
SOFTWARE—PRACTICE AND EXPERIENCE
Softw. Pract. Exper.2000;00:1–6 Prepared usingspeauth.cls [Version: 2002/09/23 v2.2]

A compiler for parsing schemata

C. Gómez-Rodŕıguez1∗, J. Vilares1∗, M. A. Alonso1∗†

1 Depto. de Computación, Facultade de Inforḿatica, Universidade da Corũna. Campus de Elviña, s/n,
15071 A Corũna, SPAIN.

SUMMARY

We present a compiler which can be used to automatically obtain efficient Java implementations of parsing
algorithms from formal specifications expressed as parsing schemata. The system performs an analysis of
the inference rules in the input schemata in order to determine the best data structures and indexes to use,
and ensure that the generated implementations are efficient. Thesystem described is general enough to
be able to handle all kinds of schemata for different grammar formalisms, such as context-free grammars
and tree-adjoining grammars, and it provides an extensibility mechanism allowing the user to define custom
notational elements. This compiler has proven very useful for analyzing, prototyping and comparing natural
language parsers in real domains, as can be seen in the empirical examples provided at the end of the
article. Copyright c© 2000 John Wiley & Sons, Ltd.

KEY WORDS: Parsing; declarative programming; natural language processing;parsing schemata.

NOTICE: this is a preprint of an article accepted for publication in Software: Practice
& Experience, Copyright c© 2008 John Wiley & Sons, Ltd. Changes resulting from the
publishing process, such as editing, corrections, structural formatting, and other quality
control mechanisms may not be reflected in this document. A definitive version was
subsequently published in Software: Practice & Experience, DOI: 10.1002/spe.904, available at
http://www3.interscience.wiley.com/journal/1752/home

∗Correspondence to: Depto. de Computación, Facultade de Inforḿatica, Universidade da Coruña. Campus de Elviña, s/n, 15071
A Coruña, SPAIN. Email:{cgomezr| jvilares| alonso}@udc.es
Contract/grant sponsor: MEC and FEDER; contract/grant number: TIN2004-07246-C03, HUM2007-66607-C04
Contract/grant sponsor: Xunta de Galicia; contract/grantnumber: PGIDIT07SIN005206PR, PGIDIT05PXIC-10501PN,
PGIDIT05PXIC30501PN
Contract/grant sponsor: Rede Galega de Procesamento da Linguaxe e Recuperación de Informacíon

Copyright c© 2000 John Wiley & Sons, Ltd.

http://www3.interscience.wiley.com/journal/1752/home

2 C. GÓMEZ-RODŔıGUEZ, J. VILARES, M.A. ALONSO

1. INTRODUCTION

The process ofparsing, or analyzing a sequence of tokens to obtain its internal structure, is a highly
relevant step in many software systems. Compilers need to parse source code, written in a programming
language, in order to convert it into instructions executable by a machine. Systems that perform natural
language processing tasks (such as machine translation, information extraction or text summarization)
apply parsing to sentences in human language.

Natural language parsers have to cope withambiguity: many sentences in human languages have
more than one viable interpretation, corresponding to morethan one parse tree. On the other hand,
grammars describing programming languages are generally designed to beunambiguous, so that every
program has at most one valid interpretation. Programming language parsers usually take advantage of
this fact and are more efficient, although less general, thanthose used for natural language.

In recent decades, various parsing algorithms have been developed. Although all of them share the
common goal of generating a hierarchical description of theinput (often by means of agrammar, a
set of rules describing the language), the approaches used to attain this result vary greatly between
algorithms, so that different parsing algorithms are best suited to different situations. In particular, if
we focus only on natural language parsers we find a wide variety of algorithms, and the choice of
the best one for a particular application will depend heavily on the characteristics of the grammar and
sentences it is to work with [28, 7].

The parsing schemata formalism, introduced by Sikkel [28], provides a formal way to capture
the essential features of a parser while abstracting implementation details. The parsing schemata
framework is based on the idea of viewing parsing as a deduction process. Parsing schemata are highly
declarative descriptions of parsers, as they specifywhat to do (a set of operations to be performed on
intermediate results) but nothow to do it (the order in which to execute the operations, or the data
structures used to store the results).

As an example, one of the most widely used parsing algorithmsfor natural language processing
is Earley’s algorithm [10]. The original paper defines the parser in an algorithmic fashion, as in the
pseudocode in figure1. A parsing schema for this parser, appearing in [28], is shown in figure2.
Regardless of the concrete semantics of the schema (which will be addressed later), it is obvious
at a glance that the schema provides a much simpler and more straightforward description than the
algorithm, even in the form of high-level pseudocode.

A parsing schema can be seen as a formalspecificationof a parser’s behavior, which can be
implemented in several ways. Almost all known parsing algorithms may be described by a parsing
schema (nonconstructive parsers, such as those based on neural networks, are exceptions). This
generality, along with their simplicity and high abstraction level, makes parsing schemata a useful
tool for defining, analyzing and comparing parsers. However, when we want to actually test a parser by
running it on a computer and checking its results, we need to implement it in a programming language,
so we have to abandon the high level of abstraction and worry about implementation details that were
irrelevant at the schema level.

The system presented in this article automates this task, bycompiling parsing schemata to efficient
Java language implementations of the corresponding algorithms. The input to the compiler is a
declarative specification of a parser in the form of a parsingschema, and the output is an efficient
implementation of the parser. This enables us to save a lot ofwork, since we can test parsers and check
their results and performance just by writing their specification, without having to implement them.

