
Proceedings of the 28th International Conference on Computational Linguistics, pages 2472–2484
Barcelona, Spain (Online), December 8-13, 2020

2472

Bracketing Encodings for 2-Planar Dependency Parsing

Michalina Strzyz David Vilares Carlos Gómez-Rodrı́guez
Universidade da Coruña, CITIC

FASTPARSE Lab, LyS Research Group
Departamento de Ciencias de la Computación y Tecnologı́as de la Información

Campus de Elviña, s/n, 15071 A Coruña, Spain
{michalina.strzyz,david.vilares,carlos.gomez}@udc.es

Abstract

We present a bracketing-based encoding that can be used to represent any 2-planar dependency
tree over a sentence of length n as a sequence of n labels, hence providing almost total coverage
of crossing arcs in sequence labeling parsing. First, we show that existing bracketing encodings
for parsing as labeling can only handle a very mild extension of projective trees. Second, we
overcome this limitation by taking into account the well-known property of 2-planarity, which
is present in the vast majority of dependency syntactic structures in treebanks, i.e., the arcs of a
dependency tree can be split into two planes such that arcs in a given plane do not cross. We take
advantage of this property to design a method that balances the brackets and that encodes the arcs
belonging to each of those planes, allowing for almost unrestricted non-projectivity (∼ 99.9%
coverage) in sequence labeling parsing. The experiments show that our linearizations improve
over the accuracy of the original bracketing encoding in highly non-projective treebanks (on
average by 0.4 LAS), while achieving a similar speed. Also, they are especially suitable when
PoS tags are not used as input parameters to the models.

1 Introduction

In the last few years, approaches that cast syntactic parsing as the task of finding a sequence have
gained traction for both dependency and constituency parsing. In sequence-to-sequence (seq2seq) parsing
(Vinyals et al., 2015; Li et al., 2018), parse trees are represented as arbitrary-length sequences, where
the attention mechanism can be seen as an abstraction of the stack and the buffer in transition-based
systems that decides what words are relevant to make a decision at a given time step. In sequence labeling
parsing (Gómez-Rodrı́guez and Vilares, 2018; Strzyz et al., 2019b), the tree for a sentence of length
n is represented as a sequence of n labels, one per word, so the parsing process is word-synchronous
(Kitaev and Klein, 2019) and can be addressed by frameworks traditionally used for other natural language
processing tasks, such as part-of-speech tagging or named-entity recognition. Current sequence labeling
parsers combine competitive accuracy with high computational efficiency, while providing extra simplicity
using off-the-shelf sequence labeling software without the need for ad-hoc parsing algorithms.

In the realm of dependency parsing, pioneering work dates back to Spoustová and Spousta (2010), who
used a relative PoS-tag based encoding to represent trees as label sequences, but the resulting accuracy
was not practical even for the standards of the time, probably due to the inability of pre-deep-learning
architectures to successfully learn the representation. Using more modern architectures with the ability
to contextualize words based on the sentence, and various tree encodings, Strzyz et al. (2019b) were the
first to show that competitive accuracy could be reached. Subsequently, this accuracy has been improved
further by techniques like the use of multi-task learning to parse dependencies and constituents together
(Strzyz et al., 2019a) and of contextualized embeddings (Vilares et al., 2020).

While parsing as sequence labeling does not need specific parsing algorithms or data structures, as in
graph-based or transition-based parsing, the responsibility of providing suitable parsing representations

This work is licensed under a Creative Commons Attribution 4.0 International Licence. Licence details: http://
creativecommons.org/licenses/by/4.0/.

2473

w0 w1 w2 w3 w4 w5 w6
root ∅ ///> /> /> > >

(a) Projective encoding restricted to a single plane. Infeasible to reconstruct a non-projective sentence.

w0 w1 w2 w3 w4 w5 w6
root ∅ ///> /∗> >∗ > ∅

(b) Non-projective 2-planar encoding with second-plane-averse greedy plane assignment. The arc w3 → w6 is not assigned a
plane because it would cross arcs belonging to both planes, which is forbidden by the 2-planar constraint.

w0 w1 w2 w3 w4 w5 w6
root ∅ /∗//> /∗> />∗ >∗ >

(c) Non-projective 2-planar encoding with plane assignment based on restriction propagation on the crossings graph.

Figure 1: Bracketing-based encodings with their plane assignment strategies for a non-projective sentence.
The red, dotted lines refer to the arcs represented in the second plane, denoted by * in the encoding label.

with reasonable coverage and learnability falls instead on the encoding used to represent trees as sequences
of labels. Strzyz et al. (2019b) used four different encodings that obtained substantially different parsing
accuracies in the experiments, with two encodings achieving competitive accuracy: the relative PoS tag
(rel-PoS) encoding of Spoustová and Spousta (2010) and a new encoding based on balanced brackets,
inspired by Yli-Jyrä and Gómez-Rodrı́guez (2017). While the encoding of Spoustová and Spousta (2010)
achieved a good accuracy, and it has full coverage of non-projective dependency trees, it requires PoS
tags to encode the dependency arcs. This can be seen as a weakness, not just because computing and
feeding PoS tags increases the latency, but also because the traditional assumption that PoS tagging is
needed for parsing is being increasingly called into question (de Lhoneux et al., 2017; Smith et al., 2018;
Kitaev and Klein, 2018; Anderson and Gómez-Rodrı́guez, 2020). Low-frequency PoS tags can cause
sparsity in the encoding, and low-quality PoS tags could be a potential source of errors in low-resource
languages. For this reason, Lacroix (2019) proposed two alternative encodings with the same relative
indexing philosophy, but without using PoS tags. However, these encodings require a composition of two
sequence labeling processes instead of one.

On the other hand, the bracketing encoding inspired in (Yli-Jyrä and Gómez-Rodrı́guez, 2017) repre-
sents the trees independently of PoS tags or any other previous tagging step, but it has the limitation of
being restricted to a very mild extension of projective trees.

Contribution. In this paper, we extend the idea of the bracketing-based encoding to non-projective
parsing by defining a variant that can encode all 2-planar dependency trees (Yli-Jyrä, 2003). 2-planar
dependency trees have been shown to cover the vast majority of non-projective trees in attested sentences
(Gómez-Rodrı́guez, 2016) and have been used in transition-based parsing (Gómez-Rodrı́guez and Nivre,
2013; Fernández-González and Gómez-Rodrı́guez, 2018). We show that our encoding provides better
parsing accuracy than the original bracketing-based encoding on highly non-projective UD treebanks; and
than the rel-PoS encoding when assuming PoS tags are not fed as input parameters to the models. The
source code is available at https://github.com/mstrise/dep2label.

