Dynamic Programming as Frame for Efficient Parsing

Manuel Vilares Ferro
Universidad de La Corufia
Departamento de Computacion
Campus de Elvifia s/n, 15071 La Corufia, Spain
vilares@dc.fi.udc.es

David Cabrero Souto
Centro Ramon Pifieiro para a Investigacion en Humanidades
Estrada Santiago-Noia km 3, A Barcia
15896 Santiago de Compostela, Spain
dcabrero@cirp.es

Miguel A. Alonso Pardo
Universidad de La Corufia
Departamento de Computacion
Campus de Elvifia s/n, 15071 La Corufia, Spain
alonso@dec.fi.udc.es

Abstract

The last few years have seen a renewal of interest in the
consideration of dynamic programming in compiler tech-
nology. This is due to the compactness of the representa-
tions, which are turning this paradigm into a common way
of dealing with highly redundant computations occurring,
for instance, in natural language processing, logic pro-
gramming or abstract interpretation and related to phenom-
ena such as non-determinism or domain ordering. However,
it is not usual to find practical studies about what the real
interest of these techniques is, and which approaches are
better adapted in each case.

We justify the consideration of dynamic programming,
both in definite clause and context-free grammar pars-
ing, highlighting the parallelism between the conclusions
reached in both cases. We focus on the computational prop-
erties, suggesting a simple decision guide for the reader in-
terested in applying this technology.

1. Introduction

Highly redundant computations are usual when we deal
with complex grammar formalisms. This claim has been

used to motivate parsing techniques that encode trees and
computations in some kind of shared structure. Major ar-
eas of application are natural language processing (NLP),
where dynamic programming has been known for a long
time [3], and logic programming. Here, dynamic program-
ming was initially been proposed [8] to address shortcom-
ings in classic PROLOG evaluation, whose poor termination
and complexity properties have often rendered it unsuitable
for practical purposes. However, although in theory these
strategies give an exponential reduction in complexity over
traditional parsing and resolution techniques [5], the lack
of a comparison frame for these proposals often leads us to
describe our compilation schema on the basis of naive ap-
proaches with backtracking.

Our aim is to illustrate the practical suitability of dy-
namic programming to deal with grammatical formalisms
in the Horn-like continuum that goes from context-free lan-
guages to Horn clause logic. To obtain a uniform under-
standing of the computational behavior of syntactic phe-
nomena, we establish a formal framework for parsing. We
choose to work in the context of the logical push-down au-
tomaton (LPDA) notion [5], an operational model general-
izing the classic concept of push-down automaton to full
first order Horn logic, that allows all parsing strategies to be
expressed by a unique device.

We seek to cast some light on which compilation

schema, and which dynamic programming approach, are
suitable in each case. The problem is posed in the context
of NLLP, as representative of a domain embracing all parsing
formalisms in the continuum considered. In effect, parsers
in NLP are usually classified in two categories [8]:

e Off-line approaches producing some kind of prelim-
inary grammatical skeleton, typically a context-free
grammar (CFG), from which the system must filter out
the undesirable analysis taking into account the finer
language structure.

e On-line systems applying linguistic restrictions at
parsing time, as is the case of definite clause grammars
(DCGs).

In both cases, the sharing of computations affects the per-
formance. So, it may allow a better factorization to filter
parse trees [11] or fully exploit the declarative power of
the formalism by dealing with a possible infinite number
of structures [15].

In section 2 of this paper we establish our formal testing
framework. Sections 3 and 4, respectively give a survey
of some representative parsing strategies in both cases, off-
line and on-line, locating them in our testing framework.
In section 5, we include the experimental results. Finally,
section 6 is a conclusion about the work presented.

For top-down architectures:

Apo i — | Ak 1, Ak2, - Akyi | Akyitl, - Akyng -

... thefi rst 4 categories have been recognized.