Copyright c© 2000 John Wiley & Sons, Ltd. Softw. Pract. Exper.2000;00:1–6
Prepared usingspeauth.cls

A COMPILER FOR PARSING SCHEMATA 3

S = array [0.. n] of state sets ;
for i = 0 . . . n { S[i] = ∅; } //initialize the n+1 sets to∅
for each ruleS → α ∈ P //initialize S[0]

S[0] = S[0] ∪ {(S → α, 0, 0)};

for i = 0 . . . n { //process state sets
process the members of S[i] in order , executing each of these operations on
each state(A → α, j, f) until no more of them can be applied:

1) Predictor :
X = j + 1th symbol inα;
if X exists and is a nonterminal

for each production of the formX → β in P
S[i] = S[i] ∪ {(X → β, 0, i)};

2) Completer:
if X does not exist //(j + 1 > |α|)

for each state(B → β, l, g) in S[f] {
Y = l + 1th symbol inβ;
if Y exists∧ Y = A

S[i] = S[i] ∪ {(B → β, l + 1, g)};
}

3) Scanner:
if X exists and is a terminal

if X = ai+1

S[i + 1] = S[i + 1] ∪ {(A → α, j + 1, f)};
}

// check whether string belongs to language
if S[n] contains a state of the form(S → γ, |γ|, 0) return true ;
else return false ;

Figure 1. Pseudocode for Earley’s parsing algorithm [10] for a string of lengthn. The algorithm works on states of
the form(A → α, j, k), whereA → α is the grammar rule currently being used for recognition,j is the number
of already recognized symbols in its right-hand side, andk is the initial position of the part of the input string

which has been recognized (the final position is given by the index of the state setS[i] holding the state).

This can be useful both for designing new algorithms and for testing existing ones to determine which
is the best for a particular application. The source code andbinaries of the system can be downloaded
from http://www.grupocole.org/software/COMPAS/.

In the next section, we provide a brief introduction to the parsing schemata formalism, limited only
to the core concepts. This allows us to explain our system’s goal in more detail, and discuss related
work directed towards similar goals. We then proceed to explain how the system is implemented, with
sections discussing the architecture of the generated code, the reading of schemata and the generation
process, including the generation of indexes. Finally, we show some examples of its use including
performance measurements with well-known natural language grammars.

Copyright c© 2000 John Wiley & Sons, Ltd. Softw. Pract. Exper.2000;00:1–6
Prepared usingspeauth.cls

http://www.grupocole.org/software/COMPAS/

4 C. GÓMEZ-RODŔıGUEZ, J. VILARES, M.A. ALONSO

Item set:{[A → α.β, i, j] | A → αβ ∈ P ∧ 0 ≤ i < j}
Initial items (hypotheses):{[ai, i − 1, i] | 0 < i ≤ n}

Deduction steps:

INITTER:
[S → .α, 0, 0]

S → α ∈ P SCANNER:
[A → α.aβ, i, j] [a, j, j + 1]

[A → αa.β, i, j + 1]

PREDICTOR:
[A → α.Bβ, i, j]

[B → .γ, j, j]
B → γ ∈ P

COMPLETER:

[A → α.Bβ, i, j]
[B → γ., j, k]

[A → αB.β, i, k]

Final items:{[S → γ., 0, n]}

Figure 2. A parsing schema specifying Earley’s parsing algorithm.

2. PARSING SCHEMATA

2.1. Languages and grammars

A languageis a set of sequences (strings) of symbols from a finite set called analphabet.
A grammar is a precise definition of a language by means of a set of rules.One of the most

widely used types of grammar is context-free grammars. Acontext-free grammaris a 4-tupleG =
(N,Σ, P, S) where:

• Σ is an alphabet of symbols calledterminal symbols, which will be the components of the strings
in the language associated withG,

• N is an alphabet of auxiliary symbols callednonterminal symbols, which will not appear in the
strings of the language,

• S ∈ N is a special nonterminal symbol called theinitial symbolor axiomof G,
• P ⊆ N × (Σ ∪ N)∗ is a set ofproduction rulesof the formA → α, whereA is a nonterminal

symbol andα is a string that may contain both terminal and nonterminal symbols.

From now on, we will follow the usual conventions by which nonterminal symbols are represented
by uppercase letters (A,B . . .), terminals by lowercase letters (a, b . . .) and strings of symbols (both
terminals and nonterminals) by Greek letters (α, β . . .).

The language associated with a grammarG = (N,Σ, P, S), denotedL(G), is the set of strings
of terminal symbols inΣ that can be obtained by starting with the initial symbolS and applying a
sequence of productions inP . A production of the formA → α can be applied to any string containing
the nonterminalA, and is applied by changing one appearance ofA in the string toα. We writeβ ⇒ γ
to denote that we can obtain the stringγ by applying a production to the stringβ.

Copyright c© 2000 John Wiley & Sons, Ltd. Softw. Pract. Exper.2000;00:1–6
Prepared usingspeauth.cls

A COMPILER FOR PARSING SCHEMATA 5

Figure 3. (a) Parse tree for a simple sentence. (b) and (c): Two alternative parse trees for an ambiguous sentence.

Example:Suppose that we have a context-free grammarG = (N,Σ, P, S) defined by the following:

• Σ = {the,dog,barks}
• N = {S ,NP ,VP ,N ,V ,Det}
• P = {S → NP VP ,NP → DetN ,VP → V ,Det →the,N →dog,V →barks}

This is a typical example of a fragment of a context-free grammar used for parsing a natural
language, in this case English. Of course, this is an extremely simplified “toy” grammar whose
associated languageL(G) contains a single sentence (“the dog barks”); nevertheless, the larger
grammars used in real-life applications often have the samestructure: nonterminal symbols correspond
to syntactic structures — such as noun phrases (NP) or verb phrases (VP) — and production rules
express the valid ways in which these structures can combineinto larger ones. Terminal symbols can
denote concrete words, as in this example, or part-of-speech tags (such as N or Det). The latter option is
common when a parser is used as one of the steps in a natural language processing pipeline, receiving
its input from apart-of-speech taggermodule which maps the words in input sentences to these tags.