2474

2 Preliminaries

Given a sentence w1 . . . wn, we associate the words with nodes 0, 1, . . . , n, where 0 is a dummy root node.
Then, a dependency graph is an edge-labeled graph (V,E) with V = {0, 1, . . . , n} and E a set of edges
of the form (h, d, l) where h ∈ V is the head, d ∈ V \ {0} is the dependent, and l is the dependency label.
The goal of a dependency parser is to find a dependency graph that is a tree (i.e. without cycles, and with
no dependent having more than one head) rooted at node 0.

2.1 Bracketing encoding
Dependency arcs are encoded through a sequence of bracket elements from a set B = {<, /, /,>}. A
balanced pair of brackets (<, /) in the labels of the words wi and wj represents a left arc from word wj
to wi−1. A balanced pair of brackets (/,>) in the labels of the words wi and wj represents a right arc
from word wi−1 to wj . A token can have one incoming arc and several outgoing arcs, resulting on labels
composed of several such brackets, following the regular expression (<)?((\)*|(/)*)(>)?. As
shown in Figure 1a, the token w2 is assigned a label ///> that can be interpreted as: the previous token
w1 has three outgoing arcs to the right and one of them matches the left incoming arc of w2 (/>) meaning
that w1 is the head of w2. The remaining two dependents will be given by the matching > in the labels of
the following words.

Since each opening bracket is always matched to the closest same-direction closing bracket, this
encoding is unable to handle crossing arcs in the same direction. An attempt of encoding such crossing
arcs will result in decoding into non-crossing arcs. However, the encoding can handle crossing arcs in
opposite directions, as long as left and right brackets are balanced independently (e.g. by using separate
stacks for each kind of bracket). The paper by Strzyz et al. (2019b) erroneously describes the encoding as
only supporting projective trees. In fact, the implementation in that paper is supporting this mild extension
of projectivity where crossing arcs in opposite directions are allowed.

2.2 2-Planarity
A dependency graph (V,E) is said to be k-planar, for k ≥ 1, if there is a partition of the edges into sets
E1, . . . , Ek, called planes, in such a way that edges that are in the same plane do not cross. For k = 1, this
corresponds to the concept of a noncrossing dependency graph (Kuhlmann and Jonsson, 2015) or planar
linear arrangement (Chao and Sha, 1992) (not to be confused with a planar graph). Under the assumption
of trees rooted at the dummy root node 0, 1-planar trees are equivalent to the well-known projective trees.
For k ≥ 2, this means that the dependency graph (together with the linear order of the words) is a k-page
book embedding of a graph (see (Pitler et al., 2013)). Intuitively, a k-planar graph is one where each arc
can be assigned one out of k colors in such a way that arcs with the same color do not cross (see Figure 1).
2-planarity has been shown to be particularly relevant for parsing, as the overwhelming majority of

syntactic structures in syntactic treebanks has been shown to be 2-planar (Gómez-Rodrı́guez and Nivre,
2013; Gómez-Rodrı́guez, 2016) and efficient transition-based parsers have been proposed for this set of
structures (Gómez-Rodrı́guez and Nivre, 2010; Fernández-González and Gómez-Rodrı́guez, 2018).

3 2-Planar bracketing encodings

In order to support the extended non-projective coverage provided by 2-planarity in the bracketing system,
we balance a different set of brackets for each plane. We introduce a set of “star” bracket elements
denoting arcs belonging to the second plane, B∗ = {<∗, /∗, /∗,>∗}. A token wi can be assigned elements
from both B and B∗. Brackets only match when they are on the same plane, i.e., (<, /), (/,>) are
matching pairs of brackets that encode arcs in the first plane, and (<∗, /∗), (/∗,>∗) are matching pairs
of brackets that encode arcs in the second plane. The decoding process is implemented by operating on
separate stacks for the first-plane brackets and the second-plane brackets.

3.1 Plane assignment strategies
According to the definition in Section 2.2, a tree is 2-planar if its edges can be partitioned into two planes,
E1 and E2, such that edges in the same plane do not cross. However, often this partition is not unique

2475

(for example, in the case of trees that are also 1-planar, any partition satisfies the condition). Thus, for
the encoding in Section 3 to provide a single sequence of labels for each gold tree during training, we
need to fix a plane assignment strategy, i.e., a canonical way of assigning each arc to a plane to obtain
such a partition. While the number of possible partitions is exponential in the size of the tree, desirable
partitions should be easily learnable, i.e., follow predictable patterns. Given that the amount of crossing
dependencies in treebanks is scarce (Ferrer-i-Cancho et al., 2018), it makes sense to look for partitions that
do not make use of an extra plane when not needed, so that the parsing of sentences or fragments without
crossing arcs does not become more difficult or need more output labels than in the basic bracketing
encoding (as they will only use one plane and thus one set of brackets). Following this general principle,
we define the following plane assignment strategies:

Second-Plane-Averse Greedy Plane Assignment Arcs in the gold tree are traversed in left-to-right
order of their right endpoint, with shortest arcs first when they share a right endpoint (this is the order
in which arcs will be decoded using a stack, see Section 4). For each arc a, we assign the first plane if
possible (i.e., if no arc crossing a has already been assigned the first plane). Otherwise, we assign the
second plane if possible, or no plane if the arc a crosses arcs assigned to both planes. The process is
formally described with pseudocode in Algorithm 1.

Algorithm 1: 2p-greedy
Input: A set of arcs T , and input length n
Result: Two sets (planes) of arcs P1, P2

P1 ← ∅;
P2 ← ∅;
for xr ← 1 to n do

for xl ← xr − 1 downto 0 do
if ∃a ∈ T | a = (xl, xr, l) ∨ a = (xr, xl, l) then

nextArc← a;
C ← {b ∈ (P1 ∪ P2) | b crosses a};
if C ∩ P1 = ∅ then

P1 ← P1 ∪ {nextArc};
else if C ∩ P2 = ∅ then

P2 ← P2 ∪ {nextArc};
else

do nothing (failed to assign nextArc to a plane);
end

end
end
return P1, P2;

Second-Plane-Averse Plane Assignment based on Restriction Propagation on the Crossings Graph
While the greedy approach is very simple, it has the disadvantage that it may make suboptimal decisions
leading to reduced coverage: assigning an arc to a given plane may seem like a good local decision, but
depending on how arcs cross each other in the whole tree, it may lead to a subsequent situation where an
arc cannot be assigned a plane even if the tree is actually 2-planar.

