An Operational Model for Parsing Definite
Clause Grammars with Infinite Terms

Manuel Vilares', Miguel A. Alonso!, and David Cabrero?

! Department of Computer Sciences
Faculty of Informatics, University of A Coruna
Campus de Elvina s/n, 15071 A Coruna, Spain

e-mail: {vilares,alonso}@dc.fi.udc.es
? Ramoén Pifieiro Research Center for Humanities
Estrada Santiago-Noia km 3, A Barcia,

15896 Santiago de Compostela, Spain

e-mail: dcabrero@cirp.es

Abstract. Logic programs share with context-free grammars a strong
reliance on well-formedness conditions. Their proof procedures can be
viewed as a generalization of context-free parsing. In particular, definite
clause grammars can be interpreted as an extension of the classic context-
free formalism where the notion of finite set of non-terminal symbols is
generalized to a possibly infinite domain of directed graphs. In this case,
standard polynomial parsing methods may no longer be applicable as
they can lead to gross inefficiency or even non-termination for the algo-
rithms. We present a proposal to avoid these drawbacks, focusing on two
aspects: avoiding limitations on the parsing process, and extending the
unification to composed terms without overload for non-cyclic structures.

1 Introduction

Grammar formalisms based on the encoding of grammatical information in
unification-based strategies enjoy some currency both in linguistics and natural
language processing. Such formalisms, as is the case of definite clause grammars
(DCGs), can be thought of, by analogy to context-free grammars, as generalizing
the notion of non-terminal symbol from a finite domain of atomic elements to a
possibly infinite domain of directed graph structures.

Although the use of infinite terms can be often avoided in practical applica-
tions, the potential offered by cyclic trees is appreciated in language development
tasks, where a large completion domain allows the modeling effort to be saved.
Unfortunately, in moving to an infinite non-terminal domain, standard methods
of parsing may no longer be applicable to the formalism. Typically, the problem
manifests itself as gross inefficiency or even non-termination of the algorithms.

One approach guaranteeing termination that has been investigated is based
on restricting to some extent the parsing process, for example:

— mandating a non-cyclic context-free backbone and using only major category
information in the original grammar to filter spurious hypotheses by top-
down filtering [1].

— coupling grammar and parsing design, which is the case of some works based
on constraint logic programming [12]. Since linguistic and technological prob-
lems are inherently mixed, this approach magnifies the difficulty of writing
an adequate grammar-parser system.

— parameterizing parsing algorithms with grammar dependent information,
that tells the algorithm which of the information in the feature structures is
significant for guiding the parse [11]. Here, the choice for the exact parame-
ter to be used is dependent on both the grammar and the parsing algorithm,
which produce results that are of no practical interest in a grammar devel-
opment context.

Another approach has been to extend the unification in order to provide the
capability of traversing cyclic trees, for example:

— substituting resolution by another unification mechanism. This is the case
of Haridi and Sahlin in [4], who base unification on natural deduction [9].
Here, pointers are temporarily replaced in the structures, requiring undoing
after execution, and unification of non-cyclic structures is penalized.

— considering functions and predicates as elements with the same order as
variables as is shown by Filgueiras in [3]. Essentially, the idea is the same as
that considered by Haridi and Sahlin, and the drawbacks are extensible to
this case.

— generalizing an available algorithm for traversing cyclic lists, as is the case of
Nilsson and Tanaka in [7]. These strategies require some past nodes in struc-
tures to be saved and compared to new nodes. So, computational efficiency
depends heavily on the depth of the structures.

Our goal is to combine the advantages of the preceding approaches, elimi-
nating the drawbacks.

In Sect. 2 of this paper, we present our parsing model for DCGs, a summary of
the results described in [14]. An example of parsing is shown in Sect. 3. Section 4
describes our strategy for detecting and traversing cyclic terms. Sect. 5 compares
our work with preceding proposals. In Sect. 6 we characterize the application
domain of the algorithm. Sect. 7, includes a general consideration of the quality
of the system. Finally, Sect. 8 is a conclusion regarding the work presented.

2 A parsing Strategy for DCGs

Strategies for executing definite clause grammars (DCGs) are still often ex-
pressed directly as symbolic manipulations of terms and rules using backtracking,
which does not constitute an adequate basis for efficient implementations. Some
measures can be put into practice in order to make good these lacks: firstly,
to orientate the proof procedure towards a compiled architecture. Secondly, to

improve the sharing quality of computations in a framework which is naturally
not deterministic. Finally, to restrict the computation effort to the useful part
of the search space.

