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Abstract. An incremental development environment for unrestricted
context-free languages is described and tested. Our proposal includes
a parse generator, an incremental facility to make the overall parsing
efficient in the context of program development; and a graphical interface
that provides a complete set of customization and trace facilities. The
tool, baptized ICE after Incremental Context-Free Environment, appears
to be superior to other general context-free parsing environments and is
comparable to deterministic ones, when the context is not ambiguous.

1 Introduction

Programming requires certain characteristics making it both friendly and effi-
cient. This implies providing the user with an interface in order to favor incre-
mental program development in a context where several consecutive corrections
of the input are usually made. After each editing operation on an input, its
implementation should also be updated efficiently, which means that preparing
a program requires significantly less effort than developing it from scratch. We
are interested in language design applications, where modifications of the gram-
matical structure are frequent. In this context, parser generation is inspired
by BISON [2], which we have extended in order to deal with general context-free
grammars (CFGs). Parsing is stated in the context of parallel methods, a variation
of Earley’s construction [3] proposed by Lang [4] that separates the execution
strategy from the implementation of the push-down automaton (PDA).

Finally, incremental parsing within general context-free parsing has been
addressed by van den Brand [9] and Rekers [5]. Both authors take the variable
covering the modification as a parameter to which the text that is to be parsed
should be reduced, to prevent the system from doing unnecessary work during
the search for this minimal node, for example, when the input contains an error.
Instead, we update runs in parallel to the parsing [10], which ensures the earlier
detection of errors, thus avoiding any unnecessary work.

2 Parser generation

Parser construction is an extension from BISON [2] in order to permit the genera-
tion of extended LALR(1) PDAs. More explicitly, the generation of tables has been



re-implemented in order to deal with both incremental and non-deterministic
parsing. We direct our attention to constraining the space bounds for the gen-
eration process, which involves to the consideration of default actions as well as
array compacting methods in the PDA.

The language representing all possible elementary actions in the PDA allows
us to decompose complex actions in terms of simple push and pop transitions,
which constitutes the basis for introducing dynamic programming in the parsing
process. In order to take care of the trace of pop transitions in reduce actions,
possibly in the context of non-deterministic interpretation, the system also pro-
vides the facility to go back over the schema in the automata. What follows is a
short description of tables and functionalities:

— yytranslate: vector mapping yylex’s tokens into user’s token numbers. The
token translation table is indexed by a token number as returned by the
user’s yylex routine. It yields the internal token number used by the parser.

— yyrl[r]: symbol that rule r derives.

— yyr2[r]: number of symbols composing the right hand side of rule r.

— yydefact[s]: default rule to reduce within state s, when yytable does not spec-
ify something else to do.

— yydefgotofi]: default state to go to after a reduction that generates variable
YYNTBASE + i, except when yytable specifies something else to do.

— yypact[s]: index in yytable of the portion describing state s. The lookahead
token type is used to index that portion to find out what to do. If the
value in yytable is positive, it indexes the corresponding elementary action
on yyautomaton. If the value is zero, the default action from yydefact[s] is
used. We can avoid the access to yytable in the following cases:

e If the only action in state s is the default one. This case can be detected
in three different forms without accessing to yytable:

* When yypact[s] = YYFLAG.
*x When yypact[s] + lookahead < 0.
* When yypactfs] + lookahead > YYLAST.
e If the current action is the default one, we can also avoid the access to

yytable when yycheck[yypact[s] + lookahead] # lookahead, as will be
explained below.

— yypgoto[i]: the index in yytable of the portion describing what to do after
reducing a rule that derives variable YYNTBASE + ¢. This portion is indexed
by the parser state number as if the text for this non-terminal had been
previously read. The value from yytable is the state to go to. We can avoid
the access to yytable when the action to apply is the default one:

e When yypgotofi] + state > 0.
e When yypgotofi] + state < YYLAST.
o When yycheck[yypact[s] + state] # state.

— yytable: vector with portions for different uses, found via yypact and yypgoto.



— yycheck: vector indexed in parallel with yytable. It indicates, in a roundabout
way, the bounds of the portion you are trying to examine. Suppose that the
portion of yytable starts at index p and the index to be examined within
the portion is 4. Then if yycheck[p+i] # i, i is outside the bounds of what
is actually allocated, and the default from yydefact or yydefgoto should be
used. Otherwise, yytable[p+i] should be used.

— yyautomaton: vector containing the descriptors for actions in the automaton:
block — 0, halt — 1, non-determinism — 2, reduce — 3, shift — 4.

