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Abstract

We study the problem of language vari-
ant identification, approximated by the
problem of labeling tweets from Spanish
speaking countries by the country from
which they were posted. While this task
is closely related to “pure” language iden-
tification, it comes with additional com-
plications. We build a balanced collec-
tion of tweets and apply techniques from
language modeling. A simplified version
of the task is also solved by human test
subjects, who are outperformed by the
automatic classification. Our best auto-
matic system achieves an overall F-score
of 67.7% on 5-class classification.

1 Introduction

Spanish (or castellano), a descendant of Latin,
is currently the language with the second largest
number of native speakers after Mandarin Chi-
nese, namely around 414 million people (Lewis
et al., 2014). Spanish has a large number of re-
gional varieties across Spain and the Americas
(Lipski, 1994).1 They diverge in spoken language
and vocabulary and also, albeit to a lesser extent,
in syntax. Between different American varieties
of Spanish, there are important differences; how-
ever, the largest differences can be found between
American and European (“Peninsular”) Spanish.

Language identification, the task of automati-
cally identifying the natural language used in a
given text segment, is a relatively well understood
problem (see Section 2). To our knowledge, how-
ever, there is little previous work on the identifica-
tion of the varieties of a single language, such as
the regional varieties of Spanish. This task is espe-
cially challenging because the differences between

1We are aware that there are natively Spanish-speaking
communities elsewhere, such as on the Philippines, but we
do not consider them in this study.

variants are subtle, making it difficult to discern
between them. This is evidenced by the fact that
humans that are native speakers of the varieties
are often unable to solve the problem, particularly
when given short, noisy text segments (which are
the focus of this work) where the amount of avail-
able information is limited.

In this paper, we approximate the problem of
language variety identification by the problem
of classifying status messages from the micro-
blogging service Twitter (“tweets”) from Span-
ish speaking countries by the country from which
they were sent. With the tweet, the location of
the device from which the tweet was sent can be
recorded (depending on the Twitter users’ permis-
sion) and can then be retrieved from the metadata
of the tweet. The tweet location information does
not always correlate with the actual language va-
riety used in the tweet: it is conceivable, e.g., that
migrants do not use the prevalent language vari-
ety of the country in which they live, but rather
their native variety. Nevertheless, Twitter can give
a realistic picture of actual language use in a cer-
tain region, which, additionally, is closer to spoken
than to standard written language. Eventually and
more importantly, Twitter data is available from
almost all Spanish speaking countries.

We proceed as follows. We build a balanced
collection of tweets sent by Twitter users from
five countries, namely Argentina, Chile, Colom-
bia, Mexico, and Spain. Applying different meth-
ods, we perform an automatic classification be-
tween all countries. In order to obtain a more de-
tailed view of the difficulty of our task, we also
investigate human performance. For this purpose,
we build a smaller sample of tweets from Ar-
gentina, Chile and Spain and have them classified
by both our system and three native human evalua-
tors. The results show that automatic classification
outperforms human annotators. The best variant
of our system, using a meta-classifier with voting,
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reaches an overall F-score of 67.72 on the five-
class problem. On the two-class problem, human
classification is outperformed by a large margin.

The remainder of this paper is structured as fol-
lows. In the following section, we present related
work. Section 3 presents our data collection. Sec-
tions 4 and 5 present our classification methodol-
ogy and the experiments. Section 7 discusses the
results, and Section 8 concludes the article.

2 Related Work

Research on language identification has seen a va-
riety of methods. A well established technique is
the use of character n-gram models. Cavnar and
Trenkle (1994) build n-gram frequency “profiles”
for several languages and classify text by match-
ing it to the profiles. Dunning (1994) uses lan-
guage modeling. This technique is general and
not limited to language identification; it has also
been successfully employed in other areas, e.g., in
authorship attribution (Kešelj et al., 2003) and au-
thor native language identification (Gyawali et al.,
2013). Other language identification systems use
non-textual methods, exploiting optical properties
of text such as stroke geometry (Muir and Thomas,
2000), or using compression methods which rely
on the assumption that natural languages differ
by their entropy, and consequently by the rate
to which they can be compressed (Teahan, 2000;
Benedetto et al., 2002). Two newer approaches
are Brown (2013), who uses character n-grams,
and Řehůřek and Kolkus (2009), who treat “noisy”
web text and therefore consider the particular in-
fluence of single words in discriminating between
languages.

