. Réceptacle long de 0,5-0,6 cm; folioles 3-5 paires; grand pétale
long de 1,3-1,5 cm; gousses droites; graines & arille orangé-
TOUGE « vt eeee e e et e e vt ene st anneaenens 2. A. africana.
2'. Réceptacle long de 1-3 cm; trés grand pétale long de 3-6,5 om;
gousses réniformes,

3. Folioles (4-)3-6(-8) paires, oblongues-elliptiques & sommet obtus
ou briévement acuminé; grands arbres... ... 3. A. bipindensis.
3'. Folioles 3-5 paires, ovées-obl + iné énéral
arbustes ..

4. A. bella var. bella.

1. Afzelia pachyloba Harms

Bot. Jahrh. 49: 456 (1913); Prrizcnin, Lig. Gabon : 78 [(1048); pi
Sarxt-Avsix, For. Gabon : 65 (1963).

— Afzelia Zenkeri Harms, L c. : 427 (1913).

— Afzelia Brieyi De Wivp,, Repert. Sp. Nov. 131 369 (1914).

— Afzelia caudata Hovvr, Kew Bull. : 170 (1933).

Arbre. Feuilles a (5-)7-10 paires de folioles opposées, ohlon-
gues ou oblongues-lancéolées, obluses ou arrondies et légérement
émarginées au sommet, 4 base obtuse ou arrondie, un peu pubes-
centes dessous, longues de 2 & 6 cm, larges de 1-2,5 em. Une
dizaine de nervures secondaires peu accusées. Rachis gréle, un
peu pubescent, de 15-20 cm. Stipules velues, courtes. Pétiolules
pubescents, tordus, de 2-4 mm.

Panicules de 10-20 cm, tomenteuses. Pédicelles de 5-9 mm.
Bractées velues, de 5 X 3 mm, caduques. Bractéoles 2, velues
brunétres, de 4 X 2 mm environ, caduques. Réceptacle cylin-
drique gréle, long de 1,5-2 c¢m, velu. Sépales 4 oblongs, velus,

Extrait de Aubréville A., 1970. Flore du Cameroun 9. Légumineuses césalpinioidées. Mus. Natl. Hist. Nat., Paris, p. 339.

Figure 1: The description of the genus Afzelia

3. The running corpus

We use as running corpus a set of books describing the West African flora: the
“Flore du Cameroun”, published between 1963 and 2001, produced by different re-
search groups and supplied by the French Institute of Research for Cooperative Devel-
opment. It consists of about forty volumes in French, each one running to about 300
pages. The text is organized taxonomically, introducing genera (resp. species) in sepa-
rate chapters (resp. sections), and the descriptions include concepts that are related both
taxonomically and non-taxonomically. In the first case, they are organized into sub-
and super-tree structures, involving the most frequent relationships in biological on-
tologies: the generic ("is-a"), partitive ("part-of") and instance ("instance-of")

ones.

Non-taxonomic relations include equivalence and associative links. The first relate
to concepts that can be represented by more than one entry, which is not unusual either
as the result of error or of the existence of vernacular names in use. The associative
case involves thematic links between terms that are neither hierarchical nor equivalent,



but are nevertheless semantically or contextually related to one another. Our reference
is the plant ontology (po) database (Jaiswal et al., 2005), including locative relation-
ships ("adjacent-to” or "located-in”) and links representing the functions and
processes a concept has or is involved in ("participates-in”, "develops-from”,
"derives-by-manipulation-from" or "has-participant").

Each chapter is organized in sections with a title, a narrative description and a di-
chotomy, and sections can replicate this structure on subsections. Title includes in its
first line the authors, and the taxon family and subfamily we are dealing with. A second
line refers to the botanical genus to which the section is devoted, as well as the author
who made the discovery. Descriptions relate to morphological aspects such as color,
texture, size or form. This implies the presence of nominal sentences, adjectives and
also adverbs to express frequency and intensity, and named entities to denote dimen-
sions. A set of keys is included when the range presented has other inferior ones. An
example, for the genus Afzelia, with a fragment of section is shown in Fig. 1.

Grammatical structures enable us to propagate the relationships through linguistic
constructions, as with enumerations on expressions pointing out instances for the color
or the form, and the vocabulary is shared by most texts on this matter. We denote this
corpus by 4, its main data set features being a size of 33.9 Gb with 2,719 documents
that include a total of 863,297 terms. When it comes to document length, the minimum
(resp. maximum) size is 15 (resp. 58,297), the average length being 2,079.46.

