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Abstract

We introduce an algorithm to estimate the evolution of accuracy in part-of-speech tagging on the whole of
a training corpus, based on the results obtained from a portion of the latter. The technique approximates
iteratively the vallue that we seek in the position desired, independently of the statistical model and dataset
used. The process proves to be formally correct with respect to our working specifications and includes a
stable stopping criterion. This allows the user to fix a reliable convergence threshold with respect to the
accuracy finally achievable.

Our aim is to evaluate the training effort, supporting decision making in order to reduce the need for both
human and computational resources during tagger generation. The proposal is of interest in at least three
operational procedures. The first is the anticipation of accuracy gain, with the purpose of measuring how
much work is needed to achieve a certain level of performance. The second relates the comparison between
taggers at training time, with the objective of completing this task only for the tool that predictably better
suits our requirements. The prediction of accuracy is also a valuable item of information for the customization
of the tagger, for example to select the tag-set, since we can estimate in advance its impact on both the
performance and the development costs. The experiments corroborate our initial expectations.
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1. Introduction

Within the set of natural language processing (nlp) tasks, part-of-speech (pos) tagging (post) serves as
a first step for other nlp functionalities such as parsing and semantic analysis, so errors at this stage can
lower their performance, which justifies the interest in studying its reliability. To evaluate this, we should
determine how many of the tags provided are correct, and how many superfluous ones are eliminated (van
Halteren, 1999) in the case of ambiguous outputs. The absence of the latter simplifies the question and is
the most common situation. We then talk about the accuracy of the system (DeRose, 1988), which is also
referred to as tagger.

As a measure of performance, accuracy provides an effective criterion to select the most suitable post tool
from a set of potential candidates for a concrete task. Tagger configuration also finds a channel of validation,
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allowing us to estimate the appropriate balance between the performance and the linguistic refinement of
the system, for example with regard to tag-set definition. Finally, the gain of accuracy between two points
in time serves as an indicator for the quality of the training process. Given that the generation of taggers is
expensive and labor-intensive, to estimate this measure without waiting for the end of the process saves time
and resources, giving a practical meaning to our proposal. In order to guarantee stable results, the algorithms
proposed to solve the problem should demonstrate the correctness with respect to their specifications, which
takes us away from ad hoc strategies.

With this aim in mind, we need to identify the factors that influence accuracy during tagger generation,
which involves any variation affecting the linguistic resources, the tagset and the method of evaluation
considered. Unfortunately, the number and complexity of circumstances that have to be taken into account
is such that it often becomes impossible to weight them. Instead, the most practical approach seems to
make our own judgments in the context of the task that we are trying to accomplish (van Halteren, 1999).
A way to do this is to standarize the evaluation frame in order to analyse the generation process as a single
task that compiles, relates and processes all the information provided by the user.

Tagger design is often based on a learning technique that builds a statistical model from labelled and/or
unlabelled training data depending on the approach considered. Thus, we then distinguish between su-
pervised (Brants, 2000; Brill, 1995; Daelemans et al., 1996; Giménez and Márquez, 2004; Schmid, 1994;
Toutanova et al., 2003), semi-supervised (Søgaard, 2010; Spoustová et al., 2009) and unsupervised (Goldwa-
ter and Griffiths, 2007; Merialdo, 1994; Ravi and Knight, 2009) techniques. The latter constitute the only
possible choice when no labelled data are available, or an alternative when they are expensive to prepare,
even though no useful accuracies have been achieved. On the contrary, supervised strategies have proved
to be efficient, but they require a large amount of training input that needs to be hand-annotated by hu-
man experts, which is an intensive task in terms of both time and expertise. For its part, semi-supervised
methods aim to combine the advantages of the previous ones when only few labelled data are available,
although the results have been mostly negative (Søgaard, 2010). In either case, active learning (al) tech-
niques (Cohn et al., 1994; Seung et al., 1992) can be used to reduce the cost of annotating training material.
This explains the growing popularity of the concept in post tasks (Dagan and Engelson, 1995; Haertel
et al., 2008; Neubig et al., 2011; Ringger et al., 2007) and closely related ones such as named entity recogni-
tion (Laws and Schätze, 2008; Shen et al., 2004; Tomanek et al., 2007) or word sense disambiguation (Chan
and Ng, 2007; Chen et al., 2006; Zhu, 2007), which also extends to other information extraction (Culotta
and McCallum, 2005; Thompson et al., 1999), parsing (Becker and Osborne, 2005; Tang et al., 2002) or
text classification (Lewis and Gale, 1994; Liere and Tadepalli, 1997; McCallum and Nigam, 1998; Tong and
Koller, 2002) applications. However, despite the potential and the research effort invested in studying al,
its adoption in practice is today questionable (Attenberg and Provost, 2011). The difficulty to define both
the strategy used to select the instances to be annotated at the time and the criterion to stop the learning
process once performance ceases to increase, lie at the origin of the users’ reluctance. This lead us to the
point of departure because the stopping problem is a particular case of that of prior performance evaluation,
which reinforces the interest of our approach.

As the intention is for us to provide a methodology independent of the tagger architecture and dataset
used, we address accuracy estimation from the results of, and some general hypotheses about, the training
process. The structure of the paper is as follows. Firstly, Section 2 examines the methodologies serving as
inspiration to solve the question posed. Next, Section 3 reviews the mathematical basis necessary to support
our proposal, which we introduce in Section 4. In Section 5, we describe the working frame for the practical
results illustrated in Section 6. Finally, Section 7 presents our final conclusions.

2. The state of the art

To the best of our knowledge, no research on prior estimation of post tagging accuracy has been
described, although the use of learning curves for predicting performance bounds has been explored for
other machine learning (ml) purposes. In particular, the applicability of a priori knowledge for restricting
the form of such curves has been studied (Gu et al., 2001) and they have proved their potential to compare
learning binary classification models (Perlich et al., 2003).
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In the domain of nlp, this approach seems confined to the machine translation (mt) sphere. So, learning
curves were employed to evaluate the impact of a concrete set of distortion factors on the performance of
a similarly concrete operational model (Birch et al., 2008), with meagre results. They were also used to
predict how many training data are required to achieve a certain level of translation accuracy (Kolachina
et al., 2012). This represents a novelty with respect to the previous proposals, where the goal was only the
estimation of the maximum performance, and recalls the essence of our problem formulation. Sadly, the
technique has no practical sense because no stopping criterion is described in order to identify the end of the
process. The degree of veracity achieved is reported as the comparison between a curve fitted from a small
number of predictions, and a gold one fitted from a fine grid of observations all over the training corpus.
This implies that the latter are computed in advance, which is exactly what we aim to avoid and is also not
always possible.

The definition of stopping criteria is a major hurdle in the design of ml algorithms and their reliability is
made subject to the convergence of the learning process, that is, its correctness. The research effort in this
regard has been significant, particularly in the field of al, whose main assumption is that instances which
are harder to identify are more useful for learning. As these techniques are iterative, the most informative
unlabelled examples for human annotation must be selected at each cycle, and determining the end of the
process is essential. Most of this research focuses on pool-based active learning (Lewis and Gale, 1994), in
which the selection is made from a pool and following two main sampling schemes: uncertainty (Lewis and
Gale, 1994) and committee-based (Seung et al., 1992) ones. The former uses only one classifier to select the
instances, making the estimation dependent upon the ml model. Thus, probabilistic models commonly use
the entropy of its output, while the non-probabilistic ones often consider classification margin, as in the case
of support vector machines (svm) (Tong and Koller, 2002). Committee-based sampling considers a set of
classifiers working on the principle of maximal disagreement among them. Common ways of estimating this
are the vote-entropy (Argamon-Engelson and Dagan, 1999) and the Kullback-Leibler divergence (Becker
and Osborne, 2005), always practiced on probabilistic models.