Language identification is harder the shorter the
text segments whose language is to be identified
(Baldwin and Lui, 2010). Especially due to the
rise of Twitter, this particular problem has recently
received attention. Several solutions have been
proposed. Vatanen et al. (2010) compare character
n-gram language models with elaborate smooth-
ing techniques to the approach of Cavnar and
Trenkle and the Google Language ID API, on the
basis of different versions of the Universal Decla-
ration of Human Rights. Other researchers work
on Twitter. Bergsma et al. (2012) use language
identification to create language specific tweet col-
lections, thereby facilitating more high-quality re-
sults with supervised techniques. Lui and Baldwin
(2014) review a wide range of off-the-shelf tools

for Twitter language identification, and achieve
their best results with a voting over three individ-
ual systems, one of them being langid.py (Lui
and Baldwin, 2012). Carter et al. (2013) exploit
particular characteristics of Twitter (such as user
profile data and relations between Twitter users)
to improve language identification on this genre.
Bush (2014) successfully uses LZW compression
for Twitter language identification.

Within the field of natural language processing,
the problem of language variant identification has
only begun to be studied very recently. Zampieri
et al. (2013) have addressed the task for Spanish
newspaper texts, using character and word n-gram
models as well as POS and morphological infor-
mation. Very recently, the Discriminating between
Similar Languages (DSL) Shared Task (Zampieri
et al., 2014) proposed the problem of identify-
ing between pairs of similar languages and lan-
guage variants on sentences from newspaper cor-
pora, one of the pairs being Peninsular vs. Argen-
tine Spanish. However, all these approaches are
tailored to the standard language found in news
sources, very different from the colloquial, noisy
language of tweets, which presents distinct chal-
lenges for NLP (Derczynski et al., 2013; Vilares et
al., 2013). Lui and Cook (2013) evaluate various
approaches to classify documents into Australian,
British and Canadian English, including a corpus
of tweets, but we are not aware of any previous
work on variant identification in Spanish tweets.

A review of research on Spanish varieties from
a linguistics point of view is beyond the scope of
this article. Recommended further literature in this
area is Lipski (1994), Quesada Pacheco (2002)
and Alvar (1996b; 1996a).

3 Data Collection

We first built a collection of tweets using the
Twitter streaming API,2 requesting all tweets sent
within the geographic areas given by the coordi-
nates -120◦, -55◦ and -29◦, 30◦ (roughly delimit-
ing Latin America), as well as -10◦, 35◦ and 3◦,
46◦ (roughly delimiting Spain). The download ran
from July 2 to July 4, 2014. In a second step, we
sorted the tweets according to the respective coun-
tries.

Twitter is not used to the same extent in all
countries where Spanish is spoken. In the time

2https://dev.twitter.com/docs/api/
streaming
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it took to collect 2,400 tweets from Bolivia,
we could collect over 700,000 tweets from Ar-
gentina.3 To ensure homogeneous conditions for
our experiments, our final tweet collection com-
prises exactly 100,000 tweets from each of the five
countries from which most tweets were collected,
that is, Argentina, Chile, Colombia, Mexico, and
Spain.

At this stage, we do not perform any cleanup
or normalization operations such as, e.g., deleting
forwarded tweets (“re-tweets”), deleting tweets
which are sent by robots, or tweets not written in
Spanish (some tweets use code switching, or are
entirely written in a different language, mostly in
English or in regional and minority languages that
coexist with Spanish in the focus countries). Our
reasoning behind this is that the tweet production
in a certain country captures the variant of Spanish
that is spoken.

We mark the start and end of single tweets by
<s> and </s>, respectively. We use 80% of the
tweets of each language for training, and 10% for
development and testing, respectively. The data
is split in a round-robin fashion, i.e., every ninth
tweet is put into the development set and every
tenth tweet is put in the test set, all other tweets
are put in the training set.

