
ar
X

iv
:1

90
4.

03
41

7v
1

 [
cs

.C
L

]
 6

 A
pr

 2
01

9

Speeding up Natural Language Parsing by

Reusing Partial Results

Michalina Strzyz Carlos Gómez-Rodŕıguez

Universidade da Coruña, CITIC
FASTPARSE Lab, LyS Research Group, Departamento de Computación

Campus de Elviña, s/n, 15071 A Coruña, Spain
{michalina.strzyz,carlos.gomez}@udc.es

Abstract. This paper proposes a novel technique that applies case-
based reasoning in order to generate templates for reusable parse tree
fragments, based on PoS tags of bigrams and trigrams that demonstrate
low variability in their syntactic analyses from prior data. The aim of
this approach is to improve the speed of dependency parsers by avoiding
redundant calculations. This can be resolved by applying the predefined
templates that capture results of previous syntactic analyses and directly
assigning the stored structure to a new n-gram that matches one of the
templates, instead of parsing a similar text fragment again. The study
shows that using a heuristic approach to select and reuse the partial
results increases parsing speed by reducing the input length to be pro-
cessed by a parser. The increase in parsing speed comes at some expense
of accuracy. Experiments on English show promising results: the input
dimension can be reduced by more than 20% at the cost of less than 3
points of Unlabeled Attachment Score.

1 Introduction

Current state-of-art parsing algorithms are facing high computational costs,
which can be an obstacle when applied to large-scale processing. For example,
the BIST parser [1] reports speeds of around 50 sentences per second in modern
CPUs, and even the fastest existing parsers, which forgo recurrent neural net-
works, are limited to a few hundred sentences per second [2]. While these speeds
can be acceptable for small-scale processing, they are clearly prohibitive when
the intention is to apply natural language parsing at the web scale. Thus, there is
a need for approaches that can parse faster, even if this comes at some accuracy
cost, as differences in accuracy above a certain threshold have been shown to be
unimportant for some downstream tasks [3].

In this paper we propose a novel approach to improve the speed of existing
parsers by avoiding redundant calculations. In particular, we identify fragments
of the input for which a syntactic parse is known with high confidence from prior
data, so that we can reuse the existing result directly instead of parsing the
fragment again. This effectively reduces the length of the input being processed
by the parser, which is a major factor determining parsing time.

http://arxiv.org/abs/1904.03417v1

We test a prototype of the approach where the reusable fragments are bigrams
and trigrams, the matching criteria are based on part-of-speech tags, and the
parsers to be optimized are linear-time transition-based dependency parsers.
Note, however, that the technique is generic enough to be applied to any kind
of parsing algorithm (including constituent parsers) and speed improvements
are expected to be higher for higher-complexity parsers such as those based on
dynamic programming, which have been the traditional target of pruning and
optimization techniques [4,5].

The aim of this approach is to significantly improve the parsing speed while
keeping an acceptable accuracy level. This involves a trade-off between speed
and accuracy, depending on how aggressively the technique is applied: more
lenient confidence criteria for reusing fragments will lead to larger reductions
in input length and thus faster parsing but at a cost to accuracy. We expect
that the accuracy cost can be reduced in the future by using more fine-grained
matching criteria (based on forms or lemmas) and augmenting training data so
more fragments can be confidently reused.

2 Reuse of Partial Results

A natural language obeys the so-called Zipf’s law, which shows how words are
distributed with respect to their frequency. Namely, a language has a few high-
frequency tokens and many uncommon tokens. This phenomenon is also present
when investigating lemmas [6]. Similarly, n-gram phrases fit this distribution
[7,8]. Therefore, to some extent, repetitions of identical n-grams are likely to be
found in large corpora.

This implies that a parser will probably encounter known n-grams in a text.
Since most of the time repetitions of the same n-gram will have identical syn-
tactic structure (e.g. the phrase “the 10 provinces of Canada” can be reasonably
expected to always have the same internal structure), we can exploit this by
reusing previous analyses for these known n-grams. More generally, this can be
extended to similar n-grams (“the 50 provinces of Spain” can be expected to have
the same analysis as the phrase above), which can be identified with templates:
the two examples above can be captured by a template “the CD provinces of
NNP” (where CD and NNP are the part-of-speech tags for numerals and proper
nouns), associated with a partial syntactic analysis to be reused. This combina-
tion of template matching and result reuse can be seen as an instantiation of
case-based reasoning, a cognitively-rooted problem-solving technique based on
solving new problems by reusing solutions to similar past problems [9,10].