We can check that the sentence “the dog barks” is in fact inL(G) by obtaining it as a result of
applying a sequence of productions to the initial symbolS, as explained before:

S ⇒ NPVP ⇒ DetNVP ⇒ DetNV ⇒theNV ⇒the dogV ⇒the dog barks.
If we represent the derivations we have just made as a tree, where each application of a ruleA → α

is represented by adding nodes labelled with the symbols inα as children of the nodeA, we obtain a
parse treefor the sentence, which is shown in figure3a.

The process of determining whether a given stringw1 . . . wn belongs to the language defined by
a grammarG by finding a sequence of derivations for it (or ensuring that none exists) is called
recognition. The process of finding all the possible parse trees for the stringw1 . . . wn is calledparsing.
Note that, in more complex grammars than this, there may be several different valid parse trees for
a single sentence. For example, in a larger natural languagegrammar, the parsing of the sentence
“John saw a man with a telescope” would result in two different trees (shown in figure3b and3c),
the former corresponding to the interpretation “a man having a telescope was seen by John”, and the
latter corresponding to “John used a telescope to see a man”.In this case we say that the sentence is
ambiguous, and parsing it correctly implies finding the parse trees forevery possible interpretation.

Copyright c© 2000 John Wiley & Sons, Ltd. Softw. Pract. Exper.2000;00:1–6
Prepared usingspeauth.cls

6 C. GÓMEZ-RODŔıGUEZ, J. VILARES, M.A. ALONSO

Figure 4. Form of the trees associated to the Earley item[A → α.β, i, j].

2.2. Parsing schemata: an example

Parsing schemata, introduced by [28], provide a formal, simple and uniform way to describe, analyze
and compare different parsing algorithms.

The notion of a parsing schema comes from considering parsing as a deduction process which
generates intermediate results calleditems. An initial set of items is directly obtained from the input
sentence, and the parsing process consists of the application of inference rules (deduction steps) which
produce new items from existing ones. Each item contains a piece of information about the sentence’s
structure, and a successful parsing process will produce atleast onefinal itemcontaining a full parse
tree for the sentence or guaranteeing its existence.

We can understand how parsing schemata work by studying the semantics of the Earley schema
shown in figure2 (for a more formal explanation, see [28]).

Items in the Earley parser are tuples of the form[A → α.β, i, j], whereA → α.β is a grammar rule
with a special marker (dot) added at some position in its right-hand side, andi, j are integer numbers
denoting positions in the input string. The meaning of such an item can be interpreted as follows:
“There exists a valid parse tree with root labelledA, where the direct children ofA are labelled with
the symbols in the stringαβ, the leaf nodes of the subtrees rooted at the nodes labelledα form the
substringai+1 . . . aj of the input, and the nodes labelledβ are leaves”. Such a tree can be seen in
figure4. Note that this item format and semantics is linked to the top-down, left-to-right strategy that
the Earley parser uses to find parse trees, so schemata for different parsers will use different kinds of
items.

The algorithm will produce a valid parse for the input sentence if an item of the form[S → α., 0, n]
is generated: according to the aforesaid interpretation, thisfinal itemguarantees the existence of a parse
tree with rootS whose leaves are labelleda1 . . . an, that is, a complete parse tree for the sentence.

A deduction stepη1...ηm

ξ
Φ allows us to infer the item specified by its consequentξ from those in

its antecedentsη1 . . . ηm. Side conditions(Φ) specify the valid values for the variables appearing in
the antecedents and consequent, and may refer to grammar rules as in this example or specify other
constraints that must be verified in order to infer the consequent.

In this particular case, theInitter andPredictorsteps are used to initialize the analysis by generating
items with the dot in the first position of their associated production’s right-hand side. These items
represent the application of a production without as yet having recognized any input symbols. As we
have seen, the dot in productions marks the region of their right-hand side which has been recognized,
and theScannerandCompletersteps allow us to enlarge this region by shifting the dot to the right. The

Copyright c© 2000 John Wiley & Sons, Ltd. Softw. Pract. Exper.2000;00:1–6
Prepared usingspeauth.cls

A COMPILER FOR PARSING SCHEMATA 7

Scannerstep reads and recognizes a single terminal symbol from the input, whileCompleterrecognizes
a nonterminal symbol and joins two partial parse trees into alarger one.

If we now look at Earley’s algorithm as described in figure1, we can see that it is nothing but a
particular implementation of this schema. The deduction ofan item[A → α.β, i, j] in the schema
is implemented by adding a state(A → αβ, |α|, i) to the setS[j], and thePredictor, Completer
andScanneroperations in the code correspond to the deduction steps in the schema. The loop and the
structure used to hold the state sets impose a particular order on the execution of these operations, which
guarantees that the state(S → γ, |γ|, 0) will be generated if the input is a valid sentence according to
the grammar.

3. SYSTEM OVERVIEW

3.1. Motivation for our system

Parsing schemata are located at a higher abstraction level than algorithms. As we have just seen in the
example, a schemata specifies a set of steps that must be executed and a set of intermediate results that
must be obtained when parsing sentences, but it makes no claim about the order in which to execute
the steps or the data structures to use for storing the results.