In practice, whatever the al approach considered, to define a stopping criterion relies on a question
of measuring the confidence of the classification either over a separate dataset (Vlachos, 2008) or over the
unlabelled data pool (Zhu and Ma, 2012). The assumption in the first case is that we cannot take advantage
of the remaining instances in the pool when that confidence drops, while in the second one the starting
point is the uncertainty of the classifier. The latter can be assessed against the maximum or the overall
one in the current iteration, the accuracy of the top-n selected examples (i.e. n most uncertain instances)
or the minimum expected error on all future unlabelled examples (Roy and McCallum, 2001). The point
where the pool becomes uninformative can also be determined through the gradient of performance (Laws
and Schätze, 2008), whose rise estimation slows to an almost horizontal slope at about the time when the
true one reaches its peak. We then stop the process when the gradient approaches zero.

Although these stopping criteria could inspire similar actions in other ml-based applications, we can
only see them as ad hoc proposals because their correctness has not been proved. In order to alleviate the
situation, validation windows to contrast the reliability of the results and error thresholds providing a certain
degree of flexibility for variations in learning conditions are both used, but without any guarantee. At best,
the dynamic update of thresholds is outlined (Zhu and Ma, 2012), in order to increase soundness across
changing datasets. The idea is that if, between recent consecutive learning cycles, an unlabelled example
modifies its classification, such a labeling is unstable and could change the decision boundaries. Once there
are no such instances in the pool, we think the learning becomes stable, and can end. As an alternative,
successive models’ predictions on the stop set can be compared to see if they stabilized (Bloodgood and
Vijay-Shanker, 2009), which relies on the use of validation windows.

This puts the lack of correctness as the key issue to be assessed. What is at stake is the capacity to adapt
to any dataset and learning strategy, filling the gap between aggressive and conservative methods (Bloodgood
and Vijay-Shanker, 2009). That means providing users with control over the behaviour of the process,
eliminating the risk of stopping it too late and wasting annotation effort, or doing it too early and losing
accuracy.
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3. The formal framework

The aim now is to describe our abstract model on a mathematical basis that would enable us to prove
its correctness. We choose a function, which must be continuous and derivable so that it provides reliability
and stability, to estimate in advance the learning curve for accuracy. Since partial approximations of that
function can be modelled by fitting a series of accuracy observations, it seems natural to raise its calculation
as the convergence of a sequence of such approximations built incrementally while tagger training advances.

3.1. The mathematical support

We first recall some notions (Apostol, 2000) on the theory of sequences in the real metric space (R, ||),
where || denotes the Euclidean distance. For the sake of simplicity, we assume familiarity with the concepts
of continuity and derivability of a real function. We denote the set of natural numbers by N, and we assume
that 0 6∈ N.

Definition 1. Let {xi}i∈N be a sequence in (R, ||), we say that it is a sequence convergent to x0 ∈ R iff

∀ε > 0, ∃n ∈ N, ∀i ≥ n ⇒ |xi, x0| < ε (1)

where x0 is called the limit of {xi}i∈N, using the notation lim
i→∞

xi = x0.

A sequence converges when we can situate, from a given position, all its elements as close to the limit
as we want to. It may be proved that any monotonic increasing (resp. decreasing) and upper (resp. lower)
bounded sequence converges to its supremum (resp. infimum). Also, if a sequence converges, then all their
sub-sequences do so to the same limit. Since we want to study the convergence of a collection of curves, we
need to extend the concept to sequences of real functions.

Definition 2. Let ∆ := {f : E ⊆ R → R} and let {fi}i∈N, fi ∈ ∆ be a sequence of functions, we say that
it is a sequence punctually convergent to f0 ∈ ∆ iff

∀x ∈ E, ε > 0, ∃n ∈ N, ∀i ≥ n ⇒ |fi(x), f0(x)| < ε (2)

where f0 is called the punctual limit of {fi}i∈N, using the notation lim
i→∞

pfi = f0.

A sequence of functions is punctually convergent if the sequence of their values on each point converges.
This implies that we can calculate the limit point-to-point, although the speed of convergence may be
different in each case, which poses a threat when dealing with prediction tasks since the results obtained
could vary greatly even over points close to the observations. We then need a criterion guaranteeing a
uniform behaviour.

Definition 3. Let ∆ := {f : E ⊆ R → R} and let {fi}i∈N, fi ∈ ∆ be a sequence of functions, we say that
it is a sequence uniformly convergent to f0 ∈ ∆ iff

∀ε > 0, ∃n ∈ N, ∀i ≥ n ⇒ |fi(x), f0(x)| < ε, ∀x ∈ E (3)

where f0 is called the uniform limit of {fi}i∈N, using the notation lim
i→∞

ufi = f0.

This identifies functional sequences for which all points converge at the same pace to the limit, which
allows its continuity to be inferred when the curves in the sequence are continuous. Such a property is
extremely useful to us since continuity is a guarantee of stability, matching small variations in the input to
small ones in the output. In order to estimate the rate of these variations, we must turn our attention to
the concept of derivability, which is not simply preserved by uniform convergence.

Theorem 1. Let {fi}i∈N be a sequence of derivable real functions fi : (a, b) → R. Suppose the existence of
both x0 ∈ (a, b), such that {fi(x0)}i∈N converges, and g := lim

i→∞

uf ′
i in (a, b). Then f := lim

i→∞

ufi exists and

f ′(x) = g(x), in (a, b).

Proof. See (Apostol, 2000), as for previous results and definitions. �
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3.2. The working hypotheses

As the use of partial fitted approximations to the learning curve for accuracy is at the basis of our
proposal, we need to gather as much information as possible about the nature of accuracy, in order to
alleviate the risk of producing meaningless results. The point of departure for its calculation is a tagger to
be evaluated and a corpus used for both training and testing purposes, without specific hypotheses in the
former case. With regard to the second, it must meet certain conditions in order to bring reliability to the
process. Basically, we assume the corpus evenly distributes all the styles and language variations present in
it, in order to obtain a predictable progression of the estimation trace for accuracy over a virtually infinite
interval. This does not imply a loss of generality since we can re-order the data and take as large a corpus
as we want.

In these conditions, we accept that the learning curve for accuracy is a positive definite and strictly
increasing function on N, upper bounded by 100. We also assume that the speed of increase is higher in
its first stretch, where the learning is faster, decreasing as the training process advances and giving the
curve a concave nature, giving rise to a horizontal asymptote below its maximum. We can observe all
this in the left-most curve of Fig. 1, which shows the observations of the lookahead part-of-speech (lapos)
tagger (Tsuruoka et al., 2011) on the Freiburg-Brown (frown) corpus of American English (Hinrichs et al.,
2010) in [5 ∗ 103, 8 ∗ 105].
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Figure 1: Accuracy for lapos on frown corpus, and a fitted curve

Although we may argue that such requirements cannot be completely guaranteed in practice due to the
nature of real corpora, the objective of these working hypotheses is to provide a decidable computational
domain for the problem posed. This process of idealization is inherent in the scientific modeling and it is
the only way to deal with unpredictable variations in the conditions of calculation. An example of the latter
are those depending on human decisions, as in the above-mentioned case of corpora building.

3.3. The notational support

Having identified the context of the problem, we need to formally capture the data structures we are
going to work with, such as the collection of data sets on which the accuracy measurements are applied,
ideally up to the length of the original corpus. We opt for an incremental sampling.

