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Abstract

PoS tags, once taken for granted as a useful
resource for syntactic parsing, have become
more situational with the popularization of
deep learning. Recent work on the impact of
PoS tags on graph- and transition-based parsers
suggests that they are only useful when tag-
ging accuracy is prohibitively high, or in low-
resource scenarios. However, such an analysis
is lacking for the emerging sequence labeling
parsing paradigm, where it is especially rele-
vant as some models explicitly use PoS tags for
encoding and decoding. We undertake a study
and uncover some trends. Among them, PoS
tags are generally more useful for sequence la-
beling parsers than for other paradigms, but the
impact of their accuracy is highly encoding-
dependent, with the PoS-based head-selection
encoding being best only when both tagging
accuracy and resource availability are high.

1 Introduction

PoS tags have long been considered a useful fea-
ture for parsers, especially prior to the prevalence
of neural networks (Voutilainen, 1998; Dalrym-
ple, 2006; Alfared and Béchet, 2012). For neural
parsers, it is less clear if they are useful or not.
Work has shown that when using word and charac-
ter embeddings, PoS tags become much less useful
(Ballesteros et al., 2015; de Lhoneux et al., 2017).
However, Dozat et al. (2017) found using universal
PoS (UPoS) tags to be somewhat helpful, but im-
provements are typically quite small (Smith et al.,
2018). Similarly, for multi-task systems, small im-
provements have been observed for both UPoS and
finer-grained tags (Zhang et al., 2020).

A limiting factor when using predicted PoS tags
is the apparent need for very high accuracy from
taggers (Anderson and Gómez-Rodrı́guez, 2020).
This is particularly problematic in a low-resource
setting where using gold tags gives unreasonably
high performance (Tiedemann, 2015) and high ac-
curacy taggers are difficult to obtain (Kann et al.,

2020). However, some work has suggested that in a
low-resource setting even low accuracy taggers can
be beneficial for parsing performance, especially
when there is more PoS tag annotations than depen-
dency tree annotations (Anderson et al., 2021).

These findings relate to transition-based (TB)
and graph-based (GB) parsers, but recently sev-
eral encodings have been proposed to frame depen-
dency parsing as a sequence labeling task (Strzyz
et al., 2019; Lacroix, 2019; Gómez-Rodrı́guez
et al., 2020), providing an alternative to GB and
TB models when efficiency is a priority (Anderson
and Gómez-Rodrı́guez, 2021). Muñoz-Ortiz et al.
(2021) found that the amount of data required for
different encodings varied and that some were im-
pacted by predicted PoS tag use more than others.

Here, we evaluate the impact of PoS tagging ac-
curacy on different encodings and also the interplay
of this potential relation and the amount of avail-
able data (using low-, mid-, high-, and very-high-
resource treebanks). This is done by artificially
controlling the accuracy of PoS taggers by using
the nature of errors generated by robust taggers.1

2 Sequence labeling parsing

In dependency parsing as sequence labeling, the
goal is to assign a single label of the form (xi, li)
to every input token wi of a sequence, where xi
encodes a subset of the arcs related to wi and li is
the dependency type. Below, we review the existing
families of linearizations used in this work.
Head-selection (Spoustová and Spousta, 2010),
where xi encodes the head of wi using an absolute
index or a relative offset, that can be based on some
word property (usually PoS tags, which is also the
property we use in this work due to its strong per-
formance in previous work). So for instance, if xi
= (+n, X), this would indicate that the head of wi

is the nth word to the right of wi with the word
1All source code available at https://www.

grupolys.org/software/aacl2022/.

https://www.grupolys.org/software/aacl2022/
https://www.grupolys.org/software/aacl2022/
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property X. Some desirable properties of this en-
coding family are a direct correspondence between
words and arcs and the capacity to encode any non-
projective tree. However, a major weakness is its
dependency on the chosen property (in our case,
PoS tags) to decode trees.

Bracketing-based xi represents the dependency
arcs using a string of brackets, with each arc rep-
resented by a bracket pair. Its main advantage is
that it is independent of external features, but re-
garding projectivity it cannot represent arcs that
cross in the same direction. To alleviate this, we
use the encoding proposed by Strzyz et al. (2020),
that adds a second independent plane of brackets
(2pb), inspired by multiplanarity (Yli-Jyrä, 2003).

Transition-based (Gómez-Rodrı́guez et al., 2020),
where given a sequence of transitions generated by
a left-to-right transition-based parser, it splits it in
labels based on read transitions (e.g. SHIFT), such
that each word receives a label xi with a subset
of transition actions. For this work, we consider
mappings from a projective algorithm, arc-hybrid
(ahtb; Kuhlmann et al., 2011) and a non projective
algorithm, Covington (ctb; Covington, 2001).