For bottom-up architectures:

Ago —Ar1, Ak, Ak | Akt Aoy, |

... categories after the s*" position have been recognized

Figure 1. The meaning of symbols w7y ;

2. A common framework

We introduce a common parsing device for testing, ex-
tending the original notion of LPDA [5]. We do it as a
generalization of the operational model described by the
authors in [14]. An LPDA is now defined as a 7-upla
A=(X,F,X,A,8,8;,0),where X isadenumerable and

ordered set of variables, F is a finite set of functional sym-
bols, ¥ is a finite set of extensional predicate symbols, A is
a finite set of predicate symbols used to represent the literals
stored in the stack, $ is the initial predicate, $ is the final
predicate; and © is a finite set of transitions. The stack of
the automaton is a finite sequence of items [A4, it, bp, st].o,
where the top is on the left, A is in the algebra of terms
TA[F U X], o asubstitution, ¢ is the current position in the
input string, bp is the position in this input string at which
we began to look for that configuration of the LPDA, and st
is a state for a driver controlling the evaluation. Transitions
are of three kinds:

e Horizontal: B ~—— C{A}. Applicable to stacks
E.p &, iff there exists the most general unifier (mgu),
o = mgu(E, B) such that Fo = Ao, for F a fact
in the extensional database. We obtain the new stack
Co.po &.

e Pop: BD — C{A}. Applicable to stacks of the form
E.pE'.p' &, iff there is 0 = mgu((E, E'p), (B, D)),
such that F'o = Ao, for F a fact in the extensional
database. The result will be the new stack Ca.p'po &.

e Push: B — CB{A}. We can apply it to stacks
E.p &, iff there is ¢ = mgu(E, B), such that Fo =
Ao, for F' a fact F' in the extensional database. We
obtain the stack C'o.c B.p &.

where B, C' and D are items and A is in Tx[F U X], a con-
trol condition to operate the transition. In order to deal with
context-free grammars, it is sufficient to substitute the no-
tion of unification by matching, taking o, p and g as iden-
tity in transitions. Typically, the control predicate { A} will
represent in this case a condition over a lookahead string.

Dynamic programming is introduced by collapsing stack
representations on a fixed number of items and adapting
transitions in order to deal with these items [13, 2]. When
the correctness, completeness and compatibility of compu-
tations in this new frame are assured in relation to classic
push-down devices, we talk about the concept of dynamic
frame. Here, the use of 4t allows us to index the parse in
order to disregard the computational work of the lexical an-
alyzer by separating this task from parse, focusing on syn-
tactic phenomena and reducing the search. This relies on
the concept of itemset [3], associating a set of items to each
token in the input string, and which represents the state of
the parsing process at that point of the scan. We shall use
bp to chain pop transitions.

Usually, only two dynamic frames are of practical inter-
est, S2 and S, where the superscript denotes the number
of top stack elements used to generate items. The standard
dynamic frame, where a stack is given by all its compo-
nents, and backtracking is the technique to simulate non-
determinism, is denoted by ST Correctness and complete-

ness of S2 in relation to ST is trivial given that transitions
in our formal model depend in the worst case on the last
two elements in the stack. For S* the case is different, since
during pop transitions no information is available about the
element under the top of the stack. In order to solve this
lack of information, we redefine the behavior of transitions
on items S1, as follows:

e Horizontal case: (B — C)(A) = Co, where o =
mgu(A4, B).

e Popcase: (BD — C)(A) = {Do — Co}, where
o = mgu(4, B), and Do — Co is a dynamic transi-
tion generated by the pop transition. This is applicable
not only to the item from which we had computed the
top, but also to those to be generated and which share
the same syntactic context.

e Push case: (B —— CB)(A) = Co, where ¢ =
mgu(A4, B).

Although S provides the best sharing properties, it can
be proved that correctness is only guaranteed for weakly
predictive parsing strategies [13, 2], typically pure bottom-
up approaches or mixed-strategies including a predictive
phase, static or dynamic, complemented with a bottom-up
construction of the parse.