Definition 4. Let C be a corpus, K ( C a proper and not empty subset of initial sentences from C , and
σ ∈ N. We define a learning scheme for C with kernel K and step σ, as a triple C K

σ = [K , σ, {Ci}i∈N],
such that:

C1 = K and Ci = Ci−1 ∪ Ii, Ii ⊂ C \ Ci−1, |Ii| = ‖i ∗ σ‖ − ‖(i− 1) ∗ σ‖, ∀i ≥ 2 (4)

where |Ii| is the cardinal (words) of Ii and ‖n‖ is the position of the first sentence-ending beyond the n-th
word. The latter allows us to adapt the step, avoiding sentence truncation. We refer Ci as an individual of
C K
σ .
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The kernel K delimits a training portion of corpus we believe to be enough to initiate consistent eval-
uations for accuracy. With regard to the learning scheme, it is to be hoped that the estimation process is
better when it is fine-grained, but we need to choose a functional pattern to fit accuracy. In order to situate
ourselves in the context of our mathematical support, we consider real C-infinity curves, which guarantees
the existence of derivatives of all orders. In other words, we focus on smooth functions.

Definition 5. Let C∞
(0,∞) be the real C-infinity functions in the domain (0,∞) and n ∈ N, we say that

π : R+n

→ C∞
(0,∞) is an accuracy pattern iff π(a1, . . . , an) is positive definite, concave and strictly increasing.

We can immediately infer from the definition some properties of accuracy patterns. In particular, these
functions are upper bounded by a horizontal asymptotic value. To illustrate the concept, we take the
power family of curves π(a, b, c)(x) := −a ∗ x−b + c, hereinafter used as running example. They have
lim
x→∞

π(a, b, c)(x) = c as horizontal asymptote and verify:

π(a, b, c)′(x) = a ∗ b ∗ x−(b+1) > 0 π(a, b, c)′′(x) = −a ∗ b ∗ (b+ 1) ∗ x−(b+2) < 0 (5)

which guarantees increase and concavity in (0,∞), respectively. All this is illustrated in the right-most curve
of Fig. 1 for values a = 675.6588, b = 0.4376 and c = 99.0242.
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Figure 2: Learning trace and instantaneous configurations for lapos on frown, with details in zoom

Given a tagger T and a learning scheme C K
σ , the goal of an accuracy pattern is to provide functions to fit

the sequence of observations {[xi,Ac(T ,C )(xi)], xi = |Ci|}
λ
i=1 together with (∞, 100), where Ac(T ,C )(xi)

is the accuracy of T achieved on the corpus C at the word position xi, and the last pair represents the
maximum value expected at the point of infinity. Since parameter assignment is a complex task, we should
automate it, for example using a trust region method (Branch et al., 1999). This minimizes the summed
square of residuals, in other words, the differences between the observed values and the fitted ones.

Definition 6. Let T be a tagger, C K
σ a learning scheme, π an accuracy pattern and λ ∈ N. We define

the learning trend of level λ for T on C K
σ using π, as a curve Tλ(C

K
σ , π) ∈ π, fitting the sequence

{[xi,Ac(T ,C )(xi)], xi = |Ci|}
λ
i=1 ∪ (∞, 100).

A sequence of learning trends T (C K
σ , π) := {Ti(C

K
σ , π)}i∈N is called a learning trace, from which we

can extract an instantaneous configuration of the form T (C K
σ , π)(x) := {Ti(C

K
σ , π)(x)}i∈N, x ∈ {|Cj |}j∈N.

We denote by ρi(j) := Ac(T ,C )(xj)− Ti(C
K
σ , π)(xj), xj = |Cj | the residual of Ti(C

K
σ , π) at the level

j. The residual of Ti(C
K
σ , π) at the point of infinity is the difference of the maximum possible accuracy

with the asymptote, ρ∞i := 100− lim
x→∞

Ti(C
K
σ , π).
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Although learning trends fit accuracy beyond its own level, a reliable prediction requires an understanding
of the evolution of the learning curve over the corpus. Learning traces solve this question, allowing the
extraction of a sequence of fitted values in a word position, representing the evolution of the estimation
at that instant. Continuing with the example for the tagger lapos and the corpus frown, Fig. 2 shows
a learning trace on the learning scheme with kernel and step 5 ∗ 103, together with two instantaneous
configurations at positions 3 ∗ 105 and 3.2 ∗ 105, including a more detailed view.

4. The abstract model

We assume T a tagger, a learning scheme C K
σ and an accuracy pattern π. Our aim is to estimate

reliably and as far in advance as possible the behaviour of the learning curve for accuracy. We start by
computing the learning trace T (C K

σ , π) := {Ti(C
K
σ , π)}i∈N in order to study its evolution over the corpus,

through the sequences of instantaneous configurations T (C K
σ , π)(x) := {Ti(C

K
σ , π)(x)}i∈N, x ∈ {|Cj |}j∈N.

For that purpose, we first prove some properties of learning traces.

4.1. Some properties of the learning traces

We just work with those results of interest for this work and taking (0,∞) as domain.

Theorem 2. Let T (C K
σ , π) be a learning trace. We have λ ∈ N, the level of prediction for T (C K

σ , π), and
xλ < |Cλ| such that {Ti(C

K
σ , π)}i≥λ is strictly decreasing in (xλ,∞) and upper bounded by 100.

Proof. Having fixed a level i ∈ N, the fitting algorithm minimizes a weighting function on the set of
residuals {ρi(j)}j≤i ∪ {ρ∞i } in order to generate the learning trend Ti(C

K
σ , π). Since the maximum data

fitted corresponds to the point of infinity and both observations and learning trends are positive definite,
concave and increasing in (0,∞), the impact of that singularity decreases as the levels ascend. This means
that {ρ∞i }i∈N is increasing and, as a consequence, the sequence {αi}i∈N of horizontal asymptotes associated
to {Ti(C

K
σ , π)}i∈N is strictly decreasing.

Accordingly, the learning trends {Ti(C
K
σ , π)}i∈N either never intersect in (0,∞), or each curve Tj(C

K
σ , π)

intersects any other one Ti(C
K
σ , π), i 6= j at a single point (xi

j , y
i
j). In the former case, as {αi}i∈N is strictly

decreasing, so is the sequence {Ti(C
K
σ , π)}i∈N and the thesis becomes trivial.

In the case of intersection, the relative position of the curves is reversed once it has taken place and
Ti(C

K
σ , π) then rises above Tj(C

K
σ , π) in (xi

j ,∞), if i < j. Since {xi
j}i∈N is strictly decreasing, if

Tj(C
K
σ , π) ∩ Tj+1(C

K
σ , π) occurs before the level j, that is x

j+1
j < |Cj |, the sequence {Ti(C

K
σ , π)}i≥j

is also in (xj+1
j ,∞).

To prove the thesis is then sufficient to demonstrate that a λ ∈ N exists such that xλ := xλ+1
λ < |Cλ| and

ρ∞λ ≥ 0. The former condition is met, since lim
j→∞

|Cj | = ∞ and {xj+1
j }j∈N is strictly decreasing. The second

condition satisfies because {ρ∞i }i∈N is decreasing and if a level ξ verifies the first one, then λ ≥ ξ so does. �

Although the condition on the upper bound does not have any impact on the convergence problem
we are going to study, it allows us to focus in those learning trends that could be considered as feasible
approximations for accuracy, whose maximum value is also upper bounded by 100. As illustration, we again
refer to Fig. 2, which suggests the uniform convergence of the learning trace. In order to formally prove it,
we first deal with the punctual case.