An example of this can be seen in Figure 1b: the greedy strategy will assign the arcs w1 → w3 and
w1 → w5 to the first plane, which in a local context is the simplest thing to do. However, the fact that
w1 → w3 crosses w2 → w4 (which is thus assigned to the second plane) and w3 → w6 crosses both
w1 → w5 (first plane) and w2 → w4 (second plane) then means that it is impossible to assign a plane to
the arc w3 → w6. This could have been prevented by assigning arc w1 → w5 to the second plane, but a
greedy algorithm has no way to anticipate this. To deal with this problem, we propagate restrictions by
traversing the crossings graph, i.e., a graph where its nodes represent the edges in the gold tree and two

2476

nodes are linked if the corresponding edges cross (Gómez-Rodrı́guez and Nivre, 2013). Whenever we
assign a given arc to plane 1, then we forbid plane 1 for its neighbors in the crossings graph (i.e. the arcs
that cross it), we forbid plane 2 for the neighbors of its neighbors, plane 1 for the neighbors of those, and
so on. For arcs assigned to plane 2, we proceed symmetrically.

Thus, the traversal order of arcs is the same as in the previous strategy, but for each new arc a, we
look at the restrictions and assign it to the first plane if allowed, otherwise to the second plane if allowed,
and finally to no plane if neither are allowed. In this case, the latter will only happen for non-2-planar
trees: it is easy to show that situations where both planes are forbidden for the same arc can only happen
if the crossings graph has a cycle of odd length, which is equivalent to the tree not being 2-planar (see
(Gómez-Rodrı́guez and Nivre, 2013)). Thus, this strategy guarantees full coverage of 2-planar structures.
The pseudocode of the strategy can be seen in Algorithm 2, where P1 and P2 represent the arcs forbidden
from planes 1 and 2, respectively.

Algorithm 2: 2p-prop
Input: A set of arcs T , and input length n
Result: Two sets (planes) of arcs P1, P2

function Propagate(Edge sets T, P1, P2, Edge e, Plane i):
Pi ← Pi ∪ {e};
// e forbidden from plane i
for (e′ ∈ T | e′ crosses e) do

if e′ 6∈ P3−i then
(P1, P2)← Propagate(T, P1, P2, e

′, 3− i);
end
return P1, P2;

P1 ← ∅, P2 ← ∅, P1 ← ∅, P2 ← ∅;
for xr ← 1 to n do

for xl ← xr − 1 downto 0 do
if ∃a ∈ T | a = (xl, xr, l) ∨ a = (xr, xl, l) then

nextArc← a;
if nextArc 6∈ P1 then

P1 ← P1 ∪ {nextArc};
Propagate(T, P1, P2,nextArc,2);

else if nextArc 6∈ P2 then
P2 ← P2 ∪ {nextArc};
Propagate(T, P1, P2,nextArc,1);

else
do nothing (failed to assign nextArc to a plane);

end
end

end
return P1, P2;

Switch-averse plane assignment strategies Another possibility is to implement variants of the previous
two strategies that are switch-averse, rather than second-plane-averse. These variants work like the
previous strategies, except for the difference than when both planes can be assigned to the current arc, we
assign the last plane used, instead of always preferring to assign the first plane.

The implementation of the 2-planar transition-based parser by Gómez-Rodrı́guez and Nivre (2010) used
a switch-averse restriction-propagation strategy. This is a reasonable choice because in their transition-
based parser it minimizes the number of transitions used: the algorithm’s state holds the “current” plane
being used, and switching to the other plane costs one transition. In our sequence labeling context, where

2477

Language % non-projective
sentences

% non-projective
dependencies Language % non-projective

sentences
% non-projective

dependencies

Ancient GreekPerseus 63.87 10.14 KoreanKaist 21.70 2.55
BasqueBDT 33.17 4.69 DanishDDT 21.50 1.74
HungarianSzeged 27.11 1.97 GothicPROIEL 17.57 2.53
PortugueseBosque 23.31 1.85 LithuanianHSE 17.49 1.27
UrduUDTB 22.57 1.32 JapaneseGSD 0 0
AfrikaansAfriBooms 22.34 1.62 GalicianCTG 0 0

Table 1: Percentage of non-projective sentences and dependencies of the selected UD treebanks, where
JapaneseGSD and GalicianCTG are control treebanks.

this is no longer true (the model always makes n predictions for a sequence of length n), we made some
initial experiments with switch-averse strategies but we found that they performed consistently (albeit
slightly) worse than second-plane-averse strategies, so we discarded them for our experiments.

4 Bracketing decoding

When a sentence is represented with the bracketing encoding in a single plane, a valid left arc is associated
with a pair of matching brackets < and /while a right arc is associated with a pair of / and >. For each
sentence we create two initially empty stacks, σL and σR, in order to keep the elements separate with
respect to the arc direction. Thus, the output labels generated by the system are read from left to right,
decomposed into their brackets, and then brackets corresponding to left arcs are processed in σL and those
that encode right arcs are processed in σR. In order to handle a second plane with brackets represented as
(<∗, /∗) and (/∗, >∗), we simply use additional stacks: σ∗L and σ∗R.

More particularly, decoding proceeds by reading a label for each token and pushing each opening
bracketing element to the corresponding stack while preserving the token’s index. For instance, when
reading a new label that contains <, the bracket element is pushed into the σL stack and can only be
popped once there is a later matching label with a closing bracketing element /that will be used to create
a left arc, by recovering the index stored together with the < bracket. Analogously, right arcs are processed
in the same way, but in a different stack.

Postprocessing Decoded labels do not ensure creating a well-formed tree. For that reason, we adapt
some common heuristics for all encodings in order to postprocess them. In case some of the brackets
in any of the stacks are unbalanced, the outermost bracket elements are discarded. Tokens that are not
assigned any head are recovered by attaching them to the word that is attached to the dummy root (i.e.,
the syntactic head of the sentence). Cycles are also solved by removing the leftmost arc in the cycle.