3. Off-line parsers

We compare several context-free parsing schema, often
the grammatical formalism for the skeleton in off-line ap-
proaches, in different dynamic frames. We have considered
three basic parser generators: the AGFL [6] environment?,
an implementation of the classic Earley’s algorithm [3], and
the GALENA [14] system. These correspond, respectively,
to a classic top-down approach with backtracking, a mixed-
strategy with dynamic prediction, and a mixed-strategy with
static prediction based on an LALR(1) extended automaton
taken from the Ice [13] environment. We have chosen ICE
as the most efficient representative of the family of unre-
stricted LR-like context-free parsers that includes systems
such as SDF [4] and GLR [9], both based on Tomita’s al-
gorithm [11]. To locate these parsing schema in our testing
frame, we introduce the categories /i, @ € {1,...,ng}
foreachruleyy : Apo — Ag1,. .., Ak, n,, Whose meaning
we shall later detail in each case.

1AGFL isnot areal unifi cation-based parser since it is built on the no-
tion of &ffi x grammar. However, it can be assimilated to a DCG parser
where functional symbols are not alowed. This permit us to take into ac-
count one of the most known parsing systems available in NLP.

3.1. A top-down architecture

Here, the symbol 57, ; shows that the first ¢ categories in
the right-hand-side of rule ~y, have already been recognized,
as it is shown Fig. 1. So, we obtain the following set of
transitions that characterize the parsing strategy:

1. [$,0,0,_] — [VO’0,0,0,_] $
2. [Vk,iaita bpa —] — [Ak,i+1>7:t7it7 —]
[Vk,’i7it7 bp: —]
3. [Ago,it,bp,-] +—> [Vk,o,%tbp,]
4. [Vk,nk) Zta bpa —]
[Vk’,ia bp7 T, —] — [vk'ﬂ'-i-la ita r, -]

which we can briefly interpret as follows:

1. Requires the recognition of the axiom A o, which we
represent by 7o,0.

2. Selects the leftmost unrecognized category, Ay ;1.

3. The body of +; becomes a sequence of new categories
to be recognized.

4. After recognition of -y, we return to the calling rule
Vi

The state, here represented by “_”, has no operative sense in
this approach.

3.2. Earley’s approach

As in the precedent case, Earley’s algorithm requires the
same interpretation for symbols 57 ; and states have no op-
erative sense in items. In addition, given a category Ay, ;,
we shall consider the associated symbols A} ; and Ay ; to
respectively indicate that Ay, ; is yet to be recognized or has
been already recognized. So, the parsing scheme can be
defined by the transitions:

1. [$,0,0,] — [A4),0,0,0,] 8
2. [Al g ityit,] > [Vkoit,it,]
[} o, it,it,]

3. [Vk,iaita bp, —] — [A;c,i—i—l’it’ it, _]

[Vk,'ia it: bp7 —]

4. [vk,nk ,it, bp, —]

[Aﬁc,o’ bp, bp,] — [A;cl,oa it, bp, |

5. [A}c’ﬂ-Jrl ,it, bp, |
[vk,i7bp7 T, —] —
that we informally explain as:

[vk,i-i-la it; T, —]

s(esp(Tree)) — sentence(Tree).

sentence(phr(Treey, Trees)) — np(Tree;, Nmbr), vp(Trees, Nmbr).

sentence(phr(Treey, Trees)) — sentence(Treer), pp(Trees).

np(np(s(Wrd)), Nmbr) — noun(Wrd : word, Nmbr : number).

np(pr(Wrd), Nmbr) — pronoun(Wrd : word, Nmbr : number).

np(np(det(Wrdy), s(Wrdy)), Nmbr) — determiner(Wrd; : word, Nmbr : number, Gndr : gender),
noun(Wrdy : word, Nmbr : number, Gndr : gender).

np(np(Treeq, Trees), Nmbr) — np(Treer, Nmbr), pp(Trees).

pp(pp(prep(Wrd), Tree)) — preposition(Wrd : word), np(Tree, Nmbr).

vp(vp(verb(Wrd), Tree), Nmbr) — wverb(Wrd : word, Nmbr : number), np(Tree, Nmbr).