2.1 Logical Push-Down Automata as Operational Formalism

Our operational formalism is an evolution of the notion of logical push-down
automaton (LPDA) introduced by Lang in [5], a push-down automaton that
stores logical atoms and substitutions on its stack, and uses unification to apply
transitions.

For us, an LPDA is a 7-tuple A = (X, F, %X, A,$,$;,0), where: X is a
denumerable and ordered set of variables, F is a finite set of functional symbols,
X is a finite set of extensional predicate symbols, A is a finite set of predicate
symbols used to represent the literals stored in the stack, $ is the initial predicate,
$7 is the final predicate; and O is a finite set of transitions. Transitions are of
three kinds:

— horizontal: B — C{A}. Applicable to stacks E.p &, iff there exists the most
general unifier (mgu), o = mgu(E, B) such that Fo = Ag, for F a fact in
the extensional database. We obtain the new stack Co.po &.

— push: B — CB{A}. We can apply this to stacks E.p &, iff there is 0 =
mgu(E, B), such that Fo = Ag, for F a fact F in the extensional database.
We obtain the stack Co.0 B.p £.

— pop: BD — C{A}. Applicable to stacks of the form E.p E'.p' &, iff there
is ¢ = mgu((E,E'p),(B,D)), such that Fo = Ao, for F a fact in the
extensional database. The result will be the new stack Co.p'po &.

where B, C and D are items, and A is in Tx[F U X] representing the control
condition.

In bottom-up evaluation strategies, we can exploit the possibilities of dynamic
programming taking S as dynamic frame [13, 2], by collapsing stacks on its top.
In this way, we optimize sharing of computations in opposition to the standard
dynamic frame ST, where stacks are represented by all their elements, or even
5?2 using only the last two elements. To replace the lack of information about the
rest of the stack during pop transitions, we redefine the behavior of transitions
on items I in a dynamic frame S*, as follows:

— horizontal case: (B +— C)(I) = Co, where 0 = mgu(I, B).

— push case: (B +— CB)(I) = Co, where 0 = mgu(I, B).

— pop case: (BD — C)(I) = {Do > Co}, where 0 = mgu(I, B), and
Do — Co is the dynamic transition generated by the pop transition. This
is applicable to the item resulting from the pop transition, and also probably
to items to be generated.

The number of dynamic transitions can be limited by grouping items in
itemsets that refer to the analysis of a same word in the input string, and
completing in sequence these itemsets. So, we can guarantee that a dynamic
transition can be used to synchronize a computation to be done in this

itemset if and only if the itemset is not locally deterministic and an empty
reduction has been performed on it [13]. That establishes a simple criterion
to save or not these transitions.

where we have omitted the use of control conditions, {A}, in order to simplify
the exposition.

2.2 LALR Parsing in Dynamic Programming

Experience shows that the most efficient evaluation strategies seem to be those
bottom-up approaches including a predictive phase in order to restrict the search
space. So, our evaluation scheme is a bottom-up architecture optimized with a
control provided by an LALR(1) driver, that we shall formalize now.

Assuming a DCG of clauses i : Ako 1 —Ak1,--., Ak n,, We introduce: the
vector T', of the variables occurring in <, and the predicate symbol V74,;. An
instance of yy,;(T) indicates that all literals from the i literal in the body of
v have been proved.

The stack is a finite sequence of items [A,it, bp, st].c, where the top is on
the left, A is a category in the DCG, o a substitution, it is the current position
in the input string, bp is the position in this input string at which we began
to look for that configuration of 4, and st is a state for a driver controlling
the evaluation. We choose as driver the LALR(1) automaton associated to the
context-free skeleton of the logic grammar, by keeping only functors in the clauses
to obtain terminals from the extensional database, and variables from heads in
the intensional one. We can now describe the transitions:

1. [Ag,ny > i, bD, 1] — [Vk,ne (Tk), ¢, 4, 8t] [Ak,n, , it, bp, st]
{action(st, token;;) = reduce('y,’:)}

[\V]

. [Vk,i(Tk)7 ’I:t, T, Stl]
[Ag,i, 7, bp, st1] — [Vk,i—1(T'k), it, bp, st2]

{action(sty, token;;) = shift(sty)}, ¢ € [1,ny)