2.1 Parser systems
We use a 2-layer bidirectional long short-term mem-
ory (biLSTM) network with a feed-forward net-
work to predict the labels using softmaxes. We
use hard-sharing multi-task learning to predict xi
and li.2 The inputs to the network are randomly
initialized word embeddings and LSTM charac-
ter embeddings and optionally (see §4), PoS tag
embeddings. The appendix specifies the hyperpa-
rameters. For a homogeneous comparison against
work on the usefulness of PoS tags for transition
and graph-based models, and focused on efficiency,
we do not use large language models.

3 Controlling PoS tag accuracy

We purposefully change the accuracy of the PoS
tags in a treebank, effectively treating this accu-
racy as the independent variable in a controlled
experiment and LAS as the dependent variable,
i.e. LAS = f(AccPoS) where f is some function.
Rather than randomly altering the gold label of
PoS tags, we alter them based on the actual errors
that PoS taggers make for a given treebank. This
means PoS tags that are more likely to be incorrect

2We use a 2-task setup for all encodings, except 2pb for
which we use 3 tasks, as each plane is predicted independently.

for a given treebank will be more likely to be al-
tered when changing the overall PoS accuracy of
that treebank. We refer to this as the error rate for
PoS tags. The incorrect label is also based on the
most likely incorrect label for the PoS tag error for
that treebank based on the incorrect labeling from
the tagger. We refer to this as the error type, e.g.
NOUN→VERB.

We trained BiLSTM taggers for each of the tree-
banks to get the error rates for each PoS tag type
and rate of each error type for each tag. Their
generally high performances, even for the smaller
treebanks, are shown in Table 5 in the Appendix.

From the errors of these taggers, we first need
the estimated probability that a given PoS tag t is
tagged erroneously:

p(error |t) = Et

Ct
(1)

where Et is the error count for tag t and Ct is the
total count for tag t. Then we need the probability
of applying an erroneous tag e to a ground-truth
tag t:

p(e|t, error) = Et→e

Et
(2)

where Et→e is the error count when labeling t as e.
This estimated probability remains fixed, whereas
p(error |t) is adjusted to vary the overall accuracy.

We adjust these values by applying a weight, γ:

γ =
EA

E
(3)

where E is the global error count and EA is the
adjusted global error count such that the resulting
tagging error is A. p(error |t) is then adjusted:

p(error |t) = γEt

Ct
(4)

It is possible that γEt > Ct. When this occurs
to tag t we cap γEt at Ct and then recalculate γ,
removing the counts associated with this tag:

γ =
EA − Ct

E − Ct
(5)

This is then done iteratively for each tag where
Et ≥ Ct until we obtain an error count for each tag
such that the total error count reaches EA.

These are all derived and applied as such to the
test set of treebanks as this is where we evaluate
the impact of PoS tag errors. To further echo the
erroneous nature of these taggers, when EA ≤
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Treebank Family # Trees # Tokens
L

O
W

Skolt SamiGiellagas Uralic (Sami) 200 2 461
GuajajaraTuDeT Tupian (Tupi-Guarani) 284 2 052
LigurianGLT IE (Romance) 316 6 928
BhojpuriBHTB IE (Indic) 357 6 665

M
ID

KicheIU Mayan 1 435 10 013
WelshCCG IE (Celtic) 2 111 41 208
ArmenianArmTDP IE (Armenian) 2 502 52 630
VietnameseVTB Austro-Asiatic (Viet-Muong) 3 000 43 754

H
IG

H

BasqueBDT Basque 8 993 121 443
TurkishBOUN Turkic (Southwestern) 9 761 122 383
BulgarianBTB IE (Slavic) 11 138 146 159
Ancient GreekPerseus IE (Greek) 13 919 202 989

V
.H

IG
H NorwegianBokmål IE (Germanic) 20 044 310 221

KoreanKaist Korean 27 363 350 090
PersianPerDT IE (Iranian) 29 107 501 776
EstonianEDT Uralic (Finnic) 30 972 437 769

Table 1: Details of the treebanks used in this work.

E only the subset of real errors are used when
generating errors. When EA > E this subset of
real errors is maintained and subtracted such that:

p(error |t) = (γ − 1)Et

Ct − Et
(6)

and this is only applied on the tokens which were
not erroneously tagged by the taggers.

For every eligible token, based on its tag t an
error is generated based on p(error |t) and if an er-
ror is to be generated, the erroneous tag is selected
based on the distribution over p(e|t, error).