In order to help with the interpretation of clas-
sification results, we investigate the distribution of
tweet lengths on the development set, as shown in
Figure 1. We see that in all countries, tweets tend
to be either short, or take advantage of all available
characters. Lengths around 100 to 110 characters
are the rarest. The clearest further trend is that the
tweets from Colombia and, especially, Argentina
tend to be shorter than the tweets from the other
countries.

4 Automatic Tweet Classification

The classification task we envisage is similar to
the task of language identification in short text
segments. We explore three methods that have
been used before for that task, namely character
n-gram frequency profiles (Cavnar and Trenkle,
1994; Vatanen et al., 2010), character n-gram lan-
guage models (Vatanen et al., 2010), as well as
LZW compression (Bush, 2014). Furthermore, we
explore the usability of syllable-based language

3We are aware that the Twitter API does not make all sent
tweets available. However, we still assume that this huge dif-
ference reflects a variance in the number of Twitter users.
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Figure 1: Tweet length distribution

50 100 500 1k 10k
AR 31.68 29.72 43.93 31.77 18.42
CO 24.29 21.36 26.14 19.68 19.03
MX 31.86 28.97 32.58 30.28 22.27
ES 20.19 25.22 22.08 21.25 16.15
CL 22.95 29.74 35.67 26.01 16.69

Table 1: Results (F1): n-gram frequency profiles
(classes/profile sizes)

models. For all four approaches, we train mod-
els for binary classification for each class, i.e., five
models that decide for each tweet if it belongs to a
single class. As final label, we take the output of
the one of the five classifiers that has the highest
score.

We finally use a meta-classifier on the basis of
voting. All methods are tested on the development
set. For evaluation, we compute precision, recall
and F1 overall as well as for single classes.

Note that we decided to rely on the tweet text
only. An exploration of the benefit of, e.g., directly
exploiting Twitter-specific information (such as
user mentions or hash tags) is out of the scope of
this paper.

4.1 Character n-gram frequency profiles

We first investigate the n-gram frequency ap-
proach of Cavnar and Trenkle (1994). We use the
well-known implementation TextCat.4 The re-
sults for all classes with different profile sizes are
shown in Table 1. Table 2 shows precision and re-
call for the best setting, a profile with a maximal
size of 500 entries.

The results obtained with a profile size of 500

4As available from http://odur.let.rug.nl/
˜vannoord/TextCat/.
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class precision recall F1

AR 32.60 67.33 43.93
CO 31.66 22.26 26.14
MX 51.52 23.82 32.58
ES 32.83 16.63 22.08
CL 31.96 40.36 35.67

overall 34.08 34.08 34.08

Table 2: Results: n-gram frequency profile with
500 n-grams

AR CO MX ES CL
AR 6,733 949 384 610 1,324
CO 4,207 2,226 720 803 2,044
MX 2,547 1,342 2,382 1,051 2,678
ES 3,781 1,361 649 1,663 2,546
CL 3,384 1,153 488 939 4,036

Table 3: Confusion matrix (n-gram freq. profiles,
500 n-grams)

entries for Colombia align with the results for
Spain and Mexico in that the precision is higher
than the recall. The results for Chile align with
those for Argentina with the recall being higher
than the precision. For Mexico and Argentina the
differences between recall and precision are par-
ticularly large (28 and 35 points, respectively).
The confusion matrix in Table 3 reveals that tweets
from all classes are likely to be mislabeled as
coming from Argentina, while, on the other hand,
Mexican tweets are mislabeled most frequently as
coming from other countries.