4. Simple conceptual graphs and searchable bases

The semantic model is defined with respect to a support, which compiles the main
concepts, relations and vocabulary that exist in the world we are trying to describe.
Most of the definitions are due to (Baget and Mugnier, 2002; Genest and Chein, 2005).

Definition 1. A support is a triple S = (T¢,Tw, 1) of finite sets pairwise disjoint,
such that T¢ (resp. Tg) is a partially ordered set of concept (resp. relation) types.
These orders are interpreted as specialization relationships. So, t < ris read as r is a
generalization of ¢ or;, also, as r subsumes t. Types in T¢ posses a greater element, T,
called universal type. Types in Tg may be of any arity greater or equal to 1, and only
those with same arity are comparable. The countable set I is a collection of individual
markers with a generic marker = ¢ 1. The set I U {x} is partially ordered and its
elements pairwise non-comparable, the greatest one being .

We can identify the markers with a dictionary representing lexical forms, while
concepts refer to their semantic categories and relations to the relationships between
them. Concepts and relations can be linked together in order to describe facts.

Definition 2. A simple conceptual graph (sG) defined over a support S = (7¢, 7w, 1)
is a 4-tuple G = (C,R,E, L), where (C U R, E) is a bipartite multigraph with C and
R disjoint sets of concept and relation nodes, respectively. & is the multiset of edges
and L is a labeling function for nodes and edges. A node c € C is labeled by a pair
[type(c), marker(c)] € T¢ X (I U {x}). A node r € R is labeled by type(r) € Tg and the
degree of 1, i.e., the number of edges incident to, must be equal to the arity of type(r).
Anedgein &, labeled by i € N, connecting nodes r € Rand c € C, is denoted by (r, i, ¢).



The edges (r,1,cy), ..., (r, k,cy) incident to r € R are totally ordered and labeled from
1 to the degree k of r. We then shortly denote r = type(r)(cy, . . ., Ck).

A sG provides an ontology of the domain, where concepts refer to the markers in the
support associating a conceptual type. Reasoning is introduced through subsumption.

Definition 3. Ler G, = (C1,R1,E1, L1) and Gr = (Ca, Ra, Er, L2) be sG defined on a
support S = (T¢,Tw, L), then a projection from G| to G is a mapping 7 from C; to
C», and from R to Ry verifying:

(r,i,c) €E1 = (n(r),i,n(c)) €E and x € CLUR = Lo(n(x)) < Li(x) (1)

where, if x € Cy, < refers to the cartesian product of the order on T¢ and on I U {*}'.
If x € Ry, then < refers to the order on Tg. We say that G| subsumes G, or that G, is
more general than G,. The set of projections from G, to G, is denoted by proj(Gi, G2).

A projection from G| to G, means that the knowledge represented by the first is
contained in the one represented by the second, which defines a reasoning model that
is logically sound and complete with regard to deduction in roL and locates the query
answering problem in a decidable framework. However, when information needs do
not exactly correspond to a projection, we must relax the structural constraints.

Definition 4. Let D, D' and Q be s defined on a support S, and ¢ a mapping from the
set of sG defined on S onto itself, such that ¢(D) = 0. If m € proj(Q, D’), then (w1, ) is
a projection from Q to D modulo ¢.

The idea is to supply a set of transformations in order to determine the relevance of
a document D to a query Q, when there is some kind of relation between them.

Definition 5. Let G = (C,R,E, L) be a sG defined on a support S = (T¢,Tx, 1),
compatible/2 a binary predicate and (t,1') € (CX(T¢ X (L U{*})))U(RXTR) compatible
nodes. We define the substitution of t by ¢ on G as the sG obtained replacing t by t'.

The result of the join of ¢, ¢’ € T¢, such that L(c) = L(c"), is the sG obtained from
G by identification of ¢ and ¢’. Finally, adding a node n € C U R, results on the sG
G + N, where N is reduced to n. If n € R, neighbors must be specified.

Compatibility is not necessarily symmetric and is often defined on the basis of
some distance between types. As a join can substantially change the structure of an sg,
it is is considered more distancing than substitutions. Given that an addition introduces
an external element, it is taken to be more complex than a join. The combination of
transformations results in four kinds of answer to a given query.