. [Vk,O (Tk)7 Zt: bp: Stl] — [Ak,07 lt: bp7 3t2]
{goto(sty, Ago) = sta}

. [Ak,i7 /Lta bp; Stl] — [Ak,i-l-l) it +]-5 Zta 5t2] [Ak,ia lt: bp; Stl]
{action(sty, token;;) = shift(st2)},
token;; = Ak,i+1; xS [O,le)

. [Ak,i7 it, bp; Stl] — [Al,07 it + 1,1t, St?] [Ak,z'; it, bp; Stl]
{action(sty, token;;) = shift(st2)},
token;; = Ao # Ak,it1, © € [0,14)

.[$,0,0,0] — [A,0,0,0,st] [$,0,0,0]
{action(0, tokeng) = shift(st)}

[J%]

=~

(2}

[=2]

where action(state, token) denotes the action of the driver for a given state and
token, 'y,{ denotes the context-free rule in this driver corresponding to the clause
vk, and expressions between brackets are conditions to be tested for the driver
before applying transitions. Briefly, we can interpret these transitions as follows:

state 4 state 1

® ->S. NP ->noun .

s noun noun
noun NP

state 0

®->.5 4 siate 2 sate3

S->. NP S->NP. NP->NPNP.

NP> NPNP NP NP->NP. NP NP NP->NP. NP

NP->.NPNP NP->. NP NP
NP -> . noun NP ->. noun NP ->. noun
NP->. NP->. NP->.

Fig. 1. Characteristic finite state machine for the running example

1. select the clause v whose head is to be proved, then push g n, (T+) on the
stack to indicate that none of the body literals have yet been proved.

2. the position literal 5/4,;(Ty) indicates that all body literals of -y, following
the " literal have been proved. Now, all stacks having Ay, ; just below the top
can be reduced and in consequence the position literal can be incremented.

3. the literal 7,0(T'x) indicates that all literals in the body of v, have been
proved. Hence, we can replace it on the stack by the head Ay of the rule,
since it has now been proved.

4. The literal Ay ;11 is pushed onto the stack, assuming that it will be needed
for the proof.

5. The literal A; is pushed onto the stack in order to begin to prove the body
of clause ;.

6. As a special case of the previous transition, the initial predicate will only
be used in push transitions, and exclusively as the first step of the LPDA
computation.

The parser builds items from the initial one, applying transitions to existing
ones until no new application is possible. An equitable selection order in the
search space ensures fairness and completeness. Redundant items are ignored
by a subsumption-based relation. Correctness and completeness, in the absence
of functional symbols, are easily obtained from [13,2], based on these results
for LALR(1) context-free parsing and bottom-up evaluation, both using S! as
dynamic frame. Our goal now is to extent these results to a larger class of
grammars.

3 Parsing a Sample Sentence

To illustrate our work we consider as running example a simple DCG to deal
with the sequentialization of nouns in English, as in the case of “North Atlantic
Treaty Organization”. The clauses, in which the arguments are used to build the
abstract syntax tree, could be the following

M 8(X) — np(X). 72+ np(np(X,Y)) — np(X) np(Y).
v3: np(X) — noun(X). ~4: np(nil).

In this case, the augmented context-free skeleton is given by the context-free
rules:

0% — S A (1)S — NP (2) NP — NP NP
(3) NP — noun 4)NP — ¢

whose characteristic finite state machine is shown in Fig. 1.

We are going to describe the parsing process for the simple sentence “North
Atlantic” using our running grammar. From the initial predicate $ on the top
of the stack, and taking into account that the LALR automaton is in the initial
state 0, the first action is the scanning of the word “North”, which involves
pushing the item [noun(” North”),0,1, st1] that indicates the recognition of term
noun(” North”) between positions 0 and 1 in the input string, with state 1 the
current state in the LALR driver. This configuration is shown in Fig. 2.

[noun(” North”), 1,0, st1]
[$7 01 07 StO]

[$, 0,0, Sto] =

Fig. 2. Configurations during the scanning of “North”.

At this point, we can apply transitions 1, 2 and 3 to reduce by clause 3. The
configurations involved in this reduction are shown in Fig. 3.

[Vs,1(X),1,1, st]
F |[noun(” North”), 1,0, st1]| -
[$: OaOa Sto]

[V3,0("North”), 1,0, sto]
[$, 0,0, Sto]

[np(” North”), 1,0, sts]
[$1 07 07 StO]

Fig. 3. Configuration during the reduction of clause 7s.

