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Abstract

A robust parser for context-free grammars, based on a dynamic programming
architecture, is described. We integrate a regional error repair algorithm and a
strategy to deal with incomplete sentences including unknown parts of unknown
length. Experimental tests prove the validity of the approach, illustrating the
perspectives for its application in real systems over a variety of different situations,
as well as the causes underlying the computational behavior observed.
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1 Introduction

An ongoing question in the design of parsers is how to gain efficiency in dealing
with unexpected input, and to do so without either over-generating or under-
generating. This supposes the capacity to deal with gaps, incorrectness and
noise contained in the input, which are often the consequence of external
deterioration due to transcription errors and human performance deviations,
typically in natural language processing, speech recognition or even traditional
programming tasks. At this point, robustness should be conceived as the
ability to handle non-standard input, and to interpret it in order to generate
a plausible interpretation.
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Our goal is syntactic, and no attention is devoted to ill-formed lexicons or
semantic correction, focusing instead on enhancing robustness with respect to
parse errors, incompleteness or deviations from standard language. To comply
with these requests, we integrate an error repair algorithm [1] and a strategy to
deal with incomplete sentences in a parser for context-free grammars (CFG’s).
We also provide a dynamic programming approach which allows us both to
save in computational efficiency and to simplify the formal definition.

2 The standard parser

We parse a sentence w;. , = w;...w, according to an unrestricted CFG
G = (N,X,P,S), where N is the set of non-terminals, ¥ the set of terminal
symbols, P the rules and S the start symbol. The empty string is represented
by €. We generate from G a push-down transducer (PDA) for the language
L(G). Although any shift-reduce strategy is adequate, we choose an LALR(1)
device provided by ICE! [2], a generation environment for incremental parsers
on CFG’s. A PDA is a 7-tuple A = (Q,%, A, 6, g, Zy, Qs) where Q is the set
of states, X the set of input symbols, A the set of stack symbols, ¢y the initial
state, Zj the initial stack symbol, Q the set of final states, and § a finite set of
transitions d(p, X,a) 3 (¢,Y) with p,g € Q,a € Y U{e} and X,Y € AU {e}.
Let A be in a configuration (p, X, az), where p is the current state, X « is the
stack contents with X on the top and o € (X U N)*, and ax is the remaining
input where the symbol a is the next to be shifted, x € ¥*. The application
of 6(p, X,a) 3 (¢,Y) results in a configuration (¢,Y«,z) where a has been
scanned, X has been popped, and Y has been pushed.

To get polynomial complexity, we avoid duplicating stack contents when
ambiguity arises. Instead of storing all the information about a configuration,
we determine the information we need to trace in order to retrieve it. This
information is stored in a table Z of items, T = {[q,X,4,j], ¢ € Q, X €
{e} U{V,s}, 0 < i < j}; where ¢ is the current state, X is the top of the
stack, and the positions 7 and j indicate the substring w;;; ... w; spanned by
the last terminal shifted to the stack or by the last production reduced. The
symbol V, ; indicates that the part A, ;41 ... A, ,, ofarule A, g = A, 1... A,
has been recognized.

We describe the parser using parsing schemata [3]; a triple (Z,H, D), with
Z the table of items previously defined, H = {[a,i,i + 1], ¢ = w;;1} an
initial set of triples called hypotheses that encodes the sentence to be parsed?,

! For Incremental Context-free Environment.
2 The empty string, €, is represented by the empty set of hypotheses, §. An input
string wi. p, n > 1 is represented by {[w1,0,1], [we,1,2], ..., [wp,n —1,n]}.



and D a set of deduction steps that allow new items to be derived from
already known ones. Deduction steps are of the form {ny,...,n F & /conds},
meaning that if all antecedents n; € Z are present and the conditions conds
are satisfied, then the consequent £ € 7 should be generated. In the case of
Ice, D = DMt y PShift |y pSel y PRed | pHead | ywhere:

. . N 3(a,j,j+1] €H
DSt = {[g,¢,1, 4] F[q’,e,J,JH]/ (@, +1]

shift, € action(q, a)