Figure 2. Guideline grammar

1. States the axiom Ag o, which we represent by Ag ;.

2. Requires the recognition of A4; ,, which we represent
by Vk.o-

3. Selects the leftmost unrecognized category, 4y ; ;.

4. The body of y;, has been recognized. We push Ay , to
show that A}, , has been recognized.

5. After recognition of A} ;. ,, the parse advances to the
next term in .

3.3. A bottom-up strategy with static control

We introduce the ICE parser included in GALENA. Here,
a symbol v7;,; expresses that the categories in the right-
hand-side of +y,, after the 4 position have already been recog-
nized, as it is shown in Fig. 1. The set of transitions defines
a generalized LALR(1) automaton as follows:

1. [Agng,it,bp,st] > [Vk,ng, i, 0, st
[Akﬂlk ,it, bp, St]
{action(st, token;;) = reduce(~yx)}

2. [Vk,i,it,r, Stl]
[Aki,7,bp,st1] +— [Vk,i-1,it, bp, sto)
{action(sts, token;;) = shift(st1)}, i € [1,n]

3. [Vk,o; '&t, bp; Stl] — [Ak,Oa lt: bp) 5t2]
{gOtO(stl, Ak,O) = Stg}

[Ak,,', it, bp, Stl] —> [Ak,z’+1 , it + 1, it, Stg]
[Ak,i7 Zt, bp7 Stl]
{aCtiOﬂ(Stl,Ak,i+1) = Shiﬁ(8t2)}, i€ [O,le)

[Ak,i, 58, bp, st1] — [As0, 0t + 1,4t sty
[Ak,i7 Zta bpa Stl]
{action(st1, A; o) = shift(st2)}

[$,0,0,0] — [A(],(),0,0,St]
[$,0,0,0]
{action(0, tokeng) = shift(st)}

where action, goto, shift and reduce are well-known con-
cepts in LR parsing [1]. We interpret these transitions as
follows:

1.

Pushes /x,n, to indicate that the body of -y is to be
recognized.

The parser advances after the refutation of Ay ;.

All literals in the body of +, have been recognized, and
therefore Ay o can also be recognized.

Pushes the literal Ay 41, assuming that it will be
needed for the recognition.

Begins with the recognition of ~y,.

States the axiom Ag .

4. 0On-lineparsers

We now go deep into the influence of dynamic pro-
gramming when considering more complex grammatical

formalisms. To do so, we take the DCG extensions of
the context-free parsing strategies previously tested. To
be more precise, we shall consider the AGFL [6] environ-
ment as representative of a typical top-down evaluator, an
implementation of Earley’s deduction scheme [8], and fi-
nally the GALENA [14] system using a simple unification
oriented extension of ICE [13]. We have chosen GALENA
as representative of the family of LR-like inference environ-
ments [7, 10].

Previous to introducing the experimental results, we lo-
cate each architecture in our unified framework. Here, we
deal with clauses v, of the form Ao : —Ak1,..., Ak,nys
where Ay, ; are now logical terms. We introduce the vector
T}, of the variables occurring in g, and the predicate sym-
bol 71,;. Besides the positional meaning of this predicate
symbol, which is dependent on each particular evaluation
strategy, instances of vk,i(fk) serve as temporary infor-
mation storage structures for remaining subgoals during the
evaluation.

Intuitively, the interpretation of the following evaluation
schema is analogous to those considered for off-line parsers,
replacing the notions of matching, recognition, axiom, cat-
egory and rule by unification, refutation, query, goal and
clause; respectively.

4.1. A top-down architecture

We begin with the simulation of the top-down strategy,
which is given by the transitions:

1 [$70707—] — [v070(7_—‘;])70707_] $

2. [Vk,z(fk)alta bp7 —] — [Ak,i+1_:it7it7 —]
[vk,l(Tk)J Zta bp7 —]

3. [Ak,Oaitabp7 —] — [Vk,O(fk)7it7 bp? —]

4. [Vk,nk (fk)a it, bpa —]

-

[Vk’,i(Tk')a bp7 T —] — [vk',i-i-l (fk')7 it, T, —]

where an instance of vk,,-(fk) indicates that all literals until
the 4 literal in the body of ~ have been proved.

