A Common Solution for Tokenization and
Part-of-Speech Tagging: One-Pass Viterbi
Algorithm vs. Iterative Approaches*

Jorge Grafa, Miguel A. Alonso, and Manuel Vilares

Departamento de Computacién
Universidad de La Coruiia
Campus de Elvifia s/n
15071 - La Coruna, Spain
{grana, alomso, vilares}@dc.fi.udc.es

Abstract. Current taggers assume that input texts are already tok-
enized, i.e. correctly segmented in tokens or high level information units
that identify each individual component of the texts. This working hy-
pothesis is unrealistic, due to the heterogeneous nature of the application
texts and their sources. The greatest troubles arise when this segmen-
tation is ambiguous. The choice of the correct segmentation alternative
depends on the context, which is precisely what taggers study.

In this work, we develop a tagger able not only to decide the tag to be
assigned to every token, but also to decide whether some of them form
or not the same term, according to different segmentation alternatives.
For this task, we design an extension of the Viterbi algorithm able to
evaluate streams of tokens of different lengths over the same structure.
We also compare its time and space complexities with those of the classic
and iterative versions of the algorithm.

1 Introduction

Some languages, like Galician or Spanish, show complex phenomena that we
have to handle before tagging. Among other tasks, the segmentation process is
responsible for identifying information units such as sentences or words. In the
case of words, for instance, the problem is that the spelling of a word does not
always coincide with the linguistic concept. Therefore, we have two options:

1. The simpler approaches just consider “spelled words” and extend the tags
in order to represent relevant phenomena. For instance, the Spanish word
reconocerse (to recognize oneself) could be tagged as V+Pro even when it
is formed by a verb and an enclitic pronoun, and the words of the Spanish
expression a pesar de (in spite of) would be respectively tagged as P13,

* This work has been partially supported by the Spanish Government (under projects
TIC2000-0370-C02-01 and HP2001-0044), and by the Galician Government (under
project PGIDT(01PXI10506PN).

2 Jorge Grana et al.

P23 and P33 even when they constitute only one term!. However, this ap-
proach is not valid for Galician because its great morphological complexity
would produce an excessive growth of the tag set, and the process of build-
ing reference texts containing all those tags in a significantly representative
number of situations would be an extremely hard task.

2. Another solution is not to extend the basic tag set. As an advantage, the
complexity of the tagging process is not affected by a high number of tags. As
a drawback, this approach makes the tasks of the tokenizer more complex.
Now, it not only has to identify “spelled words”, but often also has either to
split one word into several words, or join several words in only one.

In our work, we have chosen the second option. The greatest troubles arise when
this segmentation is ambiguous. For instance, the words in the Spanish expres-
sion sin embargo will normally be tagged together as a conjunction (however),
but in some context they could be a sequence of a preposition and a noun (with-
out seizure). In the same way, the Galician word polo can be a noun (chicken),
or the contraction of the preposition por and the article o (by the), or even the
verbal form pos with the enclitic pronoun o (put it).

In this way, the preprocessor should only perform the detection and pretag-
ging of alternatives. The choice of the correct one depends on the context, which
is precisely what is studied by the tagger. In consequence, the aim of the present
work is to develop a tagger able not only to decide the tag to be assigned to every
token, but also to decide whether some of them form or not the same term, and
assign the appropriate number of tags on the basis of the alternatives provided
by the preprocessor. For this task, we extend the Viterbi algorithm in order to
evaluate streams of tokens of different lengths over the same structure. Finally,
we will perform an intuitive study of performances by comparing time and space
complexities of the new algorithm with those of the classic and iterative versions.

2 Viterbi-L: the Viterbi Algorithm on Lattices

2.1 Why Lattices?

In the context of part-of-speech tagging with Hidden Markov Models (HMMs),
the classic version of the Viterbi algorithm [4] is applied on trellises, where the
first row contains the words of the sentence to be tagged, and the possible tags
appear in columns below the words. However, let us consider, for instance, a
sentence in which the expression sin embargo appears. As we can see in Fig. 1,
problems arise when we try to situate the tag C because, in both options, the tag
should apply to the whole expression, and hence the paths marked with dashed
lines should not be allowed, and the ones marked with thick lines should be
allowed.

! To simplify, in this work, we use Adj for adjective, Adv for adverb, C for conjunction,
Det for determiner, P for preposition, Pro for pronoun, S for substantive, and V for
verb. The tags that appear in real life come from projects GALENA (Generation of
Natural Language Analyzers) and CORGA (Reference Corpus of Current Galician).
See http://coleweb.dc.fi.udc.es for more information on both projects.