Theorem 3. Let T (C K
σ , π) be a learning trace with a level of prediction λ, then for some xλ < |Cλ|,

T∞(C K
σ , π) := lim

i→∞

p
Ti(C

K
σ , π) exists in (xλ,∞).
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Proof. Since, by Theorem 2, an xλ < |Cλ| exists such that {Ti(C
K
σ , π)}i≥λ is decreasing in (xλ,∞),

we conclude that so is ∀x > xλ, {Ti(C
K
σ , π)(x)}i≥λ. As curves in {Ti(C

K
σ , π)}i∈N are positive definite,

{Ti(C
K
σ , π)(x)}i≥λ is lower bounded and converges ∀x > xλ . �

Unfortunately, the punctual convergence does not permit a common convergence threshold to be fixed
with respect to the limit function T∞(C K

σ , π) from a given level in the learning trace T (C K
σ , π). Such

a calculation needs to be solved separately for each instantaneous configuration, which makes no practical
sense for us. To solve this we need the uniform convergence, whose demonstration from Theorem 1 requires
us first to prove that all the hypotheses are verified and, in particular, the uniform convergence of the
sequence for the derivatives. We start with the punctual case.

Theorem 4. Let T (C K
σ , π) be a learning trace with a level of prediction λ, then for some xλ < |Cλ|,

lim
i→∞

p
T ′

i(C
K
σ , π) exists in (xλ,∞).

Proof. As the learning trends {T (C K
σ , π)}i∈N are concave and strictly increasing in (0,∞), their deriva-

tives are positive definite and, therefore, lower bounded. On the other hand, by Theorem 2, an xλ < |Cλ|
exists such that {T (C K

σ , π)}i≥λ is strictly decreasing in (xλ,∞), which means that so is the sequence
{T ′(C K

σ , π)}i≥λ. The thesis then becomes trivial. �

We are now ready to prove the uniform convergence for the sequence of derivatives associated to a
learning trace.

Theorem 5. Let T (C K
σ , π) be a learning trace with a level of prediction λ, then for some xλ < |Cλ|,

lim
i→∞

u
T ′

i(C
K
σ , π) exists in (xλ,∞).

Proof. By Theorem 4, lim
i→∞

p
T ′

i(C
K
σ , π) exists in (x′

λ,∞) for some x′
λ < |Cλ|. We then have that

∀x > x′
λ, ε > 0, ∃nx ∈ N, ∀i ≥ nx⇒ |T ′

i(C
K
σ , π)(x), lim

i→∞

p
T

′
i(C

K
σ , π)(x)| < ε (6)

On the other hand, the learning trends are concave and strictly increasing in (0,∞), with a horizontal
asymptote. This means that their derivatives are convex and strictly decreasing in this interval, with a hor-
izontal asymptote in y = 0. Furthermore, as previously established in the proof of Theorem 4, the sequence
{T ′(C K

σ , π)}i≥λ is strictly decreasing in (x′
λ,∞). Consequently, the lower x ∈ (x′

λ,∞) is, the higher the
distances between elements in {T ′

i(C
K
σ , π)(x)}i≥λ are.

Since to prove the uniform convergence we only need to demonstrate that for some xλ < |Cλ|

∀ε > 0, ∃n ∈ N, ∀i ≥ n ⇒ |T ′
i(C

K
σ , π)(x), lim

i→∞

p
T

′
i(C

K
σ , π)(x)| < ε, ∀x > xλ (7)

It is sufficient, for example, to take xλ := x′
λ +

|Cλ|−x′
λ

2 and n := nxλ
to conclude the thesis. �

At this point, all the hypotheses of Theorem 1 with respect to the functions in a learning trace have
been proved, and we can apply it to prove its uniform convergence.

Theorem 6. Let T (C K
σ , π) be a learning trace with a level of prediction λ, then for some xλ < |Cλ|,

T∞(C K
σ , π) := lim

i→∞

u
Ti(C

K
σ , π) and T ′

∞(C K
σ , π) = lim

i→∞

u
T ′

i(C
K
σ , π) exist in (xλ,∞).

Proof. Let’s take xλ < |Cλ| from Theorem 5, then Theorem 3 proves that {Ti(C
K
σ , π)(x)}i≥λ converges

in (xλ,∞). The conclusion is then trivial from Theorem 1 since lim
i→∞

u
T ′

i(C
K
σ , π) exists in that interval. �

Once the existence and derivability of T∞(C K
σ , π) have been proved, we can now demonstrate that it

preserves the fundamental properties of the learning trends.

Theorem 7. Let T (C K
σ , π) be a learning trace with a level of prediction λ, then for some xλ < |Cλ|,

T∞(C K
σ , π) is continuously derivable, concave, strictly increasing and positive definite in (xλ,∞).

Proof. The result is a trivial corollary from Theorem 6 and the fact that the learning trends {Ti(C
K
σ , π)}i∈N

verify those properties by definition in (0,∞). �
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4.2. The methodology

Accuracy is computed as the maximum value reached by its learning curve over an incremental sequence
of observation levels {|Ci|}i∈I, I ⊆ N. Because ideally the corpus can be as large as we want, and these
observations are increasing and concave, we can identify this maximum with the ordinate of an horizontal
asymptote. Thus, accuracy may be seen as the value in the point at infinity of its learning curve. On the
other hand, a learning trend Ti(C

K
σ , π) fits the accuracy at point x = |Ci| from the observations made up to

that level. So, in order to fit its value in the point at infinity, we should compute a learning trend throughout
the entire sequence of levels {|Ci|}i∈N, which will also enable us to estimate it at each intermediate level of
the learning curve.

The methodology we have just outlined implies computing the horizontal asymptote for T∞(C K
σ , π),

whose existence is guaranteed by Theorem 7. A major challenge in achieving this is the absence of an
algebraic expression for the learning trace T (C K

σ , π), since its elements are fitted as the observations
advance. However, since each learning trend refines the fitting processes corresponding to those of the lower
level, one way to address the question is to consider it as an iterative process, in which the step i ∈ N

corresponds to the calculation of Ti(C
K
σ , π). The consistency of this approach depends on the availability

of a criterion that interrupts the process once a convergence threshold set by the user is reached. Given
that we are looking for the horizontal asymptote of T∞(C K

σ , π), to define such a criterion means finding a
variable capable of measuring the correction to be applied to achieve it from an iteration i ∈ N. The previous
results suggest associating T ′

i(C
K
σ , π)(|Ci|), the slope at the last observation fitted in the iteration i, to

that variable. Indeed, the learning trace is decreasing from the level of prediction and uniformly convergent,
while the learning curves for accuracy and their limit are continuously derivable and increasing. Thus, once
a slope has been reached by a learning trend beyond that level, all subsequent calculations provide lower
positive values.

Theorem 8. Let T (C K
σ , π) be a learning trace with a level of prediction λ, then for some xλ < |Cλ|:

1. T ′
∞(C K

σ , π)(x) ≥ T ′
∞(C K

σ , π)(y) ≥ 0, ∀y > x ≥ |Cλ| > xλ

2. ∀i ∈ N, T ′
i(C

K
σ , π)(x) ≥ T ′

i(C
K
σ , π)(y) > 0, ∀y > x ≥ |Cλ| > xλ

3. T ′
i(C

K
σ , π)(x) ≥ T ′

j(C
K
σ , π)(x) ≥ T ′

∞(C K
σ , π)(x), ∀j ≥ i ≥ λ, x ≥ |Cλ| > xλ

Proof. Let’s take xλ < |Cλ| from Theorem 5, then (2) is trivial and we conclude (1) directly from Theo-
rem 7. As {Ti(C

K
σ , π)}i≥λ is decreasing and T ′

∞(C K
σ , π) = lim

i→∞

u
T ′

i(C
K
σ , π) in (xλ,∞) by Theorem 6,

(3) is trivial. �

This result allows us to define a stable stopping criterion for our iterative technique if we can demonstrate
that the value of the slope over the asymptote, which is zero, is reached at the same time that the convergence
of the learning trace takes place.