4.2. Earley’s approach

In the case of Earley’s deduction, the set of transitions is
now given by:

l

1. [$,0,0,] [40,0,0,0,] §

l

2. [A g it,it,] [Vr.0(Tk), it, it,]

[A} 0»it,it,]
3. [Vk,z(fk); it, bp: —] — [A;C,'H-l_: it,it, _]
[Vk,i(Tk)a it, bp7 —]

4. [vk,nk (fk)ait;bpa —]
['A;i),()’ bp’ bp’ ‘] — [Agpa Zta bpa —]
5' [A;;;I,H-l 2 Zta bp; —]

[vkﬂ(fk)a bp7 T, —] — [Vk,i+1 (fk)a it, 7, —]

with the same interpretation for instances of 7 k,i(fk) asin
the preceding case. The meaning of atoms A}, ; and A} ; is
analogous to the context-free case. They respectively indi-
cate that the term Ay, ; in the DCG is yet to be proved or it
has already been proved.

6000 | -
1 u}
o Galenacfgon S
T
5000 _| | » GalenacfgonS
1
® Galenadcgon S
4000 T
| | ° Galenadcgon S o
] L)
[n]
3000 _ |
2000 | 2
]
o
1000 _| o
| |
o
¢
£ 1
s | | | |
0 5 10 15 20

val ue of i

Figure 3. Tests with GALENA

4.3. A bottom-up strategy with static control

Finally, we introduce the evaluation scheme of GALENA,
given by the transitions:

> [Ty (Th), it it, st]
[Akvnk ’ ita bp; St]
{action(st, token;;) = reduce(vx)}

1. [Agne,it, bp, st]

2. [ki(Th),it,r, sta] .
[Ak,i, 7, bp, sti1] > [Vk,i-1(Tk), it, bp, sto]
{action(st, token;;) = shift(st;)}, i € [1,n4]

3. [Vro(Th),it,bp,st1] +— [Apo,it,bp, sts]
{gOtO(stl, Ak,O) = Stg}

4. [Ak,i; it, bp, Stl] — [Ak:,i—I-l it + 1,4t 8t2]

[Akii,it, bp, Stl]
{action(st1, Ag,i+1) = shift(st2)}, i € [0,nx)

5. [Ak,i7 it, bp, Stl] — [Al,07 it + 1, it, StQ]

[Ak,iaita bp; Stl]
{action(st1, A 9) = shift(stz)}

6. [$,0,0,0] — [Ak,0,0,0, st]

[$,0,0,0]

{action(0, tokeng) = shift(st)}

Control conditions are built from actions in a driver given
by a LALR(1) automaton built from the context-free skele-
ton of the DCG. This skeleton is obtained from the original
program by keeping only functors in the clauses in order
to obtain terminals from the extensional database, and vari-
ables from heads in the intensional one, taking into account
the arity. The idea is to use the driver to cut out evaluation
conflicts arising from coincidence of logical terms signa-
tures during the proof process.

5. Experimental results

To show how dynamic programming improves the effi-
ciency of compilation schema, we shall focus on two as-
pects: the number of computations as contrasted with clas-
sic backtracking techniques, and a simple comparison be-
tween different parsing strategies. Although this work has
been supported by a lot of different tests, we have consid-
ered an only example to illustrate our discussion, in order to
facilitate understanding. We use the syntax of a simple sub-
set of nominal sentences in English. Henceforth, we take as
our guideline example the DCG shown in Fig. 2.

To simplify the explanation, we assume that lexical in-
formation is directly recovered from a specialized tagger
by the name of the corresponding attribute, which allows
us to focus on syntactic phenomena. So, the third clause
in the definition of the predicate np instances the variable
Wrd; to the value of the current input token by using the

syntax Wrd; : word. Similarly, we recover the number and
the gender, by using respectively the key-words number and
gender. The context-free skeleton is defined by the rules:

S — Sentence
Sentence — Np Vp

Sentence — Sentence Pp

Np — noun

Np — pronoun

Np — determiner noun
Np — NpPp

Pp — preposition Np
Vp — verb Np

We have chosen input strings of the form

| see a father (of a son of a father)®

where ¢ > 0 is the number of repetitions of the substring
““of a son of a father”. Here, the number of different parses
C; increases exponentially with 4. This number is:

21 1 .
00—01—1 and Ci—<7:>i+—1,lfz>l

allowing us to study the compilation schema when highly
redundant computations appears.