Definition 6. Let D and Q be sG defined on a support S. Then D is an exact answer
to Q iff proj(Q, D) # 0. It is an approximate answer to Q when there exists a sequence
of substitutions g, such that proj(Q, (D)) # 0.

He., (type(n(x)), marker(n(x))) < (type(x), marker(x)) iff type(n(x)) < type(x), and marker(n(x)) < marker(x).



As exact answers are a rare case of approximate ones, we use this last term to refer
to both categories. In order to further increase the degree of flexibility associated to
querying, we can also include joins and node adds as admissible transformations.

Definition 7. Let D be an sG defined on a support S. We say that a sequence ¢ of
substitutions and joins (resp. and node adds) is acceptable iff ¢ does not contain too
many joins (resp. node adjunctions) relative to the number of nodes in D (resp. and ¢
is acceptable for the joins). The ratio numbers of joins (1) and node adds (u,) can be
chosen by the user.

Definition 8. Ler D and Q be sG defined on a support S. We say that D is a plausible
(resp. partial) answer fo Q iff there is an acceptable sequence ¢ of substitutions and
Jjoins (resp. and node adds), such that proj(Q, s(D)) # 0.

We now introduce, from a partial order in the set of transformations, a ranking
protocol to show the user the answers in descending order of relevance.

Definition 9. Given a support S, let Q and D = {D;}ie be the sG associated to a query
and a document database, and let ﬂg be the collection of answers obtained through
a set ‘Tg of graph transformation sequences applied to get a projection of Q on some
D, i € I. We then define a ranking function associated to Q and D as the ordering
naturally induced in ﬂg by any partial order on Tg .

We consider an approximate (resp. plausible) answer more relevant than a plausible
(resp. partial) one. For a same type, relevance is inversely proportional to the number
of transformations applied. No explicit document length normalization (resp. graph-
based term weighting) is applied, since we assume the scale is provided by graph-
ranking computation (resp. the results seem to be similar, despite its simplicity).

Definition 10. Given a support S, let Q and D = {D;}ic; be the s associated to a
query and a document database, and let ﬂg be the collection of answers obtained
through a set ‘7'(30 of graph transformation sequences applied on Q to get a projection
on some D;, i € 1. We define the Genest’s partial order on 7'5-) as:

v associates approximate answer orR

associates a partial answer orR
t (resp. ') associates a partial (resp. plausible) answer or
t, t associate the same type of answer AND | 7 |>| ¢ |

t <g ¢ iff

while that t =g t' iff t AND 1" associate the same type of answer aND | 7 |=| 7 |

5. Knowledge extraction

For this purpose, the kernel of our contribution, we contemplate a chain of lexical,
syntactic and semantic analysis that performs ™ with minimal user intervention.



5.1. The lexical frame

We do not require specific post systems. The only condition provided is on the
output, which must include all possible lexical categories for a given occurrence of a
form and is denoted as indicated below, introducing some additional structural details
in order to later integrate semantic data. In practice, we chose the Alexina architec-
ture (Sagot, 2010), which is based on a finite state morphology that combines its output
with lexical information retrieved from a lexicon for French called Lefff.

Definition 11. Let {s;}1<i<n be the sequence of sentences in a corpus € and ©; j, 1 <
J <| s;i | be the occurrence of a form in the i-th sentence, s;. We denote the association
of the lexical category (a) and semantic class (b) to this form, in this sentence, by @?j’
and we call it term. We use an anonymous-variable notation, @f’j‘, in order to designate
the set of terms that can only be differentiated by their semantic class, which we call
token. We denote by @;”_; the set of tokens referring to the same occurrence of a form,
which we call cluster.

We also consider a free-variable notation, using capital letters, in order to enumer-
ate a range of values. So, for example, ®f’JX refers to the sequence of terms in the token
(97] whose semantic class X is applicable in that context. We can naturally extend this
notation to occurrences of tokens and clusters.

We illustrate the notation in Fig. 2 for the sentence "feuilles a nervures denticulées”
("leaves with veins dentate"). Terms are represented by triangles, tokens by
ellipses and clusters by rectangles. The semantic classes are taken from Table 3.