Theorem 9. Let T (C K
σ , π) be a learning trace, then lim

i→∞
T ′

i(C
K
σ , π)(|Ci|) = lim

x→∞
T ′

∞(C K
σ , π)(x)

Proof. Let λ be the level of prediction for T (C K
σ , π). By Theorem 8 both sequences {T ′

∞(C K
σ , π)(x)}x≥|Cλ|

and {T ′
∞(C K

σ , π)(|Ci|)}i≥λ are decreasing and lower bounded by 0 and, therefore, converge. Following
Theorem 4

lim
i→∞

T
′
i(C

K

σ , π)(|Ci|) = lim
i→∞

T
′
∞(C K

σ , π)(|Ci|) (8)

and, since {T ′
∞(C K

σ , π)(|Ci|)}i>λ is a sub-sequence of {T ′
∞(C K

σ , π)(x)}x>|Cλ|, we deduce that

lim
i→∞

T
′
∞(C K

σ , π)(|Ci|) = lim
x→∞

T
′
∞(C K

σ , π)(x) (9)

which proves the thesis. �

We now establish the correctness of our proposal, proving that the iterative process brings us as close to
the horizontal asymptote of T ′

∞(C K
σ , π) as we like.
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Theorem 10. (Correctness) Let Ti(C
K
σ , π) be a learning trace with a level of prediction λ,

then Ti(C
K
σ , π)(|Ci|), i ≥ λ approximates lim

x→∞
T∞(C K

σ , π)(x) with T ′
i(C

K
σ , π)(|Ci|) as convergence

threshold on the slope.

Proof. Trivial from Theorems 5, 8 and 9. �

5. A working frame

We need a collection of corpora on a set of target languages, tag-sets and taggers, an accuracy pattern
and a methodology to compute the accuracy values we use for both computing and validating predictions.
As target languages we consider English and Spanish. The former is the most studied and best-understood
one, which contributes to providing reliability and a high number of case studies. For its part, Spanish is
characterized by a complex derivational paradigm and is one of the languages with the highest growth and
development potential in the domain of nlp. With regard to the corpora, we select them together with their
associated tag-sets from the most popular ones in the domain for each target language:

1. The ancora (Taulé et al., 2008) treebank includes a section for Spanish, previously used as a resource
in the shared tasks of connl (Buchholz and Marsi, 2006; Hajič et al., 2009) and semeval (Recasens
et al., 2010). It has served as a training and testing resource for post (Hulden and Francom, 2012),
parsing (Popel et al., 2013) and semantic annotation (Mukund et al., 2010) tasks. Since its tag-set has
been developed for languages morphologically richer than English, ancora has the most detailed anno-
tation of the corpora considered and is the only one to follow the eagles recommendations (Monachini
and Calzolari, 1996). Its 280 tags (Taulé et al., 2008) cover the main pos classes used in Spanish as
well as sub-classes and morphological features, accessible on clic.ub.edu/corpus/webfm send/18.

2. The Freiburg-Brown of American English (Mair and Leech, 2007) (frown) matches the composition
and style of the brown corpus (Francis and Kučera, 1967,71,79). It has been used in linguistic studies
with a more theoretical purpose (Leech, 2009; Mair, 2006), which in our opinion entails an interesting
counterpoint to the other two corpora considered, which are more oriented to nlp-related applications.
The associated tag-set is the ucrel C8. With 169 tags accessible on ucrel.lancs.ac.uk/claws8tags.pdf,
it was selected as the common tag-set for the Brown family of corpora (Hinrichs et al., 2010).

3. The section with news items from theWall Street Journal (wsj) included in the penn treebank (Marcus
et al., 1999), is a popular corpus in nlp for both post (Brants, 2000; Collins, 2002; Giménez and
Márquez, 2004; Ratnaparkhi, 1996; Toutanova et al., 2003) and parsing purposes (Charniak, 2000;
Petrov et al., 2006). It has also been used in the shared tasks of prestigious events in the domain
of natural language learning, such as connl (Hajič et al., 2009; Nivre et al., 2007; Surdeanu et al.,
2008), and semantic evaluation, such as semeval (Yuret et al., 2010). The tag-set associated to this
corpus has 45 tags, accessible on www.comp.leeds.ac.uk/ccalas/tagsets/upenn.html and covering basic
pos classes in English along with some morphological information. This is the simplest of the tag-sets
we consider.

Both penn and ancora are treebanks annotated with pos tags as well as syntactic structures. By stripping
them of the latter, they can be used to train post systems.

With respect to the taggers, we avoid rule-based taggers, where the absence of a training phase leaves
the consideration of accuracy as a predictable magnitude void of content. We then focus on supervised
techniques. In contrast to unsupervised ones, those make it possible to work with predefined tag-sets, which
facilitates both the evaluation and the comprehension of the results. Furthermore, this kind of strategies
provides the best quality results, placing them as a reference for any testing purpose. We have selected a
broad range of proposals covering the most representative architectures:

1. In the category of stochastic methods and as representative of the hidden markov models (hmms),
we choose tnt (Brants, 2000). We also include here the treetagger (Schmid, 1994), which uses
decision trees to generate the hmm, and morfette (Chrupala et al., 2008), an averaged perceptron
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approach (Collins, 2002). To illustrate the maximum entropy models, we have chosen to work with
mxpost (Ratnaparkhi, 1996) and the mem associated to apache opennlp (opennlp maxent) (see
opennlp.apache.org/). Finally, the stanford pos tagger (Toutanova et al., 2003), is based on a condi-
tional markov model, which combines features of hmms and mems.

2. Under the heading of other post methods, the possibilities are many and various. As an example
of transformation-based learning, we take fntbl (Ngai and Florian, 2001), an updated version of the
classic brill (Brill, 1995). In relation to memory-based learning, the representative is the memory-
based tagger (mbt) (Daelemans et al., 1996), while we chose svmtool (Giménez and Márquez, 2004)
to describe the behaviour with respect to a support vector machine technique. Finally, we use a
perceptron-based training method with lookahead, through lapos (Tsuruoka et al., 2011).

As regards the computation of each observation for accuracy, we opt for a k-fold cross validation (Clark
et al., 2010), due to its good adaptation to small data sets, a key advantage in our particular context.

Kernel Step Threshold CLevel Control Level mape dmr Control Level mape dmr

(words) (degrees) (word position) (word position)