5 Experiments

Data We extracted the most non-projective treebanks from UDv2.4 (Nivre and others, 2019) based on
the percentage of non-projective sentences, and discarded some of them due to the lack of a pre-trained
UDpipe model or due to the lack of a development set. The selected treebanks were: Ancient GreekPerseus,
BasqueBDT, HungarianSzeged, PortugueseBosque, UrduUDTB, AfrikaansAfriBooms, KoreanKaist, DanishDDT,
GothicPROIEL, LithuanianHSE. In addition, two fully projective treebanks (GalicianCTG and JapaneseGSD)
were included as control treebanks. Table 1 shows the selected treebanks with their percentage of non-
projective sentences and dependencies. For all of them, we ran UDPipe models (Straka and Straková,
2017) to obtain predicted segmentation and tokenization. We also computed predicted PoS tags, but they
were not used (nor gold PoS tags were) to train any of the models, but just to decode the labels from the
rel-PoS encoding (Strzyz et al., 2019b). In addition, we included dummy beginning- and end-of-sentence
tokens (BOS,EOS) as in previous work in parsing as labeling.

Model For our experiments we use bidirectional long short-term memory networks (Hochreiter and
Schmidhuber, 1997; Schuster and Paliwal, 1997) as implemented in the NCRF++ framework (Yang and

2478

Zhang, 2018).1 Each input word wi is represented as a vector which comes from a concatenation of (i) an
external pre-trained word embedding, which is further fine-tuned during training, and (ii) a second word
embedding which results from the output of a char-LSTM, which is trained end-to-end together with the
rest of the network.

In this context, let LSTMθ(~x) be a black-box long short-term memory network that processes the
sequence of vectors ~x = [~x1, ..., ~x|~x|], then the output for ~xi is a hidden vector ~hi which represents the
word based on its left and right sentence context:

~hi = BiLSTMθ(~x, i) = LSTMl
θ(~x[1:i]) ◦ LSTMr

θ(~x[|~x|:i]). (1)

More particularly, we stack 2 BiLSTMs before computing the output layer. For this, we consider a
simple hard-sharing multi-task learning architecture, where each ~hi is sent to three separate layers in order
to generate the classifications through regular softmaxes: two labels predicted for each plane (one label
per plane)2 and another one for the word’s dependency relation. Afterwards, label decoding is followed
by a postprocessing step with some heuristics to ensure a valid dependency tree (as described in §4).

5.1 Analysis and results

Next, we compare the performance of the original bracketing encoding (1p-brackets), 2-planar with greedy
plane assignment (2p-greedy) and 2-planar with restriction propagation (2p-prop) with respect to their
theoretical arc coverage, as well as their empirical recall and precision. For UAS/LAS, we also report
results for models trained on the rel-PoS encoding.

Language 1p-brackets 2p-greedy 2p-prop Language 1p-brackets 2p-greedy 2p-prop

Ancient GreekPerseus 89.53 99.27 99.33 AfrikaansAfriBooms 98.65 99.99 99.99
BasqueBDT 94.85 99.85 99.62 KoreanKaist 98.42 100.00 100.00
HungarianSzeged 97.57 99.96 99.98 DanishDDT 98.10 99.97 99.96
PortugueseBosque 98.10 99.95 99.88 GothicPROIEL 97.58 99.94 99.98
UrduUDTB 98.68 99.95 99.94 LithuanianHSE 98.35 99.97 100.00

Table 2: Percentage of arcs covered by the proposed encodings on the gold training set from highly
non-projective treebanks.

Theoretical advantage Table 2 compares the dependency arc coverage by the encodings on the gold
training sets. It is easy to conclude that the 2-planar encodings almost fully succeed to reconstruct
highly non-projective datasets, while the bracketing encoding suffers more. When comparing both plane
assignments for the 2-planar encodings, we see that the coverage of 2p-greedy is already so high (99.9%
or more in all but two treebanks) that the extra coverage provided by 2p-prop is not large in absolute terms.
In fact, in some treebanks, 2p-prop even has slightly less measured coverage than 2p-greedy, even though
(as explained earlier) the former guarantees full coverage of 2-planar trees while the latter does not. This
can be explained because there are non-2-planar trees where 2p-greedy happens to cover more arcs. In
such trees, the theoretical guarantee provided by 2p-prop does not apply.

With respect to the number of labels that each encoding generates (which will directly impact the output
size of the softmax layers), Table 3 shows the comparison of the output vocabulary sets for each of the
tasks in the multi-task learning setup. We can see that, for most languages, bracketing encodings generate
a smaller tag set than rel-PoS3; and in general, the 2-planar encodings do not produce increases in tagset
size with respect to the 1-planar bracketing encoding. In fact, for the most non-projective languages (like
Ancient Greek or Basque), the 2-planar encodings clearly compress the tag set as, in spite of having a
larger variety of brackets, they appear distributed among the two planes so that the bracket strings in each
label will tend to be shorter.

1We omit however the CRF on top of the BiLSTMs.
2If a given word has no arcs associated to that plane, we generate an empty label ∅.
3In the rel-PoS encoding, each label word represents the head based on a PoS-tag offset. See also (Strzyz et al., 2019b).

2479

Language Encoding
Task 1

(1st plane)
Task 2

(2nd plane)
Task 3

(deprel)
Language Encoding

Task 1
(1st plane)

Task 2
(2nd plane)

Task 3
(deprel)

Language Encoding
Task 1

(1st plane)
Task 2

(2nd plane)
Task 3

(deprel)

Ancient
Greek

rel-PoS 166 – 27

Urdu

rel-PoS 190 – 27

Gothic

rel-PoS 121 – 34
1p-brackets 210 – 27 1p-brackets 95 – 27 1p-brackets 114 – 34
2p-greedy 108 37 27 2p-greedy 80 22 27 2p-greedy 78 18 34
2p-prop 109 39 27 2p-prop 80 22 27 2p-prop 78 19 34

Basque

rel-PoS 132 – 32

Afrikaans

rel-PoS 110 – 28

Lithuanian

rel-PoS 89 – 38
1p-brackets 134 – 32 1p-brackets 77 – 28 1p-brackets 57 – 38
2p-greedy 84 25 32 2p-greedy 62 15 28 2p-greedy 46 11 38
2p-prop 83 25 32 2p-prop 62 15 28 2p-prop 46 12 38

Hungarian

rel-PoS 128 – 56

Korean

rel-PoS 134 – 32

Japanese

rel-PoS 77 – 27
1p-brackets 101 – 56 1p-brackets 89 – 32 1p-brackets 45 – 27
2p-greedy 71 19 56 2p-greedy 73 14 32 2p-greedy 45 3 27
2p-prop 71 21 56 2p-prop 73 14 32 2p-prop 45 3 27

Portuguese

rel-PoS 192 – 43

Danish

rel-PoS 150 – 38

Galician

rel-PoS 132 – 26
1p-brackets 110 – 43 1p-brackets 128 – 38 1p-brackets 82 – 26
2p-greedy 88 25 43 2p-greedy 97 23 38 2p-greedy 82 3 26
2p-prop 88 27 43 2p-prop 96 25 38 2p-prop 82 3 26

Table 3: Label size of each encoding based on the training and dev set for each treebank. Each task
contains three additional labels: BOS, EOS and ∅. Hence the Japanese and Galician treebanks have three
labels for the second plane, although they are fully projective.