5.2. The parsing frame

The proposal does not depend of any particular frame, although for the reasons
outlined above our choice fell on a Tac for French, applying a high degree of abstrac-
tion in dynamic programming and using meta-grammars (de la Clergerie, 2010). The
parse graphically compiles the head-dependent relationships within the text analyzed,
as shown in Fig. 3 by dotted lines connecting the nodes involved in each case. We can
observe the impact that both lexical and syntactic ambiguities have on the number of
possible dependencies that go forward to the semantic analysis stage. In the first case,
they multiply in relation to the number of tokens in a single cluster. In the second,
we can see an analogue effect resulting from the multiplication of dependencies on the
modifiers. An example of this would be “denticulées” ("dentate"), which could be
a modifier of either "feuilles” ("leaves") or "nervures” ("veins") in Fig. 3. This
is a well-known phenomenon linked to the association of prepositional attachments
to a nominal phrase, and which here provides us with two possible interpretations for
the sentence: "leaves with dentate veins" or, alternatively, "dentate leaves
with veins".

There are still situations in which ambiguities are exclusively of semantic origin.
An example is the use of coordination structures relating entities to a list of adjec-
tives, as in "des sépales ovales-aigus, glabres ou éparsement hérissés” ("Sepals
oval-pointed, smooth or scattered bristly"),where the property "hérissés”
("bristly") could be attached to the adjectives “glabres” ("smooth") or “ovales-
aigus” ("oval-pointed"). Here, the only way to solve the problem is to understand



denticulées

adj,org
it
gudi-for
. 1044
Feuilles nervures
uwine
nc.org ne.org neorg
O1o11 e Orora
ne, for ne for ne, for
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Figure 2: Lexical notation

the precise nature of the plant organs concerned. Since an ambiguity corresponds to a
situation where a dependent token has more than one head token, solving it results in
filtering out the less plausible dependencies in favor of the most plausible ones.

5.3. The semantic frame

We now prioritize the dependencies, gathering data from the text in order to extract
its meaning. We consider three steps, the first two of which are aimed at exploiting
the sequence of structures obtained from the previous lexical and syntactic analysis
stages, classifying any ambiguities according to their order of priority. The third one
determines the semantic information is involved in each link. These steps extrapolate
the estimations from a local level (sentence) to a global one (corpus) or, in other words,
initial data obtained at sentence level are combined and evaluated throughout the whole
corpus in order to extract new conclusions that can then be applied in each sentence,
the process recommencing iteratively. This is needed to extend some previous notation.

Definition 12. Let {s;}1<i<n be the sequence of sentences in a corpus € and ©;;, 1 <
J <| s;i | be the occurrence of a form in the i-th sentence, s;. We denote the association
of the lexical category (a) and semantic class (b) to this form, anywhere in €, by (:)f’jb
and we call it plausible term. We also naturally extend the anonymous-variable (resp.
free-variable) notation previously introduced for terms, tokens and clusters.

We also need some notation for managing head-dependent relationships at sentence
(resp. corpus) level. We have to refer to transitions between tokens (resp. plausible
tokens) that constitute the parser output and to the sets of transitions between tokens
from two different clusters (resp. plausible clusters). Finally, we have to deal with
transitions between terms (resp. plausible terms) for semantic categorization.

Definition 13. Let s;, 1 < i < n be the i-th sentence in a corpus ¢ and T be the
sequence of the grammar rules necessary to generate the token ®;; from the token

®; in the head-dependent graph. We denote the dependency between ©f and (%,

10



P, R - denticulées
- 2l - RN

Feuilles  ,-7--7a R nervures ~ N2/adj _
- =7 Ne/lexical

~_ N2/iidj_. SubS/subs ~ = =

S~ Bl

4]

: N2 /adj

1

2|: N
3,
4

2/adj N2/subs
: Ne/lexical
: N2/adj_SubS/subs

"""" = lexical ambiguity dependencies
— syntactical deterministic dependencies
——®» syntactical ambiguity dependencies
————— = head-dependent relationships

Figure 3: Head-dependent relationships

.

labeled by 1, as 66'?7’7’61;. The notation can be naturally extended to terms, clusters and
plausible structures, and we talk then about plausible dependencies.

5.3.1. Categorization of tokens

The goal is to compute which, for each cluster, is the most probable token. Namely,
we want to determine the category for each occurrence of a given form in a sentence.
The process corresponds to the equations in Table 1, which we comment on below:

(2). We start by calculating the local probability, at sentence level, that can be asso-
ciated to a token in a cluster. This is a ratio that depends on the number of tokens
involved in the said cluster. If there is only one, its probability is 1.

(3). This defines the global probability of a plausible token in the corpus, at iteration
n+1. Itis a proportion of the local probability associated with tokens of the same
category and form as those of the token in question, in relation to the probability
when the category is free.

