Compilation of Constraint-based Contextual
Rules for Part-of-Speech Tagging into Finite
State Transducers*

Jorge Grafia', Gloria Andrade!, and Jests Vilares?

! Departamento de Computacién, Universidad de La Corufia
Campus de Elvifia s/n, 15071 - La Coruiia, Spain
{grana,andrade}@dc.fi.udc.es
? Departamento de Informética, Universidad de Vigo
Campus de As Lagoas, 32004 - Orense, Spain
jvilares@uvigo.es

Abstract. With the aim of removing the residuary errors made by pure
stochastic disambiguation models, we put forward a hybrid system in
which linguist users introduce high level contextual rules to be applied
in combination with a tagger based on a Hidden Markov Model. The
design of these rules is inspired in the Constraint Grammars formalism.
In the present work, we review this formalism in order to propose a
more intuitive syntax and semantics for rules, and we develop a strategy
to compile the rules under the form of Finite State Transducers, thus
guaranteeing an efficient execution framework.

1 Introduction

In the context of the use of the tools for part-of-speech tagging (POST) developed
in the GALENA and CORGA projects®, our projects for the automatic processing
of the Spanish and Galician languages, a repeated request from the linguist part-
ners has been the design of a formalism to introduce high level contextual rules.
The purpose of these rules is to remove the residuary errors that pure stochastic
taggers systematically make, allowing them to improve the usual performances
of 95-97% of success.

The constraint grammars formalism (CGs) [3] was a good candidate on the
basis of its good results: on concrete languages, such as English [7], performances
can reach 99% of precision with a set of about 1000 contextual rules; and,
in general, performances are better than those of the pure stochastic taggers
particularly when training and application texts are not from the same style and

* This work has been partially supported by the Spanish Government (under projects
TIC2000-0370-C02-01 and HP2001-0044), and by the Galician Government (under
project PGIDT01PXI10506PN).

3 GALENA means Generation of Natural Language Analyzers and CORGA means Ref-
erence Corpus of Current Galician. See http://coleweb.dc.fi.udc.es for more
information on both projects.

2 Jorge Grana et al.

source. However, comparison is difficult since some ambiguities are not resolved
by CGs. That is, CGs return a set of more than one tag in some cases, which
makes it necessary to combine this technique with another one.

Furthermore, the syntax and semantics of the rules involved in CGs are
not very intuitive, since they try to solve problems other than tagging. In fact,
they join tagging and certain steps of parsing, even though both analyses are
traditionally treated in separate modules. These aspects definitively lead us to
design a new formalism for contextual rules. Furthermore, these rules will be
oriented to operate together with our tagger, a second order hidden Markov
model (HMM) with linear interpolation of uni-, bi-, and trigrams as smoothing
technique [2].

The aim of the present work is to describe the new formalism of contextual
rules. This formalism is mainly inspired in CGs, but some aspects from other
rule-based environments, such as transformation-based error-driven learning [1]
or relazation labelling [5], have been also considered. After this, we focus the
discussion on the efficient execution of the rules, for which we design a strategy
that compiles them into finite state transducers (FSTs). Finally, we make some
reflections about time and space complexity of the FSTs obtained.

2 Contextual Rules based on Constraints

The heterogeneous nature of languages for building contextual rules is a current
problem: there is no standard, and there are many differences between languages.
Basically, all systems use rules of this kind: if a certain constraint or condition
is satisfied (for instance, the word following the current word is a verb), then a
concrete action is executed (for instance, to select the tag substantive). Actions
are usually limited to selection or deletion of one of the possible tags. However,
constraints involved in the rules can vary greatly in the type of the condition
and in the syntax used.

Our formalism omits syntactic components from the rules, represents the
same range of conditions as that covered by the rule-based environments cited
above, but with a more intuitive and legible syntax, and allows us to express
preceding and following contexts on the basis of both tags and words, whether
those words are ambiguous or not. The rules can be classified in three different
groups: local rules, barrier rules and special rules.

