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Abstract
We conduct a quantitative analysis contrasting human-written English news text with 
comparable large language model (LLM) output from six different LLMs that cover three 
different families and four sizes in total. Our analysis spans several measurable linguistic 
dimensions, including morphological, syntactic, psychometric, and sociolinguistic aspects. 
The results reveal various measurable differences between human and AI-generated texts. 
Human texts exhibit more scattered sentence length distributions, more variety of vocab-
ulary, a distinct use of dependency and constituent types, shorter constituents, and more 
optimized dependency distances. Humans tend to exhibit stronger negative emotions (such 
as fear and disgust) and less joy compared to text generated by LLMs, with the toxicity of 
these models increasing as their size grows. LLM outputs use more numbers, symbols and 
auxiliaries (suggesting objective language) than human texts, as well as more pronouns. 
The sexist bias prevalent in human text is also expressed by LLMs, and even magnified in 
all of them but one. Differences between LLMs and humans are larger than between LLMs.

Keywords  Large language models · Computational linguistics · Machine-generated text · 
Linguistic biases

1  Introduction

Large language models (LLMs; Radford et  al., 2018; Scao et  al., 2022; Touvron et  al., 
2023) and instruction-tuned variants (OpenAI 2023; Taori et  al. 2023) output fluent, 
human-like text in many languages, English being the best represented. The extent to which 
these models truly understand semantics (Landgrebe and Smith 2021; Søgaard 2022), 
encode representations of the world (Li et al. 2022), generate fake statements (Kumar et al. 
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2023), propagate specific moral and ethical values (Santurkar et al. 2023), or understand 
language based on their training on form rather than meaning (Bender and Koller 2020), is 
currently under active debate. Regardless, a crucial factor contributing to the persuasive-
ness of these models lies, in the very first place, in their exceptional linguistic fluency.

A question is whether their storytelling strategies align with the linguistic patterns 
observed in human-generated texts. Do these models tend to use more flowery or redun-
dant vocabulary? Do they exhibit preferences for specific voices or syntactic structures in 
sentence generation? Are they prone to certain psychometric dimensions? However, con-
trasting such linguistic patterns is not trivial. Firstly, the creators of these models often 
insufficiently document the training data used. Even with available information, determin-
ing the extent of the training set’s influence on a sentence or whether it is similar to an 
input sample remains challenging. Second, language is subject to cultural norms, social 
factors, and geographic variations, which shape linguistic preferences and conventions. 
Thus, to contrast linguistic patterns between humans and machines, it is advisable to rely 
on a controlled environment. In this context, attention has primarily been on explicit biases 
like societal and demographic biases (Liang et al. 2021).

1.1 � Research contributions and objectives

We study six generative large language models: Mistral 7B (Jiang et al. 2023), Falcon 7B 
(Almazrouei et al. 2023) and the four models (7B, 13B, 30B and 65B) from the LLaMa 
family (Touvron et  al. 2023). We contrast several linguistic patterns against human text 
using English news text. To do so, we recover human-generated news and ask the models 
to generate a news paragraph based on the headline and first words of the news. We query 
the New York Times Archive API to retrieve news published after all the models used 
were released, to guarantee sterilization from the training set. We analyze various linguistic 
patterns: differences in the distribution of the vocabulary, sentence length, part-of-speech 
(PoS) tags, syntactic structures, psychometric features such as the tone of the news articles 
and emotions detectable in the text, and sociolinguistic aspects like gender bias. We depict 
an overview in Fig. 1. We also explore if these disparities change across models of differ-
ent sizes and families. The data and the scripts used in this work are available at https://​
zenodo.​org/​recor​ds/​11186​264.

Fig. 1   We gather contemporary articles from the New York Times API and use their headlines plus the 3 
first words of the lead paragraph as prompts to LLMs to generate news. We use four LLMs from the LLaMa 
family (7B, 13B, 30B and 65B sizes), Falcon 7B and Mistral 7B. We then compare both types of texts, 
assessing differences in aspects like vocabulary, morphosyntactic structures, and semantic attributes

https://zenodo.org/records/11186264
https://zenodo.org/records/11186264
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2 � Related work

Next, we survey work relevant to the subject of this paper: (i) analyzing inherent linguis-
tic properties of machine-generated text, (ii) distinguishing between machine- and human-
generated texts, (iii) using LLMs for natural language annotation and data generation.

2.1 � Analysis of linguistic properties of AI‑generated text

Cognitive scientists (Cai et  al. 2023) have exposed models such as ChatGPT to experi-
ments initially designed for humans. They verified that it was able to replicate human pat-
terns like associating unfamiliar words to meanings, denoising corrupted sentences, or 
reusing recent syntactic structures, among other abilities. Yet, they also showed that Chat-
GPT tends to refrain from using shorter words to compress meaning, as well as from using 
context to resolve syntactic ambiguities. Similarly, Leong and Linzen (2023) studied how 
LLMs are able to learn exceptions to syntactic rules, claiming that GPT-2 and human judg-
ments are highly correlated. Zhou et al. (2023) conducted a thorough comparison between 
AI-created and human-created misinformation. They first curated a dataset of human-cre-
ated misinformation pertaining to the COVID-19 pandemic. Then, they used these rep-
resentative documents as prompts for GPT-3 to generate synthetic misinformation. By 
analyzing and contrasting the outputs from both sources, the study revealed notable differ-
ences. AI-made fake news tended to be more emotionally charged, using eye-catching lan-
guage. It also frequently raised doubts without proper evidence and jumped to unfounded 
conclusions. Very recently, Xu et al. (2023) have shed light on the lexical conceptual repre-
sentations of GPT-3.5 and GPT-4. Their study demonstrated that these AI language mod-
els exhibited strong correlations with human conceptual representations in specific dimen-
sions, such as emotions and salience. However, they encountered challenges when dealing 
with concepts linked to perceptual and motor aspects, such as visual, gustatory, hand/arm, 
or mouth/throat aspects, among others. With the goal of measuring differences across both 
types of texts, Pillutla et al. (2021) introduced MAUVE, a new metric designed to compare 
the learned distribution of a language generation model with the distributions observed in 
human-generated texts. Given the inherent challenge in open-ended text generation, where 
there is no single correct output, they address the issue of gauging proximity between dis-
tributions by leveraging the concept of a divergence curve. Following the release of this 
work as a preprint, other authors have studied the text generated by language models from a 
linguistic point of view. Martínez et al. (2023) developed a tool to evaluate the vocabulary 
knowledge of language models, testing it on ChatGPT. Other works have also evaluated 
the lexical abundance of ChatGPT and how it varies with regards to different parameters 
(Martínez et al. 2024). Linguistic analysis is proving to be a valuable tool in understanding 
LLM outputs. In the line of our work, Rosenfeld and Lazebnik (2024) conducted a linguis-
tic analysis of the outputs from three popular LLMs, concluding that this type of informa-
tion can be used for LLM attribution on machine-generated texts. Moreover, comparing 
linguistic measures is common in model benchmarks (Wang et al. 2018).