N N Ia,j,j +1] €H
D5 = {[q,€,%,5] F [4, Vs 45 7] /

reduce, € action(q, a)
DRed — {[q, V'r,s; kaj][qa €, 1, k] F [qla V’r,sfla 17.7] /q, € reveal(q) }
D = {t[go,6,0,0]} D" ={[g,Vrp,i,j] F [¢',e,4,4] /¢ € goto(q, Arp) }

with gy € O the initial state, and action and goto entries in the PDA tables.
We say that ¢' € reveal(q) iff 3Y € N UX such that shift, € action(q',Y’) or
q € goto(q',Y), that is, when there exists a transition from ¢’ to ¢ in .A. This
set is equivalent to the dynamic interpretation of non-deterministic PDA’s:

A deduction step Init is in charge of starting the parsing process.

A deduction step Shift corresponds to pushing a terminal a onto the top of

the stack when the action to be performed is a shift to state ¢'.

e A step Sel corresponds to pushing the V, ,, symbol onto the top of the stack
in order to start the reduction of a rule r.

e The reduction of a rule of length n, > 0 is performed by a set of n, steps Red,
each of them corresponding to a pop transition replacing the two elements
V,.s Xrs placed on the top of the stack by the element V, ;_;.

e The reduction of a rule r is finished by a step Head corresponding to a swap

transition that recognizes the top element V,  as equivalent to the left-hand

side A, of that rule, and performs the corresponding change of state.

These steps are applied until no further items can be generated. The splitting
of reductions into a set of Red steps allows us to share computations, attaining
a worst case time (resp. space) complexity O(n?) (resp. O(n?)) with respect
to the length n of the sentence [2]. The input is recognized iff the final item
97, Vop,0,n+1], g5 € Qy, is generated.

3 The error repair strategy

Our next step is to extend the standard parser with an error repair strategy.
Given that we choose to work using the technique and terminology described



in [1], we limit our description to the essential concepts.
3.1 The framework

Following Mauney and Fischer in [4], we talk about the error in the input to
mean the difference between what was intended and what actually appears.
We talk about the point of error as the point at which the difference occurs.

Definition 1 Let wy , be an input string, we say that w; is a point of error

In order to locate the origin of the error at minimal cost, we limit the impact
on the parse, focusing on the context of subtrees close to the point of error.

Definition 2 Let w; be a point of error for the input string wy._,, we define
the set of points of detection associated to w;, as follows:

detection(w;) = {wy /3A € N, A > wyow;}
and we say that A =N wyaw; is a derivation defining wy € detection(w;).

The error is located in the left parse context, represented by the closest viable
node, or in the right context, represented by the lookahead. Sometimes it can
also be useful to isolate the parse branch in which the error appears.

Definition 3 Let w; be a point of error for wi_,, we say that [p, X, Sy, S¥]
is an error item iff 3 a, 6(p,e,a) # 0. We say that [p,e,S¥, S¥] is a detection
item associated to w; iff 3 a, 6(p, A,a) # 0, and A defining w;, such that:

d(qi,e,wy) 3 (g1, Ba), d(q1, B2, wyr) 2 (g2,¢€)

‘5(Qn—1a5awi’) =] (Qn—laBn)a 5(Qn—1>Bn>wi’) =/ (Qnag)
d(gn, &, wir) 3 (gn,wy), B; X e, Vi € [1,n]

The condition for error items implies that no scan action is possible for w;.
In the detection case, we disregard empty reductions which are not relevant
here.

Definition 4 A modification M to a string of length n, w1, = wy ... Wy, 1S a
series of edit operations, E; ... E,E,.1, in which each E; is applied to w; and
possibly consists of a series of insertions before w;, replacements or deletion
of w;. The string resulting from the application of M to w is written M (w).



We now restrict the modifications to focus on substrings, introducing the
concept of error repair. We look for conditions that guarantee the ability to
recover the parse from the error, while at the same time allowing us to isolate
repair branches by using the concept of reduction. We are also interested in
minimizing the impact in the parse tree, and finally in introducing the notion of
scope as the lowest reduction summarizing the process at a point of detection.