Given a template like in the example above, we implement case-based rea-
soning by examining the training set and counting the number of n-grams that
match it, as well as the different syntactic analyses that they have been assigned.
If the variability of these analyses is higher than a given threshold, then the tem-
plate will not be useful. However, if matching n-grams exhibit the same syntactic
structure the vast majority of the time, then we can create a rule assigning that

parse tree fragment to the template. At test time, we will reuse the parse tree
fragment whenever we encounter an n-gram matching this rule.

3 Generating the Templates

In this prototype we will use limited training data. Since the frequency of word
pairs is higher than multi-word phrases [11] only templates consisting of bigrams
or trigrams of PoS tags are considered in this implementation in order to not
suffer excessively from sparsity problems. More detailed templates (such as those
including lemmas or word forms) would require augmenting the training set.

In order to calculate the level of confidence of a syntactic analysis for a given
template, the following patterns for a bigram of PoS tags, as detailed in Figure 1,
are taken into consideration.

NOUN VERB Pattern:
0 1 1 - false

nsubj

VERB NOUN Pattern:
0 1 - 0 false

obj

(a) bigram with dependents with no descendants outside the scope

NOUN VERB Pattern:
0 1 1 - true

nsubj

VERB NOUN Pattern:
0 1 - 0 true

obj

(b) bigram with a dependent pointing to a word outside the scope

NOUN VERB Pattern:
0 1 - - false

(c) bigram with missing relation

Fig. 1: Possible patterns for a bigram of PoS tags NOUN VERB and VERB
NOUN used for calculating the confidence of a template. Each pattern denotes
the index of each word’s head (”-” in case of headless word) and whether a
dependent is pointing to a word outside the scope of the bigram (”true”) or not
(”false”).

To generate a template for a given PoS tag bigram, we count the frequency
of each of these head patterns relative to the total frequency of the bigram in

the training set. Then, we focus on the most frequent pattern for the bigram. If
this pattern has a dependent pointing to a word outside the bigram (Figure 1b)
or multiple unconnected roots (Figure 1c), then the bigram will be discarded for
template generation. The reason is that our reuse approach is based on replacing
a sentence fragment (for which the parse is extracted from a rule) with its head
word. The parser will operate on this head word only, and the parsed fragment
will then be linked with the resulting tree. To do this, reusable fragments must
have a single head and no external material depending on their dependents.

If the dominant pattern is eligible according to these criteria, then we will
consider it if its relative frequency (confidence) is above a given threshold (head
threshold) and, since our parsing is labeled, if the most frequent dependency
label involved in the pattern has, in turn, a relative frequency above a second
threshold (label threshold).

The confidence of heads and labels for a trigram is calculated analogously.
The number of possible patterns of a trigram increases to a total of 19. As can be
seen in Figure 2, a trigram can be a fully connected tree where the dependents
have no descendants outside the scope (7 patterns) or where at least one of the
dependents points to a word outside the scope (7 patterns) 1. A trigram can also
be not fully connected or not connected at all (5 patterns).

NOUN ADV VERB Pattern:
0 1 2 2 2 - false

nsubj

advmod

(a) trigram with dependents with no descendants outside the scope

NOUN ADV VERB Pattern:
0 2 2 2 2 - true

nsubj

advmod

(b) trigram with a dependent pointing to a word outside the scope

NOUN ADV VERB Pattern:
0 1 2 - 2 - false

advmod

(c) trigram with missing relation with one of its components

Fig. 2: Some of the possible patterns for a trigram of PoS tags NOUN ADV
VERB used for calculating the confidence of a template. Each pattern denotes
the index of word’s head (”-” in case of headless word) and whether a dependent
is pointing to a word outside the scope of the trigram (”true”) or not (”false”).

1 In this implementation we only consider projective trees for trigrams.

Similarly to the case of bigrams, only patterns for trigrams highlighted in
Figure 2a that exceed predefined thresholds for confidence will be used as tem-
plates. If the input fragment matches a template, all dependents will be removed
from the input to be processed by a parser. The patterns from Figure 2b and
Figure 2c are discarded from being candidates for a template.