2.2 � Identification of synthetically‑generated text

This research line aims to differentiate texts generated by machines from those authored by 
humans (Crothers et al. 2023), thus contributing to accountability and transparency in vari-
ous domains. This challenge has been addressed from different angles including statistical, 
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syntactic (Tang et al. 2024), feature-based methods (Nguyen-Son et al. 2017; Fröhling and 
Zubiaga 2021) and neural approaches (Rodriguez et al. 2022; Zhan et al. 2023). Yet, Croth-
ers et al. (2022) recently concluded that except from neural methods, the other approaches 
have little capacity to identify modern machine-generated texts. Ippolito et  al. (2020) 
observed two interesting behaviors related to this classification task: (i) that using more 
complex sampling methods can help make generated text better at tricking humans into 
thinking it was written by a person, but conversely make the detection for machines more 
accessible and simpler, and (ii) that showing longer inputs help both machines and humans 
to better detect synthetically-generated strings. Munir et al. (2021) showed that it was pos-
sible to attribute a given synthetically-generated text to the specific LLM model that pro-
duced it, using a standard machine learning classification architecture that used XLNet 
(Yang et al. 2019) as its backbone. In a different line, Dugan et al. (2020) studied whether 
humans could identify the fencepost where an initially human-generated text transitions 
to a machine-generated one, detecting the transition with an average delay of 2 sentences. 
There are also methods that have been specifically designed to generate or detect machine-
generated texts for highly sensible domains, warning about the dangers of language tech-
nologies. The SCIgen software (Stribling et al. 2005) was able to create semantically non-
sense but grammatically correct research papers, whose content was accepted at some 
conferences with poor peer-review processes. More recently, Liao et al. (2023) showed that 
medical texts generated by ChatGPT were easy to detect: although the syntax is correct, 
the texts were more vague and provided only general terminology or knowledge. However, 
this is a hard task and methods to detect AI-generated text are not accurate and are suscep-
tible to suffer attacks (Sadasivan et al. 2023).

2.3 � Natural language annotation and data generation using LLMs

The quality of current synthetically-generated text has encouraged researchers to explore 
their potential for complementing labor-intensive tasks, such as annotation and evalua-
tion. For instance, He et al. (2022) generated synthetic unlabeled text tailored for a specific 
NLP task. Then, they used an existing supervised classifier to silver-annotate those sen-
tences, aiming to establish a fully synthetic process for generating, annotating, and learn-
ing instances relevant to the target problem. Related, Chiang and Lee (2023) investigated 
whether LLMs can serve as a viable replacement for human evaluators in downstream 
tasks. Some examples of downstream tasks are text classification (Li et al. 2023b), intent 
classification (Sahu et  al. 2022), toxic language detection (Hartvigsen et  al. 2022), text 
mining (Tang et al. 2023), or mathematical reasoning (Liu et al. 2023b), inter alia. Particu-
larly, they conducted experiments where LLMs are prompted with the same instructions 
and samples as provided to humans, revealing a correlation between the ratings assigned by 
both types of evaluators. Moreover, there is also work to automatically detect challenging 
samples in datasets. For instance, Swayamdipta et al. (2020) already used the LLMs’ fine-
tuning phase to identify simple, hard and ambiguous samples. Chong et al. (2022) demon-
strated that language models are useful to detect label errors in datasets by simply ranking 
the loss of fine-tuned data.

LLMs can also contribute in generating high-quality texts to pretrain other models. Pre-
vious work has used language models to generate synthetic data to increase the amount of 
available data using pretrained models (Kumar et al. 2020). Synthetic data is also used to 
pretrain and distill language models. Data quality has been shown to be a determinant fac-
tor for training LLMs. Additional synthetic data can contribute to scale the dataset size to 
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compensate a small model size, getting more capable small models. LLMs have allowed to 
generate high-quality, synthetic text that is useful to train small language models (SLMs). 
One of such cases is Eldan and Li (2023). They generated high quality data with a con-
strained vocabulary and topics using GPT-3.5 and 4 to train SLM that show coherence, 
creativity and reasoning in a particular domain. The Phi models family (Gunasekar et al. 
2023; Li et  al. 2023a; Javaheripi et  al. 2023) showed the usefulness of synthetic data in 
training high-performance but SLMs. The authors used a mixture of high-quality textbook 
data and synthetically-generated textbooks to train a highly competent SLM. Moreover, 
synthetic data has been used to create instruction tuning datasets to adapt LLMs’ behav-
ior to user prompts (Peng et  al. 2023). Synthetic data can also help prevent LLMs from 
adapting their answers to previous human opinions when they are not objectively correct 
(Wei et al. 2023). However, although useful, synthetically-generated data may harm perfor-
mance (Shumailov et al. 2023), especially when the tasks or instances at hand are subjec-
tive (Li et al. 2023b).

Synthetic datasets provide data whose content is more controllable, as LLMs tend to 
reproduce the structure of the datasets they have been trained on. Most LLMs are trained 
totally or partially on scraped data from the web, and such unfiltered internet data usu-
ally contain biases or discrimination as they reproduce the hegemonic view (Bender et al. 
2021). Some widely-used huge datasets such as The Pile (Gao et al. 2020) confirm this. 
Authors extracted co-occurrences in the data that reflect racial, religious and gender ste-
reotypes, which are also shown in some models. Some datasets are filtered and refined 
to improve the quality of the data. However, they still reproduce the biases in it (Penedo 
et al. 2023). Moreover, Dodge et al. (2021) did an extensive evaluation of the data of the 
C4 dataset (Raffel et al. 2020), pointing out filtering certain information could increase the 
bias on minorities. Prejudices in the data are reproduced in the LLMs trained on them, as 
some studies have pointed out (Weidinger et al. 2021). LLMs show the same biases that 
occur in the datasets, ranging from religious (Abid et al. 2021) to gender discrimination 
(Lucy and Bamman 2021).

3 � Data preparation

Next, we will examine our data collection process for both human- and machine-generated 
content, before proceeding to the analysis and comparison.

3.1 � Data

We generate the evaluation dataset relying on news published after the release date of the 
models that we will use in this work. This strategy ensures that they did not have exposure 
to the news headlines and their content during pre-training. It is also in line with strategies 
proposed by other authors—such as Liu et  al. (2023) - who take an equivalent angle to 
evaluate LLMs in the context of generative search engines. The reference human-generated 
texts will be the news (lead paragraph) themselves.

We use New York Times news, which we access through its Archive API.1 Particularly, 
we gathered all articles available between October 1, 2023, and January 24, 2024, resulting 

1  https://​devel​oper.​nytim​es.​com/​docs/​archi​ve-​produ​ct/1/​overv​iew

https://developer.nytimes.com/docs/archive-product/1/overview
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in a dataset of 13,371 articles. The articles are retrieved in JSON format, and include meta-
data such as the URL, section name, type of material, keywords, or publication date. Fig-
ure 2 shows some general information about the topics and type of articles retrieved. We 
are mainly interested in two fields: the headline and the lead paragraph. The lead paragraph 
is a summary of the information presented in the article. We discarded the articles that had 
an empty lead paragraph. The collected articles primarily consist of news pieces, although 
around 26% also include other types of texts, such as reviews, editorials or obituaries.