Definition 5 Let x be a prefix in L(G), and w € ¥*, zw is not a prefiz. We
define a repair of w following z as M(w), so that JA € N wverifying:

(1) S z11AS 2z mMw), i <m  (3) AS yCp, VC = ;. M (w)
(2) B3 aAB, VB = o) mM(w), j <

We denote the set of repairs of w following z by repair(z,w), and A by
scope(M), but this notion is not yet sufficient for our purposes. Our aim is
to extend the repair to consider all points of detection associated to a given
error, which implies considering different prefixes and repair zones.

Definition 6 Let e € X be a point of error, we define the set of repairs
for e, as repair(e) = {xM(w;. ) € repair(z,w; ,)/wi € detection(e)}, where
detection(e) denotes the set of points of detection associated to e.

We now need a mechanism to filter out undesirable repairs. To do so, we
introduce criteria to only select those repairs with minimal cost.

Definition 7 Let I(a), D(a), and R(a) be positive insert, delete and
replace costs for a € X. The cost of a modification M (w; ,) is given by
cost(M(wy.n)) = Zjesl(a;) + Xy (Zjesl(a;)) + D(w;) + R(w;), where
{a;, j € Ji} is the set of insertions applied before w;; and - the end of file.

When several repairs are available on different points of detection, we need a
condition to ensure that only those with minimal cost are considered.

Definition 8 Let e € X be a point of error, we define the set of regional
repairs for e, as follows:

cost(M) < cost(M'), VM' € repair(z,w
regional(e) = {xM(w) € repair(e) / (M) < cost(M') pair(z, w)

COSt(M) = minLETepair(e) {COSt(L) }

It is also necessary to take into account the possibility of cascaded errors, that
is, errors precipitated by a previous repair diagnosis. Prior to dealing with the
problem, we need to establish the existing relationship between the regional
repairs for a given point of error, and future points of error.



Definition 9 Let w;, w; be points of error in an input string w..,, such that
J > 1. We define the set of viable repairs for w; in wj, as follows:

viable(w;, w;) = {xM(y) € regional(w;)/xzM((y) ... w; prefiz for L(G)}

The repairs in wiable(w;, w;) are the only ones capable of ensuring the
continuity of the parse in w;_; and, therefore, the only possible repairs at
the origin of the phenomenon of cascaded errors.

Definition 10 Let w; be a point of error for the input string ws.,, we say
that a point of error w;, j > 4 4s a point of error precipitated by w; iff
VoM (y) € viable(w;,w;), 3A € N defining wy € detection(w;) such that
A 2 Bscope(M) . ..w,.

A point of error w; is precipitated by the result of previous repairs on a point
of error w;, when all reductions defining points of detection for w; summarize
some viable repair for w; in w;.

3.2 The parsing scheme

To begin with, we assume that we are dealing with the first error detected.
We extend the initial structure of items, as a quadruple [p, X, i, j], with an
error counter e; resulting in a new structure of the form [p, X, 1, j, e]. Once
the point of error w; has been fixed, we can associate to it different points of
detection wy,, ... wy,. So, for each error item, defined from the fact that no
action is possible from it when the lookahead is w;, we investigate the list of
its associated detection items; that is, those items representing the recognition
of a terminal in the input string where we effectively locate the error. These
detection items are located by using the back pointer, which indicates the input
position where the last PDA action was applied. In practice, we recursively go
back into its ancestors until we find the first descendant of the last node that
would have had to be reduced if the lookahead had been correct. Once the
detection items have been fixed, we apply the following steps:

. . . Ja,5,j+1] eH
Deount = {[9,€,%,4,0] = [d',¢,5,5 + 1,0] / : ,
shift, € action(q,a)

Dlsert = {[q,¢,4,5,0] & [q,,4,5,1(a)] / shifty € action(g,a)}
DRt = {[g,¢,4,5,0] & [g,€,5,5 + 1,D(w;)] / 3[a, 5,5 + 1] € H}
3[b, 5,5 +1] €H