Language 1p-brackets 2p-greedy 2p-prop
P R P R P R

Ancient GreekPerseus 85.74 54.34 86.33 63.85 87.58 66.23
BasqueBDT 69.87 45.80 70.14 52.97 72.77 52.80
HungarianSzeged 37.17 66.98 35.51 71.70 37.80 74.53
PortugueseBosque 52.94 24.77 55.84 39.45 61.64 41.28
UrduUDTB 36.63 36.63 38.10 31.68 39.78 36.63
AfrikaansAfriBooms 40.99 65.35 46.72 63.37 46.94 68.32
KoreanKaist 59.45 49.54 62.24 47.03 62.80 47.03
DanishDDT 45.54 48.57 46.36 48.57 45.37 46.67
GothicPROIEL 50.50 26.42 58.88 32.64 56.00 36.27
LithuanianHSE 34.38 91.67 27.59 66.67 33.33 83.33

Average 51.32 51.01 52.77 51.79 54.40 55.31

Table 4: Models’ precision and recall of non-projective sentences on the test set.

Language 1p-brackets 2p-greedy 2p-prop
P R P R P R

Ancient GreekPerseus 20.82 10.32 32.40 18.65 31.40 19.16
BasqueBDT 18.41 11.80 28.11 19.83 31.76 20.40
HungarianSzeged 1.57 4.05 3.13 9.25 4.06 10.98
PortugueseBosque 10.87 5.18 14.50 9.84 20.18 11.92
UrduUDTB 3.26 3.92 0.69 0.65 3.41 3.92
AfrikaansAfriBooms 11.04 18.09 13.09 19.15 12.59 18.62
KoreanKaist 28.12 21.68 32.26 21.37 31.06 21.53
DanishDDT 7.66 11.35 12.96 19.86 9.45 13.48
GothicPROIEL 11.11 5.17 19.63 11.03 17.46 11.38
LithuanianHSE 0 0 0 0 1.64 6.25

Average 11.29 9.16 15.68 12.96 16.30 13.76

Table 5: Models’ precision and recall of non-projective dependencies on the test set.

Results To investigate how the coverage in Table 2 translates into non-projective performance in actual
parsing, we report models’ precision and recall. In Table 4, the precision and recall on non-projective
sentences4 increase across the treebanks with 2-planar models, suggesting that they are capable of
identifying non-projective sentences to a greater extent than the original bracketing model. Table 5 shows
that 2p-greedy and 2p-prop models improve the recall and precision of non-projective dependencies in

4Precision and recall on non-projective sentences are computed by looking whether a given sentence is identified as non-
projective (i.e. given a non-projective parse), disregarding the correctness of the predicted non-projective dependencies for that
sentence.

2480

the majority of treebanks.5 Again, 2-planar encodings outperform the original bracketing baseline, even
though the latter is able to cover non-projectivity to some degree (crossing arcs pointing in opposite
directions). Both 2p-greedy and 2p-prop obtain similar scores, showing that their coverage is comparable.

Language Encoding
dev test

Language Encoding
dev test

UAS LAS UAS LAS UAS LAS UAS LAS

Ancient
GreekPerseus

rel-PoS 65.29 58.27 62.91 55.07

KoreanKaist

rel-PoS 81.47 78.50 77.25 73.92

1p-brackets 64.70 57.21 63.36 54.80 1p-brackets 84.54 81.54 82.37 79.03
2p-greedy 67.10 59.97 65.90 57.15 2p-greedy 85.01 82.01 82.33 78.91
2p-prop 67.06 59.84 65.11 56.55 2p-prop 84.65 81.73 82.32 79.03

BasqueBDT

rel-PoS 77.48 72.91 75.28 70.19

DanishDDT

rel-PoS 78.28 74.93 77.07 73.45

1p-brackets 80.13 75.37 78.37 72.95 1p-brackets 80.60 76.59 78.25 73.94
2p-greedy 79.98 75.18 78.13 72.63 2p-greedy 80.68 76.80 78.49 74.07
2p-prop 80.44 75.56 78.58 73.08 2p-prop 81.15 77.27 78.87 74.42

HungarianSzeged

rel-PoS 72.58 67.13 66.19 59.32

GothicPROIEL

rel-PoS 65.25 58.58 67.14 59.72

1p-brackets 75.09 69.13 67.80 60.50 1p-brackets 65.26 57.92 66.63 59.02
2p-greedy 75.47 69.33 68.07 60.74 2p-greedy 65.26 58.05 66.84 59.26
2p-prop 75.26 69.05 67.95 60.63 2p-prop 65.29 57.91 66.25 58.41

PortugueseBosque

rel-PoS 87.10 84.28 84.74 81.02

LithuanianHSE

rel-PoS 39.04 26.37 31.05 19.70

1p-brackets 88.88 85.78 86.67 82.44 1p-brackets 40.97 25.63 34.62 19.42
2p-greedy 88.88 85.76 86.51 82.39 2p-greedy 41.34 26.46 35.08 20.45
2p-prop 89.00 85.82 86.52 82.17 2p-prop 44.19 29.03 34.80 21.29

UrduUDTB

rel-PoS 80.98 75.09 81.18 75.26

JapaneseGSD

rel-PoS 76.60 75.83 74.83 73.96

1p-brackets 84.22 77.23 84.28 77.19 1p-brackets 78.73 77.67 77.34 76.10
2p-greedy 84.01 77.16 84.08 77.19 2p-greedy 78.81 77.78 77.47 76.24
2p-prop 83.89 77.30 84.26 77.41 2p-prop 78.81 77.78 77.47 76.24

AfrikaansAfriBooms

rel-PoS 79.00 74.58 78.93 74.65

GalicianCTG

rel-PoS 79.72 76.40 78.36 75.05

1p-brackets 80.77 75.54 79.52 74.86 1p-brackets 80.82 77.35 80.02 76.33
2p-greedy 81.41 76.33 80.13 75.53 2p-greedy 80.90 77.36 79.91 76.32
2p-prop 81.50 76.30 79.96 75.43 2p-prop 80.90 77.36 79.91 76.32

Table 6: UAS and LAS (%) for the respective encodings on the predicted dev and test set of highly
non-projective treebanks and control treebanks.