A Common Solution for Tokenization and Part-of-Speech Tagging 3

El sin embargo fue .. El sin embargo fue

Fig. 1. Trellises cannot represent ambiguous segmentations

We can represent the kind of ambiguous segmentations described above more
comfortably by using lattices. In these structures, the arcs that conform the
paths have their origin and target points in the gaps between words. The labels
of these arcs contain the tags, as is shown in Fig. 2, where we can see that it is
even possible to represent overlapped dependencies.

N NN TN TN TN
@ El @sin@embargo@fue@ a @pe&r@de@ nuevo Ia@ fruta

Fig. 2. Ambiguous segmentations represented on a lattice

For the purposes of a later discussion, we indicate that this lattice contains
20 arcs, with which we can build 234 possible paths. The lengths of these paths
are 7, 8, 9 or 10 tokens. The correct tagging is the one formed by the 8 arcs
drawn in the upper part of the lattice, and corresponds to the following sense:
He however went to weigh again the fruit (literal translation).

2.2 The Viterbi-L Equations

The equations of the Viterbi algorithm can be adapted to process a language
model operating on a lattice as follows [1]. Instead of the words, the gaps between
the words are enumerated (see Fig. 2), and an arc between two gaps can span one
or more words, such that an arc is represented by a triple (¢, ', q), starting at time
t, ending at time ¢’ and representing state g. We introduce accumulators Ay 4 (q)
that collect the maximum probability of state ¢ covering words from position ¢
to t'. We use ;,;(¢) to denote the probability of the derivation emitted by state
g having a terminal yield that spans positions i to j.

4 Jorge Grana et al.

— Initialization: Ag¢(q) = P(q|gs) d0,t(q)

— Recursion:
App(q) = ~— max Awy(q') Plglg') ot (q) for 1<t<T (1)
(t',t,q")€Lattice
— Termination: P(Q, Latti = A P(q.
ermination Cr)rézgc (Q, Lattice) (t’T’ggL);ttice . 7(q) P(ge|q)

where ¢, and g, are the initial and ending states, respectively. Additionally, it
is necessary to keep track of the elements in the lattice that maximized each
At (q). When reaching time T, we get the best last element in the lattice

(t1",T,q") = argmax Ay 7(q) P(gelq)
(¢,T,q)€Lattice

Setting tf* = T, we collect the arguments (t",¢,q') € Lattice that maximized
equation (1) by going backwards in time:

(5.t aft) = argmax Ao (q') P(q|q") dem em (@)
(t",t7,q")ELattice

for ¢ > 1, until we reach ¢;* = 0. Now, g{*...q}" is the best sequence of phrase
hypothesis (read backwards). We will call this process the Viterbi-L algorithm.

In practice, our intention is to estimate the parameters of our HMM from
tagged texts, and use linear interpolation of uni-, bi-, and trigrams as our
smoothing technique [2], i.e. our operating model will be a second order HMM.
This is not a problem because the Viterbi-L algorithm described above can work
with the second order hypothesis simply by considering pairs of tags (or states)
as labels of the arcs, instead of only one tag (or state).

2.3 Complexity of the Viterbi-L Algorithm

Intuitively, we can consider the space complexity as the number of probability
accumulators that we have to store during execution. In this version, we have one
accumulator per arc. For time complexity, we consider the number of operations
that we have to perform. This is, for a given arc, the number of arcs reaching
the origin point of the arc under consideration. For instance, in order to pass
Viterbi-L on the lattice of Fig. 2, we need 20 accumulators and 36 operations.

However, we have to make the following reflection. With this simple version
of the algorithm, the shortest paths have priority because they involve a smaller
number of multiplications and hence they obtain a better cumulative probability.
This is a problem, since the shortest paths do not always correspond to correct
interpretations.

To avoid this problem, we could consider the individual evaluation of lattices
with paths of the same length, and their subsequent comparison. It would there-
fore also be necessary to define an objective criterion for that comparison. If the
tagging paradigm used is the framework of the HMMs, as is our case, a consistent
criterion is the comparison of the normalization of the cumulative probabilities.