Dg‘f‘g%‘ace = {[q’ 67i’j’ O] I_ [Q’ 67 ]’j + 1’R(a)] /
Ishift, € action(q,a), b# a



This process continues until a repair applies a reduction verifying definition 5
covering both error and detection items and accepting a token in the remaining
input string, as is shown in the left-hand-side of Fig. 1, where [wmn ,w;n,]
delimits the scope of a repair detected at the point wy, € detection(w;). Once
we have applied the previous methodology to each detection item considered,
we take only those repairs with regional lowest cost, applying definition 8. At
this moment the parse goes back to standard mode. Error counters are added
at the time of reductions, even when error mode is finished:

a,j,j+1]eH
Dcsgl}mt {[qagaZaJa ]F[qa rn,aj,]ae]/

reduce, € action(q, a)
D(}Z%)fildnt = {[q7 V’I‘ S9 k)j’ e] [qla &, i; k? el] l_ [q” V""s_l’ Ii’j’ e+ el] /ql € 7‘€U€(ll(Q) }

Deint = {16, Vo, i, €] F [¢' 6,3, 4, €] /¢ € goto(g, Arg) }

We apply a principle of optimization, saving only those items with minimal
counters for computation purposes.

When the current repair is not the first one, it can modify a previous repair in
order to avoid cascaded repairs by adding the cost of the new error hypotheses,
in order to profit from the experience gained from previous ones. This arises
when we realize that we come back to a detection item for which any parse
branch includes a previous repair process. This process is illustrated in Fig. 1
for a point of error w; precipitated by w;, showing how the variable Aj.
defining w; summarizes A;», , the scope of a previous repair defined by Ay, .

Apy =laip Ay izs e

Wi Wi wj Wi
1 1 1

Fig. 1. Dealing with precipitated errors

Regional repairs have two properties. First, they are independent of the shift-
reduce parser used. The second one is a consequence of the lemma below.

Lemma 11 (The Ezpansion Lemma) Let w;, w; be points of error in w;_, €
¥, such that w; s precipitated by w;, then

min{j' Jw; € detection(w;)} < min{i'/wy = y1, xM(y) € viable(w;, w;)}

PROOF.



Let wy € ¥, such that wy = y1, 2 M (y) € viable(w;, w;) be a point of detection
for w;, for which some parsing branch derived from a repair in regional(w;)
has successfully arrived at w;.

Let w; be a point of error precipitated by zM(y) € wviable(w;, w;). By
definition, we can assure that

B € N/B = wjraw, = Bscope(M) ... w; = Brr.mM(y) ... w;, wy =y
Given that scope(M) is the lowest variable summarizing w;, it immediately

follows that j' < 4/, and we conclude the proof by extending the proof to all
repairs in viable(w;, w;). O

Corollary 12 Let w;, w; be points of error in wy., € X*, such that w; s
precipitated by w;, then

maz{scope(M), M € viable(w;,w;)} C maz{scope(M), M € regional(w;)}

PROOF.

It immediately follows from lemma 11. O

This allows us to get an asymptotic behavior close to global repair methods.
This property has profound implications for the efficiency, as measured by
time and space taken, the simplicity and the power of computing regional
repairs.

Lemma 13 Let wy. , be an input string with a point of error in w;, i € [1,n],
then the time and space bounds for the regional repair algorithm are O(n?)
and O(n?), in the worst case, respectively.

PROOF.

It immediately follows from the previous corollary 12. O
3.8 Previous works

Error repair methods can be classified into local, global and regional strategies.
Local repair algorithms [5,6] make modifications to the input so that at least
one more original input symbol can be accepted by the parser. There are cases,
however, in which their simplicity causes them to choose a poor repair.



Global algorithms [7] examine the entire program and make a minimum of
changes to repair all the errors. Global methods give the best repairs possible,
but they are not efficient. Since they expend equal effort on all parts of the
program, including areas that contain no errors, much of that effort is wasted.
Finally, the main problem to be dealt with in regional approaches [4] is how
to determine the extent of the repair in order to avoid cascaded errors.