— yystos[s]: the accessing symbol for the state s. In other words, the symbol
that represents the last thing accepted to reach that state.

— yyreveal_map[s]: index in yyreveal of the portion that contains all the states
having a transition over the state s.

— yyreveal: vector indexed by yyreveal_map that groups together all the states
with a common transition.

where we have considered the following set of constants:

— YYFINAL: the termination state. The only state where a halt is possible.

— YYFLAG: the most negative short integer. Used to flag in yypact.

— YYLAST: the final state, whose accessing symbol is the end of input. It has
a only one transition, over YYFINAL. So, we obey the parser’s strategy of
making all decisions one token ahead of its actions.

— YYNTBASE: the total number of tokens, including the end of input.
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Fig. 1. Practical incremental recovery

3 Standard parsing

Our aim is to parse a sentence w;.. , = wi ... w, of length n, according to a
CFG G = (N, X, P, S), where N is the set of non-terminals, X' the set of terminal
symbols, P the rules and S the start symbol. The empty string will be repre-
sented by €. We generate from G a PDA having as finite-state control a LALR(1)
automaton built as indicated in Sect. 2. The direct execution of PDAs may be
exponential with respect to the length of the input string and may even loop.
To get polynomial complexity, we must avoid duplicating stack contents when
several transitions may be applied to a given configuration. Instead of storing all



the information about a configuration, we must determine the information we
need to trace in order to retrieve that configuration. This information is stored
into a table Z of items:

I={[st,X,i,j], st€S, Xe NUZU{V, }, 0<i<j}

where S is the set of states in the LALR(1) automaton. Each configuration of
the PDA is represented by an item storing the current state st, the element X
placed on the top of the stack and the positions i and j indicating the sub-
string w;41 ... w; spanned by X. The symbol V, , indicates that the final part
A st1...App, of a context-free rule 4,9 =+ Ay 1 ... A, has been recognized.
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Fig. 2. A pop transition XY — Z totally recovering a modification

We describe the parser using Parsing Schemata, a framework for high-level
description of parsing algorithms [7]. A parsing scheme is a triple (Z,H, D), with
T a set of items, H = {[a,i,i + 1], a = w;} an initial set of special items called
hypothesis that encodes the sentence to be parsed', and D a set of deduction
steps that allow new items to be derived from already known items. Deduction
steps are of the form {n,...,n, F & | conds}, meaning that if all antecedents
7; of a deduction step are present and the conditions conds are satisfied, then
the consequent ¢ should be generated by the parser?. In the case of the parsing
algorithm we propose, the set of deduction steps is the following one

D= DInit U Dshift U DSel U DRed U DHead

where

Dt = {+ [sto,—,0,0] }

Shift __ . . ! .. H[Cl,j,J+1]€H
D - {[q,X,z,]] |_ [q yay05) + H/Shlﬂq/ € action(q, CL) }
! The empty string, €, is represented by the empty set of hypothesis, §. An input string

W1...n, > 1 is represented by {[w1,0,1], [w2,1,2], ..., [wn,n—1,n]}.

? Parsing schemata are closely related to grammatical deduction systems [6], where
items are called formula schemata, deduction steps are inference rules, hypothesis
are azioms and final items are goal formulas.



dla,j,j+1]eH

DSEI = {[StJXJZJJ] }_ [Stavr,nrajaj] /reducer I action(st,a)

}

DR = {[st, Vrs, b, fllst, Xrs 6, K]  [58', V1,4, j], st' € reveal(st)}

DHead = L[st,V,.0,4, 5] F [st', Ao, 1, 5], st' € goto(st, Ar0) }

with X € N U X, st referring to the initial state and action, goto and reveal
referring to the tables that encode the behavior of the LALR(1) automaton:

— The action table determines what action should be taken for a given state
and lookahead. In the case of shift actions, it determines the resulting new
state and in the case of reduce actions, the rule which is to be applied for
the reduction.

— The goto table determines what the state will be after performing a reduce
action. Each entry is accessed using the current state and the non-terminal,
which is the left-hand side of the rule to be applied for reduction.

— The reveal table is used to traverse the finite state control of the automaton
backwards: st' € reveal(st't!) is equivalent to st*t! € goto(st’, X)if X € N,
and is equivalent to shift,i+1 € action(st?, X) if X € X.

As is shown in [1], this set of deduction steps is equivalent to the dynamic
interpretation of non-deterministic PDAs:

— A deduction step Init is in charge of starting the parsing process.