3.1.1 � Rationale for methodological decisions and technical trade‑offs

We opted for a more conservative setup by focusing our study on English, balancing the 
depth of our analysis with practical constraints. While this choice is common in various 
language-related fields, including cognitive science (Blasi et  al. 2022), it implies inter-
preting our results with caution when applying them outside the context of the English 
language and the news domain. By analyzing solely English, we can establish a baseline 
for future studies that incorporate multilingual analysis. Additionally, this initial approach 
could enable researchers to clearly identify discrepancies between results in English and 
those in other distinct languages.

In addition, our decision was driven by a few logistical reasons. Firstly, the LLMs we 
use (as detailed in Sect.  3.2) are English-centric. LLaMa’s dataset comprises over 70% 
English content, and Falcon’s even higher at over 80%. With Mistral, the specifics of the 
training data were not disclosed, adding an extra layer of complexity. In this context, it is 
worth noting that a model trained predominantly on data from specific demographics or 
regions might develop a bias towards those linguistic patterns, potentially overlooking oth-
ers. The clarity around the influence of diverse linguistic inputs on model performance is 
also limited, further complicating a fair analysis. Additionally, it is important to note that 
we used non-instruction-tuned models, which have shown limitations that we mentioned in 
adhering to languages other than English. This reinforces our decision to focus on English 
at this stage, given the technical constraints and the developmental stage of these mod-
els. Evaluating instruction-tuned models would be interesting and useful, but as a separate 
piece of work with a different focus and contribution. Here, we decided to focus on foun-
dation models that have not been trained on instruction-tuning datasets in order to evalu-
ate the effects that pretraining processes and model size can have on linguistic patterns. 

Fig. 2   Treemaps for the ‘section name’ and ‘type of material’ fields of the crawled articles
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Including instruction-tuned variants would introduce another layer of training, blurring 
the effect of the pretraining and size. Given these considerations, we opted for depth over 
breadth in our analysis to provide a more thorough evaluation, but limited to English.

We are also aware that our prompting approach entails certain trade-offs. Lead para-
graphs are not written from the headline but from the text of the article. If humans gener-
ated the lead paragraphs from the headline, we hypothesize that they would face the lack 
of relevant information in similar ways as the LLMs do: (i) restricting to the information 
given in the headline, offering a shorter lead paragraph with repeated information from the 
headline, or (ii) generating new information that could fit the data based on prior knowl-
edge of the topic. We argue that this latter strategy is similar to what LLMs do, and then 
this would be a preferred comparison. However, as generating human data in that way 
would be really costly, we opted for our chosen strategy as the data from the lead paragraph 
is highly correlated with that in the headline, even when the lead paragraph is not written 
from the headline itself.

3.2 � Generation

Let H = [h1, h2, ..., hN] be a set of human-generated texts, such that h
i
 is a tuple of the form 

(t
i
, s

i
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i
 is a paragraph of text with a summary of the correspond-
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] is a piece of synthetic text. For the generation of high-quality 

text, language models aim to maximize the probability of the next word based on the previ-
ous content. To ensure that the models keep on track with the domain and topic, we initial-
ize the previous content with the headline (the one chosen by the journalist that released 
the news) and the first three words of the human-generated lead paragraph to help the 
model start and follow the topic.2 Formally, we first condition the model on c

i
= t

�
i
⋅ s

i[0∶2] 
and every next word ( i ≥ 3 ) will be predicted from a conditional distribution 
P(w�

i
|c

i
⋅ s

�
i[3∶t−1]

).
To generate a piece of synthetic text s′ , we condition the models with a prompt that 

includes the headline and first words, as described above, and we keep generating news text 
until the model decides to stop.3 We enable the model to output text without any forced cri-
teria, except for not exceeding 200 tokens. The length limit serves two main purposes: (i) 
to manage computational resources efficiently,4 and (ii) to ensure that the generated content 
resembles the typical length of human-written lead paragraphs, making it comparable to 
human-produced content. We arrived at this limit after comparing the average and standard 
deviation of the number of tokens between humans and models in early experiments.

2  During the configuration runs, certain LLM outputs encountered difficulties in adhering to a minimal 
coherent structure when a minimum number of the body’s words were absent from the prompt. Also note 
that the LLMs we are using are not instruction-tuned, and thus prompting engineering is not particularly 
suitable, nor the goal of this work.
3  During the configuration runs, we explored hyperparameter values that generated fluent and coherent 
texts: temperature of 0.7, 0.9 top p tokens, and a repetition penalty of 1.1.
4  We ran the models on 2xA100 GPUs for 3 days to generate all texts. To address memory costs, we use 
8-bit precision.
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3.3 � Selected models

We rely on six pre-trained generative language models that are representative within the 
NLP community. These models cover 4 different sizes (7, 13, 30 and 65 billion param-
eters) and 3 model families. We only include different sizes for LLaMa as results within 
the same family are similar, and larger models need considerably more compute. We 
briefly mention their main particularities below:

3.3.1 � LLaMa models (LL) (Touvron et al. 2023)

The main representative for our experiments will be the four models from the version 
1 of the LLaMa family, i.e. the 7B, 13B, 30B, and 65B models. The LLaMa models 
are trained on a diverse mix of data sources and domains, predominantly in English, as 
detailed in Table 1. LLaMa is based on the Transformer architecture and integrates sev-
eral innovations from other large language models. In comparison to larger models like 
GPT-3 (Brown et al. 2020), PaLM (Chowdhery et al. 2023), and Chinchilla (Hoffmann 
et al. 2022), LLaMa exhibits superior performance in zero and few-shot scenarios. It is 
also a good choice as a representative example because the various versions, each with 
a different size, will enable us to examine whether certain linguistic patterns become 
closer or more different to humans in larger models.

3.3.2 � Falcon 7B (F7B) (Almazrouei et al. 2023)

Introduced alongside its larger variants with 40 and 180 billion parameters, Falcon 1 7B 
is trained on 1.5 trillion tokens from a mix of curated and web datasets (see Table 1). Its 
architecture relies on multigroup attention (an advanced form of multiquery attention), 
Rotary Embeddings (similar to LLaMa), standard GeLU activation, parallel attention, 
MLP blocks, and omits biases in linear layers. We primarily chose this model to com-
pare the results in the following sections with those of its counterpart, LLaMa 7B, and 
to explore whether there are significant differences among models of similar size.

Table 1   Size and training data of the models used in our experiments

Family Size Tokens Data sources

LLaMa 7B 1T English CommonCrawl (67%), C4 (15%)
13B 1T GitHub (4.5%), Wikipedia (4.5%)
30B 1.5T Gutenberg and Books3 (4.5%), ArXiv (2.5%)
65B 1.5T Stack Exchange (2%)

Falcon RefinedWeb-English (76%), RefinedWeb-Euro (8%)
7B 1.5T Gutenberg (6%), Conversations (5%)

GitHub (3%), Technical (2%)
Mistral 7B Not publicly 

disclosed
Not publicly disclosed
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3.3.3 � Mistral 7B (M7B) (Jiang et al. 2023)

Mistral v0.1 surpasses larger LLaMa models in various benchmarks despite its smaller 
size. Its distinctive architecture features Sliding Window Attention, Rolling Buffer 
Cache, and Prefill and Chunking. The training data for Mistral 7B is not publicly dis-
closed, and to fight against data contamination issues, our analysis only includes articles 
published after the model’s release. The choice of this model as an object of study fol-
lows the same thinking we used for the Falcon model. We want to see how well Mistral 
7B does and how its new features stack up against models of the same size.