Overall, the n-gram frequency profiles are not
very good at our task, achieving an maximal over-
all F-score of only 34.08 with a profile size of 500
entries. However, this performance is still well
above the 20.00 F-score we would obtain with
a random baseline. Larger profile sizes deterio-
rate results: with 10,000 entries, we only have
an overall F-score of 18.23. As observed before
(Vatanen et al., 2010), the weak performance can
most likely be attributed to the shortness of the
tweets and the resulting lack of frequent n-grams
that hinders a successful profile matching. While
Vatanen et al. alleviate this problem to some ex-
tent, they have more success with character-level
n-gram language models, the approach which we
explore next.
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Figure 2: Character n-gram lm: Pruning vs. n-
gram order

4.2 Character n-gram language models

We recur to n-gram language models as avail-
able in variKN (Siivola et al., 2007).5 We run
variKN with absolute discounting and the cross-
product of four different pruning settings (no prun-
ing, and thresholds 0.01, 0.1 and 1) and five differ-
ent n-gram lengths (2 to 6).

Figure 2 contrasts the effect of different pruning
settings with different n-gram lengths. While ex-
cessive pruning is detrimental to the result, slight
pruning has barely any effect on the results, while
reducing look-up time immensely. The order of
the n-grams, however, does have an important in-
fluence. We confirm that also for this problem, we
do not benefit from increasing it beyond n = 6,
like Vatanen et al. (2010).

We now check if some countries are more dif-
ficult to identify than others and how they bene-
fit from different n-gram orders. Figure 3 visual-
izes the corresponding results. Not all countries
profit equally from longer n-grams. When com-
paring the 3- and 6-gram models without pruning,
we see that the F1 for Argentina is just 8 points
higher, while the difference is more than 14 points
for Mexico.

Table 4 shows all results including precision and
recall for all classes, in the setting with 6-grams
and no pruning. We can see that this approach
works noticeably better than the frequency pro-
files, achieving an overall F-score of 66.96. The
behavior of the classes is not uniform: Argentina
shows the largest difference between precision and
recall, and is furthermore the only class in which
precision is higher than recall. Note also that in

5https://github.com/vsiivola/variKN
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Figure 3: Character n-gram lm: Classes vs. n-
gram order (no pruning)

class precision recall F1

AR 70.67 66.22 68.37
CO 62.56 62.77 62.66
MX 65.23 65.74 65.48
ES 68.75 69.36 69.06
CL 67.81 70.73 69.24

overall 66.96 66.96 66.96

Table 4: Results: 6-grams without pruning

general, the differences between precision and re-
call are lower than for the n-gram frequency pro-
file approach. The confusion matrix shown in Ta-
ble 5 reveals that the Colombia class is the one
with the highest confusion, particularly in com-
bination with the Mexican class. This could in-
dicate that those classes are more heterogeneous
than the others, possibly showing more Twitter-
specific noise, such as tweets consisting only of
URLs, etc.

We finally investigate how tweet length influ-
ences classification performance in the 6-gram
model. Figure 4 shows the F-scores for intervals
of length 20 for all classes. The graph confirms
that longer tweets are easier to classify. This cor-
relates with findings from previous work. Over
82 points F1 are achieved for tweets from Chile

AR CO MX ES CL
AR 6,622 1,036 702 740 900
CO 800 6,277 1,151 875 897
MX 509 1,237 6,574 847 833
ES 630 850 857 6,936 727
CL 809 634 794 690 7,073

Table 5: Confusion matrix (6-grams, no pruning)
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Figure 4: Character n-grams: Results (F1) for
tweet length intervals
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Figure 5: Character n-grams: Precision/recall for
AR and CL

longer than 120 characters, while for those con-
taining up to 20 characters, F1 is almost 30 points
lower. We investigate precision and recall sepa-
rately. Figure 5 shows the corresponding curves
for the best and worst performing classes, namely,
CL and CO. For Chile, both precision and recall
develop in parallel to the F-score (i.e., the longer
the tweets, the higher the scores). For Colombia,
the curves confirm that the low F1 is rather due to
a low precision than a low recall, particularly for
tweets longer than 40 characters. This correlates
with the counts in the confusion table (Tab. 5).