Their abstraction of low-level details makes parsing schemata very useful, allowing us to define
parsers in a simple and straightforward way. Comparing parsers, or considering aspects such as their
correctness and completeness or their computational complexity, also becomes easier if we think in
terms of schemata. However, when we want to test a parser in practice by running it on a computer, we
need to implement it in a programming language, so we have to abandon the high abstraction level and
worry about implementation details that were irrelevant atthe schema level.

The technique presented in this paper automates this task, by compiling parsing schemata to Java
language implementations of their corresponding parsers.The input to the compiler is a simple and
declarative representation of a parsing schema, which is practically equal to the formal notation that
we used previously. For example, a valid schema file describing the Earley parser will be:

@goal [S -> alpha . , 0 , length]

@step EarleyInitter
------------------------ S -> alpha
[S -> . alpha , 0 , 0]

@step EarleyScanner
[A -> alpha . a beta , i , j]
[a , j , j+1]

[A -> alpha a . beta , i , j+1]

@step EarleyCompleter
[A -> alpha . B beta , i , j]
[B -> gamma . , j , k]

[A -> alpha B . beta , i , k]

Copyright c© 2000 John Wiley & Sons, Ltd. Softw. Pract. Exper.2000;00:1–6
Prepared usingspeauth.cls

8 C. GÓMEZ-RODŔıGUEZ, J. VILARES, M.A. ALONSO

@step EarleyPredictor
[A -> alpha . B beta , i , j]
-------------------------- B -> gamma
[B -> . gamma , j , j]

Note that while an implementation of the Earley parser in a programming language would probably
take several hundred lines of code, the parsing schemata used by our system are compact, declarative,
highly readable and easy to understand and modify.

3.2. Goals

Three main design goals have been taken into account during the development of our system:

• Declarativity: The input format for representing schemata to be compiled byour system should
be highly declarative, and similar to the formal notation used to represent schemata. The system
should take care of all the operations needed to transform this formal, abstract notation into a
functional implementation of the corresponding parser. This allows the parser designer to focus
on the semantics of the schema while abstracting from any implementation detail.

• Generality: The system should be able to handle all kinds of parsing schemata for context-
free grammars and other formalisms. Note that this requirement is not trivial, since the formal
notation for parsing schemata is open, so that any mathematical object could potentially appear
in a schema.

• Efficiency:Implementations generated by the system should be efficient. Of course, we cannot
expect the generated parsers to be as efficient in terms of runtime or memory usage as ad
hoc implementations programmed by hand, but they should at least be equivalent in terms of
computational complexity.

The declarativity goal has been achieved by defining a simplelanguage to represent schemata,
practically equal to the formal notation normally used in the literature, and using it as a starting point
to generate Java code, which can in turn be compiled. Therefore, our system works in a similar fashion
to parser generators such as Yacc [17] or JavaCC [30].

The generality goal has been achieved by means of an extensibility mechanism: since it would be
impossible to support by default all the different kinds of object that could appear in schemata, we
allow the user to easily define and add new object types, whichcan be handled by the code generator
in the same way as the predefined ones.

Finally, the efficiency goal has been achieved by having our system perform a static analysis of input
schemata in order to determine the data structures and indexes needed to provide constant-time access
to items, and generate code for these indexes.

3.3. Related work

Although some previous work has been done on systems and techniques that can be used to implement
parsing schemata for natural languages, the existing alternatives do not fulfill the features enumerated
in section3.2. The Dyna language [11] can be used to implement some kinds of dynamic programs,

Copyright c© 2000 John Wiley & Sons, Ltd. Softw. Pract. Exper.2000;00:1–6
Prepared usingspeauth.cls

A COMPILER FOR PARSING SCHEMATA 9

but its notation is not as close to the formal notation commonly used to represent schemata as ours. The
DyALog system [8] can be used to compile and run tabular parsers for several grammatical formalisms,
but the specifications are based on logical push-down automata and can be complex and unnatural,
especially for purely bottom-up parsers which do not use a left-to-right strategy to process the input
string. None of these systems is specifically oriented to theimplementation of parsing schemata.

Shieber [27] introduces a technique to execute parsing schemata with a deductive parsing engine
programmed in Prolog. However, this requires the conversion of items and deduction steps to the Prolog
language. Moreover, if we want the implementations generated with this technique to be efficient, we
need to provide item indexing code by hand, so we have to abandon the abstraction level of schemata
and take implementation details into account. Without thisindexing system, the Prolog interpreter will
perform a large amount of CALL and REDO operations, distorting the results when working with large
grammars [3, 9].

Basic parsing schemata can also be implemented in Datalog, avariant of Prolog commonly used for
deductive databases. The subject of obtaining efficient implementations of Datalog programs has been
studied in the literature [21, 20]. However, the constraints imposed by Datalog disallow some useful
extensions to parsing schemata, like feature structure unification, that can be used in our system.

3.4. System architecture

Our parsing schemata compiler is composed of several different subsystems:

• The “sparser” (schema parser) subsystem reads input parsing schemata, parses them and
transforms them into an internal tree representation, which will be the input to the code
generation step. This subsystem is a compiler generated by the JavaCC parser generator.

• The “generator” (code generator) subsystem is the most complex part of the schema compiler.
This subsystem takes the tree representation produced by “sparser” as input, and uses it to
generate the Java classes implementing the algorithm described by the schema. This subsystem
is divided into several parts, and each of them is used to generate a part of the implementation:
deduction step execution, item management, indexing, etc.