2.1 Local Rules
The rules that conform this group present the following syntax:
<action> (<tag>) ([not] <position> <condition> {<values>}, ...);

In <action>, we specify the mission of the rule. The possible actions to execute
are:

— select, to select one of the possible tags of the current word,

Compilation of Constraint-based Contextual Rules for POST into FSTs 3

— delete, to remove one of those tags,
— and force, to fix the tag for the current word, even though this tag is not
present in the set of possible tags for that word.

The field <position> must be replaced by an integer indicating which is the
word affected by the condition of the rule: 0 for the current word, -1 for the
previous one, 1 for the next one, and so on. The possible values for <condition>
and their corresponding semantics are:

— is, which is true when the set of possible tags of the word affected by the
condition and the set of tags <values> specified in the rule are equal,

— contains, which is true when the set of possible tags of the word affected
by the condition contains the set of tags <values> specified in the rule,

— and belongs, which is true when the word affected by the condition is present
in the set of words <values> specified in the rule.

Conditions can be combined with the usual logic connectives:

— for negation, we can use the keyword not in front of the condition,

— for logic-and, we can write several conditions delimited by commas in the
same rule,

— and for logic-or, we can write the conditions in separate rules, all these rules
involving the same <action> and <tag> fields.

The following example illustrates the aspect presented by the rules included in
this group*:

force (Det) (1 belongs {sobre}, not 1 is {P});

This rule fixes determiner as the tag of the current word, when the next one is
the word sobre and is not a preposition.

2.2 Barrier Rules

These rules do not refer a concrete position, but navigate leftwards or right-
wards from the current word, by replacing the field <direction> by —* or +*,
respectively, in the following syntax:

<action> (<tag>) (<direction> <condition-1> {<values-1>}
barrier <condition-2> {<values-2>}, ...);

The general constraint of the rule is established by the condition <condition-1>
expressed before the keyword barrier, and the boundary for navigation is estab-
lished by <condition-2>. This allows us to express situations like the following:

select (Adj) (-* contains {S} barrier is {V});

where if before the current word there is another word that can be a substantive,
and between those two words there is no verb, the current word will be an
adjective.

4 To simplify, in this work, we use Adj for adjective, Det for determiner, P for prepo-
sition, Pron for pronoun, S for substantive, and V for verb.

4 Jorge Grana et al.

2.3 Special Rules

Finally, we have a group for special rules, that always execute an action. Their
syntax is:

<action> always (<tag>);

In this case, the possible actions are only select and delete, because the action
force would produce an output text with all the words tagged with the same
tag <tag>. An example could be the following:

delete always (ForeignWord);

When it is sure that the input text to be processed is written only in the local
language, we can use this rule to remove the tag ForeignWord from all ambiguous
words that can be a foreign word and something else. These rules could be called
also rare rules, since they are not commonly used.

2.4 A Practical Example

In Table 1, we show how an initial trellis with ambiguous words evolves step by
step when a certain set of contextual rules is applied on it. We have marked with
boxes the points where individual rules match. The last row contains the final
trellis obtained after the application of the whole set of rules.

Rule Trellis
El sobre esta sobre la mesa
select (S) Pron P '} P Det S
1 is {V}; IEI S Pron V
') ')
El sobre estd sobre la mesa
delete (V) Pron S \'} P Det S
(-2 contains {P,V}); S Pron
')
El sobre esta sobre la mesa
select (P) Pron S \'} E Det S
(-2 belongs {bajo,sobre}, -1 is {V}); S Pron
\')
El sobre esta sobre la mesa
force (Det) S V P Det S
(1 belongs {sobre}, not 1 is {P}); Pron
El sobre estd sobre la mesa
Det S ') P Det S
Pron

Table 1. Evolution of a trellis when a set of contextual rules is applied on it

Compilation of Constraint-based Contextual Rules for POST into FSTs 5

The correct sense of this sentence is the following: The envelope is on the
table. Therefore, we can observe in the final trellis that some tagging conflicts
have been solved. However, the trellis still contains ambiguities. This behaviour is
normal, since the application of contextual rules does not guarantee the removal
of all ambiguities; but now we could apply the Viterbi algorithm [6] with a greater
possibility of success. It is necessary to remember that we are in the context of a
hybrid system for POST, and rules operate together with a HMM-based tagger.