4 � Analysis of linguistic patterns

In this section, we compare human- and machine-generated texts. We first inspect the texts 
under a morphosyntactic lens, and then focus on semantic aspects.

4.1 � Morphosyntactic analysis

To compute linguistic representations, we rely on Stanza (Qi et al. 2020) to perform seg-
mentation, tokenization, part-of-speech (PoS) tagging, and dependency and constituent 
parsing. For these tasks, and in particular for the case of English and news text, the per-
formance is high enough to be used for applications (Manning 2011; Berzak et al. 2016), 
and it can be even superior to that obtained by human annotations. This also served as an 
additional reason to focus our analysis on news text, ensuring that the tools we rely on are 
accurate enough to obtain meaningful results.5

Fig. 3   Sentence length distribution in words for the human-written texts and each tested language model. M 
stands for Mistral, F for Falcon and LL for LLaMa

5  In addition, we performed a t-test on the mean of several of the tested metrics, obtaining that the differ-
ences between humans and LLMs are statistically significant (p-values<0.05; see Appendix A).
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4.1.1 � Sentence length

Figure 3 illustrates the length distribution for the LLMs in comparison to human-generated 
news articles. We excluded a few outliers from the plot by ignoring sentences with lengths 
over 80 tokens. The six LLMs exhibit a similar distribution across different sentence 
lengths, presenting less variation when compared to human-generated sentences, which 
display a wider range of lengths and greater diversity. Specifically, the models exhibit 
a higher frequency of sentence generation within the 10 to 30 token range compared to 
humans, whereas humans tend to produce longer sentences with greater frequency. These 
results might be explained by considering the stochastic nature of the models, which could 
streamline outputs, thereby reducing the occurrence of extreme events. This may result 
in less variation and more uniform sentence lengths in LLM-generated text, suggesting a 
potential area for further study. Moreover, humans typically use a specific writing style 
based on the genre. The probabilistic nature of LLMs can blur the distinctions between 
writing styles and genres, resulting in what is known as register leveling. Register leveling 
refers to the phenomenon where distinct linguistic features characteristic of different gen-
res or styles become less pronounced, leading to a more homogenized output. This can 
obscure the unique stylistic elements that typically differentiate journalistic texts from 
other genres, thereby making the text produced by LLMs more uniform regardless of the 
intended register.

4.1.2 � Richness of vocabulary and lexical variation

We analyze the diversity of vocabulary used by the LLMs and compare them against 
human texts. To measure it, we relied on two metrics: standardized type-token ratio (STTR) 
and the Measure of Textual Lexical Diversity (MTLD; McCarthy and Jarvis, 2010), which 
are more robust to text length than Type-Token Ratio (TTR). We calculated both metrics 
using lemmatized tokens as they provide a more accurate measure of true lexical diversity. 
TTR is a measure of lexical variation that is calculated by dividing the number of unique 
tokens (types) by the total number of tokens. To obtain the STTR, we first join all the texts 
generated by the humans and each model. We divide the text in segments of 1 000 tokens 
and calculate the TTR of each segment. Finally, we obtain the STTR by averaging the TTR 
of every segment. Table 2 shows the value of the STTR for each model.

From these results, it seems that humans use a richer vocabulary than the LLMs studied. 
The model family that comes closer to human texts is LLaMa, obtaining similar scores for 
every model size. Then Mistral comes close, and Falcon is last, exhibiting the lowest lexi-
cal diversity by far according to STTR. These results show that language family is more 
important than model size when accounting for vocabulary richness. This would, intui-
tively, be expected, as training data is largely shared between models of the same family 
and is a main factor when considering lexical diversity.

Table 2   STTR and MTLD for 
the articles generated by humans 
and each tested language model

Human M7B F7B LL7B LL13B LL30B LL65B

STTR​ 0.491 0.452 0.424 0.460 0.457 0.461 0.466
MTLD 96.51 86.34 57.37 94.12 91.82 89.76 94.56
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With respect to MTLD, the metric starts from a threshold value for TTR (with 0.72 
being the default that we use here following previous work) and calculates the TTR of a 
text word by word, adding them sequentially. When the calculated TTR falls under the 
threshold, a factor is counted and the TTR calculation resets. Then, the total number of 
tokens in the text is divided by the average number of tokens per factor. This process is 
repeated backwards. The final MTLD score is the average of the forward and reverse cal-
culations. Results of MTLD for human and LLM text are also shown in Table 2. Results 
for MLTD are analogous to STTR: human texts exhibit the highest lexical diversity, closely 
followed by LLaMa models, then Mistral and, far away, Falcon. This reinforces the claim 
that language model family is a more relevant factor for vocabulary richness than size.

Table 3   UPOS frequencies (%) 
in human- and LLM-generated 
texts

UPOS H M7B F7B LL7B LL13B LL30B LL65B

NOUN 19.69 17.85 17.72 17.75 17.44 17.64 17.74
PUNCT 11.88 10.92 12.14 10.77 10.91 11.43 11.22
ADP 11.36 10.58 10.30 10.75 10.63 10.70 10.69
VERB 9.97 10.37 9.23 10.26 10.23 10.14 10.29
PROPN 9.61 8.75 9.44 9.14 9.18 9.52 9.50
DET 9.04 9.00 10.72 8.65 8.64 8.76 8.63
ADJ 7.58 6.69 6.74 6.86 6.76 6.73 6.77
PRON 5.32 7.12 6.11 7.08 7.33 6.96 6.93
AUX 3.81 5.77 6.02 5.65 5.74 5.50 5.41
ADV 3.26 3.41 2.61 3.58 3.68 3.41 3.49
CCONJ 2.65 2.72 2.52 2.68 2.70 2.61 2.67
PART​ 2.43 2.76 2.80 2.64 2.63 2.52 2.58
NUM 1.77 1.95 1.98 2.02 1.98 2.05 2.02
SCONJ 1.41 1.84 1.37 1.84 1.85 1.71 1.72
INTJ 0.12 0.08 0.08 0.08 0.08 0.08 0.09
SYM 0.09 0.17 0.19 0.19 0.19 0.18 0.18
X 0.03 0.03 0.02 0.05 0.04 0.06 0.07

Fig. 4   Percentage differences, following Table 3, in the use of each UPOS category for each tested language 
model in comparison to humans
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4.1.3 � Part‑of‑speech tag distributions

Table 3 presents the frequency of universal part-of-speech (UPOS) tags (Petrov et al. 2012) 
for both human and LLM-generated texts. Figure  4 shows relative differences observed 
across humans and each model, for a better understanding of the relative use of certain 
grammatical categories. Overall, the behavior of LLMs and their generated text tends to be 
consistent among themselves, yet shows differences when compared to human behavior, 
i.e., they exhibit in some cases a greater or lesser use of certain grammatical categories. 
To name a few, humans exhibit a preference for using certain kinds of content words, such 
as nouns and adjectives. Humans also use punctuation symbols more often (except when 
compared to Falcon), which may be connected to sentence length, as human users tend to 
rely on longer sentences, requiring more punctuation. Alternatively, the language models 
exhibit a pronounced inclination towards relying on categories such as symbols or num-
bers, possibly indicating an extra effort by language models to furnish specific data in order 
to sound convincing. Moreover, they write pronouns more frequently; we will analyze 
this point later from a gender perspective. Comparing LLM families, Mistral and LLaMa 
show a similar use of grammatical categories, with Mistral being the model that resembles 
humans the most. Falcon, however, has some strong anomalies in the use of determiners 
and adverbs. Regarding model size, the larger the model, the greater the similarity with 
humans. Nevertheless, differences between differently-sized models are much smaller than 
between models and humans. Similar to sentence length, the stochastic nature of the mod-
els may account for the differences between human and LLM-generated text.