4.3 Syllable n-gram language models

Since varieties of Spanish exhibit differences in
vocabulary, we may think that models based on
word n-grams can be more useful than character
n-grams to discriminate between varieties. How-
ever, the larger diversity of word n-grams means
that such models run into sparsity problems. An
intermediate family of models can be built by us-
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Figure 6: Syllable n-gram lm: pruning vs. n-gram
order

ing syllable n-grams, taking advantage of the fact
that Spanish variants do not differ in the criteria
for syllabification of written words. Note that this
property does not hold in general for the language
identification problem, as different languages typ-
ically have different syllabification rules, which is
a likely reason why syllable n-gram models have
not been used for this problem.

To perform the splitting of Spanish words into
syllables, we use the TIP syllabifier (Hernández-
Figeroa et al., 2012), which applies an algorithm
implementing the general syllabification rules de-
scribed by the Royal Spanish Academy of Lan-
guage and outlined in standard Spanish dictionar-
ies and grammars. These rules are enough to cor-
rectly split the vast majority of Spanish words, ex-
cluding only a few corner cases related with word
prefixes (Hernández-Figueroa et al., 2013). While
accurate syllabification requires texts to be written
correctly with accented characters, and this is of-
ten not the case in informal online environments
(Vilares et al., 2014); we assume that this need not
cause problems because the errors originated by
unaccented words will follow a uniform pattern,
producing a viable model for the purposes of clas-
sification.

We train n-gram language models with
variKN as described in the last section, using
absolute discounting. Due to the larger vocabulary
size, we limit ourselves to 0.01 pruning, and to
n-gram orders 2 to 4. Figure 6 shows the results
(F1) of all classes for the different n-gram orders,
and Table 6 shows the results for all classes for
the 4-gram language model.

As expected, shorter n-grams are more effective
for syllable than for character language models.

class precision recall F1

AR 55.94 61.11 58.41
CO 53.23 53.03 53.13
MX 59.10 56.17 57.60
ES 62.35 56.96 59.53
CL 59.31 62.12 60.68

overall 57.88 57.88 57.88

Table 6: Results (F1): Syllable 4-gram lm

For the Chilean tweets, e.g., the F-score for the 2-
gram language model is around 11 points higher
than for the character 2-gram language model.
Furthermore, the performance seems to converge
earlier, given that the results change only slightly
when raising the n-gram order from 3 to 4. The
overall F-score for the 4-gram language model is
around 6 points lower than for character 4-grams.
However, the behavior of the classes is similar:
again, Mexico and Colombia have slightly lower
results than the other classes.

4.4 Compression

We eventually test the applicability of
compression-based classification using the
approach of Bush (2014). As mentioned ear-
lier, the assumption behind compression-based
strategies for text categorization is that different
text categories have a different entropy. Clas-
sification is possible because the effectivity of
compression algorithms depends on the entropy
of the data to be compressed (less entropy ≈ more
compression).

A simple classification algorithm is Lempel-
Ziv-Welch (LZW) (Welch, 1984). It is based on
a dictionary which maps sequences of symbols to
unique indices. Compression is achieved by re-
placing sequences of input symbols with the re-
spective dictionary indices. More precisely, com-
pression works as follows. First, the dictionary
is initialized with the inventory of symbols (i.e.,
with all possible 1-grams). Then, until the input is
fully consumed, we repeat the following steps. We
search the dictionary for the longest sequence of
symbols s that matches the current input, we out-
put the dictionary entry for s, remove s from the
input and add s followed by the next input symbol
to the dictionary.

For our experiments, we use our own imple-
mentation of LZW. We first build LZW dictionar-
ies by compressing our training sets as described
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1k 8k 25k 50k
AR 28.42 38.78 46.92 51.89
CO 19.81 28.27 32.81 36.05
MX 22.07 33.90 43.10 45.06
ES 22.08 29.48 35.15 38.61
CL 27.08 28.22 33.59 36.68

Table 7: Results (F1): LZW without ties

above, using different limits on dictionary lengths.
As symbol inventory, we use bytes, not unicode
symbols. Then we use these dictionaries to com-
press all tweets from all test sets, skipping the ini-
tialization stage. The country assigned to each
tweet is the one whose dictionary yields the high-
est compression. We run LZW with different max-
imal dictionary sizes.