3 Compilation of Contextual Rules into FSTs

Instead of processing the input stream forward and backward repeatedly, looking
for the matching of the conditions involved in the rules, it is advisable to perform
a previous compilation step that translates the rules into finite state transducers.
These structures always treat the input stream linearly forward and allow us to
apply contextual rules more efficiently.

3.1 Definition of the Input Alphabet

In order to work with FSTs, we need an alphabet, i.e. the set of symbols that
conform the input streams. Since rules will be applied on trellises, in which am-
biguous words can appear, a first alternative was to use pairs as elements of the
alphabet. In these pairs, the first component would be a word, and the second one
would be the set of tags associated to that word in the trellis. However, it would
need to perform operations on sets in order to transit adequately between the
states of the FSTs, and those operations could involve too high a computational
effort for every single transition. Therefore, this approach was rejected.

A better mechanism for the symbolic compilations of the rules is the assign-
ment of integers to words and tags. Furthermore, in order to obtain FSTs which
are as compact as possible, we do not consider the whole tagset and the whole
dictionary of our system, but only the set of tags and the set of words that ap-
pear in the rules (we will call these sets TR and W R, respectively). In this way,
the exact correspondence is the one shown in Table 2: 0 is reserved for the empty
string €; -1 and 1 will be the beginning and the end of sentence, respectively; the
tags that appear in the rules will be numbered forward from 3 to n, and stored
in a structure that we will call mini-tagset; the words that appear in the rules
will be numbered backward from -3 to —m, and stored in a structure that we
will call mini-dictionary; and finally, -2 and 2 will be reserved as wildcards to
represent any other words or tags, respectively, that do not appear in the rules,
but can appear in a new sentence to be tagged and in its corresponding trellis.

w € WR wgWR | Start | ¢ | End | t¢TR | t€TR
“m,...,—4,-3 2 1 o] 1 2 3.4,....n

Table 2. Mapping for words and tags that can appear in trellises

Jorge Grana et al.

Mini-tagset||Mini-dictionary
Det — 3 bajo — -3
P — 4 sobre — -4
S —+5
V—6

Table 3. A mini-tagset and a mini-dictionary

The set of rules used in the example of Table 1 involves four tags and two
words, so we can build the mini-tagset and mini-dictionary shown in Table 3.
By using these structures and the mapping explained above, we can transform
the initial trellis of that example into the one shown in Table 4.

El sobre estd sobre la mesa|-2-4-2-4-2-2

Pron P v P Det S 2 4 6 4 25
S S Pron V 5 5 3 6
V' V' 6 6

Table 4. A trellis and its corresponding mapping

Now, we collect all the integers of this new trellis by columns and add the
marks of beginning and end of sentence in order to obtain the corresponding
input stream for a cascade of FSTs implementing the contextual rules:

-1-2 2-4 4 5 6-2 6-4 4 5 6-2 2 3-2 5 6 1

The FSTs will translate this input stream into an output stream with the same
aspect. After this, we apply the inverse procedure to retrieve the final trellis
obtained from the application of the contextual rules.

3.2 Building an FST for Every Contextual Rule

The next step consists in the construction of an individual FST for every con-
textual rule to be applied. Firstly, we describe this process intuitively by using
the following rule:

select (S) (1 is {V});

A possible version of the corresponding FST is shown in Fig. 1. In this case, the
action must be represented first (from state 0 to state 2), since the condition
(from state 2 to 5) affects a word that appears afterwards. In both cases, action
and condition, the word must be represented before its possible tags. We will
draw arcs with thick lines for words and arcs with normal lines for tags.

— Action. In this rule, the current word can be any word, hence we use the
wildcard -2 and all the words present in the mini-dictionary (bajo and sobre)
in the label of the arc from state 0 to 1. In a trellis, only tags can be modi-
fied, not words. This is the reason why these three possible cases for words
are translated into themselves. The action of the rule, i.e. to select the tag

substantive, is represented by the arc 1 55, 2, which does not modify the

Compilation of Constraint-based Contextual Rules for POST into FSTs 7

tag, and by the loops in states 1 and 2, which remove the rest of possible
tags by translating them into the empty string 0. We use two loops instead
of only one because we assume that the tags will always appear in a prede-
fined order (usually, the lexicographic order, which should coincide with the
order defined in the mapping), and that this order will not be broken by any
sequence of iterations with different tags in the same loop. These hypotheses
are not critical in practice, and allow us to build more compact FSTs. Be
that as it may, the most important aspect is that an arc keeping the tag
substantive is mandatory and cannot be included in any optional loop.