We can now scan the word “Atlantic”, resulting in the recognizing of the term
noun(” Atlantic”) between positions 1 and 2 in the input string, with the LALR
driver in state 1. As in the case of the previous word, at this moment we can
reduce by clause v3. This process is depicted in Fig. 4.

After having recognized two np predicates, we can reduce by clause v, in
order to obtain a new predicate mp which will represent the nominal phrase
“North Atlantic”. This reduction is shown in Fig. 5.

[Vs,1(X),2,2, st]
[noun(” Atlantic”), 2, 1, st1]
[np(” North”), 1,0, sts]
[$a 0, 0: Sto]

[noun(” Atlantic”), 2,1, st1]
[np(”North”),1,0,st2] |+
[$,0,0, sto]

T

[Vs,0(” Atlantic”), 2,1, sto] [np(” Atlantic”), 2,1, sts]
| [np("North”),1,0,sta] | | [np(”North”),1,0, sta]
[$:07055t0] [$:070:St0]

Fig. 4. Configurations during the processing of the word “Atlantic”.

V22(X,Y),2,2, st ;
[nj[)(’?jt(lantii”) 51 Z]ts] [V2,1(X,” Atlantic”), 2, 1, sts]
F [np(” North”), 1,0, sts] F [np(" North?), 1,0, sta]
[5,0,0, sto] 15,0,0, sto]
- [Va2,0(np(” North”,” Atlantic”)), 2, 0, sto]
[$,0,0, sto]
- [np(np(” North”,” Atlantic”)), 2, 0, sto]
[$, 0, 0, Sto]

Fig. 5. Recognition of the nominal phrase “North Atlantic”.

The recognition of the complete sentence ends with a reduction by clause 74,
obtaining the term
s(np(” North”,” Atlantic”))

representing the abstract parse tree for the sentence “North Atlantic”. The state
of the LALR driver will now be 4, which is the final state, meaning that the
processing of this branch has finished. The resulting configurations are depicted
in Fig. 6.

4 Traversing Cyclic Terms

Although structures that generate cyclic terms can be avoided in final systems,
they usually arise during the development of grammars. For example, in the
previous example we have shown the parsing process for only one branch, but
the grammar really defines an infinite number of possible analyses for each input
sentence. If we observe the LALR automaton, we can see that in states 0, 2 and
3 we can always reduce the clause -4, which has an empty right-hand side, in
addition to other possible shift and reduce actions. In particular, in state 3 the
predicate np can be generated an unbounded number of times without consuming
any character of the input string.

[V11(X), 2,2, sto]
F [[np(np(” North”,” Atlantic”)), 2,0, sta]
[$,0,0, sto]

[V1,0(np(np(” North”,” Atlantic”))), 2,0, sto]
[$, 0, 0, Sto]

[s(np(” North”,” Atlantic”)), 2, 0, st4]
[5,0,0, sto]

Fig. 6. Configurations for the recognizing of the sentence “North Atlantic’.

Our parsing algorithm has no problems in dealing with non-determinism. It
simply explores all possible alternatives in each point of the parsing process. This
does not affect the level of sharing, which is achieved by the use of S! as dynamic
frame, but it can pose problems with termination due to the presence of cyclic
structures. Therefore, a special mechanism for representing cyclic terms must be
used. At this point, it is important to remark that this mechanism should not
decrease the efficiency in the treatment of non cyclic structures. In this context,
we have separated cyclic tree traversal in two phases:

— cycle detection in the context-free backbone.
— cycle traversing for predicate and function symbols by extending the unifi-
cation algorithm to these terms.

We justify this approach by the fact that the syntactic structure of the predi-
cate symbols represents the context-free skeleton of the DCG. As a consequence,
it is possible to efficiently guide the detection of cyclic predicate symbols on
the basis of the dynamic programming interpretation for the LALR(1) driver.
In effect, for cycles to arise in arguments, it is first necessary that the context-
free backbone given by the predicate symbols determines the recognition of a
same syntactic category without extra work for the scanning mode. It should be
pointed out that the reciprocal is not always true. This is, for example, the case
of the DCG defined by the following clauses:

7 @ a(nil). v a(f(Y,X)) — a(X).
whose context-free skeleton is given by the rules
(1) A — ¢ (2) A - A

where the presence of cycles is clear. On the other hand, one look at the DCG
is sufficient to detect the refutation of non-cyclic infinite structures of the form

a(nil), a(f(Yq,nil)), ..., a(f(Yps1, (Yn, .7 £(Yq,nil) 7.), ...