Table 6 compares the LAS and UAS performance of the 1- and 2-planar, and also of the rel-PoS
encoding.6 2-planar encodings outperform the existing bracketing encoding in the majority of treebanks.
The gains vary between languages but on average 2p-greedy improves UAS by 0.4 and 2p-prop by 0.3, and
both improve LAS by 0.4 across highly non-projective treebanks. Comparing both assignment strategies
for the 2-planar encoding, the theoretical advantage in coverage provided by 2p-prop over 2p-greedy does
not translate into accuracy gains in general, as the actual difference in coverage is small when measured
in the treebanks (as was seen in Table 2) and the simpler greedy assignment strategy is likely to be easier
to learn by the machine learning setup.

Since the syntactic dependencies are represented by a finite set of labels that have been seen in the
training and development sets, as in all parsing as sequence labeling approaches, it is expected that at test
time our model may encounter unseen labels. In Appendix B we show the label coverage of all encodings
on the test set. In general, it seems that the unseen labels do not have significant impact on the overall
performance due to their rare occurrence.

5The reported precision and recall for Lithuanian is lower than for the other treebanks. As we show in Appendix A, the
Lithuanian treebank contains a small number of sentences and therefore it is hard to draw robust conclusions about its poor
performance.

6Note that the implementations compared here do not use PoS tags as features. This is sensible for the bracketing encodings,
and for the focus of this paper where we are interested in encodings that can be run using raw words as the only input, but differs
from the standard setup in the rel-PoS encoding (where using PoS tags comes at no extra significant cost, because they need to
be computed for decoding in any case).

2481

Language Encoding
sent/s

Language Encoding
sent/s

Language Encoding
sent/s

CPU GPU CPU GPU CPU GPU

Ancient
GreekPerseus

rel-PoS 305* 1012*

UrduUDTB

rel-PoS 182* 625*

GothicPROIEL

rel-PoS 442* 1718*
1p-brackets 303 1011 1p-brackets 186 616 1p-brackets 447 1718
2p-greedy 288 889 2p-greedy 174 544 2p-greedy 434 1598
2p-prop 289 886 2p-prop 175 549 2p-prop 435 1544

BasqueBDT

rel-PoS 387* 1461*

AfrikaansAfriBooms

rel-PoS 228* 861*

LithuanianHSE

rel-PoS 239* 828*
1p-brackets 388 1454 1p-brackets 228 857 1p-brackets 235 769
2p-greedy 378 1369 2p-greedy 220 805 2p-greedy 228 740
2p-prop 378 1369 2p-prop 221 805 2p-prop 229 730

HungarianSzeged

rel-PoS 219* 802*

KoreanKaist

rel-PoS 442* 1718*

JapaneseGSD

rel-PoS 214* 663*
1p-brackets 221 797 1p-brackets 447 1718 1p-brackets 214 661
2p-greedy 212 739 2p-greedy 434 1598 2p-greedy 206 611
2p-prop 213 750 2p-prop 435 1544 2p-prop 205 616

PortugueseBosque

rel-PoS 242* 868*

DanishDDT

rel-PoS 442* 1718*

GalicianCTG

rel-PoS 175* 752*
1p-brackets 246 872 1p-brackets 447 1718 1p-brackets 177 756
2p-greedy 236 811 2p-greedy 434 1598 2p-greedy 170 673
2p-prop 237 814 2p-prop 435 1544 2p-prop 170 673

Table 7: Comparison of parsing speeds (sent/s) on a single core CPU and GPU. The reported speeds
are averaged over 5 runs. Times with a * are a reminder that the rel-PoS encoding additionally requires
PoS tagging, whose time is not included in these speeds. As an example, the UDPipe tagging speed on
the test set (in sent/s) is: Ancient Greek-567, Basque-881, Hungarian-755, Portuguese-210, Urdu-45,
Afrikaans-465, Korean-921, Danish-671, Gothic-861, Lithuanian-1418, Japanese-767 and Galician-366.

Finally, we measured speeds for each of the encodings on various treebanks, run on a single core CPU7

and GPU8, which we breakdown in Table 7. We can observe that the speed is very similar between
1-planar and 2-planar encodings. This is because the bottleneck of the model is in the BiLSTMs, and
computing the softmaxes comes at almost no cost despite the differences in the output vocabularies.

6 Conclusion

We have shown a new bracketing-based linearization of 2-planar trees compatible with parsing as sequence
labeling. Our main goal was to introduce a bracketing encoding with the ability to perform unrestricted
non-projective dependency parsing, which remained as an open challenge in sequence labeling parsing
under the family of bracketing encodings. Together with the proposed plane assignment strategies and a
BiLSTM-based network, our 2-planar bracket representations improve the performance over the existing
bracketing-based encoding for parsing as sequence labeling, and also outperform the PoS-based encoding
in the absence of PoS-tags as input parameters to the model. Thus, it can be a useful alternative where an
encoding that depends on PoS tags is not desirable, e.g. domains with low-frequency or low-quality PoS
tags, or to decrease even further the latency of sequence labeling parsers.

Finally, it is worth noting that we have proposed plane assignment strategies that minimize the use of
the second plane. However, it is a possible avenue for future work to examine other strategies based on
different criteria than the one presented in this paper.

Acknowledgements

This work has received funding from the European Research Council (ERC), which has funded this
research under the European Union’s Horizon 2020 research and innovation programme (FASTPARSE,
grant agreement No 714150), from MINECO (ANSWER-ASAP, TIN2017-85160-C2-1-R), from Xunta
de Galicia (ED431C 2020/11), and from Centro de Investigación de Galicia ‘CITIC’, funded by Xunta de
Galicia and the European Union (European Regional Development Fund- Galicia 2014-2020 Program),
by grant ED431G 2019/01. DV is supported by a 2020 Leonardo Grant for Researchers and Cultural
Creators from the BBVA Foundation.

7For CPU experiments, we used a CPU core Intel Core i7-8700 CPU 3.2 GHz.
8For GPU experiments, we used an Nvidia TITAN Xp.

2482

References
Mark Anderson and Carlos Gómez-Rodrı́guez. 2020. On the Frailty of Universal POS Tags for Neural UD Parsers.

In Proceedings of the 24th Conference on Computational Natural Language Learning. To appear.

Liang-Fang Chao and Edwin Hsing-Mean Sha. 1992. Algorithms for min-cut linear arrangements of outerplanar
graphs. In [Proceedings] 1992 IEEE International Symposium on Circuits and Systems, volume 4, pages 1851–
1854 vol.4.