— Condition. The same reasoning made above is applicable to the word in-
volved in the condition (the arc from state 2 to 3). The rule requires this
word to be precisely a verb, hence the presence of only one arc for its tags
(3 BAN 4, which does not modify the tag since we are implementing a con-
dition, not an action). This is enough for the example under consideration,
since verb is the last tag in the mini-tagset. However, it is a better alternative
not to allow state 4 to be the final state of this FST, because in general it
cannot be guaranteed that verb is the unique tag. Therefore, another word
or the end of sentence must appear after the tag (hence the final arc from
state 4 to 5).

11
-2:-2 I -2:-2 -2:-2
baj o: baj o i bajo:bajo baj o: baj o
sobre: sobre S:'Ss sobre: sobre ViV

@ sobre: sobre

action

g
o

O vo

condition

Fig. 1. Fictitious FST for the rule select (S) (1 is {V});

The FST presented above is fictitious and has been shown only to facilitate
understanding. In practice, words and tags must be replaced by their integers
associated in the mapping, producing the corresponding real implementation of
the FST shown in Fig. 2.

The designing and building of FSTs becomes more difficult when the condi-
tion is complex. For instance, the construction of transducers for barrier rules or
for local rules with inclusions or negations is much more complicated than for the
simple equality shown above. Nevertheless, this process of symbolic compilation
has been implemented for all the rule schemes covered by our formalism. Since
it is not possible to describe the whole compilation process here, we include only
one more example in order to illustrate how FSTs always prove to be a robust
frame to perform any operation involved in this kind of contextual rules. In this

8 Jorge Grana et al.

1:1
2:-2 2:-2 -2:-2
3:-3 3:-3 -3:-3
4:-4 5:5 4:-4 6:6 4:-4

O———— OH———— D—=06)

O OFF

Fig. 2. Real FST for the rule select (S) (1 is {V});

RwWN
coo

case, we consider the generic barrier rule
select (t;) (+ * is {t;,tk,...,t:} barrier is {ts,ty,...,t:})

The aspect of the abstract version of the corresponding FST is shown in Fig. 3.

Vi=3,...,n w; W,

Fig. 3. Generic FST for the barrier rule select (¢5) (+ * is {t;,tk,...,%:} barrier is
{tﬂht?h e)tZ})

3.3 Making the FSTs Operative

Let us consider, for instance, a simple transducer which transforms 3 into 4 when
1 appears before the 3. This FST will produce the output stream 1 4 only if the

Compilation of Constraint-based Contextual Rules for POST into FSTs 9

input stream is exactly 1 3. However, we want this FST to produce the same
effect for any other sequences of symbols containing 1 3 as substring. In order to
do this, we need to apply a normalization process on the FST. That is, once we
have built a transducer for every contextual rule, the next phase is to normalize
all these FSTs. The normalization process requires the following steps:

— Compilation and closure of the alphabet. Once we have defined the input
alphabet, which we will call X/, it is necessary to create a FST to transform
every symbol into itself. Then, we obtain X*, where * is the closure operation,
in order to be able to process input strings with more than one symbol.

— For every transducer T', we perform the following operations:

e a = p1(T), where p; is the first project operation, i.e. every arc g —» r
is replaced by ¢ — r or by ¢ = r. Therefore, a can be seen as an
automaton or as a transducer that does not change its input.

o I'=X*—(X*-a-X*), where — is the subtraction operation and - is the
concatenation operation. In this way, we obtain in I" a transducer that
accepts the complement of the language accepted by a (and by T).

e Finally, N =I'-(T-I')*, in order to obtain in N the normalized version
of the transducer 7T'.

Once we have normalized all transducers, we can form a cascade by applying
them in sequence, taking the output of an FST as input for the following one.
Another option is to build only one FST able to simulate the simultaneous
application of all contextual rules by only one pass over the input stream. This
FST can be obtained by composing all individual transducers.