(4). Tt determines the value of the local probability that can be associated with a token
in a cluster, at iteration n+ 1. In order to do so, we allocate the probabilities calcu-
lated globally, distributing them proportionally between the global probabilities
of the plausible tokens associated with the cluster.

The iterations continue until convergence at a fixed point, or until a fixed approximation
threshold vy, is achieved on local probabilities. Alternatively or simultaneously, we can
fix a maximum number of iterations ¢, to apply.

5.3.2. Categorization of dependencies between tokens

The objective is to measure the viability of the syntactic dependencies generated
by the parser between the previously categorized tokens. We once again opt for an
iterative strategy, here determined by the equations in Table 2, which we now describe:

(5). An initial weight is first associated to each syntactic dependency depending on
its label. We thereby seek to assign more importance to those shared by a greater
number of parses, amongst those sharing a single dependent cluster.

11
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Table 1: Model for categorization of tokens

(6). We calculate the local probabilities for the syntactic dependencies. Given that
these are characterized by their head and dependent tokens, and by their label, we
make these probabilities depend on the local ones of such tokens, as well as on
the weight assigned to the associated label. This is calculated as a proportion of
the above-mentioned values for the syntactic dependency in question, in relation
to the set of dependencies associated with the dependent token cluster.

(7). This defines the global probability of a plausible dependency at iteration n +
1. Tt is calculated as a proportion of the local one associated with syntactic
dependencies coinciding with the one under consideration (except in the locating
sentence), in relation to the set of local dependencies associated with dependent
tokens that also coincide with the one under consideration (except in the locating
cluster).

(8). This establishes the value of the local probability of a dependency in iteration
n + 1. To this end we allocate the probabilities calculated globally, distributing
them proportionally amongst the global probabilities of the plausible syntactic
dependencies associated with the dependent tokens coinciding with the one un-
der consideration (except in the locating cluster).

The process repeats itself until it converges at a fixed point, or until a fixed approxima-
tion threshold vy, is achieved on local probabilities. Also, alternatively or simultane-
ously, we can fix a maximum number of iterations ¢4, to apply.

5.3.3. Categorization of dependencies between terms

The goal is to attach the semantic classes to the tokens involved inone and the
same syntactic dependency, in order to identify the semantic ones between terms in
two clusters. Thus, given a dependent term, we seek to define its head by means of
the syntactic dependencies categorized previously. We first need to introduce some
notation.

Definition 14. Let s;, 1 < i < n be the i-th sentence in a corpus ¢, and 7 (resp. F)
be the set of semantic classes (resp. forms) associated to € (resp. to 7 ) by means

12



* a,. T b,
S 5 0% = 0l

0 b
W(6®i./”‘r’®i\k) = . P )
> Is= ek ek
i of
o b, 0, 7,0%
0% 1,0 P(®?,j)local . P(Gi,k)local - W(o i )
P(6 LTk )local(O) = Y 7 ' .T.0% (6)
Z P(®[,}})Iocal : P(®[,}{_)Iocal ' W(6 e i'k)
05077 0%l
@ﬂ,_Y ,@b"
P57 Yocal(n)
&% .00 0,,=0;,;,0,,=0;k
P(574 " ) global(n 1) = 0. T.0% @
Z P((S Lxee ["’)local(n)
Yo o2
ST 01)=0us
0% 1,00
0% 7.0 P(67 "7 )global(nt1)
P(6 i Tk )local(n+1) = (8)

oL 167
Z P61 ) g1 0baln 1)
(C]

Yo 572
- 7.6%
6 LXTTLm @), =0y

Table 2: Model for categorization of dependencies between tokens

of some reliable technique. We then denote by .% (b) the subset of forms associated to
b € .7, and we say that ®j”’j’, 1 < j<l|s;lisastableterm iff b € T and ©;; € F(b).

[ Entities || Lemmas (in French) |
organ fleur, staminode, tige, feuille, hypanthe, périanthe, rameau, ...
fruit fruit, samare, drupe, capsule, akene, ...

Properties || Lemmas (in French) |

color verdatre, violacé, noiratre, violet, jaunatre, orange, roux, rose, ...
form obconique, oblancéolé, oblong, bifolié, crateriforme, punctiforme, ...
size moyen, petit, double, épais, inégal, entier, longue, ...

texture hispide, bifide, globuleux, coriace, velutineux, gélatineux, barbu, ...
position antérieur, dessus, voisin, seul, latéral, transversal, ...