Miryam de Lhoneux, Yan Shao, Ali Basirat, Eliyahu Kiperwasser, Sara Stymne, Yoav Goldberg, and Joakim Nivre.
2017. From raw text to universal dependencies - look, no tags! In Proceedings of the CoNLL 2017 Shared Task:
Multilingual Parsing from Raw Text to Universal Dependencies, pages 207–217, Vancouver, Canada, August.
Association for Computational Linguistics.

Daniel Fernández-González and Carlos Gómez-Rodrı́guez. 2018. A dynamic oracle for linear-time 2-planar
dependency parsing. In Proceedings of the 2018 Conference of the North American Chapter of the Association
for Computational Linguistics: Human Language Technologies, Volume 2 (Short Papers), pages 386–392, New
Orleans, Louisiana, June. Association for Computational Linguistics.

Ramon Ferrer-i-Cancho, Carlos Gómez-Rodrı́guez, and Juan Luis Esteban. 2018. Are crossing dependencies
really scarce? Physica A: Statistical Mechanics and its Applications, 493:311–329.

Carlos Gómez-Rodrı́guez and Joakim Nivre. 2010. A transition-based parser for 2-planar dependency structures.
In Proceedings of the 48th Annual Meeting of the Association for Computational Linguistics, pages 1492–1501,
Uppsala, Sweden, July. Association for Computational Linguistics.

Carlos Gómez-Rodrı́guez and Joakim Nivre. 2013. Divisible transition systems and multiplanar dependency
parsing. Computational Linguistics, 39(4):799–845.

Carlos Gómez-Rodrı́guez and David Vilares. 2018. Constituent parsing as sequence labeling. In Proceedings
of the 2018 Conference on Empirical Methods in Natural Language Processing, pages 1314–1324, Brussels,
Belgium, October-November. Association for Computational Linguistics.

Carlos Gómez-Rodrı́guez. 2016. Restricted non-projectivity: Coverage vs. efficiency. Computational Linguistics,
42(4):809–817, December.

Sepp Hochreiter and Jürgen Schmidhuber. 1997. Long short-term memory. Neural computation, 9(8):1735–1780.

Nikita Kitaev and Dan Klein. 2018. Constituency parsing with a self-attentive encoder. In Proceedings of the 56th
Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pages 2676–2686,
Melbourne, Australia, July. Association for Computational Linguistics.

Nikita Kitaev and Dan Klein. 2019. Tetra-tagging: Word-synchronous parsing with linear-time inference. CoRR,
abs/1904.09745.

Marco Kuhlmann and Peter Jonsson. 2015. Parsing to noncrossing dependency graphs. Transactions of the
Association for Computational Linguistics, 3:559–570.

Ophélie Lacroix. 2019. Dependency parsing as sequence labeling with head-based encoding and multi-task
learning. In Proceedings of the Fifth International Conference on Dependency Linguistics (Depling, SyntaxFest
2019), pages 136–143, Paris, France, August. Association for Computational Linguistics.

Zuchao Li, Jiaxun Cai, Shexia He, and Hai Zhao. 2018. Seq2seq dependency parsing. In Proceedings of the
27th International Conference on Computational Linguistics, pages 3203–3214, Santa Fe, New Mexico, USA,
August. Association for Computational Linguistics.

Joakim Nivre et al. 2019. Universal dependencies 2.4. LINDAT/CLARIAH-CZ digital library at the Institute of
Formal and Applied Linguistics (ÚFAL), Faculty of Mathematics and Physics, Charles University.

Emily Pitler, Sampath Kannan, and Mitchell Marcus. 2013. Finding optimal 1-endpoint-crossing trees. Transac-
tions of the Association for Computational Linguistics, 1:13–24.

Mike Schuster and Kuldip K Paliwal. 1997. Bidirectional recurrent neural networks. IEEE transactions on Signal
Processing, 45(11):2673–2681.

Aaron Smith, Miryam de Lhoneux, Sara Stymne, and Joakim Nivre. 2018. An investigation of the interactions
between pre-trained word embeddings, character models and POS tags in dependency parsing. In Proceedings
of the 2018 Conference on Empirical Methods in Natural Language Processing, pages 2711–2720, Brussels,
Belgium, October-November. Association for Computational Linguistics.

2483

Drahomı́ra Spoustová and Miroslav Spousta. 2010. Dependency parsing as a sequence labeling task. The Prague
Bulletin of Mathematical Linguistics, 94(1):7–14.

Milan Straka and Jana Straková. 2017. Tokenizing, POS tagging, lemmatizing and parsing UD 2.0 with UDPipe.
In Proceedings of the CoNLL 2017 Shared Task: Multilingual Parsing from Raw Text to Universal Dependencies,
pages 88–99, Vancouver, Canada, August. Association for Computational Linguistics.

Michalina Strzyz, David Vilares, and Carlos Gómez-Rodrı́guez. 2019a. Sequence labeling parsing by learning
across representations. In Proceedings of the 57th Annual Meeting of the Association for Computational Lin-
guistics, pages 5350–5357, Florence, Italy, July. Association for Computational Linguistics.

Michalina Strzyz, David Vilares, and Carlos Gómez-Rodrı́guez. 2019b. Viable dependency parsing as sequence
labeling. In Proceedings of the 2019 Conference of the North American Chapter of the Association for Com-
putational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pages 717–723,
Minneapolis, Minnesota, June. Association for Computational Linguistics.

David Vilares, Michalina Strzyz, Anders Søgaard, and Carlos Gómez-Rodrı́guez. 2020. Parsing as pretraining. In
Proceedings of the 34th AAAI Conference on Artificial Intelligence (AAAI-20), New York, NY, USA.

Oriol Vinyals, Lukasz Kaiser, Terry Koo, Slav Petrov, Ilya Sutskever, and Geoffrey Hinton. 2015. Grammar as
a foreign language. In Proceedings of the 28th International Conference on Neural Information Processing
Systems - Volume 2, NIPS’15, pages 2773–2781, Cambridge, MA, USA. MIT Press.

Jie Yang and Yue Zhang. 2018. Ncrf++: An open-source neural sequence labeling toolkit. In Proceedings of ACL
2018, System Demonstrations, pages 74–79.

Anssi Yli-Jyrä and Carlos Gómez-Rodrı́guez. 2017. Generic axiomatization of families of noncrossing graphs
in dependency parsing. In Proceedings of the 55th Annual Meeting of the Association for Computational Lin-
guistics (Volume 1: Long Papers), pages 1745–1755, Vancouver, Canada, July. Association for Computational
Linguistics.