6

10 T o
|| o AdflcfgonS
2
5 o DyAlLogdcgonsS
10
_) o
e DyAlogcfgonS
4
10 o
| o
3
10 _| °
o
2 L]
10 | ° .
L[]
" 3
'
10 _|
g
()
-1
I I I I
0 1 2 3 4
val ue of i

Figure 4. Tests using pure top-down parsing

Tests have been performed on dynamic frames S7 with
AGFL, Earley and ICE, S? with AGFL and ICE, and S!
with Earley and ICE. Tests on S2 and ST have no inter-
est for Earley, given that the classic algorithm is naturally
described in S*. For AGFL, tests on S* are out of place due
to its top-down architecture that thwarts completeness, and
tests on S have been obtained from an alternative adapta-
tion of the parsing scheme based on DYALOG [2], since the
original tool does not work in dynamic programming.

Finally, tests on ST for AGFL in the DCG case have been
obtained excluding all functional symbols since this facility
is not available in AGFL. To avoid distortion of the results,
our testing grammar has been chosen in such a way that the
number of ST items in the CFG and the corresponding DCG
is the same. In effect, the absence of clauses with a common
context-free skeleton, and the fact that in our example func-
tional symbols are exclusively used in a constructive sense,
permits us to attain this goal. Results on S2 for AGFL, using
our alternative implementation, include functional symbols.

o

4000
B Earley deduction dcg on S .
® Earley cfg on Sl
3000 |
o
2000 |
1000 _| "
o
L]
£ i . .
2o B . .
- I [[[[[
0 1 2 3 4 5 6
val ue of i

Figure 5. Tests using Earley-like strategies

Results related to GALENA and AGFL are shown in Fig. 3
and Fig. 4 respectively. In the case of Earley’s algorithm re-
sults are shown in Fig. 5. In all cases, dynamic program-
ming highlights a better computational behavior with re-
spect to classic approaches based on ST In addition, a sim-
ple view shows that the best results correspond to GALENA,
a mixed-strategy with static predictions, over Earley and
classic top-down parsing.

Tests using dynamic programming, both for the pars-
ing of the sole context-free backbone and whole DCG, are
shown in Fig. 6 and Fig. 7 respectively. The natural dy-
namic frame of each parsing model was used to obtain all
the figures. One again the benefit due to GALENA’s mixed-
strategy is shown. By looking at both figures we can also re-
alize that in the case of GALENA, the lowest increment was
achieved in the number of generated items when going from

CFG to DCG. In particular, results on DCGs proves the ef-
ficiency of GALENA to cut out unification conflicts during
resolution. Finally, the apparently bad behavior of GALENA
in these tests cannot be extended to other CFGs. In effect,
they are a natural consequence of the reduced number of
prediction computations due to the structure of our gram-
mar, as it is claimed in [13].

4000
o DyALog cfg on s’
— 1 L]
o Earleycfgon S
1
* GalenacfgonS
3000 _| 9 °
=]
2000 _| .
o
=]
1000 _|
H
=]
7] o
®]
[
o
I I I I

0 5 10 15 20
val ue of i

Figure 6. Comparing strategies for CFGs

6. Conclusion

This paper reviews, in a formal framework encompass-
ing all architectures considered, the computational proper-
ties of the some of best-known parsing schema in the con-
tinuum of Horn-like formalisms. We have exemplified the
problem of computational sharing in a frame where non-
determinism is usual, showing the practical interest of dy-
namic programming regardless of the parsing scheme cho-
sen.