‖3 ∗ 105‖ ‖4 ∗ 105‖ ‖5 ∗ 105‖ ‖6 ∗ 105‖ ‖7 ∗ 105‖ ‖8 ∗ 105‖

Ac EAc Ac EAc Ac EAc Ac EAc Ac EAc Ac EAc

fn

t

b

l

ancora 5000 500 9.50 ∗ 10−4 109002 96.67 96.66 96.95 96.98 97.15 97.20 0.04 100.00

frown 10000 500 5.60 ∗ 10−4 207519 94.98 95.18 95.41 95.66 95.78 96.00 0.24 100.00 95.98 96.26 96.18 96.47 96.31 96.63 0.27 77.78

penn 2000 125 2.55 ∗ 10−4 209396 96.10 96.11 96.28 96.33 96.43 96.47 0.05 87.50 96.53 96.58 96.64 96.67 96.72 96.74 0.04 100.00

l

a

p

o

s

ancora 5000 1000 7.25 ∗ 10−4 100034 97.55 97.60 97.75 97.81 97.90 97.94 0.05 100.00

frown 5000 500 5.20 ∗ 10−4 175535 96.31 96.48 96.60 96.83 96.82 97.07 0.22 100.00 96.98 97.25 97.10 97.39 97.21 97.51 0.25 100.00

penn 2000 125 2.60 ∗ 10−4 175149 96.81 96.91 96.97 97.08 97.07 97.19 0.12 100.00 97.15 97.28 97.22 97.35 97.28 97.40 0.13 100.00

m

a
x

e

n
t ancora 5000 500 1.13 ∗ 10−3 92007 96.23 96.38 96.57 96.66 96.77 96.86 0.12 100.00

frown 10000 125 1.05 ∗ 10−3 131254 94.32 94.66 94.76 95.16 95.11 95.51 0.41 77.78 95.33 95.77 95.52 95.98 95.69 96.16 0.44 77.78

penn 5000 500 4.38 ∗ 10−4 146501 95.95 96.05 96.17 96.27 96.34 96.42 0.11 77.78 96.45 96.54 96.55 96.63 96.63 96.70 0.09 87.50

m

b

t

ancora 10000 500 8.21 ∗ 10−4 107023 96.10 96.16 96.40 96.47 96.63 96.69 0.06 100.00

frown 10000 1000 7.30 ∗ 10−4 181019 93.58 93.71 94.07 94.25 94.52 94.64 0.16 100.00 94.77 94.93 94.97 95.17 95.17 95.36 0.17 100.00

penn 2000 125 6.23 ∗ 10−4 149896 95.24 95.27 95.56 95.62 95.76 95.86 0.07 100.00 95.89 96.05 96.05 96.20 96.13 96.32 0.12 100.00

m

o
r
fe

t
t
e ancora 10000 500 5.80 ∗ 10−4 121519 97.18 97.19 97.40 97.42 97.52 97.57 0.03 100.00

frown 2000 500 5.10 ∗ 10−4 196006 95.65 95.78 95.97 96.19 96.23 96.48 0.22 87.50 96.39 96.70 96.54 96.88 96.69 97.02 0.28 87.50

penn 5000 1000 3.17 ∗ 10−4 167010 96.47 96.74 96.63 96.93 96.74 97.06 0.31 87.50 96.81 97.16 96.91 97.24 96.96 97.30 0.33 87.50

m

x

p

o

s

t

ancora 5000 500 1.14 ∗ 10−3 106025 96.56 96.65 96.86 97.00 97.08 97.24 0.13 88.89

frown 10000 500 7.90 ∗ 10−4 169009 94.75 94.75 95.18 95.24 95.49 95.58 0.06 100.00 95.74 95.84 95.95 96.04 96.09 96.21 0.09 100.00

penn 10000 250 3.68 ∗ 10−4 170024 96.11 96.17 96.35 96.38 96.52 96.53 0.03 100.00 96.59 96.63 96.69 96.72 96.74 96.78 0.03 100.00

s

t
a
n
fo

r
d ancora 5000 1000 9.00 ∗ 10−4 95023 96.86 96.88 97.11 97.13 97.31 97.31 0.02 100.00

frown 5000 500 6.20 ∗ 10−4 165001 95.46 95.63 95.79 96.02 96.08 96.30 0.23 77.78 96.27 96.51 96.43 96.68 96.56 96.82 0.24 66.67

penn 5000 250 4.46 ∗ 10−4 130008 96.41 96.57 96.57 96.77 96.72 96.91 0.18 100.00 96.81 97.01 96.90 97.10 96.95 97.17 0.20 100.00

s

v

m

t

o
o
l ancora 2000 500 7.85 ∗ 10−4 105003 97.03 97.05 97.29 97.31 97.47 97.48 0.03 100.00

frown 10000 500 7.50 ∗ 10−4 150014 95.77 95.98 96.10 96.38 96.37 96.67 0.29 100.00 96.54 96.88 96.70 97.05 96.79 97.19 0.33 100.00

penn 2000 1000 2.95 ∗ 10−4 199005 96.30 96.51 96.47 96.76 96.56 96.93 0.30 77.78 96.69 97.06 96.76 97.17 96.81 97.26 0.37 77.78

t

n

t

ancora 2000 500 5.90 ∗ 10−4 115002 97.11 97.14 97.31 97.34 97.47 97.49 0.03 100.00

frown 10000 500 6.60 ∗ 10−4 150014 95.67 95.90 95.97 96.26 96.25 96.52 0.29 87.50 96.42 96.71 96.56 96.86 96.63 96.99 0.30 87.50

penn 2000 125 1.76 ∗ 10−4 209396 96.13 96.16 96.27 96.30 96.39 96.40 0.03 100.00 96.45 96.47 96.52 96.53 96.57 96.57 0.02 100.00

t

r
e
e

t

a
g
g
e
r ancora 5000 500 1.17 ∗ 10−3 100533 96.09 95.89 96.42 96.26 96.67 96.51 0.19 100.00

frown 5000 1000 2.20 ∗ 10−3 84011 94.65 94.20 95.06 94.75 95.47 95.15 0.35 88.89 95.75 95.45 95.92 95.69 96.06 95.89 0.31 87.50

penn 2000 125 6.00 ∗ 10−4 152778 95.13 95.17 95.62 95.51 95.83 95.75 0.08 100.00 95.94 95.93 96.04 96.08 96.11 96.19 0.06 100.00

Table 1: Accuracy for learning trends whose associated learning curves do not intersect in the control window.

6. The algorithm at work

Given a corpus C , we illustrate how far in advance and well a learning curve for accuracy can be
approximated. As evaluation basis we introduce the run, a pair E = [T (C K

σ , π), τ ] characterized by one
learning trace and a convergence threshold τ . We study the set of runs F = {Ei}i∈I in Table 1 where,
with the aim of avoiding distortions due to particular choices, a common accuracy pattern π is considered.
Following previous works on the performance of different models for fitting learning curves (Gu et al., 2001),
particularly in the nlp domain (Kolachina et al., 2012), we opt for the power law family.
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6.1. The monitoring

All our estimates consider the first learning trend for which the convergence threshold is reached on the
learning scheme considered. The latter is characterized by its kernel and step, while the learning trend is
indicated using its level. Since this level marks the end of the iterative process, we baptize it as CLevel, after
convergence level. As kernels, we chose individuals with 2000, 5000 and 10000 words, deemed as significant
sizes for training data (Brants, 2000; Hajič, 2000), while steps of 125, 250, 500 and 1000 words are selected.
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Figure 3: Learning trends for maxent on frown and stanford on ancora, and maxent on frown and tnt on penn.

We monitor the results over a set S of word positions, hereinafter referred as control levels, taken
from a common finite sub-interval for the prediction windows {(CLeveli,∞)}i∈I associated to the set F =
{Ei}i∈I of runs studied. We baptize this sub-interval the control window. We consider two control windows:
[3∗105, 5∗105] and [3∗105, 8∗105], whose upper control levels approximately coincide with the end of ancora
and the number of observations for the other two corpora, respectively. We then compute, on control levels
spaced approximately at 5000 words, the accuracy (Ac) and its estimate (EAc) for each run in Table 1,
although for reasons of space only six of them are shown.
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Figure 4: Learning trends for fntbl and tnt on the penn Treebank, with details in zoom.
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As {CLeveli}i∈I ranges from 84011 (for treetagger on frown), to 209396 (for fntbl and tnt on penn),
we can thus conclude that the size of the prediction window multiplies that of the text used to approximate
the learning curve by a factor that varies from 1.39 to 4.95 (resp. from 2.82 to 8.52) when the last control
level is ‖5 ∗ 105‖ (resp. ‖8 ∗ 105‖). So, the percentage of the corpus used to reach the convergence threshold
in the worst and the best case is 41.88% and 16.8% (resp. 26.17% and 10.5%), respectively. These numbers
allows us to get a first idea of the scope of our proposal.