This is also applied to the training and dev set as
it seems better to use predicted tags when training
(Anderson and Gómez-Rodrı́guez, 2020). There
are differences in the distribution of PoS tags and
as the algorithm is based on the test data, at times
it isn’t possible to get exactly EA. We therefore
allow a small variation of ±0.05 on EA.

We then selected a set of PoS tag accuracies
to test a range of values (75, 80, 85, 95, 97.5,
100). We included the 97.5% accuracy to evaluate
the findings of Anderson and Gómez-Rodrı́guez
(2020), where they observed a severe increase in
performance between high scoring taggers and gold
tags, otherwise we use increments of 5%.

4 Experiments

We now present the experimental setup to deter-
mine how parsing scores evolve for the chosen
linearizations when the tagging accuracy degrades.
As evaluation metrics, we use Labeled (LAS) and
Unlabeled Attachment Scores (UAS).

Data Treebanks from Table 1 were selected using
a number of criteria. We chose treebanks that were
all from different language families and therefore
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Figure 1: Average LAS across all treebanks against PoS
tagging accuracies for different linearizations, compared
to the no-tags baselines.

º

exhibit a range of linguistic behaviors. We also se-
lected treebanks such that we used 4 low-resource,
4 mid-resource, 4 high-resource and 4 very high-
resource treebanks. Within each of those categories,
we also selected treebanks with slightly different
amounts of data, so as to obtain an incremental
range of treebank sizes across low, mid, high and
very high boundaries. Moreover, we ensured the
quality of the treebanks by selecting treebanks that
were either manually annotated in the UD frame-
work or manually checked after automatic conver-
sions. When a treebank did not contain a develop-
ment set, we re-split the data by collecting the data
across the training and test data and split the full
data such that 60% was allocated to the training set,
10% to the development, and 30% to the test.

Setup We train and test parsers on sets of pre-
dicted tags, as explained in §3. We consider two
baselines: (i) parsers trained without PoS tags3

(base-no-tags), (ii) parsers trained with gold
tags on a multi-task setup (base-mtl).

4.1 Results

Table 2 shows the average LAS scores across all
treebank setups for all encodings and tagging ac-
curacies, together with both baselines. To better
interpret the results and tendencies, we will also
visualize the results in different figures.4 Note that
we don’t include base-mtl as they performed
very similar to base-no-tags. We include the

3Forced setup for rph, as PoS tags are needed to decode.
4UAS results are shown in Figures 3 and 4 in the Appendix.
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Setup Low-resource Mid-resource High-resource V. high-resource All
2pb ahtb ctb rph 2pb ahtb ctb rph 2pb ahtb ctb rph 2pb ahtb ctb rph 2pb ahtb ctb rph

75 50.65 49.33 48.43 47.72 63.26 60.18 60.23 58.64 66.34 64.18 63.87 64.09 79.63 77.44 75.26 73.32 64.97 62.78 61.98 60.94
80 53.84 50.58 48.78 50.94 64.00 61.52 61.34 60.87 67.53 64.88 64.88 64.70 80.06 77.93 75.74 77.09 66.36 63.73 62.69 63.40
85 54.17 52.48 51.27 52.62 65.25 62.34 62.06 63.36 68.11 65.38 65.33 66.56 81.18 79.02 77.34 78.76 67.18 64.81 64.00 65.32
90 56.03 53.55 52.78 55.34 67.30 64.05 63.35 66.18 69.31 66.86 66.61 69.47 81.33 79.39 77.05 79.80 68.49 65.96 65.01 67.70
95 59.30 56.88 55.75 58.90 69.84 67.34 66.20 70.30 70.28 67.66 67.32 71.18 82.61 80.62 78.83 82.52 70.51 68.12 67.02 70.72
97.5 60.00 58.70 57.59 61.86 72.63 69.47 68.99 72.84 71.59 69.27 68.39 72.83 83.91 82.00 80.27 84.31 71.96 69.86 68.81 72.96
100 62.16 60.97 58.64 64.23 74.28 71.19 70.02 75.20 73.40 70.60 70.05 74.50 86.52 84.77 82.65 87.20 74.09 71.88 70.34 75.24
MTL 47.78 46.83 45.60 48.08 64.15 62.15 60.68 63.17 67.97 64.94 65.26 67.47 81.52 79.46 76.85 80.95 65.35 63.34 62.10 64.92
No PoS tags 47.36 46.18 45.79 49.26 63.94 61.58 60.73 57.52 67.67 64.76 64.75 66.58 81.15 79.22 76.98 80.06 65.03 62.94 62.06 63.35

Table 2: Average LAS for different setups and PoS tag accuracies for the groups of treebanks studied.
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Figure 2: Average LAS for the (a) low-, (b) mid-, (c) high- and (d) very high-resource subsets of treebanks for
different PoS tagging accuracies and linearizations, compared to the no-tags baselines.

results with a state-of-the-art graph based parser
(Dozat et al., 2017) in Table 3 for comparison.