— A deduction step Shift corresponds to pushing a terminal a onto the top of
the stack when the action to be performed is a shift to state st'.

— A step Sel corresponds to pushing the V.., symbol onto the top of the stack
in order to start the reduction of a rule r.

— The reduction of a rule of length n,. > 0 is performed by a set of n,. steps Red,
each of them corresponding to a pop transition replacing the two elements
Vs Xrs placed on the top of the stack by the element V, ,_;.

— The reduction of a rule r is finished by a step Head corresponding to a swap
transition that replaces the top element V, o by the left-hand side A, of
that rule and performs the corresponding change of state.

Deduction steps are applied until new items cannot be generated. The splitting of
reductions into a set of Red steps allow us to share computations corresponding
to partial reductions of rules, attaining a worst case time complexity O(n?)
and a worst case space complexity O(n?) with respect to the length n of the
input string. The input string has been successfully recognized if the final item
[st¢,S,0,n], with sty final state of the PDA, has been generated.

Following [4], we represent the shared parse forest corresponding to the input
string by means of an output grammar G, = (N,, X,, P,,S,), where N, is the
set of all items, X, is the set of terminals in the input string, the start symbol
S, corresponds to the final item generated by the parser, and a rule in P, is
generated each time a deduction step is applied:



For Shift, a production [st',a, j,j + 1] = a is generated.

For Sel, a production [st, V.., j,j] — € is generated .

For Red, a production [st',V, s_1,1,7] = [st, Vs, k, §] [st, Ar,s, 9, k] is gen-
erated.

For Head, a production [st', A, 0,1,7] = [st, Vro,%,] is generated.
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Fig. 3. A pop transition XY — Z independent of the modification

4 Incremental parsing

Incremental parsing has been attempted in two senses: firstly, as an extension
of left-to-right editing, and secondly, in relation with the full editing capability
on the input string. We are interested in the latter, called full incrementality, in
the domain of general CrGs, without editing restrictions, guaranteeing the same
level of sharing as in standard mode, but without any impact. In practice we
have focused on two cases, shown in Fig. 1:

— Total recovery, when recovery is possible on all the syntactic context once
the modification has been parsed.

— Grouped recovery, when recovery is possible for all branches on an interval
of the input string to be re-parsed.

which allows us to increase the computational efficiency by avoiding the recovery
of isolated trees in a forest corresponding to an ambiguous node. We consider
a simplified text-editing scenario with a single modification, in order to favor
understanding. Let’s take a modified input string from a previously parsed initial
one. We must update the altered portion of the original shared forest. To do so, it
is sufficient to find a condition capable of ensuring that all possible transitions to
be applied from a given position in an interval in the input string are independent
from the introduced modification. We focus our attention on those transitions
dependent on the past of the parsing, that is, on pop transitions. If the portion
of the input to be parsed is the same, and the parts of the past to be used in
this piece of the process are also the same, the parsing will be also the same in
this portion. That corresponds to different scopes in this common past: when
this extends to the totality of the structures to be used in the remaining parsing



process, we have total recovery, as is shown in Fig. 2. If it only extends to a
region after the modification, we have grouped recovery, as is shown in Fig. 3.

To ensure that pop transitions are common between two consecutive parses,
in an interval of the unchanged input string, we focus on the set of items which
are arguments of potential future pops. This is the case of items resulting from
non-empty reductions before a shift. These items can be located in a simple
fashion, which guarantees a low impact in standard parsing.
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To now find a condition ensuring that all pop transitions from any given
transition, taking one of these items as argument, are common in an interval,
we use the notion of the back pointer i of items [st, X, 1, j]. When corresponding
items between consecutive parses have equivalent back pointers, incremental
recovery is possible. Back pointers are equivalent iff they point to a position
of the input string not modified since the previous parsing, or when they are
associated to a position corresponding to a token belonging to a modified part
of the input string. In the first case, we can ensure total recovery since both
parses have returned to a common past. In the second one, we can only ensure
grouped recovery since common computations are only possible while there are
no pop transitions returning on the scope of the modification, which limits the
extension of the interval to be recovered.

5 User interface

The tool helps the language designer in the task of writing grammars, with a
dedicated editor. At any moment the user can request a parse of the grammar,
which is done according to the parsing scheme chosen in advance, from an input
file written in a B1SON-like format. A view of the interface is shown in Fig. 4.