The problem with the evaluation of the results
is that the compression produced many ties, i.e.,
the compression of a single tweet with dictionaries
from different languages resulted in identical com-
pression rates. On the concatenated dev sets (50k
tweets, i.e., 10k per country) with a maximal dic-
tionary size of 1k, 8k, 25k and 50k entries, we got
14.867, 20,166, 22,031, and 23,652 ties, respec-
tively. In 3,515 (7%), 4,839 (10%), 5,455 (11%)
and 6,102 (12%) cases, respectively, the correct re-
sult was hidden in a tie. If we replace the labels
of all tied instances with a new label TIE, we ob-
tain the F-scores shown in Table 7. While they are
higher than the scores for n-gram frequency pro-
files, they still lie well below the results for both
syllable and character language models.

While previous literature mentions an ideal size
limit on the dictionary of 8k entries (Bush, 2014),
we obtain better results the larger the dictionaries.
Note that already with a dictionary of size 1000,
even without including the ties, we are above the
20.00 F-score of a random baseline. The high
rate of ties constitutes a major problem of this ap-
proach, and remains even if we would find im-
provements to the approach (one possibility could
be to use unicode characters instead of bytes for
dictionary initialization). It cannot easily be alle-
viated, because if the compression rate is taken as
the score, particularly the scores for short tweets
are likely to coincide.

4.5 Voting

Voting is a simple meta-classifying technique
which takes the output of different classifiers and

class precision recall F1

AR 70.96 68.36 69.64
CO 62.44 64.22 63.32
MX 66.37 65.67 66.02
ES 70.10 69.64 69.87
CL 68.97 70.72 69.83

overall 67.72 67.72 67.72

Table 8: Results: Voting

decides based on a predefined method on one of
them, thereby combining their strengths and level-
ing out their weaknesses. It has been successfully
used to improve language identification on Twitter
data by Lui and Baldwin (2014).

We utilize the character 5-gram and 6-gram lan-
guage models without pruning, as well as the syl-
lable 3-gram and 4-gram models. We decide as
follows. All instances for which the output of the
5-gram model coincides with the output of at least
one of the syllable models are labeled with the out-
put of the 5-gram model. For all other instances,
the output of the 6-gram model is used. The corre-
sponding results for all classes are shown in Table
8.

We obtain a slightly higher F-score than for
the 6-gram character language model (0.8 points).
In other words, even though the 6-gram language
model leads to the highest overall results among
individual models, in some instances it is out-
performed by the lower-order character language
model and by the syllable language models, which
have a lower overall score.

5 Human Tweet Classification

In order to get a better idea of the difficulty of the
task of classifying tweets by the country of their
authors, we have tweets classified by humans.

Generally, speakers of Spanish have limited
contact with speakers of other varieties, simply
due to geographical separation of varieties. We
therefore recur to a simplified version of our task,
in which the test subjects only have to distinguish
their own variety from one other variety, i.e., per-
form a binary classification. We randomly draw
two times 150 tweets from the Argentinian test and
150 tweets from the Chilean and Spanish test sets,
respectively. We then build shuffled concatena-
tions of the first 150 Argentinian and the Chilean
tweets, as well as of the remaining 150 Argen-
tinian and the Spanish tweets. Then we let three
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data subject class prec. rec. F1

AR-ES AR AR 68.5 76.7 72.3
ES 73.5 64.7 68.8

ES AR 71.5 62.0 66.4
ES 66.5 75.3 70.6

n-gram AR 92.3 87.3 89.7
ES 88.0 92.7 90.3

AR-CL AR AR 61.0 77.3 68.2
CL 69.1 50.7 58.5

CL AR 70.0 70.0 70.0
CL 70.0 70.0 70.0

n-gram AR 93.4 84.7 88.8
CL 86.0 94.0 89.8

Table 9: Results: Human vs. automatic classifica-
tion

natives classify them. The test subjects are not
given any other training data samples or similar re-
sources before the task, and they are instructed not
to look up on the Internet any information within
the tweet that might reveal the country of its author
(such as hyperlinks, user mentions or hash tags).