4.1 Searching for a Condition to Loop

From the previous discussion, we apply the first phase in our traverse strategy to
detect cycles in context-free grammars in a dynamic frame S*, using an LALR(1)
parser. This problem has previously been studied in [13]. Given that we have
indexed the parse, it is sufficient to verify that in a same itemset the parsing
process re-visits a state. In effect, this implies that an empty string has been
parsed in a loop within the automaton. This can be shown in the context-free
backbone of our running example. Following with our example, we can see in
the left-hand drawing of Fig. 7 a cycle in the context-free skeleton produced by
successive reductions by rules 2 and 4 in state 3. In this figure, boxes represent
the recognition of a grammar category in a given state of the LALR(1) driver.

~ 7

[np@p(p(np(nitnit) nit)nit)) 3| S il [[nil])) 4

—— p(np*([lnil],[lnil]

‘ np(np(nil,np(nil,nil))) 3| np(np np(nil,nil),nil))
[np(nil) 3] i np(nil) 3

/ np np(nllnll)) 3 \

) 3

P

Fig. 7. Cycles in the context-free skeleton and within terms.

To verify now that we can extend cycle detection to predicate symbols, we
shall test for unification of the terms implicated. In particular, we must generalize
unification to detect cyclic terms with functional symbols.

4.2 Extending Unification and Subsumption

To prevent the evaluation looping, the concept of substitution is generalized to
include function and predicate symbol substitution. This means modifying the
unification and subsumption algorithms so that these symbols are treated in the
same way as for variables.

Looking for Cycles. After testing the compatibility of name and arity between
two terms, the algorithm establishes if the associated non-terminals in the driver
have been generated in the same state, covering the same portion of the text,
which is equivalent to comparing the corresponding back-pointers. If all these
comparisons succeed, unification could be possible and we look for cycles, but
only when these non-terminals show a cyclic behavior in the LALR(1) driver. In
this case, the algorithm verifies, one by one, the possible occurrence of repeated
terms by comparing the addresses of these with those of the arguments of the

other predicate symbol. The optimal sharing of the interpretation guarantees
that cycles arise if and only if any of these comparisons succeed. In this last
case, the unification algorithm stops on the pair of arguments concerned, while
continuing with the rest of the arguments.

) Reducing ~v»:
Reducing 7: to = np(X') Y') - [X' —t1,Y «— nil]
t1 = np(X,Y) - [X « nil, Y «— nil]

X’ np
np X np
N, N Ay
XY " Y A N]

t3 = np(X,Y) - [X — np'([nil|*],nil),Y « m'l]

np x1 nil

/\ v |

XY

Fig. 8. Cyclic tree traversing (1)

Returning to Fig. 7, once the context-free cycle has been detected, we check
for possible cyclic term in the original DCG. The center drawing in that figure
shows how the family of terms

np(nil), np(np(nil, nil)), np(np(np(nil, nil), nil)), . . ., np(np* ([nil| "], nil))

is generated. In an analogous form, the family

np(nil), np(np(nil, nil)), np(np(nil, np(nil, nil))), . .., np(np' (nil, [nil|']))

can be generated. Due to the sharing of computations the second family is gen-
erated from the result of the first derivation, so, by means of the successive
applications of clauses v2 and 7,4, we will in fact generate the term on the right-
hand side of the figure, np(np*([nil|'], [nil|'])), which corresponds exactly to the
internal representation of the term!. We shall now describe how we detect and
represent these types of construction. In the first stages of the parsing process,
two terms np(nil) are generated, which are unified with np(X) and np(Y) in
vz, and np(np(X,Y)) is instantiated, yielding np(np(nil, nil)). In the following

it must be pointed out that we could collapse structures np(nil) and
np(np' ([nil|'], [nil|'])) from the right-hand side of Fig. 7 in np(*[nil|np(*,')]), but
this would require a non-trivial additional treatment.

Reducing 7s: Reducing vs:

- 1 11 .
ts = np(X,Y) - [X np ([l], mal), |y np(X,Y") - [

Y «— nil Y — ty

np
np v -l n

< A > nil J—7x/\Y < /r{ > Ap) Ap ,
Xy Y<—‘—T VN X y'— nil X Y

X — np*([nil|*], m'l),]

te = np(X,Y) - [X — np*([nal]], nil), Y « npl([nil|1],nil)]

AL

XY
Fig. 9. Cyclic tree traversing (2)

stage, the same step will be performed over np(np(nil,nil)) and np(nil), yielding
np(np(np(nil,nil),nil)). At this point, we consider that:

— there exists a cycle in the context-free backbone,
— we have repeated the same kind of unification twice, and
— the latter has been applied over the result of the former.