• The “eparser” (element parser) subsystem guarantees thegenerality property discussed
previously by providing an extensibility mechanism which can be used to compile schemata
with non-predefined elements. As explained above, parsing schemata have an open notation, so
any mathematical object could appear as part of an item. Therefore, it would be impossible for
our system to recognize “a priori” any kind of item that couldpotentially appear in an arbitrary
schema. The “eparser” subsystem allows the user to define hisown kinds of notational elements
and use them in schemata, the use of Java’s dynamic class loading facilities eliminating the need
for recompilation in order to add new element types.

Figure5 shows how these systems interact to transform a parsing schemata into an executable parser.
More details about each of the subsystems will be given in thefollowing sections.

Copyright c© 2000 John Wiley & Sons, Ltd. Softw. Pract. Exper.2000;00:1–6
Prepared usingspeauth.cls

10 C. GÓMEZ-RODŔıGUEZ, J. VILARES, M.A. ALONSO

Java code generation Compilation to executable Execution

Parse schema file (sparser)

[:SchemaFile]

Parse elements (eparser)

[:SchemaTree]

Generate code (generator)

[:Parser implementation
(.java source files)]

Compile (ant/javac)
[:Parser implementation
(executable bytecode)]

Execute (java)

Load grammar

Launch deductive engine (ready)

[:Grammar]

[:Item set]

Read sentence [:Sentence]

Launch deductive engine (parse)

[:Item set (result)]

Contains only

sentence-independent

items at this point

Figure 5. Activity diagram showing how the system can be used to compile and execute a parsing schema.

4. ARCHITECTURE OF THE GENERATED CODE

Before going into detail about the design of our code-generating system, we first need to think about
the design of the code it will have to generate. The structureof this code must be generic enough to be
applicable to any schema, but it must also allow us to includeparticular optimizations for each schema,
to enable us to achieve the efficiency goal.

A deductive parsing engine such as the one described by Shieber in [27] fulfills the first condition,
providing a generic means of implementing any parsing schema; but it is not efficient unless we can
access items in constant time, and the way to achieve this is different in each particular schema. The
idea of compiling parsing schemata allows us to generate schema-specific code to attain efficiency.

In particular, our compilation process proceeds accordingto the following principles:

• A class is generated for each deduction step. The classes fordeduction steps implement a
common interface with anapplymethod which tries to apply the step to a given item. If the step
is in fact applicable to the item, the method returns the new items obtained from the inference. In

Copyright c© 2000 John Wiley & Sons, Ltd. Softw. Pract. Exper.2000;00:1–6
Prepared usingspeauth.cls

A COMPILER FOR PARSING SCHEMATA 11

order to achieve this functionality, the method works as follows: first, it checks if the given item
matches any of the step’s antecedents. For every successfulmatch found, the method searches
for combinations of previously-generated items in order tosatisfy the rest of the antecedents.
Each combination of items satisfying all antecedents corresponds to an instantiation of the step
variables which is used to generate an item from the consequent.

• Code is generated to read an input grammar and create an instance of a deduction step class for
each possible set of values satisfying its side conditions.For example, a distinct instance of the
Earley Predictor step will be created at runtime for each grammar rule of the formB → γ ∈ P ,
which is specified in the step’s side condition. Deduction step instances are lightweight objects,
so large grammars needing a large amount of them can be handled.

• The execution of deduction steps in the generated code is coordinated by a deductive parsing
engine, which can be seen as an implementation of the dynamicprogramming approach that
underlies chart parsing [19]. Since this is a generic algorithm, the parsing engine willalways
be the same and we do not need to generate it. The engine works as described by the following
pseudocode:

steps = set {deduction step instances};
items = set {initial items};
agenda = list [initial items];
For each deduction step with an empty antecedent (s) in steps {
result = s.apply([]);
items.add(result);
agenda.enqueue(result);
steps.remove(s);

}
While agenda not empty {
curItem = agenda.removeFirst();
For each deduction step applicable to curItem (p) in steps {
result = p.apply(curItem);
items.add(result);
agenda.enqueue(result);

}
}
return items;

The algorithm works with the set of all items that have been generated (either as initial
hypotheses or as a result of the application of deduction steps) and an agenda, implemented
as a queue, containing the items with which we have not yet tried to trigger new deductions.
When the agenda is emptied, all possible items will have been generated, and the presence or
absence of final items in the item set at this point indicates whether or not the input sentence
belongs to the language defined by the grammar.

• An ItemHandler class is generated to provide efficient access to items. Thisclass contains
indexing code specific to each schema, since the best choice of indexes will depend on the
particular features of each. Additionally, aStepHandler class is generated to provide efficient
access to deduction steps.

Copyright c© 2000 John Wiley & Sons, Ltd. Softw. Pract. Exper.2000;00:1–6
Prepared usingspeauth.cls

12 C. GÓMEZ-RODŔıGUEZ, J. VILARES, M.A. ALONSO

Schema ::= [ElementDefinitionList] [OptionList]
{ StepName StepDescription} { @goalGoalDescription}

ElementDefinitionList ::=
@begin elements{ ElementDefinition} @end elements

ElementDefinition ::=element definition
OptionList ::= { @begin optionsOption@end options}
Option ::= @option key value
StepName ::=@step ID
StepDescription ::= Antecedent Separator Conditions Consequent
GoalDescription ::= Antecedent
Antecedent ::={ ItemDescription}
Separator ::={ ”−” }
Consequent ::= ItemDescription
ItemDescription ::= ”[” ElementList ”]”
ElementList ::= [ElementWrapper{ , ElementWrapper}]
ElementWrapper ::= Element
Conditions ::= ElementList
Element ::= element

Figure 6. EBNF grammar for parsing schema files.