A Common Solution for Tokenization and Part-of-Speech Tagging 5

Let us call p; the cumulative probability of the best path in a lattice with paths
of length i tokens. In the case of Fig. 2, we would have p7, ps, pg and pi1g. These
values are not directly comparable, but if we use logarithmic probabilities, we
can obtain normalized values by dividing them by the number of tokens. In this
case, pr/7, ps/8, pe/9 and p19/10 are now comparable, and we can select the
best path from the best lattice as the most probable interpretation. One reason
to support the use of HMMs is that in other tagging paradigms the criteria for
comparison may not be so easy to identify.

C

@El@sm@embargo@fue@ @pe&r@de@ nuevo Ia@fruta

s ~el_.- Adj

Pro

Fig. 3. A lattice with conflictive paths

However, the number of different lattices to evaluate is not always the number
of different lengths for the paths. For instance, we can see in Fig. 3 how two
paths of the same length (the one that only uses the upper arcs of the lattice,
and the one that uses lower arcs when available, both of 8 tokens) can produce
another path with different length (the one of 7 tokens marked with dashed
arcs). Therefore, we could need more than one lattice to represent the paths
of the same length without conflicts. In the case of Fig. 2, although we have
4 possible lengths for the paths (7, 8, 9 or 10 tokens), we need a total of 6
lattices, which come from the mutual exclusion of the different alternatives of
each ambiguous segmentation. This analysis is shown in the decision tree of
Fig. 4. To save space, we have not drawn the corresponding lattices, but for each
of them we indicate: the number of possible paths, the length of those paths in
tokens, the number of arcs in the lattice, and the number of operations needed
to pass Viterbi-L on it. Therefore, by looking at the total numbers involved in
this set of lattices, we can deduce that the real space and time complexities of
the algorithm are 82 accumulators and 119 operations.

3 Viterbi-N: the Viterbi Algorithm with Normalization

Our proposal is to use only one lattice, and perform only one pass of the Viterbi
algorithm. In order to do so, it is necessary to store more than one accumulator
per arc. More exactly, we keep as many accumulators as there are different
lengths of all the paths reaching the point of origin of the arc. We incorporate this
information about lengths in a third component of the index of each accumulator:
A¢p1(g)- In this way, only accumulators with the same length [are compared

6 Jorge Grana et al.

length paths arcs operations

a pesar_de 7 6 10 13
. P
sin_embargo < de_nuevo 8 24 13 19
C a pesa < Adv
S Vv de nuevo 9 48 15 23
P S P Adj
S
a pesar_de 8 12 12 16
. P
sin embargo < de_nuevo 9 48 15 22
P ¢ a pesar Adv
\%
S Vv de nuevo 10 96 17 26
P S P Adj
S - 234 82 119

Fig. 4. Decision tree to avoid conflictive paths

in the maximization operations to obtain the corresponding Ay 4 ;41(q"). When
reaching the final instant, we will have obtained as many accumulators as there
are different lengths, allowing us to normalize their corresponding best paths
according to those lengths before selecting the most probable interpretation. We
will call this process the Viterbi-N algorithm.

3.1 The Viterbi-N Equations

Assuming the use of logarithmic probabilities to speed up the calculations and
avoid problems of precision that arise in products with factors less than 1, we
replace those products by sums and adapt the equations as follows:

— Initialization: Ag¢1(q) = P(q|¢s) + d0,t(q)
— Recursion:

Appa(g) = max A gi1(q") + P(glq') + e (q) for 1<t <T
(t",t,q") ELattice
(2)

Ayri(q) + P(gelq)
I

Additionally, it is also necessary to keep track of the elements in the lattice that
maximized each Ay ;(g). When reaching time T', we get the length of the best
path in the lattice

max
(t,T,q)€Lattice

— Termination: max P(Q,Lattice) = max
QEQ* l

I, = (t,T,q)€Lattice ¢ ’l(q) I ((Ie|CI)
arg max l
l

Next, we get the best last element of all paths of length L in the lattice

" T,qi") = argmax Ayr,(q) + P(gelq)
(¢,T,q)ELattice

A Common Solution for Tokenization and Part-of-Speech Tagging 7

Setting t{* = T, we collect the arguments (t"',t,¢') € Lattice that maximized
equation (2) by going backwards in time:

(it afy) = argmax A roi(q') + P(q]"1d) + depr e, (a5)
(¢t ,q") ELattice

for ¢ > 1, until we reach t' = 0. Now, ¢ ... ¢} is the best sequence of phrase
hypothesis (read backwards).