Therefore this process can be repeated an unbounded number of times to give
terms with the form np(np'([nil|'], nil)). The same reasoning can be applied if
we wish to unify with the variable Y. The right-hand drawing in Fig.7 shows
the compact representation we use in this case of cyclic terms. The functor np
is considered in itself as a kind of special variable with two arguments. Each of
these arguments can be either nil or a recursive application of np to itself. In the
figure, superscripts are used to indicate where a functor is referenced by some
of its arguments.

The unification is explained in detail in Fig. 8. The terms to be unified are
intermediate structures in the computation of the proof shared-forest associated
to the successive reductions of rules 2 and 4 in the context-free skeleton. So
we have to compare the structures of the arguments associated to predicate
symbol np, and in order to clarify the exposition, we have written them as
term-substitution. The second term, to, is obtained after applying a unification
step over the first one, ¢;. To show that this step is the same we applied when
building ¢;, they are shadowed. Now, t; and s satisfy the conditions we have
established to detect a cycle, namely a cycle exists in the context-free backbone,
and we have repeated the same kind of unification twice, the latter over the result
of the former. ¢35 is the resulting cyclic term. In Fig. 9 we show an analogous
operation over ts3.

Cyclic Subsumption and Unification. Now, we will see some examples of
how the presence of cyclic terms affects the unification and subsumption opera-
tions.

In general, a function subsumes (<) another function if it has the same func-
tor and arity and its arguments either are equal or subsume the other function’s
arguments. When dealing with cyclic terms, one or more arguments can be built
from an alternative: another term, or cycling back to the function. Such an
argument will subsume another one if it is subsumed by at least one alternative.

X np np

2 Y RVAN

nil X X Y il

nil

Fig. 10. mgu of substitutions involving cyclic terms.

Returning to the example of Fig. 8, we can conclude that np'([nil|'],}) sub-
sumes np' ([nil|'], nil). Functor and arity, np/2 are the same, and so are the first
arguments, [nil|!], and for the second ones, [nil|'] < nil because of the first
alternative, clearly nil < nil.

On the other hand, when calculating the mgu we also have to consider each
alternative in the cyclic term, but discarding those that do not match. Thus:

mgu({Y — [a[b]},{V < a}) ={Y < a}
and therefore, following the latter example:
mgu(np(X, X),np' ([nil|'],nil)) = {X « nil}

which is graphically shown in Fig. 10. Finally, we must not forget that variables
are the most general terms and so they subsume any term, even alternatives in
cyclic terms. For example:

mgu(np(X),np* ([a]'])) = {X « [alnp' ([a]'])}

5 A Comparison with Previous Works

In relation to systems forcing the primacy of major category [1], we only con-
sider the context-free skeleton of a DCG as a guideline for parsing, but without
omitting information about sub-categorization. So, we apply constraints due to
unification as soon as rules are applied, rather than considering a supplementary
filtering phase after a classic context-free parsing.

The strategy described does not couple the design of descriptive and oper-
ational formalisms [12], nor even limit them [11]. In particular, we do not split
up the infinite non-terminal domain into a finite set of equivalence classes that
can be used for parsing. The only practical constraint is the consideration of
monotonous DCGs, that we justify for their practical linguistic interest. This
allows us to conceive their use in a grammar development context.

In comparison with algorithms based on the temporary replacement of point-
ers in structures [4], our method does not need main memory references for
pointer replacements. In addition, the absence of backtracking makes it unnec-
essary to undo work after execution, which facilitates the sharing of structures.

A
a(g(f(g(f(nin)))) 1

b(f(g(f(nil)))) 2

| a(g(f(il)) 1] [alg(f(Io([nill))) 4

[b(inin) 2] [b9 [nilD) 2

Fig.11. Cycles in a conjunctive context

Focusing now our attention on methods extending the concept of unification
to composed terms [3], the overload for non-cyclic structures is often great. In our
case, we minimize this cost factor by a previous filtering phase to detect cycles
in the context-free backbone. In the same way, the treatment of monotonous
programs in a bottom-up evaluation scheme simplifies the unification protocol.