In between the local and global methods, regional repair algorithms fix a
portion of the program including the error and as many additional symbols as
needed to assure a good repair. Our proposal is a least-cost regional strategy,
asymptotically equivalent to global repair ones. That is, in the worst case,
space and time complexity are the same as those attained for global repairs
and, in the best case, are the same as for local ones. The repair quality is
equivalent to global approaches. Compared to other regional algorithms [4], we
provide a least-cost dynamic estimation of this region, which is an advantage
in the design of interactive tools, where efficiency is a priority challenge.

4 Parsing incomplete sentences

In order to handle incomplete sentences, we introduce two symbols, “?” stands
for one unknown word, and “x” stands for an unknown sequence of words.

4.1 The framework

The problem can be stated in similar terms to error repair, with some
restrictions: points of detection are reduced to the point of error, modifications
are insertions and no variable defines the scope of the repair. Here, the stop of
the parser can only be caused by the presence of unknown words, not by the
inclusion of errors in the portion of input already parsed. It is therefore more
appropriate to talk about point of stop associated to an unknown symbol.

Definition 14 Let w, , be an incomplete sentence, we say that w; is a point
of stop iff w; =? or w; =

On the other hand, the parse may not only be completed from insertions, but
it must be recovered using exclusively this kind of hypotheses. Finally, the
parser must not continue to introduce insertions once the process is able to
connect with the right context. Otherwise, we would be altering the original
input, which is in contradiction with the initial hypothesis of correctness. So,
the consideration of the scope of a modification here cannot be the same as
in error repair, defined in the latter case in terms of grammatical reductions.



Definition 15 Let w; , be an incomplete sentence in L(G), and w; a point
of stop. We define a recovery of w in the position i as a modification M (w;)
given by a sequence of insertions before w; followed by the deletion of w;, so
that S = W1, -1 W; =N wy, i1 M (w;)a. We denote the set of recoveries of w
in the position i by recovery(w, i), and M (w;) by scope(M).

To filter out undesirable parses in order to reduce the complexity, we re-take
the insertion costs, I(a), a € ¥; selecting only those recoveries with minimal
cost. So, the cost of a modification in a recovery process will here be given by
cost(M (w;)) = X1 (2,es,1(a;)) + D(w;), where in this case D(w;) = 0.

When several recoveries are available, we need a condition to ensure that only
those with the same minimal cost are considered.

Definition 16 Let wi. , be an incomplete sentence, and let w; be a point of
stop in w, we define the set of completions for w in 7, as follows:

completions(w;) = {M € recovery(w;)/cost(M) < cost(M'), VM' € recovery(w;)}

In contrast to error repair, it is not now possible to consider the overlapping of
recovery processes corresponding to different points of stop in an incomplete
sentence. Thus, it makes no sense to talk about precipitated recoveries.

4.2 The parsing scheme

Once the parser detects that the next input symbol is a point of stop, we apply
the set of rules D, ompietes Which includes the following two sets of deduction
steps, as well as DSht previously defined:

coun

37,4, +1 €H
Diomptete = 46,3, F ¢, €,5,5 +1] / shift, € action(q,a) }
acX
I[x,5,7i+1 eH
Dﬁ%ﬁ;ﬁfﬁ = {lg,&,%,5] - [d's €, 5, 7] shift, € action(q, X) }
XeNuX

. o . . . Shift . . o, .
From an intuitive point of view, Dj. e applies any shift transition

independently of the current lookahead available, provided that this transition
is applicable with respect to the PDA configuration and that the next input

. . Loop_shift - . .
symbol is an unknown token. In relation to Djyoookie, it applies to items

10



corresponding to PDA configurations for which the next input symbol denotes
an unknown sequence of tokens, any valid shift action on terminals or variables.
Given that in this latter case new items are created in the same starting
itemset, shift transitions may be applied any number of times to the same
computation thread, without scanning the input string.

All deduction steps are applied until every parse branch links up to the
right-context by using a shift action, resuming the standard parse mode and
defining a recovery for the current point of stop. In this process, when we deal
with sequences of unknown tokens, we can generate nodes deriving only “x”
symbols. This over-generation is of no interest in most practical applications

and introduces additional computational work.