3.2 Viterbi-N vs. Viterbi-L

By using intuition again, we can also consider the space complexity of the
Viterbi-N algorithm as the number of accumulators, and the time complexity
as the number of operations to perform. In this case, for space complexity, we
can have more than one accumulator per arc, as has been explained above. And
for time complexity, we calculate, for each arc, the sum of the number of accu-
mulators of the arcs reaching its point of origin. In order to pass Viterbi-N on
the lattice of Fig. 2, we need only 44 accumulators (instead of the 82 needed by
Viterbi-L) and 73 operations (instead of 119). Furthermore, we also avoid the
analysis of conflictive paths and their distribution in several lattices.

4 Viterbi-I: the Iterative Viterbi Algorithm

To find the best normalized path in a lattice is a problem that has already
been studied [3]. In that work, the authors prove the correctness of the following
iterative algorithm.

4.1 The Viterbi-I Equations

We have the following available elements: L, a set of possible sentences in a
lattice, where any sentence S has |S| tokens; a cost function C that associates a
real number C(S) to any sentence S; and an algorithm A(L, C, 8) that permits
us to find argmaxg., C(S) — B|S| for any real number 3.

The algorithm Z(A, L,C) extracts the solution of argmaxgc; C(S), where
C(S) = C(9)/18]:

— Initialization: C'(S_1) = 0.

— Recursion: We calculate S; = argmaxgc;, C(S) — C(Si—1)|S| by using the
algorithm A(L,C,C(S;_1)).

— Termination: We stop iterations when |S;| = |S;—1|. Now, S; is the solution.

4.2 Viterbi-I vs. Viterbi-N

The cost function C involves the usual transitions and emission probabilities,
and can be applied in the frame of algorithm 4 by a technique similar to the
Viterbi process. Hence the name Viterbi-I algorithm. This means that to every

8 Jorge Grana et al.

iteration of the algorithm we can attach the smallest space and time complexities
that we found for lattices, i.e. 20 accumulators and 36 operations in the case of
Fig. 2. However, at least two iterations are needed to reach a solution (which
implies multiplying the cited time complexity at least by 2), and it is not possible
to guarantee that two iterations will be enough in all cases.

The average number of iterations in the context of part-of-speech tagging
should be investigated further. But even though this number is close to 2, the
Viterbi-N algorithm will always provide a solution with only one pass over the
corresponding lattice, with a space complexity approximately the double of the
number of arcs, which is not critical in practice (44 vs. 20 accumulators, in
the case of Fig. 2), and with approximately the same time complexity as the
minimum needed by Viterbi-I (73 vs. 36 x 2 = 72 operations).

5 Conclusion and Future Work

We have presented an extension of the Viterbi algorithm that allows us to ana-
lyze ambiguous segmentations in only one pass, and a discussion about intuitive
complexities. It would of course be necessary to perform a formal study of the-
oretical complexities. This implies generalizing the number of nodes and arcs in
the lattice. By doing this, we could see that the space complexity of our one-pass
algorithm presents a cubic growth, while in the iterative case we would only ap-
preciate an increment in the number of iterations. However, this is not a practical
problem, since lattices with millions of interpretations do not correspond to real
sentences. In fact, the guide example used in this work is somewhat artificial. It
is possible to assume that real sentences will not present more than one or two
ambiguous segmentations, the one-pass approach therefore being more suitable
for part-of-speech tagging. Be that as it may, the most important future task is
to apply these algorithms on large real data. We expect this general approach to
work well, especially for Galician, where it is more frequent to find ambiguous
segmentations.

References

1. Brants, T. (1999). Cascaded Markov models. In Proc. of the Ninth Conference of
the European Chapter of the Association for Computational Linguistics (EACL-99),
Bergen, Norway.

2. Grana, J.; Chappelier, J.-C.; Vilares, M. (2001). Integrating external dictionaries
into part-of-speech taggers. In Proc. of the Euroconference on Recent Advances in
Natural Language Processing (RANLP-2001), Tzigov Chark, Bulgaria.

3. Rozenknop, A.; Silaghi, M. (2001). Algorithme de décodage de treillis selon le critére
du coilit moyen pour la reconnaissance de la parole. In Actes de la 8éme conférence
sur le Trastement Automatique des Langues Naturelles (TALN-2001), Tours, France.

4. Viterbi, A.J. (1967). Error bounds for convolutional codes and an asymptotically
optimal decoding algorithm. IEEE Trans. Information Theory, vol. IT-13 (April).