4.1.4 � Dependencies

4.1.5 � Dependency arc lengths

Table 4 shows information about the syntactic dependency arcs in human and machine-
generated texts. In this analysis, we bin sentences by length intervals to alleviate the noise 
from comparing dependency lengths on sentences of mixed lengths (Ferrer-i-Cancho and 
Liu 2014). Results indicate that dependency lengths and their distributions are nearly iden-
tical for all the LLMs except Falcon, which uses longer dependencies than the rest of the 
models and resembles more the human texts in this respect. This finding holds true for 
every sentence length bin for Falcon, and for all but the first (length 1–10) in the case of 
human texts, so we can be reasonably sure that it is orthogonal to the variation in sentence 
length distribution between human and LLM texts described earlier. It is also worth noting 
that, in spite of the similarities between humans and Falcon in terms dependency lengths, 
their syntax is not that similar overall: there is a substantial difference in directionality of 
dependencies, with Falcon using more leftward dependencies than both humans and other 
LLMs. The fact that Falcon-generated texts are not really human-like in terms of depend-
ency syntax is further highlighted in the next section, where we consider a metric that nor-
malizes dependency lengths.

4.1.6 � Optimality of dependencies

We compare the degree of optimality of syntactic dependencies between human texts and 
LLMs. It has been observed in human language that dependencies tend to be much shorter 
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than expected by chance, a phenomenon known as dependency length minimization (Fer-
rer-i-Cancho 2004; Futrell et al. 2015). This phenomenon, widely observed across many 
languages and often hypothesized as a linguistic universal, is commonly assumed to be due 
to constraints of human working memory, which make longer dependencies harder to pro-
cess  (Liu et  al. 2017). This makes languages evolve into syntactic patterns that reduce 

Table 4   Statistics for dependency arcs in sentences of different lengths for the texts generated by human 
writers and each tested language model. The meaning of the columns is as follows: (%L, %R) percentage of 
left and right arcs, ( ̄l  ) average arc length, ( ̄l

L
 , l̄

R
 ) average left and right arc length, ( �

l
 ) standard deviation of 

arc length, ( �
l
L
 , �

l
R
 ) standard deviation of left and right arc length, and number of sentences

l Model %L %R l̄ l̄
L

l̄
R

�
l

�
l
L

�
l
R

# Sent

1–10 Human 49.40 50.60 2.37 2.89 1.84 1.67 1.90 1.17 4 719
M7B 50.94 49.06 2.37 2.93 1.83 1.65 1.88 1.16 6 190
F7B 52.08 47.92 2.39 2.99 1.84 1.62 1.84 1.15 4 596
LL7B 50.68 49.32 2.37 2.95 1.81 1.65 1.88 1.14 6 114
LL13B 50.42 49.58 2.37 2.94 1.81 1.65 1.88 1.14 6 711
LL30B 49.97 50.03 2.37 2.92 1.81 1.65 1.89 1.14 6 808
LL65B 50.23 49.77 2.36 2.91 1.81 1.64 1.87 1.15 6 652

11–20 Human 58.36 41.64 3.19 4.62 2.17 3.12 3.87 1.86 6 179
M7B 59.76 40.24 3.12 4.63 2.10 3.03 3.80 1.74 12 113
F7B 61.41 38.59 3.20 4.79 2.19 3.06 3.85 1.83 9 265
LL7B 59.74 40.26 3.11 4.63 2.09 3.03 3.81 1.72 12 361
LL13B 59.69 40.31 3.12 4.63 2.11 3.03 3.81 1.75 12 762
LL30B 59.62 40.38 3.12 4.63 2.11 3.03 3.80 1.76 13 039
LL65B 59.43 40.57 3.13 4.63 2.10 3.04 3.81 1.75 12 767

21–30 Human 60.40 39.60 3.64 5.52 2.41 4.42 5.71 2.68 6 153
M7B 61.00 39.00 3.53 5.50 2.26 4.28 5.65 2.33 10 449
F7B 62.51 37.49 3.62 5.70 2.38 4.32 5.72 2.46 8 222
LL7B 60.87 39.13 3.51 5.47 2.25 4.26 5.64 2.30 11 014
LL13B 60.86 39.14 3.53 5.49 2.27 4.27 5.64 2.34 11 017
LL30B 60.71 39.29 3.53 5.48 2.27 4.26 5.61 2.34 10 810
LL65B 60.47 39.53 3.53 5.47 2.26 4.28 5.63 2.35 10 884

31–40 Human 60.84 39.16 3.90 6.07 2.50 5.49 7.32 3.19 4 770
M7B 60.48 39.52 3.79 5.95 2.38 5.35 7.15 2.98 4 676
F7B 61.98 38.02 3.89 6.11 2.52 5.35 7.16 3.12 4 064
LL7B 60.79 39.21 3.78 5.98 2.35 5.34 7.19 2.90 5 790
LL13B 60.51 39.49 3.79 5.96 2.38 5.33 7.14 2.93 5 280
LL30B 60.35 39.65 3.81 5.95 2.40 5.33 7.09 2.99 4 949
LL65B 60.35 39.65 3.79 5.95 2.37 5.31 7.10 2.93 5 430

+41 Human 60.48 39.52 4.01 6.28 2.53 6.20 8.32 3.58 2 967
M7B 60.09 39.91 3.95 6.23 2.44 6.24 8.45 3.39 1  415
F7B 61.77 38.23 4.04 6.43 2.56 6.18 8.46 3.44 1 318
LL7B 59.83 40.17 3.97 6.25 2.44 6.24 8.41 3.43 2 035
LL13B 60.47 39.53 3.99 6.29 2.48 6.23 8.41 3.50 1 693
LL30B 60.21 39.79 3.98 6.24 2.49 6.21 8.34 3.53 1 579
LL65B 60.08 39.92 3.95 6.22 2.45 6.16 8.33 3.37 1 880
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dependency length, and language users prefer the options that minimize it when several 
possibilities are available to express an idea. Dependency length minimization can be 
quantified in a robust way (with respect to sentence length, tree topology and other factors) 
by the Ω optimality score introduced in Ferrer-i Cancho et al. (2022). This score measures 
where observed dependency lengths sit with respect to random word orders and optimal 
word orders, and is defined as: Ω =

Drla−D

Drla−Dmin

 , where D is the sum of dependency lengths in 
the sentence, D

rla
 is the expected sum of lengths, and D

min
 is the optimal sum of lengths for 

the sentence’s tree structure. For optimally-arranged trees D = D
min

 and Ω takes a value of 
1, whereas for a random arrangement it has an expected value of 0. Negative values are 
possible (albeit uncommon) if dependency lengths are larger than expected by chance.