5. READING SCHEMATA

As we have explained above, the goal of the “sparser” subsystem is reading an input file with the
description of a parsing schema and converting it to an internal tree representation holding the data
that will be passed to the next subsystem, the code generator. The notation used to describe schemata
is very simple, and practically identical to the formal notation commonly used to define them. More
concretely, the schema file format is the one described by theEBNF grammar in figure5.

As we can see, there are two symbols in the EBNF grammar (elementandelementdefinition) which
are undefined. This is because their definition will vary depending on the custom notational elements
defined by the user. Actually, from the point of view of the “sparser”, the definition of these symbols is
a generic regular expression accepting any string without spaces or commas which cannot be confused
with other components of the schema file. When the “sparser” finds one of these strings in a position
where anelementor elementdefinitionis expected, it will delegate its analysis to the “eparser” module,
which deals with elements and element definitions. In the remainder of this article, we will use the word
elementto refer to any object that can appear as part of an item.

The general structure of a parsing schema file consists of an optional section withelement definitions,
a second optional section containingoptions, a series ofdeduction steps, and a series ofgoalsor final
items. An example of a schema file containing all these sections is the following:

Copyright c© 2000 John Wiley & Sons, Ltd. Softw. Pract. Exper.2000;00:1–6
Prepared usingspeauth.cls

A COMPILER FOR PARSING SCHEMATA 13

@begin_elements
element.Symbol:nonGroundFromString:[A-RT-Za-ho-z]
element.Symbol:groundFromString:S
element.RuleWrapper:fromString:[A-Za-z \.]+->[A-Za-z \.]*
element.StringPosition:nonGroundFromString:[i-n]
element.StringPosition:groundFromString:[0-9]+
element.SumOfPositionsExpression:fromString:[0-9i-k\+\-]+
element.SymbolSequence:fromString:((alpha)|(beta)|(gamma))
element.SpecialElement:fromString:\.
@end_elements

@begin_options
@option outputItems allItems
@end_options

@step EarleyInitter
----------------------------- S -> alpha
[S -> . alpha , 0 , 0]

@step EarleyScanner
[A -> alpha . a beta , i , j]
[a , j , j+1]

[A -> alpha a . beta , i , j+1]

@step EarleyCompleter
[A -> alpha . B beta , i , j]
[B -> gamma . , j , k]

[A -> alpha B . beta , i , k]

@step EarleyPredictor
[A -> alpha . B beta , i , j]
--------------------------------- B -> gamma
[B -> . gamma , j , j]

@goal [S -> alpha . , 0 , length]

As we can see, the element definition section is used to define the types of element that will appear in
the schema’s deduction steps. Element definitions map regular expressions to Java classes and methods.
For example, the element definition

element.StringPosition:nonGroundFromString:[i-n]

means that, whenever a lowercase letter in the rangei . . . n is found in an item, an
instance of theStringPosition class must be created by invoking the method with

Copyright c© 2000 John Wiley & Sons, Ltd. Softw. Pract. Exper.2000;00:1–6
Prepared usingspeauth.cls

14 C. GÓMEZ-RODŔıGUEZ, J. VILARES, M.A. ALONSO

signature public static StringPosition nonGroundFromString(String s) in
the element.StringPosition class. This job is done by the “eparser”, as mentioned earlier.
Note that the reference to “non-ground” in the method name means that the generated instance will
represent a variable. Constant (ground) string positions are defined in the example by a different regular
expression ([0-9]+).

In this case, element definitions are shown only for explanatory purposes: all the elements used
in the Earley schema are already predefined in the system, so we do not need to explicitly redefine
them. Explicit definitions are only needed to include new kinds of elements defined by the user, or for
overriding the default regular expressions associated with the predefined elements.

The options section is used to parametrize the resulting parser. In this example, we pass an option to
the system indicating that we want the generated parser to output all items obtained for each sentence
(if no option were used, only the goal items would be output).Options can also be used to dynamically
change the type of agenda or deductive engine: for example, for error-correcting parsing, we could
need an agenda implemented as a priority queue instead of a standard queue, so that the items with
smaller error count could be used first. In order to use such anagenda, we would use a line

@option agendaClass agenda.PriorityQueueAgenda

and define anagenda.PriorityQueueAgenda class implementing a simpleAgenda interface.
The content of@option lines is also accessible via a simple API from the generated code, so that
user-defined classes such as this agenda can also use@option lines for further parametrization.

After these optional sections, we define the deduction stepsof our schema in the simple notation
mentioned in section3.1, and then specify the format of the final items with one or more@goal lines.
If items matching a@goal specification are found by the generated parser, the parsingprocess is
considered to have been successful and these final items are output.

In order to implement the “sparser” subsystem, the JavaCC [30] compiler compiler has been used.
This tool generates an LL(k) compiler from a grammar annotated with Java code. In this case the code
is simple, since it only has to build a tree which will be passed as input to the code generator. One of
the advantages of using an LL(k)-based compiler compiler such as JavaCC is that it provides helpful
error messages by default, thus making it easy to locate syntax errors in parsing schema files.

The tree produced by the “sparser” is nothing more than a hierarchical representation of the schema,
where the schema itself, deduction steps, antecedents, etc. are represented by tree nodes. The leaf
nodes in this tree are the components of items that we have calledelements, and are instantiated by the
“eparser”.