6.2. Quality metrics and experimental results

For each run, we compute on each control level the percentage error (pe) as the difference between the
estimated and the observed values, expressed as a percentage of the accuracy at that instant. We then
calculate the mean absolute percent error (mape) as the arithmetic mean of the unsigned pe. Formally,
given a run E and a set of control levels S :

pe(E )(i) := 100 ∗
EAc(E )(i)−Ac(T ,C )(i)

Ac(T ,C )(i)
, E = [T (C K

σ , π), τ ], i ∈ S , (10)

mape(E )(S ) :=
100

|S |
∗
∑

i∈S

|pe(E )(i)| (11)

On average, the quality of the estimates done over a control window is inversely proportional to the
mape, which varies from 0.02 (resp. 0.02) with stanford on ancora (resp. tnt on penn), to 0.41 (resp.
0.44) with maxent on frown in the case of [3 ∗ 105, 5 ∗ 105] (resp. [3 ∗ 105, 8 ∗ 105]). To illustrate this, Fig. 3
enables the comparison of learning curves and their estimates for the best and the worst mape results on
both control windows. On the other hand, 43.33% (resp. 30%) of these values are in the interval [0, 0.09],
rising to 66.67% (resp. 50%) in [0, 0.20], and reaching 90% (resp. 75%) in the interval [0, 0.30]. However,
while at first sight these data seem promising, they are not sufficient to measure the actual performance. We
also need, in order to judge the reliability of our approximations, to determine to what extent the estimation
errors impact decision-making on accuracy-based criteria. To this end, we are interested in calculating the
percentage of runs for which such errors do not cause wrong decisions to be made in comparing accuracy
values. So, fixing a set of control levels S and a set F of runs on a corpus C , the robustness of one of
such runs with respect to the rest depends on its estimates not altering the relative position of the learning
curves for accuracy throughout S .

Kernel Step Threshold CLevel Control Level mape rer Control Level mape rer

(words) (degrees) (word position) (word position)

‖3 ∗ 105‖ ‖4 ∗ 105‖ ‖5 ∗ 105‖ ‖6 ∗ 105‖ ‖7 ∗ 105‖ ‖8 ∗ 105‖

Ac EAc Ac EAc Ac EAc Ac EAc Ac EAc Ac EAc

a

n



o
r
a

mbt 10000 500 8.21 ∗ 10−4 107023 96.10 96.16 96.40 96.47 96.63 96.69 0.06
26.83

treetagger 5000 500 1.17 ∗ 10−3 100533 96.09 95.89 96.42 96.26 96.67 96.51 0.19

svmtool 2000 500 7.85 ∗ 10−4 105003 97.03 97.05 97.29 97.31 97.47 97.48 0.03
100.00

tnt 2000 500 5.90 ∗ 10−4 115002 97.11 97.14 97.31 97.34 97.47 97.49 0.03

f

r
o
w

n

morfette 2000 500 5.10 ∗ 10−4 196006 95.65 95.78 95.97 96.19 96.23 96.48 0.22
100.00

96.39 96.70 96.54 96.88 96.69 97.02 0.28
87.13

tnt 10000 500 6.60 ∗ 10−4 150014 95.67 95.90 95.97 96.26 96.25 96.52 0.29 96.42 96.71 96.56 96.86 96.63 96.99 0.30

mxpost 10000 500 7.90 ∗ 10−4 169009 94.75 94.75 95.18 95.24 95.49 95.58 0.06 95.74 95.84 95.95 96.04 96.09 96.21 0.09
74.26

treetagger 5000 1000 2.20 ∗ 10−3 84011 94.65 94.20 95.06 94.75 95.47 95.15 0.35 95.75 95.45 95.92 95.69 96.06 95.89 0.31

p

e
n
n

fntbl 2000 125 2.55 ∗ 10−4 209396 96.10 96.11 96.28 96.33 96.43 96.47 0.05 96.53 96.58 96.64 96.67 96.72 96.74 0.04
100.00

mxpost 10000 250 3.68 ∗ 10−4 170024 96.11 96.17 96.35 96.38 96.52 96.53 0.03 96.59 96.63 96.69 96.72 96.74 96.78 0.03

fntbl 2000 125 2.55 ∗ 10−4 209396 96.10 96.11 96.28 96.33 96.43 96.47 0.05
85.37

96.53 96.58 96.64 96.67 96.72 96.74 0.04
94.06

tnt 2000 125 1.76 ∗ 10−4 209396 96.13 96.16 96.27 96.30 96.39 96.40 0.03 96.45 96.47 96.52 96.53 96.57 96.57 0.02

maxent 5000 500 4.38 ∗ 10−4 146501 95.95 96.05 96.17 96.27 96.34 96.42 0.11 96.45 96.54 96.55 96.63 96.63 96.70 0.09
75.25

tnt 2000 125 1.76 ∗ 10−4 209396 96.13 96.16 96.27 96.30 96.39 96.40 0.03 96.45 96.47 96.52 96.53 96.57 96.57 0.02

mbt 2000 125 6.23 ∗ 10−4 149896 95.24 95.27 95.56 95.62 95.76 95.86 0.07
31.71

95.89 96.05 96.05 96.20 96.13 96.32 0.12
42.57

treetagger 2000 125 6.00 ∗ 10−4 152778 95.13 95.17 95.62 95.51 95.83 95.75 0.08 95.94 95.93 96.04 96.08 96.11 96.19 0.06

morfette 5000 1000 3.17 ∗ 10−4 167010 96.47 96.74 96.63 96.93 96.74 97.06 0.31
100.00

96.81 97.16 96.91 97.24 96.96 97.30 0.33
84.16

stanford 5000 250 4.46 ∗ 10−4 130008 96.41 96.57 96.57 96.77 96.72 96.91 0.18 96.81 97.01 96.90 97.10 96.95 97.17 0.20

mxpost 10000 250 3.68 ∗ 10−4 170024 96.11 96.17 96.35 96.38 96.52 96.53 0.03
97.56

96.59 96.63 96.69 96.72 96.74 96.78 0.03
99.01

tnt 2000 125 1.76 ∗ 10−4 209396 96.13 96.16 96.27 96.30 96.39 96.40 0.03 96.45 96.47 96.52 96.53 96.57 96.57 0.02

Table 2: Relative positions for learning trends whose associated learning curves intersect in the control window.
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From this perspective, a set of similar mape values for the runs studied can provide good results regardless
of whether they are large or small. We thereby justify the need for the complementary evaluation view just
described, independent of the mape concept, even though it may be sometimes unrealistic due to its high
exigency level. This follows from the fact that the robustness condition applies on all the control levels,
which is excessive when we compare runs whose learning curves intersect in the control window. More
specifically, as we matched observation and control levels, the error in the estimates of the intersection point
should be lower than the distance between its neighbouring control levels. Since we distribute these levels
approximately each 5000 words, such a degree of performance is highly unlikely. This can be seen from
Fig. 4, where the runs compared have similar mape values in both control windows [3∗105, 5∗105] (0.05 and
0.03) and [3 ∗ 105, 8 ∗ 105] (0.04 and 0.02), as shown in Table 2. Furthermore, these values are low and close
to the minimum ones observed (0.02), which provides learning trends also close to the associated learning
curves. In spite of everything, the robustness condition is not verified, although the first impression is that
the estimate is good. Therefore, we are here more interested in assessing the rate of distortion introduced
in the comparison of both runs, understood as the percentage of estimated values preserving the relative
positions of the corresponding observed ones.