We are interested in generating completions rather than simple recoveries. Our
aim is to replace those variables with the unknown subsequence terminal, “x”.
To solve this problem, we re-take the counters introduced in error mode, in
order to tabulate the number of categories used to rebuild the noisy sentence.
The final goal is to select an optimal reconstruction. Therefore, it makes no
sense to differentiate between counter contributions due to the application of
one or another parsing mechanism. When several items representing the same
node are generated, only those with minimal counter are saved. Formally, we
redefine the set of deduction steps as follows:

35,5 +1eH
Ditoraplete = 1,64, 4, ¢ F[ds6,4,5 + Lie +1(a)] / shift, € action(q,a) }
a€EX
J[*,4,7+1eH
Loop_shift

Dincomplete = {[Qagai’ja 6] F [qlagaj’ja e+ I(X)] Shi‘ﬁql € action(q,X) }
XeNUX

where I(X) is the insertion cost for X € NUX, and we maintain the definition

domain previously considered for DRed. D5l - and DHead The incomplete

sentence is recognized iff [¢r, Voo, 0,n 4+ 1,¢€], ¢f € Qy, is generated.
Lemma 17 Let wy., be an incomplete sentence with a point of stop in

w;, i € [1,n], then the time and space bounds for the completion algorithm
are O(n?) and O(n?), in the worst case, respectively.

PROOF.

It follows from the complexity of the standard parse scheme. O

11



4.3 Previous works

Previous proposals, such as Tomita et al. [8] and Lang [9], also apply dynamic
programming, although the approach is different in each case. Lang introduces
items as fragments of the PDA computations that are independent of the initial
content of the stack, except for its two top elements. This relies on the concept
of dynamic frame for cFG’s [2] and, in particular, to the dynamic frame S2.
Tomita et al. use a shared-graph based structure to represent the stack forest.
We work in a dynamic frame S', which means that items only represent the
top of the stack. This results in improved sharing for both syntactic structures
and computations.

In relation to the parsing scheme, Lang separates the execution strategy from
the implementation of the interpreter, while Tomita et al.’s work can be
interpreted simply as a specification of Lang’s for LR(0) PDA’s. We consider
a LALR(1) scheme, which facilitates lookahead computation, whilst the state
splitting phenomenon remains reasonable. This enables us to achieve high
levels of sharing and efficiency as well as to increase the deterministic domain.

Neither Lang nor Tomita et al. avoid over-generation in nodes deriving only
“x” symbols. Only Lang includes an additional phase to eliminate these nodes
from the output parse shared forest. We solve both the consideration of an
extra simplification phase and the over-generation on unknown sequences by
considering the same principle of optimization applied on error counters.

5 The robust parser

In order to favor understanding, we differentiate two kinds of parse steps. We
talk about extensional steps when they include conditions over shift actions in
standard parsing mode, and we talk about intensional steps in any other case,
i.e. when they are related to reduce actions in the kernel. Whichever is the
case, the robust mode must guarantee the capacity to recover the parser from
any unexpected situation derived from either gaps in the scanner or errors.
To deal with this, it is sufficient to combine the deduction steps previously
introduced. More exactly, we have that the extensional steps are defined by:
DInit U DShift U Dlnsert U DDelete U DReplace U DShift U DLoop_shift

count error error error incomplete incomplete

and the intensional ones by DRed (D3l |y pliead

count count count

where there is no overlapping between the deduction subsets. In effect, in
relation to the extensional case, no collision is possible because the steps

12



in question are distinguished by conditions over the lookahead. For the
intensional case, the steps remain invariable from the beginning, when we
defined the standard parser. The ill-formed input string is recognized iff the
final item [gf, Vo,0,0,n + 1,€], ¢f € Qy, is generated.

Lemma 18 Let wy., be an incomplete sentence, then the time and space
bounds for the robust parsing algorithm are O(n®) and O(n?), in the worst
case, respectively.

PROOF.