Finally, we can make reference to algorithms based on the memoization of
nodes and comparison to new ones [7]. Here, the disadvantage is that these
algorithms, to the best of our knowledge, cannot be optimized in order to avoid
overload on non-cyclic structures.

6 The Domain of Application

This question has a practical sense since, as has already been established [8],
DCGs are only semi-decidable when functional symbols are present and, in con-
sequence, any evaluation strategy dealing with cycles is at stake. To simplify our
explanation we shall work in the frame of monotonic first-order logic. We shall
prove that our proposal is capable of detecting and traversing cycles with a reg-
ular syntactic structure. If this is not the case, the strategy does not guarantee

@
g
‘f X =—nil
L

@
91 | x— g
| |
X X~ nil

Fig. 12. Cycle traversing in a conjunctive context

termination, which in practical terms is equivalent to saying that the algorithm
is equivalent to classic evaluation schema in the worst case.

N i N 7 X 7 X Pl

.. Laaainy 2] [aeauin 2|

[a(GCInil [FC) (90 2] [alfGInil |) | FOOTD) 2]

a(nil) 1

Fig. 13. Cycles in a disjunctive context

Although the technique described could be extended to more complex cy-
cles, our interest in regular omnes is justified by the difficulty of representing
useful information about non-regular structures in an interactive programming
environment, which would reduce the interest of this study to a theoretical one.

To facilitate understanding, and given that technical points have been studied
in much greater detail before, we shall informally describe the behavior of our
proposal over representative examples covering all possible cases in cycles with
a regular structure.

6.1 Conjunctive Terms

This is the simplest case, when all terms included in the cycle are generated
from the refutation of clauses without common bodies. This is, for example, the
case of the following DCG:

410 a(nil). v a(gX)) — bX). 43: b{(X)) — aX).

Here, we have a cycle such as is shown in Fig. 11, one for predicate a and another
for predicate b; both with depth two. Cycle traversing is illustrated in Fig. 12
for predicate a.

X — =

|
i

X —— =
P
x
X — =
2.
| I
—
X—a
=
x
X—a
2.
[

—
X—a ®©
=
il
X — =
2.
L=
—
=
x
X—a
E)
L=
— ®
=)
1
p
Tj
>
3
—
~__ =
x
e
E)
L=

AL AL

Fig. 14. Cycle traversing in a disjunctive context

—
X—a
-~

6.2 Disjunctive Terms

In this case, we consider that there exist terms in the cycle that have been
generated from the refutation of clauses with common bodies. A simple example
is given by the DCG defined by the following clauses:

v :oa(nil). e a(f(X)) — a(X). 3 a(gX)) — a(X).

which presents two cycles on predicate a with a disjunction on functions f and
g, as is shown in Fig. 13. The cycle traversing is succinctly described in Fig. 14,
due to lack of space, only formely steps are shown.

A

| A(FOY3.ACY 2,60 Lnil))) 1]

la(f(Y2,f(YLnil))) 1]

Fig. 15. An infinite structure

6.3 Non-Cyclic Infinite Structures

Finally, our proposal allows us sometimes, but not always, to detect and tra-
verse non-cyclic infinite structures. This is, typically, the case of the presence of
anonymous variables in the clauses. Here, we re-take the DCG defined by the
clauses:

v a(nil). v a(f(Y,X)) — a(X).

in which each time the second rule is refuted, the variable Y takes a new value.
As a consequence, it is possible to enter the evaluation in an infinite loop in order
to generate all possible answers to the request of the type — a(X), as is shown
in Fig. 15. However, once these anonymous variables have been located?, it is
possible to detect and traverse this kind of structures as we can see in Fig. 16.

7 Experimental Results

For the tests we take our running example. Given that the grammar contains a
rule NP — NP NP, the number of cyclic parses grows exponentially with the
length, n, of the phrase. This number is:

Co=Ci =1 and Cn=<2:) ’HL-I-:[, ifn>1
We cannot really provide a comparison with other DCG parsers because of
their problems in dealing with cyclic structures. We can however consider re-
sults on ST as a reference for non-dynamic SLR(1)-like methods [6,10], and
naive dynamic bottom-up methods [5,2] can be assimilated to S! results with-
out synchronization. This information is compiled in Figs. 18 and 17. The former

2 a simple static study of the DCG is sufficient.

—
f f
/\ X =—nil /\ X —Lnil

f X < f
/N /.
Yy X Y XU il

Fig. 16. Traversing a non-cyclic infinite structure

compares the generated items in S, §2 and S7, the actual number of dynamic
transitions generated in S and the original number to be considered if no opti-
mization is applied. The latter compares the variables instantiated in S', S? and
ST as well as the gain of computational efficiency due to the use of the LALR(1)
driver to detect cycles.