Figure  5 displays the distribution of Ω values across sentences for human and LLM-
generated texts. The values were calculated using the LAL library  (Alemany-Puig et  al. 
2021). Results indicate that the distribution of Ω values is almost identical between all of 
the LLMs, but human texts show noticeably larger values. This means human texts are 
more optimized in terms of dependency lengths, i.e. they have shorter dependencies than 
expected by a larger margin than those generated by the LLMs. At a first glance, this might 
seem contradictory with the results in the previous section, which showed that human texts 
had longer dependencies on average than non-Falcon LLM texts. However, there is no 
real contradiction as the object of measurement is different, and in fact this is precisely 
the point of using Ω to refine and complement the previous analysis. While previously we 
measured dependency distances in absolute terms, Ω measures them controlling for tree 
topology, i.e., given a particular tree shape (e.g., a linear tree which is arranged as a chain 
of dependents, or a star tree where one node has all the others as dependents), Ω meas-
ures to what extent the words are arranged in an order that minimizes dependency lengths 
within the constraints of that shape. Thus, combining the results from both sections we can 
conclude that while humans produce longer dependencies, this is due to using syntactic 
structures with different topology, but their word order is actually more optimized to make 
dependencies as short as possible. In turn, we also note that while Falcon’s dependency 
lengths seemed different from the other LLMs (and more human-like) in absolute terms, 
the differences vanish (with all LLMs including Falcon having almost identical distribu-
tions, and humans being the outlier) when considering Ω.

Fig. 5   Ω value distribution for the human- and LLM-generated texts



Contrasting Linguistic Patterns in Human and LLM‑Generated… Page 15 of 28    265 

Table 5   Percentage of words generated by humans and each of the tested LLMs that are labeled with a spe-
cific dependency type (deprel). We only include relations with a frequency surpassing 1% within the human 
texts

Deprel H M7B F7B LL7B LL13B LL30B LL65B

punct 11.88 10.92 12.15 10.78 10.91 11.44 11.23
case 11.69 10.81 10.75 10.98 10.76 10.89 10.85
det 8.88 8.81 10.59 8.45 8.43 8.56 8.43
amod 6.98 5.57 5.73 5.79 5.60 5.71 5.75
nsubj 6.09 7.20 6.89 7.00 7.21 7.11 7.02
obl 5.50 5.24 4.67 5.39 5.31 5.36 5.31
nmod 4.95 4.45 4.84 4.50 4.40 4.47 4.47
compound 4.87 4.04 4.46 4.20 4.13 4.27 4.33
obj 4.28 4.41 3.91 4.22 4.23 4.19 4.27
advmod 3.46 3.63 2.91 3.83 3.98 3.65 3.76
conj 3.07 2.80 2.71 2.83 2.79 2.73 2.83
mark 2.65 3.35 2.94 3.27 3.28 3.07 3.12
cc 2.63 2.73 2.54 2.72 2.73 2.63 2.69
nmod:poss 2.34 2.21 2.01 2.21 2.19 2.19 2.17
flat 2.04 1.67 1.72 1.79 1.80 1.92 1.91
aux 1.91 2.74 2.72 2.68 2.71 2.58 2.55
advcl 1.80 1.67 1.30 1.69 1.70 1.62 1.67
cop 1.26 1.98 2.28 1.90 2.02 1.92 1.86
acl:relcl 1.22 1.33 1.29 1.38 1.29 1.26 1.28
appos 1.19 0.85 1.07 0.92 0.92 0.99 1.00
nummod 1.14 1.16 1.16 1.22 1.21 1.23 1.21
xcomp 1.10 1.40 1.27 1.37 1.36 1.30 1.34
acl 1.06 0.93 0.84 0.92 0.87 0.88 0.93

Fig. 6   Percentage differences, following Table  5, in the use of dependency relations for each tested lan-
guage model in comparison to humans
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4.1.7 � Dependency types

Table 5 lists the frequencies for the main syntactic dependency types in human and machine-
generated texts. We observe similar trends to the previous sections, with LLM texts exhibiting 
similar uses of syntactic dependencies among themselves, with Falcon being the most distinct 
model, while all of them present differences compared to human-written news. In terms of 
the LLaMa models - same model in different sizes - larger models are slightly closer to the 
way humans use dependency types. For the full picture, Fig. 6 depicts all relative differences 
in their use (humans versus each LLM), but we briefly comment on a few relevant cases as 
representative examples. For instance, numeric modifier dependencies (nummod) are more 
common in LLM-generated texts compared to human texts. This is coherent with the higher 
use of the numeric tag (NUM) in the part-of-speech tag distribution analysis. Additionally, we 
observed higher ratios for other dependency types, such as aux (for which the use of auxil-
iary verbs was also significantly higher according to the UPOS analysis), copula and nominal 
subjects (nsubj). Furthermore, syntactic structures from LLMs exhibit significantly fewer 
subtrees involving adjective modifiers (amod dependency type) and appositional modifiers 
(appos).

Table 6   Statistics for constituents 
that arise in sentences of different 
lengths for the text generated by 
human writers and each tested 
LLM. The meaning of the rows 
are: ( ̄l  ) average constituent 
length, ( �

l
 ) standard deviation of 

constituent length, and number 
of sentences

Model 1–10 11–20 21–30 31–40 +41

l̄ H 4.32 6.37 7.90 9.38 10.60
M7B 4.39 6.55 8.27 9.77 11.01
F7B 4.43 6.47 8.03 9.47 10.76
LL7B 4.40 6.57 8.33 9.89 11.19
LL13B 4.40 6.55 8.27 9.76 11.01
LL30B 4.40 6.49 8.21 9.68 10.86
LL65B 4.36 6.53 8.25 9.73 10.96

�
l

H 2.35 4.64 6.97 9.19 11.24
M7B 2.35 4.66 6.92 9.13 11.18
F7B 2.33 4.63 6.80 8.94 11.01
LL7B 2.35 4.69 6.99 9.24 11.35
LL13B 2.33 4.68 6.95 9.14 11.19
LL30B 2.36 4.66 6.94 9.14 11.17
LL65B 2.34 4.68 6.96 9.17 11.23

# Sent H 4 679 6 180 6 154 4 770 2 966
M7B 6 108 12 113 10 448 4 678 1 414
F7B 4 575 9 266 8 211 4 011 1 318
LL7B 6 039 12 362 11 014 5 789 2 035
LL13B 6 627 12 762 11 018 5 279 1 693
LL30B 6 713 13 044 10 806 4 949 1 579
LL65B 6 569 12 765 10 844 5 430 1 880
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4.1.8 � Constituents

4.1.9 � Constituent lengths

Table 6 shows the comparison between the distribution of syntactic constituent lengths 
across both types of texts. While human-generated sentences, on average, surpass the 
length of those generated by LLMs, the average length of a sentence constituent for 
LLMs is observed to be greater than for humans. The standard deviation exhibits similar 
values across all models for each sentence length range. Similar to previous sections, 
Falcon 7B also displays the largest differences among language models. Within the 
LLaMa models, we can observe a clear decreasing trend with size which is broken by 
the 65B model, for which constituent lengths increase again across most of the length 
bins.