6. CODE GENERATION

The “generator” subsystem is the most complex and importantcomponent of the parsing schema
compiler. From a tree representation of a parsing schema generated by the “sparser” and “eparser”,
this component generates Java code for the classes implementing the corresponding algorithm. For the
sake of simplicity, we will use a parsing schema corresponding to the CYK [18, 31] bottom-up parser in
some of the code generation examples. This schema is one of the simplest that we can find in practice,
having fewer steps and fewer kinds of element than Earley’s,and can be defined as follows [28]:

Copyright c© 2000 John Wiley & Sons, Ltd. Softw. Pract. Exper.2000;00:1–6
Prepared usingspeauth.cls

A COMPILER FOR PARSING SCHEMATA 15

@step D1
[a , i , i+1]
--------------------- A -> a
[A , i , i+1]
@step D2
[B , i , j]
[C , j , k]
--------------------- A -> B C
[A , i , k]
@goal [S,0,length]

6.1. Types of element

As we have seen in the previous section, the leaf nodes of a schema tree contain the basic components
of items, called elements. Since we want our system to be ableto work with all kinds of parsing
schemata, and any mathematical object could potentially appear in the representation of an item,
we have implemented an extensibility mechanism that allowsthe user to define custom elements
if the predefined element classes do not suffice to represent aparticular schema. This extensibility
mechanism works by allowing the user to define regular expressions to represent new kinds of element,
and associate them to classes. The problem is that the code generator should be able to handle these
user-defined elements and use them successfully to generateefficient code. In order to achieve this,
our system requires element classes to follow a simple contract, providing the services needed by the
code generator. This basic contract comes from the idea thatany element appearing in a schema can be
classified into one of four basic types:

• Simple Elements:Atomic, unstructured elements which can be instantiated ornot in a given
moment. When simple elements are instantiated, they take a single value from a set of possible
values, which can be bounded or not. Values can be converted to indexing keys. Examples of
simple elements are grammar symbols, integers, string positions, probabilities, the dot in Earley
items, etc.
In order to define a new simple element class, the user must implement aSimpleElement
interface, providing a method to obtain a Java code representation of the element’s value, if it
has one. For example, the Java code representation of an element representing a string position
and holding the value 1 is the string “StringPosition.groundFromValue(1)”, which calls a static
method returning an integer element with the value 1†. The method returning the Java code
representation for grammar symbols is as follows:

†Using a static method such as this one instead of creating a newinstance (“new StringPosition(1)”) is an optimization. A
parser may use millions of items, each of them with several elements, so all the predefined element classes are programmed in
such a way that the generated code uses multiple references tothe same instances instead of multiple instances. Apart from the
memory saved with this optimization, it must also be noted that item comparison is one of the main performance bottlenecks in
generated parsers, and this optimization allows such comparisons to be performed at the reference level, which is much faster
than dereferencing the elements and comparing their values.

Copyright c© 2000 John Wiley & Sons, Ltd. Softw. Pract. Exper.2000;00:1–6
Prepared usingspeauth.cls

16 C. GÓMEZ-RODŔıGUEZ, J. VILARES, M.A. ALONSO

public String getExpressionCode()
{

return ”element.SymbolTable.instance ().
symbolFor(\””+SymbolTable.instance (). getName(this)+”\”)”;

}

In addition to this method, simple element classes should implement a method returning an
integer indexing key, so that the corresponding elements can be used for item indexing.

• Expression Elements:These elements denote expressions which take simple elements or other
expressions as arguments. For example, i+1 is an expressionelement representing the addition
of two string positions. Feature structures and logic termsare also represented by this kind
of element. When all simple elements in an expression are instantiated to concrete values,
the expression will be treated as a simple element whose value is obtained by applying the
operation it defines (for example, summation). For the code generator to be able to do this, a
Java expression must be provided as part of the expression element type definition, so that, for
example, sums of string positions appearing in schemata canbe converted to Java integer sums
in the generated implementation. Expressions have been used to implement unification of feature
structures [5], left-corner relationships [23], etc.
When defining a class for a new expression, the user must implement anExpressionElement
interface, providing a method to obtain a Java code representation of the expression from
the representation of its children (operands). For example, the method for sums of string
positions takes an array of strings as a parameter ([op1, op2, . . . , opn]) and returns the string
“op1 + op2 + . . . + opn”. Apart from this, the user must also provide a method returning the
return type of the expression: in this case, the classelement.StringPosition.class.

• Composite Elements:Composite elements represent sequences of elements whose length must
be finite and known. Composite elements are used to structureitems: for instance, the Earley
item [A → α.Bβ, i, j] is represented as a composite element with three components, the first
being in turn a composite element representing a grammar rule.
The interface for this kind of element,CompositeElement, only requires the user to provide
methods returning the number of children (sub-elements) ofa composite, and to get theith child.

• Sequence Elements:These elements denote sequences of elements of any kind whose length
is finite, but only becomes known when the sequence is instantiated to a concrete value. The
stringsα, β andγ appearing in the Earley schema are examples of sequence elements, being
able to represent symbol strings of any length.
The interfaceSequenceElement only requires the user to provide a method returning a
type for the elements in the sequence. For example, the classrepresenting symbol sequences
has a method that always returnselement.Symbol.class. It is possible to define
sequences holding elements of multiple types by returning amore generic type such as
element.SimpleElement.class.

Copyright c© 2000 John Wiley & Sons, Ltd. Softw. Pract. Exper.2000;00:1–6
Prepared usingspeauth.cls

A COMPILER FOR PARSING SCHEMATA 17

6.2. Deduction step classes

Each of the deduction steps in the schema, represented by@step specifications in the input file,
produces a class implementing theDeductionStep interface. Goal specifications@goal also
produce deduction step classes, as if they were steps with a single antecedent and no consequent,
since in this way the indexing and matching techniques used to find items matching antecedents can be
reused to find the goal items in an item set.