1 10000
—— Generation time ICE
99— - Generation time Bison 1 9000
- >f< # elementary actions .
s ) # states /‘/,— | 000
R #rules ;*"
77— — 7000
8
g
6 — 6000 B
.‘Q (=]
@ 5 —| 5000 2
£ g
= i)
4+ — 4000 &
k<]
3 — 3000%
>
z
2 — 2000
1— — 1000
O v 8
e O S N s g e
o f Eﬁ Eﬁ | |

METAL TYPOL PPML PASCAL SQL ANSIC ADA

Fig. 5. Results on parser generation

The interface for the programming environment allows the user to choose
the parsing mode, standard or incremental, and load a language generated in
advance. A set of options allows the user to choose the class of information
reported: conflicts that have been detected, statistics about the amount of work
generated and so on. Debugging facilities also incorporate information about
the recovery process during incremental parsing, and errors are always reported.
The interface allows parse forests to be recovered and manipulated. We can
also select the language in which the system interacts with us: English, French
and Spanish are currently available. A help facility is always available to solve
questions about the editors and the incremental facilities.

6 Experimental results

We have compared ICE with BISON [2], GLR [5] and SDF [8], which are to the
best of our knowledge some of the most efficient parsing environments, from two
different points of view: parser generation and parsing process. We also show
the efficiency of incremental parsing in relation to the standard one, and the
capability of ICE to share computations. In order to provide a classical point of
reference, we have also included the original Earley’s parsing scheme [3] in ICE.
All the measurements have been performed using generic time units.

In relation to parser generation, we took several known programming lan-
guages and extracted the time used to generate parser tables, comparing BISON
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Fig. 6. Results on deterministic parsing

with the generation of LALR(1) schema in ICE3. Results are given in relation to
different criteria. So, Fig. 5 shows these according to the number of rules in the
grammar, and to the number of states associated with the finite state machine
generated from them®. At this point, it is important to note that the behavior of
ANSsI-C does not seem to correspond to the rest of the programming languages
considered in the same test. In effect, the number of rules in the grammar, and
the number of states in the resulting PDA may not be in direct relation with the
total amount of work necessary to build it. In order to explain this, we introduce
the concept of elementary building action as an action representing one of the
following two situations: the introduction of items in the base or in the closure
of a state in the PDA, and the generation of transitions between two states.

We use the syntax of complete PASCAL as a guideline for parsing tests. In
Fig. 6 comparisons are established between parsers generated by ICE®, BiSON
and SDF, when the context is deterministic. We consider ICE, SDF and GLR when
the context is non-deterministic, as is shown in Fig. 7. We have considered two
versions for PASCAL: deterministic and non-deterministic, the latter including
ambiguity for arithmetic expressions. Given that in the case of ICE, SDF and
GLR mapping between concrete and abstract syntax is fixed, we have generated
in the case of BISON, a simple recognizer. To reduce the impact of lexical time,

3 Earley’s algorithm is a grammar oriented method.
* Bison and ICE generate LALR(1) machines, SDF LR(0) ones.
5 Using both, LALR(1) and Earley’s schema.
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Fig. 7. Results on non-deterministic parsing

we have considered, in the case of non-deterministic parsing, programs of the
form:

program P (input, output); var a,b : integer;
begin  a:= b{+b} end.

where i is the number of +’s. The grammar contains a rule Expr ::= Expr +
Expr, therefore these programs have a number of ambiguous parses which grows
exponentially with 4. This number is:

Co=Ci=1 and C;= (21’) 1%1 ifi>1
All tests have been performed using the same input programs for each one of
the parsers and the time needed to ”print” parse trees was not measured. To
illustrate incrementality, we analyze the previous programs in which we substi-
tute expressions b + b by b. Results corresponding to incremental and standard
parsing are shown in Fig. 8, and those related to sharing in Fig. 9.

7 Conclusions

The ICE system is devoted to simultaneous editing of language definitions and
programs, in the domain of unrestricted context-free languages. The modular
composition includes a parser generator, standard and incremental parse in-
terpretation and a graphic interface, where customizations can be carried out
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Fig. 8. Results on incremental and standard parsing using ICE

either interactively, or through an initialization file. In a practical comparison,
our algorithm seems to surpass previous proposals.

Although efficient incremental parsing may have seemed a difficult problem,
we were able to keep the complexity of the algorithm low. So, practical tests have
proved the validity of the approach proposed when the number of ambiguities
remains reasonable, as is the case in practice. In addition, ICE is compatible with
the standard parser generators in UNIX, which permits a free use of all the input
that has been developed for these generators.
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