4 Experiments

4.1 Data and Evaluation

We conducted our experiments on the English treebank from Universal Depen-
dencies (UD) v2.1 [12] and the results are evaluated with Unlabeled and Labeled
Attachment Scores (UAS and LAS). The speeds are measured in tokens/second
on CPU 2.

4.2 Model

During training time our model computes a set of rules that surpasses two thresh-
olds: one for the dominant heads and the second for the dominant labels for a
given n-gram. In our experiments the thresholds were set manually. Each tem-
plate contains information about the n-gram’s most likely head(s) and label(s)
in order to automatically assign a syntactic analysis to the input that matches
that template at parsing time.

As an example, Table 1 illustrates some templates that surpass the thresholds
in the training set. The thresholds were set to 83% for confidence of head and
83% for confidence of label. This generated 141 unique templates, of which 97
had confidence of 100% for both thresholds but with low frequency.

Table 1: Example of templates generated during training time that surpass the
predefined thresholds: 83% for confidence of the dominant head pattern and 83%
for confidence of the dominant label pattern for a given n-gram of PoS tags.

Template Dominant
head pattern

Confidence of
head pattern

(%)

Dominant
label pattern

Confidence of
label pattern

(%)

DET NOUN 1 - false 86.50 det - false 86.49

SCONJ PROPN VERB 2 2 - false 100 mark nsubj - false 100

AUX ADJ 1 - false 93.71 cop - false 93.64

ADV VERB 1 - false 93.17 advmod - false 91.31

2 Intel Core i7-7700 CPU 4.2 GHz

The rules are applied to matching bigrams and trigrams on the training set,
removing words other than the head.3 This produces a reduced training set that
no longer contains n-grams matching any of the templates. Our parser is then
trained on this reduced training set. At parsing time templates are applied to the
input, which is reduced in the same way, the parser is then ran on this shorter
input and finally the parse tree fragments are attached to the resulting output.
We verified experimentally that, as expected, a parser achieves better accuracy
combined with our technique when trained on the reduced than on the entire
training set.

4.3 Results

In our experiments we run the following dependency parsers on the remain-
ing test set: transition-based BIST Parser [1] that uses bidirectional long short
memory (BiLSTM) networks, as well as MaltParser [13] with the arc-eager and
Covington transition systems.

Table 2 demonstrates the results after applying templates with threshold
variation on the development set. In the experimental setup we use templates
consisting of bigrams alone, trigrams alone or combined in order to compare
their performance. While the specific parameters to choose depend on the speed-
accuracy balance one wants to achieve, we selected the models where the thresh-
olds for the dominant head and label pattern are 83-83 and 87-87 as our “optimal
models”, considering that they provide a reasonable trade-off between speed and
accuracy. Thus, only these optimal thresholds were used afterwards when testing
the technique on the development and test sets in order to investigate more in
detail and to compare the accuracy and parsing speed. We use the notation Mx,y

z

where x indicates whether bigrams (2) were used, y trigrams (3) and z level of
confidence for head and label pattern respectively.

Table 3 compares the performance of the parsers with and without applying
our technique. The results are revealing in several ways. The experiments confirm
that the more lenient confidence thresholds result in larger reductions of input
length and thus faster parsing, but at the expense of accuracy. This applies to all
parsers and indicates that our approach can be generic and applicable to diverse
parsing algorithms. Moreover, the results show that it is feasible to reduce input
size by more than 20% at the cost of less than 3 points of unlabeled attachment
score.

5 Ongoing Work

One of the main weaknesses of the approach presented above is that the fi-
nal templates generated during training are only based on adjacent words (i.e.,
words whose position indexes differ by 1). It does not take into account longer

3 In case a bigram and trigram overlap, the n-gram with higher head confidence will
be chosen and its dependents will be removed.

Table 2: Performance of MaltParser with arc-eager transition system and the %
of the text reduction after applying templates with different thresholds, on the
development set. The total number of words in the development set: 25150 and
test set: 25097.