The operations of closure, project, subtraction, concatenation, composition,
etc., are well-defined in the theory of FSTs, and there are tools available which
implement all these procedures. In our case, we have used the free version of
FSM Library: General-purpose finite-state machine software tools, available in
http://www.research.att.com/sw/tools/fsm/,implemented by Mohri, Pereira
and Riley from the AT& T laboratories [4]. This library has allowed us to build
the final operative version of our FSTs.

3.4 Space and Time Complexities

The FSTs obtained have always operated correctly and rapidly, which shows that
the general compilation procedure is robust. For instance, the spaces and times
consumed by the FSTs corresponding to the rules of Table 1 appear in Table 5,
where T; is the FST of each individual rule, and 17234 is the composition of the
four preceding FSTs. It is important to note that, in theory, the time complexity
of the FST obtained by composition is linear respect to the length of the input,
and does not depend on the number of rules. But in practice, even though in a
hybrid system for POST a small set of contextual rules (between 50 and 100) is
expected to be sufficient, the computational cost of the composition operation is
very high, and it is more advisable to perform a sequential application of the rules
by executing the cascade of the corresponding individual FSTs: for time, 0.247
vs. 1.717 seconds, in a Pentium III 450 MHz. under Linux operating system; and
for space, 20160 vs. 2931 156 bytes, in all cases with only 4 contextual rules.

10 Jorge Grana et al.

Initial FST Normalized FST
FSTs| number [number| size |number |number| size |compilation|execution
of states| of arcs |in bytes|of states| of arcs |in bytes | in seconds |in seconds
T 6 16 348 19 142 2520 0.245 0.051
T 11 32 664 58 520 9036 0.878 0.072
Ts 8 26 532 39 346 6024 0.586 0.070
Ty 7 23 472 20 145 2580 0.251 0.054
Total| 32 97 2016 136 1153 | 20160 1.960 0.247
[Tr2sa] - | - [- 30244 [160513[2931156] 11.773 | 1717 |

Table 5. Spaces and times for a set of FSTs and for their corresponding composition

4 Conclusion and Future Work

We have presented a strategy to compile constraint-based contextual rules for
part-of-speech tagging under the form of finite state transducers. The purpose
of these contextual rules is to remove the residuary errors that pure stochas-
tic taggers make. These contextual rules must be introduced by linguists, and
therefore we also provide a new formalism with intuitive syntax and semantics.
Transducers have proved to be a very formal and robust execution framework
for contextual rules, but there are still some aspects that should be investigated
further. In the context of our hybrid system for POST, where contextual rules
operate in combination with a HMM-based tagger, it is necessary to perform
experiments with the purpose of selecting the best order in which to apply these
two disambiguation techniques. Another aspect of future work, in this case for
situations where it is possible to detect that residuary errors are systematic, is
the automatic generation of specific contextual rules for these errors.

References

1. Brill, E. (1994). Some advances in rule-based part of speech tagging. In Proceedings
of the Twelfth National Conference on Artificial Intelligence (AAAI-94).

2. Graiia, J.; Chappelier, J.-C.; Vilares, M. (2001). Integrating external dictionaries
into part-of-speech taggers. In Proc. of the Euroconference on Recent Advances in
Natural Language Processing (RANLP-2001), pp. 122-128.

3. Karlsson, F.; Voutilainen, A.; Heikkild, J.; Anttila, A. (1995). Constraint grammar:
a language-independent system for parsing unrestricted text. Mouton de Gruyer,
Berlin.

4. Mohri, M. (1997). Finite-state transducers in language and speech processing. Com-
putational Linguistics, vol. 23(2), pp. 269-311.

5. Padré, L. (1996). POS tagging using relaxation labelling. In Proceedings of the 16th
International Conference on Computational Linguistics (COLING-96).

6. Viterbi, A.J. (1967). Error bounds for convolutional codes and an asymptotically
optimal decoding algorithm. IEEE Trans. Information Theory, vol. IT-13 (April).

7. Voutilainen, A.; Heikkild, J. (1994). An English constraint grammar (ENGCG): a
surface-syntactic parser of English. In Fries, Tottie and Schneider (eds.), Creating
and using English language corpora, Rodopi.