We then distinguish two testing scenarios from the starting set of runs F . The first scenario, reflected
in Table 1, refers to the compliance for the robustness condition when the corresponding learning curves
are disjoint. The second, detailed in Table 2, analyzes the impact of prediction errors in the comparison of
runs whose learning curves intersect. More formally, given a set of control levels S and a set F of runs on
a corpus C , our primary reference for the first (resp. the second) scenario is the reliability estimation (re)
of a pair of runs E , Ẽ ∈ F with respect to i ∈ S , defined as follows:

re(E , Ẽ )(i) :=

{

1 if [Ac(T ,C )(i) @ Ac(T̃ ,C )(i)] and [EAc(T C )(i) @ Ac(T̃ ,C )(i)]
0 otherwise

(12)

(resp. re(E , Ẽ )(i) :=

{

1 if [Ac(T ,C )(i)−Ac(T̃ ,C )(i)] ∗ [EAc(T C )(i)− EAc(T̃ ,C )(i)] ≥ 0
0 otherwise

) (13)

where E = [T (C K
σ , π), τ ], Ẽ = [T̃ (C K̃

σ̃ , π), τ̃ ], @ ∈ {<,>} and E 6= Ẽ . For the first scenario and fixed
a control level i, this Boolean function determines when an estimation error made on E does not conflict
with the observation on Ẽ . In the case of the second scenario, re verifies when the estimates for E and Ẽ

on the control level i preserve the relative positions of the corresponding observations. In any case, we can
naturally extends the notion of re to the entire control window S .

Definition 7. Let, on a corpus C , S be a control window and E and Ẽ two different runs. We define the
reliability estimation ratio (rer) for E and Ẽ with respect to S as

rer(E , Ẽ )(S ) := 100 ∗

∑

i∈S
re(E , Ẽ )(i)

|S |
(14)

Although the rer covers our requirements to measure the performance in the second scenario, this is not
the case for the first one, where we need to calculate the number of runs in a set F with regard to which
the estimates for a given run E are reliable at all control levels.

Definition 8. Let, on a corpus C , E be a run, S a control window and F = {Ei}i∈I a set of runs such
that E 6∈ F . We define the decision-making robustness of E with regard to F on S as the value

dmr(E ,F )(S ) := 100 ∗
|Ei ∈ F , rer(E , Ei)(S ) = 100|

|F |
(15)

We are now ready to measure the performance of our proposal in the terms previously defined for
each testing scenario. So, we include in Table 1 the dmr values for the first one, i.e. the prediction of
accuracy when no intersecting learning curves are present in the control window, immediately adjacent to
the corresponding mape entry. They range from 77.78% (resp. 66.67%) to 100% (resp. 100%) in the control
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window [3 ∗ 105, 5 ∗ 105] (resp. [3 ∗ 105, 8 ∗ 105]). Moreover, 86.67% (resp. 80%) of these values appear in the
interval [87.50, 100]. This rate reached 100.00% (resp. 95%) in the interval [77.78, 100], as shown in Fig. 5,
where we can also appreciate some of the characteristics that define the stability of the estimates. Firstly,
low mape values are in line with full dmr performance (100%). This implies that the proximity between
learning trends and learning curves is associated with a reduced impact for accuracy-based decisions, as
might have been expected. Second, even in the case of the runs with the highest mape values, most dmr
values remain close to the maximum. As a consequence, a practical level of robustness for the estimates
seems to be guaranteed in every case. Finally, when the length of the corpora allows us to overlay the two
control windows used ([3 ∗ 105, 5 ∗ 105] and [3 ∗ 105, 8 ∗ 105]), our measures show that both mape and dmr
values hardly changed significantly, reaffirming the stability of calculations.
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Figure 5: mape values for all runs, and dmr ones excluding intersections in the control windows.

The rer values for the second scenario, i.e. the comparison between accuracy estimates when the learning
curves intersect in the control window, are reflected in Table 2 with regard to the pairs of associated runs.
These range from 26.83% (resp. 42.57%) to 100% (resp. 100%) in the control window [3 ∗ 105, 5 ∗ 105] (resp.
[3 ∗ 105, 8 ∗ 105]). While 57.14% (resp. 50%) of these rers are inside the interval [87.13, 100], 71.43% (resp.
87.5%) of them can be found in [74.26, 100], as can be seen in Fig. 6. As for the first scenario, these results
support the stability of the estimates. So, when the mape values in the pair studied are comparable, the
rer values are usually close to the maximum. In other words, the more similar the residuals, the higher
the level of confidence in locating the relative position of the learning curves. This performance seems also
to extend to most pairs with dissimilar mape, reflecting good behaviour of the technique under the worst
of circumstances. Finally, the already mentioned stability of mape through the extension from the control
window [3 ∗ 105, 5 ∗ 105] to [3 ∗ 105, 8 ∗ 105], applies to a lesser extent to rer values. Since intersection
necessarily has to take place in [3 ∗ 105, 5 ∗ 105] to provide meaning to this extension, the natural outcome is
therefore the slight increase in rer. However, the extreme proximity between the learning curves, together
with the existence of small irregularities in the observations can have the opposite effect. This occurs in two
of the pairs considered (morfette-tnt and morfette-stanford), where the real underlying factor in these cases
is the impossibility of distinguishing the curves involved as from a given level. In any case, the reliability of
the last estimate in the control window [3 ∗ 105, 5 ∗ 105] (resp. [3 ∗ 105, 8 ∗ 105]) with regard to the relative
position for the learning curves of each pair is 71.43% (resp. 100%)

7. Conclusions

Based on a functional analysis approach, we extend the classic discrete calculation of accuracy in post
systems to a continuous domain. We model the process as the uniform convergence of a sequence of learn-
ing trends which iteratively approximates the learning curve for accuracy. Since the limit learning trend
computed is C-infinity, the strategy described also allows us to estimate in advance the learning curve for
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Figure 6: mape and rer values for all pairs of runs intersecting in the control windows.

accuracy over the entire corpus. The correctness of the algorithm has been formally proved, including a
stopping criterion, with respect to our working hypotheses. The stability of these calculations is guaranteed
once a point baptized as level of prediction has been surpassed.

Unlike previous approaches to the approximation of learning curves for a given particular linguistic task,
we can exploit these properties to deal with a variety of practical uses beyond the mere estimation for
the final value of accuracy. Focusing on the most representative ones, it is possible to estimate the extra
accuracy increase between any two levels in the corpus, which is helpful to evaluate the training effort
needed to attain a certain measurement performance. Comparing post systems also becomes realistic at all
training levels, providing us with a useful instrument for choosing the most appropriate tagger in each case.
Finally, accuracy prediction below a certain degree of convergence fixed by the user can be guaranteed, which
gives us the possibility of evaluating the adequacy of tagger configuration on the basis of a fraction of its
generation process. Altogether, these facilities involve both quantitative and qualitative aspects, forming a
powerful tool for reducing the training effort in tagger construction. In this context, the experimental results
illustrate the goodness of the method, corroborating the initial expectations on a wide range of particular
cases for a representative sample of post systems and corpora.

Given that our only primary hypothesis is the use of an accuracy pattern as parametric family for
modeling learning trends, we believe that it is possible to directly apply the same technique on other
prediction scenarios, as long as they verify such a condition. This should be the case of a range of well
known questions in ml, particularly in the domain of al, in order to solve the stopping learning question.
We can here mention various nlp tasks, such as machine translation, text classification, named entity
recognition or any other kind of linguistic notation. All these are new fields of application we plan to
explore in a future work.
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