All treebanks Figure 1 shows the average LAS
across all treebanks for the different linearizations,
using PoS tags or not. The results suggest that
even using low accuracy tags is better than not us-
ing them. In detail, rph is the linearization that is
affected the most by the quality of the PoS tags, as

it relies directly on them in order to decode the tree,
degrading from the 1st position when using gold
tags to the last one when tags have an accuracy
of 75%. On the other hand, 2pb seems to be the
most useful encoding for real-world situations, out-
performing the other linearizations when no tags
or tags with an accuracy under 95% are used, and
performing on par with rph over that mark. Note
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Setup Low Mid High V. High All

75 55.61 69.79 76.66 86.00 72.01
80 56.60 70.17 76.49 85.95 72.30
85 59.12 70.76 76.90 86.33 73.28
90 60.40 71.61 77.69 86.62 74.08
95 62.12 74.63 78.22 87.13 75.52
97.5 65.05 76.42 79.44 88.16 77.27
100 66.65 78.52 80.96 90.74 79.22
No PoS tags 58.40 71.71 77.66 87.72 73.74

Table 3: Average LAS for different setups and PoS tag
accuracies for the groups of treebanks studied using the
graph-based parser.

that while Strzyz et al. (2019) chose rph as their
best model for evaluation, the choice was biased
by using English, a language with atypically high
tagging accuracy.

Results for different resourced sets of tree-
banks Figure 2 shows the results for the low-
resource, mid-resource, high-resource and very
high-resource treebanks, respectively. Interest-
ingly, we observe trends regarding the cutoff points
(the points where a model surpasses another), de-
pending on the quality of PoS tags and quantity
of available data. In particular, the cutoff points
between the parsers that use PoS tags and the
base-no-tags models are found at higher tag-
ging accuracies when the data resources are larger
too. Also, the cutoff point between rph and 2pb

is at a lower PoS tagging accuracy when we have
more data, although the results for the very high-
resource treebanks break this trend. Finally, the low
performance of the transition-based encodings is
more pronounced for high-resource treebanks, with
the exception the ahtb for the very high-resource
treebanks.

5 Discussion

The obtained results offer some valuable informa-
tion about how PoS tag quality affects performance
for different encodings and quantities of data. In
most situations using PoS tags as features is better
than not using them, in contrast with results for
other parser architectures as described above.

In addition, the less resources, the harder it is for
rph to beat brackets: cutoffs are at 97.5%, 95%,
90% for low-, mid-, and high-resource treebanks,
respectively. However, for very high-resource tree-
banks, the cutoff is back at 95%. Compounded with
the low tagging accuracy expected in low-resource
setups, this highlights that rph is less suited for
them. 2pb, which generally outperforms the other
encodings below 90% tagging accuracy, is the best

low-resource option.
The more resources available, the harder it

is for the models using PoS tags to outper-
form base-no-tags, both for bracketing- and
transition-based linearizations; i.e. experiments
suggest that the benefits provided by the PoS tags
decline when more training data is available. For
brackets, the cutoffs occur at <75%, 80%, 85%
and 90% for the low-, mid-, high- and very high-
resource set, and for transition encodings, they are
at <75% for the low-resource set and at ∼80% for
mid- and high-resource sets. For the very-high re-
source set, cutoff points are at 85% for ctb and
90% for ahtb.

6 Conclusion

We connected the impact that the quality of PoS
tags and quantity of available data has on several
dependency parsing linearizations. We tested this
by controlling PoS tagging performance on a range
of UD treebanks, diverse in terms of both amount
of resources and typology. The results showed that
for sequence labeling parsing, which prioritizes ef-
ficiency, PoS tags are still welcome, contrary to
more mature parsing paradigms such as transition-
based and graph-based ones. The experiments also
showed that parsing linearizations benefit from PoS
tagging accuracy differently, and in particular lin-
earizations that represent arcs as bracket strings are
a better choice for most realistic scenarios.
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A PoS tagging details

Table 4 details the hyperparameters used to train
the taggers in this work.