It follows from lemmas 13 and 17. O

6 Experimental results

We consider the language, £, of arithmetic expressions to illustrate our
discussion, comparing the standard parsing on ICE [2], with the consideration
of full robust parsing. We introduce two grammars, G;, and Gg:

gLZ E—)E+T|T gRZ E—)T+E|T
T — (E) | number T — (E) | number

to generate the running language, £. As a consequence, parses are built from
the left-associative (resp. right-associative) interpretation for Gy (resp. Gr),
which allows us to estimate the impact of traversal orientation in the parse
process. Our goal now is essentially descriptive, in order to illustrate the
recovery mechanism and its behavior in a variety of situations. In this context,
our example combines structural simplicity and topological complexity in a
language which is universally known. In the same sense, larger languages do
not provide extra criteria to be considered.

350

ill-formed string, G_R case —— ‘ " ill-formed siring, é_R case ——
ill-formed string, G_L case - 2500 ill-formed string, G_L case - 1
300 grammatical string, either case —x— grammatical string, either case -
o 250 | w2000 |
£ £
£ £
5 207 5 1500 |
£ 150 ¢ 3
= e 5 1000
Z 100 z
50 T 500
0 0 : X : f ; d ;
6 7 8 9 0 11 12 13 14
Value of | Value of |

Fig. 2. Items generated for unknown and error correction examples
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In this sense, we shall consider four different patterns to model ill-formed input
strings. The first, that we shall call error-correction, is of the form

bi+...+bi—1+ (b +...+
(brn/3) + bpn/31410n/3142 + - - - + beberr +bero + -+ by
The second, that we shall call unknown, is of the form
bi+...+bi—1+ (b +...+
(b[n/g} + b[n/3]+1 * -I-b[n/3}+3 k+...+bgx+bpio+ ...+ by
The third pattern, that we shall call total overlapping, is of the form
bi+...+bi—1+ (b +...+

(bpny3) + *bn/31+10m/3142 + - - + *beber1 +bea + .. + by

The last pattern, that we shall call partial overlapping, is of the form

bi+...4+b_1+ (bi + ...+ (b[n/g] + b[n/3]+1b[n/3]+2 + ...+ bpbpr1 x by ... x by

where ¢ € {[n/3],...,1} and £ = 3[n/3] — 2i + 1, with [n/3] being the integer
part of n/3.

3000 | ‘ "ill-formed string, G_R case —— | 2500 ‘ "ill-formed string, G_R case —— 1
ill-formed string, G_L case - ill-formed string, G_L case -
gramatical string, either case - grammatical string, either case -
2500 + 3 2000 +
g g
& 2000 3
= = 1500 r
o o
o 1500 [}
e} Q
€ € 1000 r
2 1000 | Z -
500 | 500 ¥
0 i * I * I * I 0 n T n T n T I
6 7 8 9 10 11 12 13 14 6 7 8 9 10 11 12 13 14
Value of | Value of |

Fig. 3. Items generated for total and partial overlapping examples

These examples seek to illustrate the variety of situations to be dealt with
in robust parsing. The unknown example only requires the treatment of
unknown sequences, while the error-correction example only applies the error
repair strategy. The total overlapping example forces the system to apply
both unknown sequences recognition and error repair, although only the
error recovery mechanisms are finally taken into account. Finally, the partial
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overlapping example also combines the recognition of unknown sequences and
error repair, but in this case both strategies have an active role.

In the case of unknown pattern, the set of minimal cost robust parse process
includes the sentences obtained by inserting closed brackets in the positions
indicated by the unknown sequence. In other patterns, the set of minimal cost
robust parse process is formed by the sentences obtained by replacing tokens
bin/3+2c With k € {1,...,[n/3] —i+ 1} by closed brackets. As a consequence,
one minimal cost parse alternative is given by “by + ... + b1 + (b; + ... +
(bpny3) + bny3+1) + - - - +bg) + bepo 4. ..+ b,”; whose parse cost we shall use as
reference to illustrate the practical complexity of our proposal in these tests.

points of detection, G, case ----- points of detection, G case - - - scope of T>(E), either case ——

by + ... b9 + b1 + (b, + ---(b[n/S]—l + (b[n/g} + b)) ) + b[n/3]+1 b[n/3}+2 + ...