As a secondary outcome, we corroborate the superior-
ity, often claimed but never proved, of bottom-up parsers
over top-down and mixed strategies. Frequently the perfor-
mance shown by top-down architecture in practical systems
is due to the efficiency of backtracking to manage the search
space. In our case, the use of indexing permits us to limit
this difference in the bottom-up case, thus increasing the
efficiency.

Finally, the parallelism existing between the results on
the practical use of dynamic programming for both ex-
tremes in the continuum considered, leads us to argue the
extension of our conclusions to other formalisms in the
same continuum, such as middle-sensitive grammars [12].

10

10

|
oo

10

oo

10
o DyALog dcg on s?

o Earley deduction dcg on st

e Galenadcg on st

itens

I I I I
0 1 2 3 4

val ue of i

Figure 7. Comparing strategies for DCGs

7. Acknowledgments

This work has been partially supported by the FEDER
of European Union (1FD97-0047-C04-02), Government of
Spain (HF97-223) and Xunta de Galicia (XUGA10505B96
and XUGAZ20402B97).

References

[1] A.V. Aho and J.D. Ullman. The Theory of Parsing,
Translation and Compiling, volume 1-2. Prentice-
Hall, Englewood Cliff, New Jersey, U.S.A., 1973.

[2] E. de la Clergerie. Automates & Piles et Programma-
tion Dynamique. PhD thesis, University of Paris VII,
France, 1993.

[3] J. Earley. An efficient context-free parsing algorithm.

Communications of the ACM, 13(2):94-102, 1970.

[4]

(5]

(6]

[7]

(8]

(9]

[10]

[11]

[12]

[13]

[14]

[15]

J. Heering, P.R.H. Hendriks, P. Klint, and J. Rekers.
The syntax definition formalism sDF - reference man-
ual. SIGPLAN Notices, 24(11):43-75, 1989.

B. Lang. Towards a uniform formal framework for
parsing. In M. Tomita, editor, Current Issues in Pars-
ing Technology, pages 153-171. Kluwer Academic
Publishers, 1991.

H. Meijer. The project on extended affix grammars
at Nijmegen. Attribute Grammars and their Applica-
tions, SLNC, 461:130-142, 1990.

U. Nilsson. AID: An alternative implementation of
DCGs. New Generation Computing, 4:383-399, 1986.

F.C.N. Pereira and D.H.D. Warren. Parsing as deduc-
tion. In Proc. of the 215 Annual Metting of the Associ-
ation for Computational Linguistics, pages 137-144,
Cambridge, Massachusetts, U.S.A., 1983.

J. Rekers. Parser Generation for Interactive Environ-
ments. PhD thesis, University of Amsterdam, Amster-
dam, The Netherlands, 1992.

D.A. Rosenblueth and J.C. Peralta. LR inference: In-
ference systems for fixed-mode logic programs, based
on LR parsing. In International Logic Programming
Symposium, pages 439-453, The MIT Press, Cam-
bridge Massachussets 02142 USA, 1994.

M. Tomita. Efficient Parsing for Natural Language. A
Fast Algorithm for Practical Systems. Kluwer Aca-
demic Publishers, Norwell, Massachusetts, U.S.A.,
1986.

K. Vijay-Shankar and D.J. Weir. The equivalence of
four extensions of context-free grammars. Mathemat-
ical Systems Theory, 27:511-545, 1994.

M. Vilares. Efficient Incremental Parsing for Context-
Free Languages. PhD thesis, University of Nice. ISBN
2-7261-0768-0, France, 1992.

M. Vilares and M.A. Alonso. An LALR extension
of DCGs in dynamic programming. In C. Mart'in
Vide, editor, Mathematical and Computational Anal-
ysis of Natural Language, volume 45, pages 267-
278. John Benjamins Publishing Company, Amster-
dam, The Netherlands, 1998.

M. Vilares, M.A. Alonso, and D. Cabrero. An opera-
tional model for parsing fixed-mode DCGs. In Proc. of
LACL’97. Int. Conf on Logical Aspects on Computa-
tional Linguistics, pages 61-64, Nancy, France, 1997.