Table 9 shows the results, together with the re-
sults on the same task of the character 6-gram
model without pruning. Note that with 300 test
instances out of 20,000, there is a sampling er-
ror of ± 4.7% (confidence interval 95%). The re-
sults confirm our intuition in the light of the good
performance achieved by the n-gram approach in
the 5-class case: when reducing the classification
problem from five classes to two, human classi-
fication performance is much below the perfor-
mance of automatic classification, by between 17
and 31 F-score points. In terms of error rate, the
human annotators made between 3 and 4 times
more classification errors than the automatic sys-
tem. One can observe a tendency among the hu-
man test subjects that more errors come from la-
beling too many tweets as coming from their na-
tive country than vice versa (cf. the recall values).

In order to better understand the large result dif-
ference, we ask the test subjects for the strategies
they used to label tweets. They stated that the eas-
iest tweets where those specifying a location (“Es-
toy en Madrid”), or referencing local named en-
tities (TV programs, public figures, etc.). In case
of absence of such information, other clues were
used that tend to occur in only one variety. They
include the use of different words (such as en-
fadado (Spain) vs. enojado (America) (“angry”)),

data subject class prec. rec. F1

AR-ES AR AR 71.8 80.0 75.7
ES 74.8 65.4 69.7

ES AR 74.6 62.9 68.2
ES 65.1 76.3 70.2

n-gram AR 93.2 88.6 90.8
ES 88.1 92.9 90.4

AR-CL AR AR 61.1 78.6 68.8
CL 68.8 48.5 56.9

CL AR 73.0 71.4 72.2
CL 71.2 72.8 72.0

n-gram AR 95.3 87.1 91.0
CL 87.8 95.6 91.5

Table 10: Results: Human vs. automatic classifi-
cation (filtered)

a different distribution of the same word (such as
the filler pues), and different inflection, such as the
second person plural verb forms, which in Amer-
ican Spanish, albeit sometimes not in Chile, is re-
placed by the identical third person plural forms
(for the verb hacer (“do”), the peninsular form
would be hacéis instead of hacen), and the per-
sonal pronoun vos (“you”), which is rarely used
in Chile, and not used in Spain. To sum up, the
test subjects generally relied on lexical cues on
the surface, and were therefore bound to miss non-
obvious information captured by the character n-
gram model.

Since the test subjects also stated that some
tweets were impossible to assign to a country be-
cause they contained only URLs, emoticons, or
similar, in Table 10 we show a reevaluation of a
second version of the two shuffled concatenated
samples in which we remove all tweets which con-
tain only emoticons, URLs, or numbers; tweets
which are entirely written in a language other than
Spanish; and tweets which are only two or one
words long (i.e., tweets with zero or one spaces).
For the AR-ES data, we remove 23 Spanish and
10 Argentinian tweets, while for the AR-CL data,
we remove 10 Argentinian and 14 Chilean tweets.

As for the human classification on the AR/ES
data, the results for Spain do not change much. For
Argentina, there is an increase in performance (2
to 3 points). On the AR/CL data, there is a slight
improvement on all sets except for the Chilean
data classified.

As for the automatic classification, the filter-
ing gives better result on all data sets. However,
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training dev test
AR 57,546 (71.9%) 7,174 7,196
CO 58,068 (72.6%) 7,249 7,289
MX 48,527 (60.7%) 6,117 6,061
ES 53,199 (66.5%) 6,699 6,657
CL 56,865 (71.1%) 6,998 7,071

Table 11: Data sizes (filtered by langid.py)

the difference between the F1 of the filtered and
unfiltered data is larger on the AR/CL data set.
This can be explained with the fact that among
the tweets removed from the AR/ES data set, there
were more longer tweets (not written in Spanish)
than among the tweets removed from the CL/AR
data set, the longer tweets being easier to iden-
tify. Note that the filtering of tweets does not cause
much change in the difference between human and
automatic classification.