Fig. 4. Error detection points for total overlapping example

The results for the unknown and error-correction examples are shown in Fig. 2,
in the left and the right-hand-side of the figure respectively. In the case of total
and partial overlapping examples, the tests are shown in the left and the right-
hand-side of Fig. 3. The results are provided for G;, and Gg, with the number
of items generated being taken as a reference for appreciating the efficiency,
rather than temporal criteria, which are more dependent on implementation.
These items are measured in relation to the position, £, of the addend “b,” in
the input, around which all the tests have been structured.

The first detail to note is the null slopes in the graphs of the total overlapping
example, while for all the others the slopes are ascendent. This is due to
the particular distribution of the zone where the robust parse operates. In
effect, as is shown in Fig. 4, the error detection points from the very first
point of error in the input string locate the beginning of the error correction
zone [1] at the addend “b;”. In practice, as part of the more general robust
parse process, the error correction strategy already covers all the input string,
although only in the case of Gg does the error repair scope extend to global
context. This apparent contradiction in the case of G;, is due to the fact that
although the effective repair mechanisms do not have a global scope, most
unsuccessful repairs are only rejected at the end of the robust parse process. As
a consequence, for both grammars in this example the correction mechanisms
are applied on all the input positions, and the location of “b,” has no influence
on the number of items generated, as can be seen in Fig. 3. This is also
illustrated in Fig. 5, representing on its left-hand-side the increase in the size
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of the repair scope for both error correction and partial overlapping examples,
and on its right-hand-side the same information for the total overlapping case.
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Fig. 5. Repair scope for error correction, partial and total overlapping examples

The situation is different in the error correction and partial overlapping
examples, for which the size of the error repair zone increases with the position
of “b,”, as is shown in Fig. 6. In this sense, the figure illustrates both the
dependence of the error repair region on the grammar used, and the asymptotic
behavior of the error repair strategy [1] in dealing with cascaded errors.

points of detection:
first point of error, either case —  second point of error, G case ---  second point of error, Gr case -----

P \\
. PN

v v !
R R /(\b[n/s] + bpnyaj+1 bpnysjee + @n/3}+§wb[n/3]+4 +...

Fig. 6. Error detection points for error correction and partial overlapping examples

In relation to complexity, although the theoretical cost is the same for both the
error repair strategy and the treatment of unknown sentences, in practice these
tests show that the greater weight is due to error repair. This is illustrated by
the results displayed for the error correction and the two overlapping examples
on the right-hand-sides of Fig. 2 and Fig. 3, respectively. In effect, these results
show that the number of items generated is appreciably larger in these cases,
in contrast to the work developed for the unknown example, which we can
see in the left-hand-side of Fig. 2, and for which no error repair process is
applied. From an operational point of view, this behavior is a consequence of
the contextual treatment in each case. So, the parse of unknown sequences
only generates, for each symbol *, items in the current itemset. However, in
the case of error repair the scope depends, for each error, on the grammatical
structure and can range from one to the total collection of itemsets, as is
shown in Figs. 4 and 6. Whichever is the case, the smoothness of the slopes
proves the computational efficiency of our proposal.
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7 Conclusions

Robust parsing is a central task in the design of dialogue systems, where
the deterioration of the signal, and the presence of under-generation or over-
generation phenomena due to covering grammatical problems make it difficult
to perform continuous unrestricted language recognition. In this sense, robust
parsing seeks to find interpretations that have maximal thresholds. Our
proposal provides the capacity to efficiently recover the system from external
syntactic factors or user errors. We concentrate on enhancing robustness by
using the mechanisms offered by dynamic programming in order to improve
performance and provide a formal parse definition. In contrast to previous
works, we solve both extra simplification phases and the over-generation
phenomena associated with the recognition of unknown sequences of unknown
length. We also avoid distortions due to cascaded errors by integrating a
regional repair mechanism that, in contrast to global approaches, limits the
recovery effort to those areas in the input that contain errors.
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