Anssi Mikael Yli-Jyrä. 2003. Multiplanarity – a model for dependency structures in treebanks. In Joakim Nivre
and Erhard Hinrichs, editors, TLT 2003. Proceedings of the Second Workshop on Treebanks and Linguistic
Theories, volume 9 of Mathematical Modelling in Physics, Engineering and Cognitive Sciences, pages 189–
200, Växjö, Sweden. Växjö University Press.

2484

A Treebank sizes

We provide some statistics about the chosen treebanks. In Table 8, we report the total number of sentences
for each dataset split with their respective non-projectivity percentage.

Language Train Dev Test Language Train Dev Test

Ancient GreekPerseus 11476 (62.77%) 1137 (74.41%) 1306 (64.40%) AfrikaansAfriBooms 1315 (22.21%) 194 (20.10%) 425 (23.76%)
BasqueBDT 5396 (33.52%) 1798 (33.48%) 1799 (31.80%) KoreanKaist 23010 (21.92%) 2066 (22.12%) 2287 (19.15%)
HungarianSzeged 910 (25.71%) 441 (33.56%) 449 (23.61%) DanishDDT 4383 (21.83%) 564 (21.81%) 565 (18.58%)
PortugueseBosque 8328 (23.60%) 560 (19.46%) 477 (22.85%) GothicPROIEL 3387 (16.77%) 985 (19.09%) 1029 (18.76%)
UrduUDTB 4043 (23.00%) 552 (23.01%) 535 (18.88%) LithuanianHSE 153 (16.34%) 55 (16.36%) 55 (21.82%)

Table 8: Total number of sentences per each dataset split (% non-projective sentences).

B Label coverage

At test time, our model assigns a label for each task by choosing one from a finite set learned during
training. As a result, it is expected that the model may not be able to predict some of the labels occurring
in the test set. Table 9 reports the number of labels that have not been seen in the training and dev set and
the total number of unique labels found in the test set. In addition, we include data about the percentage
of occurrences of unseen labels with respect to the the occurrences of all labels in the test set.

Task 1
(1st plane)

Task 2
(2nd plain)

Task 3
(deprel)

Language Encoding Unseen Total %
occ. Unseen Total %

occ. Unseen Total %
occ.

rel-PoS 0 (0%) 75 0 − − − 0 (0%) 25 0
1p-brackets 4 (3.39%) 118 0.02 − − − 0 (0%) 25 0
2p-greedy 2 (3.08%) 65 0.01 1 (5.26%) 19 0.01 0 (0%) 25 0

Ancient
GreekPerseus

2p-prop 1 (1.49%) 67 0 0 (0%) 22 0 0 (0%) 25 0

rel-PoS 4 (4.3%) 93 0.02 − − − 0 (0%) 30 0
1p-brackets 2 (2.15%) 93 0.01 − − − 0 (0%) 30 0
2p-greedy 3 (4.35%) 69 0.02 2 (10.53%) 19 0.01 0 (0%) 30 0BasqueBDT

2p-prop 3 (4.35%) 69 0.02 2 (10.0%) 20 0.01 0 (0%) 30 0

rel-PoS 6 (7.5%) 80 0.06 − − − 0 (0%) 47 0
1p-brackets 5 (6.1%) 82 0.05 − − − 0 (0%) 47 0
2p-greedy 1 (1.64%) 61 0.01 1 (8.33%) 12 0.01 0 (0%) 47 0HunagrianSzeged

2p-prop 1 (1.64%) 61 0.01 1 (6.67%) 15 0.01 0 (0%) 47 0

rel-PoS 2 (2.11%) 95 0.03 − − − 0 (0%) 38 0
1p-brackets 0 (0%) 60 0 − − − 0 (0%) 38 0
2p-greedy 0 (0%) 54 0 0 (0%) 14 0 0 (0%) 38 0PortugueseBosque

2p-prop 0 (0%) 54 0 0 (0%) 14 0 0 (0%) 38 0

rel-PoS 8 (7.69%) 104 0.07 − − − 0 (0%) 24 0
1p-brackets 4 (6.06%) 66 0.03 − − − 0 (0%) 24 0
2p-greedy 3 (5.36%) 56 0.02 0 (0%) 12 0 0 (0%) 24 0UrduUDTB

2p-prop 3 (5.36%) 56 0.02 0 (0%) 14 0 0 (0%) 24 0

rel-PoS 2 (2.82%) 71 0.02 − − − 0 (0%) 26 0
1p-brackets 4 (6.06%) 66 0.04 − − − 0 (0%) 26 0
2p-greedy 1 (1.92%) 52 0.01 1 (10.0%) 10 0.01 0 (0%) 26 0AfrikaansAfriBooms

2p-prop 1 (1.89%) 53 0.01 1 (9.09%) 11 0.01 0 (0%) 26 0

rel-PoS 1 (1.11%) 90 0 − − − 1 (3.23%) 31 0
1p-brackets 1 (1.59%) 63 0 − − − 1 (3.23%) 31 0
2p-greedy 0 (0%) 56 0 0 (0%) 8 0 1 (3.23%) 31 0KoreanKaist

2p-prop 0 (0%) 56 0 0 (0%) 8 0 1 (3.23%) 31 0

rel-PoS 2 (2.25%) 89 0.02 − − − 0 (0%) 34 0
1p-brackets 0 (0%) 72 0 − − − 0 (0%) 34 0
2p-greedy 0 (0%) 63 0 0 (0%) 12 0 0 (0%) 34 0DanishDDT

2p-prop 0 (0%) 63 0 0 (0%) 12 0 0 (0%) 34 0

rel-PoS 3 (4.11%) 73 0.03 − − − 0 (0%) 31 0
1p-brackets 2 (2.78%) 72 0.02 − − − 0 (0%) 31 0
2p-greedy 1 (1.79%) 56 0.01 2 (13.33%) 15 0.02 0 (0%) 31 0GothicPROIEL

2p-prop 1 (1.79%) 56 0.01 2 (13.33%) 15 0.02 0 (0%) 31 0

rel-PoS 2 (4.17%) 48 0.19 − − − 1 (3.12%) 32 0.09
1p-brackets 7 (15.91%) 44 0.66 − − − 1 (3.12%) 32 0.09
2p-greedy 3 (8.11%) 37 0.38 1 (16.67%) 6 0.09 1 (3.12%) 32 0.09LithuanianHSE

2p-prop 3 (8.11%) 37 0.38 1 (16.67%) 6 0.09 1 (3.12%) 32 0.09

Table 9: Label coverage in each task at test time.