Table 3: The set .7 of initial semantic classes (types) for the corpus %

Intuitively, a term is stable when we have reliable information about the correspon-
dence between its semantic class and its form, obtained either from the user or by
means of a method held to be completely trustworthy. Our proposal contemplates the
use of both mechanisms. On the one hand, the user defines the set of semantic cate-
gories that in our running corpus % are organized as entities (&£’) and properties (£),
together with a set of initial associated forms such as the one shown in Table 3. On the
other, the system makes use of collocations, sequences of words that co-occur more
often than would be expected by chance and in which they keep their original meaning,

13



in contrast to the case of locutions. The idea is to filter out the parse in order to locate
collocations that enable a form to be associated with a semantic class.

[ Word (in French) | Position | Class [[[| Word (in French) | Position | Class |
teinté [2] color épaisseur [1] size
texture [2] texture atteindre [1] organ/fruit

Table 4: A sample section from the collocations file for corpus %

We represent a collocation as a triple of the form marker-position-semantic class.
The marker serves to identify the collocation for which the form in the indicated po-
sition is associated with the class, as shown in Table 4 for the corpus 4. So, in the
sentence “feintées de rose” ("rose-tinted"), the presence of the marker feinté”
("tinted") reveals that “rose” ("rose") is an instance of the class "color". The
process thus corresponds to the equations in Table 5, which we now describe:

).

(10).

(11).

(12).

(13).

Before commencing, we give each token a weight verifying the condition pre-
sented, the value of which we justify below.

We distribute the weight calculated from Equation 9 evenly between the stable
terms. So, the weight we associate with non-stable terms in this token is lower
than that associated with the former, giving initial preference to the stable terms.
Iterations commence with the calculation of the local probabilities for semantic
dependencies. Since the latter are characterized by their head and dependent
terms, together with the syntactic dependency between their associated tokens,
we make this value depend on the weights associated with the said terms, as
well as on the local probability corresponding to the syntactic dependency. This
is calculated as a proportion of the said values for the semantic dependency in
question, in relation to the set of dependencies associated with the dependent
term cluster.

We define the global probability of a plausible semantic dependency at iteration
n + 1. It is calculated as a proportion of the local probability associated with the
semantic dependencies that coincide with the one under consideration (except in
the locating sentence), in relation to the set of the local ones associated with the
dependent terms that also coincide with the one under consideration (except in
the locating cluster).

This establishes the value of the local probability to be associated with a seman-
tic dependency at iteration n + 1. We allocate the globally calculated probabil-
ities, distributing them proportionally between the global ones of the plausible
semantic dependencies associated with dependent terms that coincide with the
one under consideration (except in the locating cluster).

The process repeats itself until it converges at a fixed point, or until a fixed approxima-
tion threshold v, is achieved on local probabilities. Also, alternatively or simultane-
ously, we can fix a maximum number of iterations ¢4, to apply. We call the resulting
structure the semantic of the corpus € we are working with.

14
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Table 5: Model for categorization of dependencies between terms

Definition 15. Let {s;}1<;<, be the sequence of sentences in a corpus ¢, and 7 (resp.
F ) be the set of semantic classes (resp. forms) associated to € (resp. to T ) by means
of some reliable technique. We then define the semantic of the corpus ¢ as:

o (590 O o’ 1,05 o .ze
y%” ={0"w i, P67 local = max{P(6 "/ i )Zocal}} (]4)
. . . oY ze%W .
where max is the maximal function on N, and ¢ *"ix are the dependencies com-

puted as result of the process previously described. We can restrict the concept to refer
the semantic of a document & (resp. of a sentence s;) in ¢ by

2 = (%O € S, si€ DY (resp. by ST = (%0 € #7)) (15)

The semantic of a text is the set of most probable dependencies between its terms,
serving as basis for the knowledge representation. We illustrate in Fig. 4, the result of
the process for the graph in Fig. 3, which highlights the simplifications made.