Table 7   Percentage of spans 
generated by humans and 
LLMs labeled with a specific 
constituent type

Only constituent types that conform more than 1% of the human’s 
texts spans are shown

Type H M7B F7B LL7B LL13B LL30B LL65B

NP 42.91 39.96 41.42 40.17 40.02 40.69 40.54
VP 18.08 20.59 20.19 20.18 20.29 19.97 20.02
PP 14.12 12.62 12.81 12.91 12.69 12.94 12.81
S 11.79 13.40 13.27 13.09 13.31 13.12 13.12
SBAR 3.64 4.34 3.84 4.34 4.29 4.09 4.15
ADVP 2.39 2.37 1.86 2.50 2.62 2.44 2.49
ADJP 1.97 1.75 1.80 1.78 1.82 1.76 1.79
NML 1.73 1.40 1.66 1.43 1.43 1.47 1.52
WHNP 1.40 1.54 1.51 1.59 1.48 1.48 1.50

Fig. 7   Percentage differences, following Table 7, in the use of constituent labels for each tested language 
model in comparison to humans
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4.1.10 � Constituent types

Table 7 and Fig. 7 examine the disparities in constituent types between human- and LLM-
generated texts. A constituent is a unit composed of a word or group of words that works 
as a unit inside of the hierarchical structure of a sentence. Our focus was on constituent 
types that occur more than 1% of the times in human texts: noun phrase (NP), verb phrase 
(VP), prepositional phrase (PP), sentence (S), subordinate clause (SBAR), adverbial phrase 
(ADVP), adjectival phrase (ADJP), nominal (NML) and wh-noun phrase (WHNP). We use 
the annotation scheme of the English Penn Treebank, which has been widely used by the 
NLP community (Marcus et al. 1994).

Comparing humans and LLMs, some outcomes are in the same line of earlier findings: 
human-generated content displays heightened use of noun, adjective, and prepositional 
phrases (NP, ADJP, and PP, respectively). On the contrary, there is minimal divergence 
in the frequency of adverb phrases (ADVP) except for Falcon 7B, which shows a great dif-
ference with human and LLM-generated texts, the latter exhibiting a more pronounced 
propensity for verb phrases (VP). Despite the similar frequency of the VERB UPOS tag 
in human and LLM-generated texts, the latter exhibit a more pronounced propensity for 
verb phrases (VP), consistent with the increased use of auxiliary verbs (whose UPOS tag is 
AUX, not VERB) that we saw in previous sections. Finally, we see that language models use 
a considerably larger amount of subordinate clauses (SBAR). Regarding model families, 
results are similar to those of dependencies and POS tags, but when looking at model size, 
previous trends are less obvious.

4.2 � Semantic analysis

As in the previous section, we are relying on blackbox NLP models to accurately analyze 
different semantic dimensions: (i) emotions, (ii) text similarities, and (iii) gender biases, in 
an automated way.

4.2.1 � Emotions

To study differences in the emotions conveyed by human- and LLM-generated outputs, 
we relied on the Hartmann (2022) emotion model. This model is a DistilRoBERTa model 

Table 8   Percentage of articles generated by humans and LLMs that are labeled with different emotions

Model Emotion

Anger Disgust Fear Joy Neutral Sadness Surprise

H 8.04 9.35 10.77 8.30 52.16 8.51 2.87
M7B 7.29 7.65 8.34 9.80 53.83 9.72 3.37
F7B 6.11 8.32 8.77 8.53 56.55 8.99 2.73
LL7B 7.13 7.19 8.68 8.97 55.57 9.43 3.01
LL13B 7.72 7.41 8.69 9.00 53.95 9.72 3.51
LL30B 7.39 7.45 8.61 9.54 54.23 9.59 3.19
LL65B 7.45 8.26 9.25 9.10 53.65 8.80 3.49
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fine-tuned on six different datasets tagged with the six basic emotions considered in 
(Ekman, 1992), plus a neutral tag. It has been pretrained on plain text and subsequently 
trained to generate text embeddings that correspond to emotion labels, contextualized on 
the full context by Transformers, a modern neural architecture that powers most of the lat-
est language models. This process goes beyond lexeme matching by contextualizing the 
entire text into a single vector and assigning an emotion to it. It performs well while being 
lightweight and is widely used in the NLP community.

Table 8 provides the percentage of articles labeled with distinct emotional categories, 
including anger, disgust, fear, joy, sadness, surprise, and a special tag 
neutral to denote that no emotion is present in the text.

Figure 8 depicts the percentage of articles associated with each emotion for each large 
language model used, as compared to human-written texts. As anticipated in journalistic 
texts, a substantial majority of the lead paragraphs are classified as neutral. This category 
accounts for over 50% of the texts across all models and human-generated samples, with 
the LLM-generated text demonstrating a slightly higher inclination towards neutrality.

Concerning the remainder of the samples, human texts demonstrate a greater inclina-
tion towards negative and aggressive emotions like disgust and fear. However, humans 
and LLMs generated roughly the same amount of angry texts. In contrast, LLMs tend to 
generate more texts imbued with positive emotions, such as surprise and especially joy. 
The LLMs also produce many sad texts, a passive but negative emotion, yet less toxic6 
than emotions such as anger or fear. Across LLaMa models, fear increases as the num-
ber of parameters grows (from LLaMa 13B), making them more akin to human texts. 
Since LLaMa (version 1 models) were not fine-tuned with reinforcement learning with 
human feedback, we hypothesize the main source contributing to this issue might be some 

Fig. 8   Relative difference of emotion labels of articles generated by different LLMs in comparison to 
human texts

6  We take the toxicity definition from Perspective API (2024), as it is common in other work in the field: “a 
rude, disrespectful, or unreasonable comment that is likely to make you leave a discussion.”
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pre-processing steps used for the LLaMa models, such as removing toxic content from its 
data. Yet, LLaMa’s technical report (Touvron et al. 2023) mentioned an increase in model 
toxicity as they scaled up in size despite using the same pre-processing in all cases, which 
is coherent with our findings. When looking at families, Mistral comes closest to express-
ing emotions in a way similar to humans, and Falcon expresses more joy and less anger and 
surprise than the rest of the models.

This difference in emotions may be related to the same regularization effect that affects 
UPOS and sentence length distribution. The LLMs are less able to distinguish between 
domains and writing styles when they are not trained on instruction tuning datasets, which 
can account for the observed differences in writing styles.