Hyperparameter Value

Word embedding dimensions 100
Character embedding in 32
Character embedding out 100
Embedding dropout 0.33
biLSTM layers 3
biLSTM nodes 400
biLSTM dropout 0.33
MLP dimensions 512
MLP layers 1
Epochs 200
Patience 10
training batch size 32
learning rate 0.002
β1, β2 0.9, 0.9
ϵ 1× 10−12

decay 0.75

Table 4: Hyperparameters used for the taggers.

Meanwhile, Table 5 shows the performance of
the taggers that we initially used to draw the error
distributions and propose PoS tags with different
levels of accuracy.

Tagger Accuracy

Ancient Greek-Perseus 90.14
Armenian-ArmTDP 92.22
Basque-BDT 94.74
Bhojpuri-BHTB 81.52
Bulgarian-BTB 98.26
Estonian-EDT 96.32
Guajajara-TuDeT 84.20
Kiche-IU 92.28
Korean-Kaist 94.34
Ligurian-GLT 81.19
Norwegian-Bokmål 97.51
Persian-PerDT 96.53
Skolt Sami-Giellagas 80.03
Turkish-BOUN 91.31
Vietnamese-VTB 87.05
Welsh-CCG 91.76

Table 5: Accuracy on test sets of biLSTM taggers
trained for each treebank from which each error dis-
tribution was deduced and used to control accuracy for
each treebank in experiments.

B Parsing hyperparameters

Table 6 details the hyperparameters used to train
all the sequence labeling parsers evaluated in this
work.

Hyperparameter Value

Word embedding dimensions 100
Character embedding dimensions 30
Character hidden dimensions 50
Hidden dimensions 800
POS embedding dimension 25
LSTM layers 2
CNN laters 4
Dropout 0.5
Epochs 50
training batch size 8
learning rate 0.02
momentum 0.9
decay 0.05

Table 6: Hyperparameters used for the sequence label-
ing parsers.

C Additional results

Figures 3 and 4 shows the UAS results comple-
menting the LAS results reported in §4 (in Figures
1 and 2, respectively). Figures from 5 to 20 show
the LAS results for each treebank.
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Figure 3: Average UAS across all treebanks against PoS
tagging accuracies for different linearizations, compared
to the no-tags baselines.
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(a) Low
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(b) Mid
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(c) High
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(d) Very high

Figure 4: Average UAS for the (a) low-, (b) mid-, (c) high and (d) very-high-resource subsets of treebanks for
different PoS tagging accuracies and linearizations, compared to the no-tags baselines.
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Figure 5: LAS against PoS tagging accuracies for differ-
ent linearizations for the Ancient GreekPerseus, compared
to the no-tags baselines.
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Figure 6: LAS against PoS tagging accuracies for dif-
ferent linearizations for the ArmenianArmTDP, compared
to the no-tags baselines.
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Figure 7: LAS against PoS tagging accuracies for differ-
ent linearizations for the BasqueBDT, compared to the
no-tags baselines.
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Figure 8: LAS against PoS tagging accuracies for dif-
ferent linearizations for the BhojpuriBHTB, compared to
the no-tags baselines.
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Figure 9: LAS against PoS tagging accuracies for dif-
ferent linearizations for the BulgarianBTB, compared to
the no-tags baselines.
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Figure 10: LAS against PoS tagging accuracies for
different linearizations for the EstonianEDT, compared
to the no-tags baselines.
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Figure 11: LAS against PoS tagging accuracies for
different linearizations for the GuajajaraTuDeT, compared
to the no-tags baselines.
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Figure 12: LAS against PoS tagging accuracies for
different linearizations for the KicheIU, compared to the
no-tags baselines.
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Figure 13: LAS against PoS tagging accuracies for
different linearizations for the KoreanKaist, compared to
the no-tags baselines.
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Figure 14: LAS against PoS tagging accuracies for
different linearizations for the LigurianGLT, compared
to the no-tags baselines.
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Figure 15: LAS against PoS tagging accuracies for dif-
ferent linearizations for the NorwegianBokmål, compared
to the no-tags baselines.
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Figure 16: LAS against PoS tagging accuracies for
different linearizations for the PersianPerDT, compared
to the no-tags baselines.
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Figure 17: LAS against PoS tagging accuracies for dif-
ferent linearizations for the VietnameseVTB, compared
to the no-tags baselines.
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Figure 18: LAS against PoS tagging accuracies for
different linearizations for the Skolt SamiGiellagas, com-
pared to the no-tags baselines.
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Figure 19: LAS against PoS tagging accuracies for
different linearizations for the TurkishBOUN, compared
to the no-tags baselines.
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Figure 20: LAS against PoS tagging accuracies for
different linearizations for the WelshCCG, compared to
the no-tags baselines.
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