5.4. Knowledge representation

We use sG as semantic frame so, although the proposal is independent of the domain
knowledge, we need to locate the work in a specific one, in order to suitably model the
support. As the choice fell upon the corpus 2, we retake the set .7 of semantic classes
(types) shown in Table 3, in order to introduce a partial order on it as follows:

Yt € & = {fruit, organe}, t<e<T (16)

15



- s nc,ORGAN adj. FORM
e RN 59104.1 1001614

Feuilles - nervures - denticulées
/ N

uwiadj

gna.OR(;AN 971(‘.()RGAN gad],FORJ[
104,1 104,3 104.4

—-—-# head-dependent relationships with semantical classes

Figure 4: The semantic of a sentence

Y t € & ={couleur, forme, taille, texture, position}, t <p < T (17)

where ¢ (resp. p) is the greater element for the entities (resp. properties) & (resp. ).
In this way, we introduce our running support Sz = (7 ¢ .2, Tr%, L %) by defining:

Tey =le.pUEU P U{T) (18)

T = {1b,1.d), b, 5,d], 36%77% € F5)Ulle, % £lUle, =, p1UlIp,  pIVILT, %, TI} (19)
Ty = {@Z’j', GE;}()-G?'/T"'@;I (20)

The relations in 7, summarize transitions between two terms from the point of view
of the semantic classes (types) involved. We also add triples representing any transition
between the semantically related generic concepts. The partial order in 7¢,, and T,
is induced by the one defined in .7, and the markers 7 4 are defined as the set of
forms in 4. In this context, we introduce sG on this support from the semantic .

m

associated with each of the M documents in the corpus % = U D, as follows:

meM
Ca, =07 O} oot oy . R, = Ib,7,d], A% e .7, ) (21)
&= | bndl 1,0, (b, 7.d1,2,00)) (22)

b _oed
ol e
& iJ ik ey%”

(5,071 ifX=0!cCy, 1 ifX=(1,)€8y
o o i} €Ca, )
Lo () { X X € R, 2 ifX=(20e8s )

Succintly, a conceptual node in Cg,, is any term involved in the semantic ., , while
relation nodes in Ry, are elements of 7g,, associated to transitions in .#z,. The
multiset of edges &g, contains only binary relations, the head (resp. dependent) term
corresponding to the first (resp. second) triple. With regard to Lg,, this makes it
possible to recover the class and the token associated to a given term representing a
concept, whilst implementing the identity on the relations, since in our case we build

these directly from .#,. Its value on edges identifies head (1) and dependent edges
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(2). We define the compatibility for nodes (#,7') € (C X (T¢ X (Z U {x}))) U(RX Tg) as
follows:

compatible(z, ') = true :& type(t) = type(t') (24)

In order to cushion this notational load, we introduce a simplified representation

for sc. Given a dependency 69%’“@;‘?: involving the head (resp. the dependent) concept

@Z’/b (resp. @Zf), arelation [b, 7, d] and the corresponding edge ([b, 7,d], 1, @Z’;’) (resp.

([b, 7, d], 2, @E’f)), it is summarized in the graph shown in Fig. 5. As example, Fig. 6
shows the sG for the sentence whose semantic is described in Fig 4. To facilitate better
global understanding we do not make the indexes corresponding to either the number
of the sentence in the text or the position of the form in that sentence explicit.

ORGAN, nervurs onGAN, Fuies -

Figure 6: The sG of a sentence

[ORGAN,[2] 2,0RGAN| [ORGAN,[1] FORM]

6. The testing frame

In order to estimate the impact of our KE proposal as support for kb, our choice of
testing frame fell on the R one. We avoid some strategies in semantic indexing be-
cause we want to isolate the effects of our work in relation to the Bow models we use
as baseline. So, we leave aside the consideration of external ontologies, often used to
incorporate semantic relations through query expansion or term/relation compatibility,
as well as the analysis of co-reference by anaphora. Our aim is to follow the guide-
lines outlined by TREc benchmarking exercises (http://trec.nist.gov/), which
have standardized the use of query relevance judgments (QrReL), as the heart of such a
challenge. We then need a document collection, a set of topics and a set of trustworthy
evaluation measures.

6.1. Selecting the evaluation metrics

We consider two groups of metrics: set and rank-based ones. In the former case,
evaluation focuses on the relevant or non-relevant character of the documents retrieved,
including precision and recall, as well as F and fall-out measures. These latter allow us
to estimate the harmonic mean of precision and recall and to take into account the pro-
portion of non-relevant documents retrieved, respectively. The second purpose takes
into account the order in which the returned documents are presented. We here con-
sider a wide range of metrics, starting with precision (resp. recall) at k documents
(P@k) (resp. R@k), which permits us to compute these parameters even when we are
only interested in fixed low levels of retrieved results as it is typically the case (Granka
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