8 Conclusion

We have described an efficient strategy for analyzing DCG grammars which is
based on a LPDA interpreted in dynamic programming, with a finite-state driver
and a mechanism for dealing with cyclic terms. The evaluation scheme is parallel
bottom-up without backtracking and it is optimized by predictive information
provided by an LALR(1) driver. The system ensures a good level of sharing
at the same time as it guarantees correctness and completeness in the case of
monotonous DCGs. In this context, we exploit the context-free backbone of
these logic programs to efficiently guide detection of regular cyclic constructions
without overload for non-cyclic ones.

9 Acknowledgments

This work has been partially supported by projects XUGA 10505B96 and XUGA
20402B97 of the Autonomous Government of Galicia (Xunta de Galicia), project
HF97-223 by the Government of Spain, and project 1FD97-0047-C04-02 by the
European Community.

1400 - 4000
I N° vars instantiated ST
1200 1 3500
Bl N° vars instantiated S2
3000
1000 1 =N vars instantiated S1
e}
Q
= 2500
g == N° of possible cyclicity tests 3
£ 800 4
E == Actual n° of cyclicity tests - 2000 %’
5 >
£ 600 A S
>
5 + 1500 S
z 400 +
-+ 1000
200 - 1 500
0 t t t t t t t t t t t t t t t t t t 0
MM e swen~®oggyaYygy g R
value of n
Fig.17. Some experimental results
References

. Bresnan, J., Kaplan, T.: Lexical-Functional Grammar: a formal system for gram-
matical representation. In J. Bresnan (ed.): the Mental Representation of Gram-
matical Relations (1982) 173-281. MIT Press

. De la Clergerie, E.: Automates & piles et programmation dynamique. DyALog: une
application & la Programmation en Logique. PhD thesis. University of Paris 7 (1993)
. Filgueiras, M.: A PROLOG interpreter working with infinite terms. In Implementa-
tions of PROLOG (1985)

. Haridi, S., Sahlin, D.:. Efficient implementation of unification of cyclic structures.
In Implementations of PROLOG (1985)

. Lang, B.: Towards a uniform formal framework for parsing. In M. Tomita (ed.):
Current Issues in Parsing Technology (1991) 153-171. Kluwer Academic Publishers
. Nilsson, U.: AID: an alternative implementation of DCGs. New Generation Com-
puting 4 (1986) 383-399

. Nilsson, M., Tanaka, H.: Cyclic tree traversal. Lecture Notes in Computer Science
225 (1986) 593-599. Springer-Verlag

. Pereira, F.C.N., Warren, D.H.D.: Parsing as Deduction. Proc. of the 21°* Annual
Metting of the Association for Computational Linguistics (1983) 137-144. Cam-
bridge, Mass.

. Prawitz, D.: Natural Deduction, Proof-Theoretical Study (1965). Almqvist & Wik-
sell, Stockholm, Sweden

10. Rosenblueth, D. A., Peralta, J. C.: LR inference: inference systems for fixed-mode

logic programs, based on LR parsing. International Logic Programming Symposium
(1994) 439-453. The MIT Press

11. Shieber, S. M.: Using restriction to extend parsing algorithms for complex-feature-

based formalisms. 23th Annual Meeting of the ACL (1985) 145-152

T 300

900 -
I N° items S1
800 + .
Bl N° items S2
—+ 250
700 4 [N items ST
12
— . ’ . A
600 - Theoretical num. of dynamic transitions 200 S
» = Actual num. of dynamic transitions %
: :
= - 150 2
s £
< g
z >
©
100 5
°
z
50
0

< N M < I © N~ 0 O O «H N M g 1 O N~ 0 O O
R R B T B B I B

value of n

Fig. 18. Some experimental results

12. Stolzenburg, F.: Membership-constraints and some applications. Technical Report
Fachberichte Informatik 5/94 (1994). Universitit Koblenz-Landau, Koblenz

13. Vilares, M.: Efficient Incremental Parsing for Context-Free Languages. PhD thesis.
University of Nice (1992)

14. Vilares, M., Alonso, M. A.: An LALR extension for DCGs in dynamic program-
ming. In C. Martin Vide (ed.): Mathematical Linguistics II (1997). John Benjamins
Publishing Company