4.2.2 � Text similarity

We conducted an analysis of the cosine semantic similarity between lead paragraphs gener-
ated by various LLMs and their human-authored counterparts. Our objective was to inves-
tigate the impact of model sizes on the semantic similarity between these texts. To achieve 
so, we used a a state-of-the-art sentence similarity model called all-mpnet-base-v27 
(Reimers and Gurevych 2019). Figure 9 illustrates the distribution of the similarity scores 

Fig. 9   Similarity scores between the sentences generated by the LLMs and human text

Table 9   Male-to-female ratio 
of pronouns used by the text 
generated by humans and each 
LLM

Model Male–Female ratio Differ-
ence with 
humans

H 1.71 –
M7B 1.74 3.06 %
F7B 1.64 − 7.54 %
LL7B 1.86 14.30%
LL13B 1.89 17.13 %
LL30B 1.87 15.73 %
LL65B 1.88 17.04 %

7  https://​huggi​ngface.​co/​sente​nce-​trans​forme​rs/​all-​mpnet-​base-​v2

https://huggingface.co/sentence-transformers/all-mpnet-base-v2
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obtained from our analysis. Results show that smaller-sized LLMs do not necessarily result 
in a decrease in sentence similarity compared to the human-authored texts. Differences 
across families are negligible.

4.2.3 � Gender bias

Although related as well in our study with part-of-speech tag distribution, we here sepa-
rately analyze the proportion between masculine and feminine pronouns used in both 
human- and LLM-generated text. Based on the morphological output by Stanza, we find 
the words that are pronouns have the features Gender=Masc and Gender=Fem, respec-
tively. Results in Table 9 indicate that the already biased human texts use male pronouns 
1.71 times more frequently than female pronouns. This is exacerbated by all models but 
Falcon 7B, which, although still heavily biased towards male pronouns, reduces the bias 
by 7.5%. LlaMa models, on the contrary, use around 15% more male than female pronouns 
in comparison to humans. This quantity is roughly the same for every size. Mistral 7B lies 
in the middle, with a slight increase of the male–female ratio of 3% with regards to human 
text.

This analysis is limited by the fact that the cause of this disparity could be related to 
the LLMs writing more generic pronouns than the humans, hence exacerbating the dispar-
ity between male and female references as presented in the news. In English, masculine 
pronouns are more widely used as generic pronouns than female or neutral pronouns. This 
would cause a wider gap between male and female pronouns in the models’ outputs than 
the already existing male bias caused by men appearing more commonly in news titles than 
women.

5 � Conclusion

This paper presented a comprehensive study on linguistic patterns in texts produced by 
both humans and machines, comparing them under controlled conditions. To keep up with 
current trends, we used modern generative models. To ensure the novelty of texts and 
address memorization concerns, we fed the LLMs headlines from news articles published 
after the release date of the models. The study revealed that despite generating highly flu-
ent text, these models still exhibited noticeable differences when compared to human-gen-
erated texts. More precisely, at the lexical level, large language models relied on a more 
restricted vocabulary, except for LLaMa 65B. Additionally, at the morphosyntactic level, 
discernible distinctions were observed between human and machine-generated texts, the 
latter having a preference for parts of speech displaying (a sense of) objectivity - such as 
symbols or numbers - while using substantially fewer adjectives. We also observed varia-
tions in terms of syntactic structures, both for dependency and constituent representations, 
specifically in the use of dependency and constituent types, as well as the length of spans 
across both types of texts. In this respect our comparison shows, among other aspects, that 
all tested LLMs choose word orders that optimize dependency lengths to a lesser extent 
than humans; while they have a tendency to use more auxiliary verbs and verb phrases and 
less noun and prepositional phrases. In terms of semantics, while exhibiting a great text 
similarity with respect to the human texts, the models tested manifested less propensity 
than humans for displaying aggressive negative emotions, such as fear or anger. Mistral 
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7B generated texts whose emotion distributions are more similar to humans than those 
of LLaMa and Falcon models. However, we noted a rise in the volume of negative emo-
tions with the models’ size. This aligns with prior findings that associate larger sizes with 
heightened toxicity (Touvron et al. 2023). Finally, we detected an inclination towards the 
use of male pronouns, surpassing the frequency in comparison to their human counter-
parts. All models except Falcon 7B exacerbated this bias.

Overall, this work presents the first results and methodology for studying linguistic 
differences between English news texts generated by humans and by machines. There is 
plenty of room for improvement in future work. For instance, we could analyze specific 
aspects across multiple languages, which would give us a broader understanding of specific 
linguistic patterns. Additionally, comparing the performance of instruction-based models 
could provide insights into how different models align with human preferences and handle 
various languages. Expanding the analysis to multiple domains could also offer a more 
comprehensive view of machine-generated text capabilities, revealing their strengths and 
weaknesses in different contexts of our methodology, as well as ways to improve it.

Appendix A: Statistical analysis of metrics

We performed a t-test comparing the human and LLM means for several metrics: sentence 
length, arc length, and standardized TTR.

Results show that the differences between the humans and each of the LLMs for these 
metrics are all statistically significant (p-values < 0.05, see Tables 10, 11, 12). However, 
these differences are not always statistically significant between models. Specifically, the 
differences between LLaMa 7B and LLaMa 30B in the case of STTR, Falcon 7B and 
LLaMa 65B for sentence length, and most of the models for arc length are not statistically 
significant. This matches the results, as distributions of these values for humans and LLMs 
are clearly distinct, while they are very similar for all LLMs, mainly in the case of arc and 
sentence length.

Table 10   P-values of the t-test to compare mean sentence lengths between text generated by humans and 
LLMs

Human M7B F7B LL7B LL13B LL30B LL65B

Human 1 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001
M7B <0.001 1 <0.001 <0.001 0.001 0.280 <0.001
F7B <0.001 <0.001 1 <0.001 <0.001 <0.001 0.085
LL7B <0.001 <0.001 <0.001 1 <0.001 <0.001 <0.001
LL13B <0.001 0.001 <0.001 <0.001 1 <0.001 0.003
LL30B <0.001 0.280 <0.001 <0.001 <0.001 1 <0.001
LL65B <0.001 <0.001 0.085 <0.001 0.003 <0.001 1
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Table 11   P-values of the t-test to compare mean arc lengths between text generated by humans and LLMs

Human M7B F7B LL7B LL13B LL30B LL65B

Human 1 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001
M7B <0.001 1 <0.001 0.248 0.463 0.109 0.004
F7B <0.001 <0.001 1 <0.001 <0.001 <0.001 <0.001
LL7B <0.001 0.248 <0.001 1 0.674 0.627 0.075
LL13B <0.001 0.463 <0.001 0.674 1 0.372 0.030
LL30B <0.001 0.109 <0.001 0.627 0.372 1 0.206
LL65B <0.001 0.004 <0.001 0.075 0.030 0.206 1

Table 12   P-values of the t-test to compare mean TTR per segment between text generated by humans and 
LLMs

Human M7B F7B LL7B LL13B LL30B LL65B

Human 1 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001
M7B <0.001 1 <0.001 <0.001 <0.001 <0.001 <0.001
F7B <0.001 <0.001 1 <0.001 <0.001 <0.001 <0.001
LL7B <0.001 <0.001 <0.001 1 0.010 0.582 <0.001
LL13B <0.001 <0.001 <0.001 0.010 1 0.003 <0.001
LL30B <0.001 <0.001 <0.001 0.582 0.003 1 <0.001
LL65B <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 1
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