6 Language Filtering

As mentioned before, our data has not been
cleaned up or normalized. In particular, the data
set contains tweets written in languages other than
Spanish. We have reasoned that those can be seen
as belonging to the “natural” language production
of a country. However, in order to see what im-
pact they have on our classification results, we
perform an additional experiment on a version of
the data were we only include the tweets that the
state-of-the-art language identifier langid.py
labels Spanish (Lui and Baldwin, 2012).6 Table
11 shows the sizes of all data sets after filtering.
Note that many of the excluded tweets are in fact
written in Spanish, but are very noisy, due to or-
thography, Twitter hash tags, etc. The next most
frequent labels across all tweets is English (9%).
Note that in the data from Spain, 2% of the tweets
are labeled as Catalan, 1.2% as Galician, and only
0.3% as Basque.

Table 12 finally shows the classification re-
sults for character 6-gram language models with-
out pruning.

The changes in F1 are minor, i.e., below one
point, except for the Mexican tweets, which lose
around 4 points. The previous experiments have
already indicated that the Mexican data set is the
most heterogeneous one which also resulted in the
largest number of tweets being filtered out. In
general, we see that the character n-gram method

6https://github.com/saffsd/langid.py.

class precision recall F1

AR 70.32 66.09 68.14
CO 63.76 62.22 62.98
MX 61.52 61.11 61.31
ES 69.13 69.20 69.17
CL 67.12 73.29 70.07

overall 66.45 66.45 66.45

Table 12: Results: Filtered by langid.py

seems to be relatively stable with respect to a dif-
ferent number of non-Spanish tweets in the data.
More insight could be obtained by performing ex-
periments with advanced methods of tweet nor-
malization, such as those of Han and Baldwin
(2011). We leave this for future work.

7 Discussion

Human classification of language varieties was
judged by our test subjects to be considerably
more difficult that differentiating between lan-
guages. Additionally, the test subjects were only
able to differentiate between two classes. While
the automatic classification results lie below the
results which one would expect for language iden-
tification, n-gram classification still achieves good
performance.

Our experiments touch on the more general
question of how a language variety is defined. In
order to take advantage of the metadata provided
by Twitter, we had to restrict the classification
problem to identifying varieties associated with
countries were tweets were sent. In reality, the
boundaries between variants are often blurred, and
there can also be variance within the same country
(e.g., the Spanish spoken in the southern Spanish
region of Andalusia is different from that of As-
turias, even if they both share features common
to Peninsular Spanish and larger differences with
American Spanish). However, it would be diffi-
cult to obtain a reliable corpus with this kind of
fine-grained distinctions.

It is also worth noting that not all the classifica-
tion criteria used by the human test subjects were
purely linguistic – for example, a subject could
guess a tweet as being from Chile by recogniz-
ing a mention to a Chilean city, public figure or
TV show. Note that this factor intuitively seems to
benefit humans – who have a wealth of knowledge
about entities, events and trending topics from
their country – over the automatic system. In spite
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of this, automatic classification still vastly outper-
formed human classification, suggesting that the
language models are capturing linguistic patterns
that are not obvious to humans.

8 Conclusion

We have studied different approaches to the task
of classifying tweets from Spanish-speaking coun-
tries according to the country from which they
were sent. To the best of our knowledge, these are
the first results for this problem. On the problem
of assigning one of five classes (Argentina, Mex-
ico, Chile, Colombia, Spain) to 10,000 tweets, the
best performance, an overall F-score of 67.72, was
obtained with a voting meta-classifier approach
that recombines the results for four single clas-
sifiers, the 6-gram (66.96 F1) and 5-gram (66.75
F1) character-based language models, and the 4-
gram (57.87 F1) and 3-gram (57.24 F1) syllable-
based language models. For a simplified version
of the problem that only required a decision be-
tween two classes (Argentina vs. Chile and Spain
vs. Argentina), given a sample of 150 tweets from
each class, human classification was outperformed
by automatic classification by up to 31 points.

In future work, we want to investigate the ef-
fect of tweet normalization on our problem, and
furthermore, how the techniques we have used can
be applied to classify text from other social media
sources, such as Facebook.
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