Setup UAS (%) LAS (%) Word Reduction (%)

M
2,3

90−90
84.73 82.15 5.0

M
2,3

87−87
84.38 81.64 8.3

M
3

85−85 84.15 81.45 8.5

M
2

85−85 84.01 81.17 11.1

M
2,3

85−85
83.1 80.15 18.2

M
2,3

83−83
82.95 80.03 20.7

M
2,3

80−80
81.51 78.42 22.7

M
2,3

80−70
81.2 77.71 24.2

dependency arcs that could be captured by a bigram or trigram after removing
the intervening dependents with shorter arcs. This approach can be improved
by iteratively finding new templates and recalculating their confidence based on
the outcome of applying the preceding template and removing the dependents
it captured. In this way, an n-gram would capture a longer arc after intervening
words have been removed. In this new approach, the order of applying tem-
plates generated during training time is crucial, instead of treating templates as
a bag-of-rules that match an n-gram from the input.

We performed a preliminary experiment where new templates are generated
based on the outcome of applying preceding templates and removing dependents.
We believe it can be beneficial to localize noun phrases first in the input sentence,
because they cover vast part of sentences. We look at the distance between PoS
tags in an n-gram where the head is a noun. Some PoS tags show tendency to
appear closer to a noun than others. We give priority to templates that capture
PoS tags closest connected to a noun. In subsequent steps, we generate templates
that show the highest confidence at each iteration, and add them to a list that
is applied in order. This technique applied on MaltParser with the arc-eager
transition system reduces the dev set by almost 21% with UAS of 82.14 and a
LAS of 79.20.

6 Conclusion

We have obtained promising results where the input length can be reduced by
more than 20% at the cost of less than 3 points of UAS. We believe that our
work can be a starting point for developing templates that in the future can

Table 3: Performance of BIST Parser and MaltParser with the arc-eager and
Covington transition systems and after applying templates compared with the
baseline. The reported parsing speed (tokens/sec) only refers to the runtime
of the dependency parser on the entire data set (baseline) or remaining text
(that was passed to the parser after extracting the fragments captured by the
templates) excluding the time needed to run the technique which is already
negligible and will be optimized in the future versions.

Parser Data Set Setup UAS (%) LAS (%) Word Reduction (%) Tokens/Sec Speed-up Factor

BIST Parser

dev

baseline 88.07 86.08 NA 1818± 51 NA

M
2,3

87−87
86.94 84.49 8.3 2006± 20 1.10x

M
2,3

83−83
85.20 82.34 20.7 2328± 34 1.28x

test

baseline 87.64 85.65 NA 1860± 36 NA

M
2,3

87−87
86.11 83.63 8.7 2006± 83 1.08x

M
2,3

83−83
84.79 82.21 20.7 2291± 39 1.23x

MaltParser
arc-eager

dev

baseline 85.07 82.65 NA 17387 ± 711 NA

M
2,3

87−87
84.38 81.64 8.3 18118 ± 860 1.04x

M
2,3

83−83
82.95 80.03 20.7 19758 ± 588 1.14x

test

baseline 84.58 82.00 NA 17748 ± 801 NA

M
2,3

87−87
83.32 80.44 8.7 18626 ± 459 1.05x

M
2,3

83−83
82.02 79.13 20.7 19286 ± 889 1.09x

MaltParser
Covington

dev

baseline 83.99 81.65 NA 16121 ± 581 NA

M
2,3

87−87
82.84 80.24 8.3 16500 ± 819 1.02x

M
2,3

83−83
81.69 78.92 20.7 18210 ± 484 1.13x

test

baseline 83.68 81.34 NA 16009 ± 1035 NA

M
2,3

87−87
82.75 80.02 8.7 16561 ± 629 1.03x

M
2,3

83−83
81.36 78.6 20.7 17395 ± 1407 1.09x

significantly speed up parsing time by avoiding redundant syntactic analyses at
the minimal expense of accuracy.

The present study has investigated two approaches. In the first technique,
which is the main focus of the paper (Section 4.2) templates were treated as
a bag-of-rules that have to exceed predefined thresholds for the dominant head
and label pattern for a given PoS tag n-gram, prioritizing ones with the highest
confidence. In the second approach (Section 5) more importance is given to the
order in which templates should be applied. However, the second technique is
still in a preliminary stage, and requires some refinement. Research into solv-
ing this problem is already in progress. To further our research we plan to use
both PoS tags and lemmas in our templates. The sparsity problem in finding n-
grams involving lemmas will be tackled by augmenting training data with parsed
sentences.

While we have tested our approach on transition-based dependency parsers,
it is worth noting that the technique is generic enough to be applied to practically
any kind of parser. Since fragment reuse is implemented as pre and postprocess-
ing step, it works regardless of the inner working of the parser. As the technique
reduces the input length received by the parser, speed gains can be expected
to be larger on parsers with higher polynomial complexity, like those based on
dynamic programming. The same idea would also be applicable to other gram-
matical representations, for example in constituent parsing, by changing the
reusable fragments to the relevant representation (e.g. subtrees of a constituent
tree).

Further studies will need to be undertaken in order to show the results of
the approach when applied on other kinds of parsers, and on other languages
different from English.

Acknowledgments

This work has received funding from the European Research Council (ERC),
under the European Union’s Horizon 2020 research and innovation programme
(FASTPARSE, grant agreement No 714150), from the TELEPARES-UDC project
(FFI2014-51978-C2-2-R) and the ANSWER-ASAP project (TIN2017-85160-C2-
1-R) from MINECO, and from Xunta de Galicia (ED431B 2017/01). We grate-
fully acknowledge NVIDIA Corporation for the donation of a GTX Titan X
GPU.

References

1. Kiperwasser, E., Goldberg, Y.: Simple and accurate dependency parsing using
bidirectional LSTM feature representations. TACL 4 (2016) 313–327

2. Straka, M., Straková, J.: Tokenizing, pos tagging, lemmatizing and parsing ud 2.0
with udpipe. In: Proceedings of the CoNLL 2017 Shared Task: Multilingual Parsing
from Raw Text to Universal Dependencies, Vancouver, Canada, Association for
Computational Linguistics (2017) 88–99

3. Gómez-Rodŕıguez, C., Alonso-Alonso, I., Vilares, D.: How important is syntac-
tic parsing accuracy? an empirical evaluation on rule-based sentiment analysis.
Artificial Intelligence Review (2017) 1–17

4. Bodenstab, N., Dunlop, A., Hall, K., Roark, B.: Beam-width prediction for efficient
context-free parsing. In: Proceedings of the 49th Annual Meeting of the Association
for Computational Linguistics: Human Language Technologies - Volume 1. HLT
’11, Stroudsburg, PA, USA, Association for Computational Linguistics (2011) 440–
449

5. Vieira, T., Eisner, J.: Learning to prune: Exploring the frontier of fast and accurate
parsing. Transactions of the Association for Computational Linguistics 5 (2017)
263–278

6. Baroni, M.: Distributions in text. In: Corpus Linguistics: An international
handbook-Volume 2, Mouton de Gruyter (2009) 803–821

7. Ha, L.Q., Sicilia-Garcia, E.I., Ming, J., Smith, F.J.: Extension of Zipf’s law to words
and phrases. In: Proceedings of the 19th international conference on Computational
linguistics-Volume 1, Association for Computational Linguistics (2002) 1–6

8. Ha, L.Q., Hanna, P., Ming, J., Smith, F.: Extending Zipfs law to n-grams for large
corpora. Artificial Intelligence Review 32 (2009) 101–113

9. Richter, M.M., Aamodt, A.: Case-based reasoning foundations. The Knowledge
Engineering Review 20 (2005) 203207

10. Hüllermeier, E.: Case-Based Approximate Reasoning. Volume 44 of Theory and
Decision Library. Springer (2007)

11. Smith, F., Devine, K.: Storing and retrieving word phrases. Information Processing
& Management 21 (1985) 215–224

12. Nivre, J., et al.: Universal dependencies 2.1 (2017) LINDAT/CLARIN digital
library at the Institute of Formal and Applied Linguistics (
’UFAL), Faculty of Mathematics and Physics, Charles University.

13. Nivre, J., Hall, J., Nilsson, J.: Maltparser: A data-driven parser-generator for
dependency parsing. In: Proceedings of LREC. Volume 6. (2006) 2216–2219

	Speeding up Natural Language Parsing by Reusing Partial Results
	Michalina Strzyz Carlos Gómez-Rodríguez