The main function of deduction step classes is to provide a method that, given a particular item,
generates all the items that the step can deduce using that item as an antecedent, and previously
generated items for the rest of the antecedents. This functionality is provided by a
List applyTo (Object[] item)

method in theDeductionStep interface, which will be implemented by each concrete deduction
step class created by the code generator.

6.3. Representation of items in the generated code

As can be seen in the signature of theapplyTo method, items in the generated code are represented
as object arrays (Object[]). This may come as a surprise since, when we described the types
of element in section6.1, we mentioned that items were represented by instances of the class
CompositeElement.

The reason for this discrepancy is that the representation of elements and items in the generated
code is not the same as that handled by the code generator. In the code generator, elements of schemata
are represented by a hierarchy with its base in theElement class, and theCompositedesign pattern
[12] is used to represent items as tree structures. This way of modelling elements is elegant from an
object-oriented design standpoint, makes it easy for the user to add custom element types and simplifies
system maintenance.

In the generated code we also need to work with elements and items, but priorities are different.
Generated code is a “black box” that does not need maintenance by the user (modifications in generated
parsers should be made by modifying the input schema and regenerating the code). Taking this into
account, it is reasonable to prioritize efficiency over elegance in the generated code. This is the reason
why, in the generated code, composite element structures such as items are translated to object arrays,
whose components can be elements or other object arrays. This makes generated code somewhat
convoluted and hard to read, but more efficient, since the array representation of items saves indirection
levels and memory usage with respect to a more object-oriented representation. As an example, we need
32+3S bytes to represent the item[A, 0, 2] in the code generator, whereS is the object shell size‡, and
ArrayLists are used to implement composites. With the array representation used in the generated
code, the same item takes up only16 + S bytes. Since natural language parsers typically need to store
hundreds of thousands of items, this difference in memory usage is important, and the elimination of
one indirection level also affects parser runtimes.

‡The object shell sizeis the minimum object size in a Java Virtual Machine (JVM). The concrete value ofS depends on the
particular JVM used to execute Java code, but is typically 8 bytes in modern JVM’s.

Copyright c© 2000 John Wiley & Sons, Ltd. Softw. Pract. Exper.2000;00:1–6
Prepared usingspeauth.cls

18 C. GÓMEZ-RODŔıGUEZ, J. VILARES, M.A. ALONSO

While composite elements are represented by arrays in the generated code, expression and sequence
elements have no particular representation: these elements are transformed into operations rather than
data structures. Expression elements appear in the generated code as Java expressions producing
a simple element result; and sequence elements will producecode to match zero or more simple
elements.

6.4. Visitors for code generation

The two most complex methods in a deduction step class are theconstructor and the aforementioned
applyTo method. If a deduction step has a production rule as a side condition, the constructor must
check if a rule passed as a parameter matches the condition, and initialize the corresponding variables.
Therefore, the constructor of the step

@step D2
[B , i , j]
[C , j , k]
--------------------- A -> B C
[A , i , k]

will check whether the parameter is an array of length 3, and initialize the variablesA, B andC in
the step to the concrete values found in the parameter. Therefore, if the initialization parameter is the
concrete ruleS → NPVP , the constructor will assignA = S , B = NP andC = VP .

On the other hand, theapplyTo method returns all the items which can be generated using theone
passed as a parameter as an antecedent, and previously generated items for the rest of the antecedents.
As an example, suppose that we have the instance of the step created with the ruleS → NPVP ,
and we receive the item[NP, 0, 2] as a parameter. The operations needed to implement theapplyTo
method are the following:

• Match the given item with the specification[B, i, j] where the value ofB must beNP andi, j
can take any value.

• If it matches, assign particular values to the variablesi and j (in this case, the matching is
successful, and we assigni = 0 andj = 2).

• Search forall the items in the item set that are of the form[C, j, k] where the value ofC is V P
and the value ofj is 2. That is, search for the items of the form[V P, 2, ?].

• For each of these, generate a conclusion item[S, 0, k] with the corresponding value ofk.
• Repeat all the steps for the other antecedent, i.e., match the given item with the specification

[C, j, k] and then search for items verifying[B, i, j]. In our particular case, the item[S, 0, 2]
does not match the second antecedent.

Putting it all together, in order to generate code for the constructor andapplyTo methods, we need
a way to obtain code for the following operations:

Copyright c© 2000 John Wiley & Sons, Ltd. Softw. Pract. Exper.2000;00:1–6
Prepared usingspeauth.cls

A COMPILER FOR PARSING SCHEMATA 19

• Match a given item with a specification. The specification maycome from an antecedent or a
side condition, and is known at schema compile time, while the item is only known at runtime.

• Search for all items matching a specification known at compile time.
• Use a specification to initialize step variables to values taken from an item.
• Generate a conclusion item from step attribute values.

The code for all these operations can be generated in a similar way if we take into account that all of
them traverse an item and are directed by a specification. We have used the Visitor design pattern [12]
to structure this part of the code generator. Code generating visitors traverse the parts of the schema
tree corresponding to item specifications. There is a different visitor for each basic operation in the
generated code (matching, assigning values, etc.) and eachvisitor has a different behaviour for each
kind of node (SimpleElement, ExpressionElement...) in the specification. We also need to
keep track of which variables in specifications have a concrete value at each part of the code and which
are uninstantiated, so this information is kept by an external structure which can be queried by the
visitor.

The visitors themselves are also stateful, since they keep code for accessing parts of items as an
internal state. This is because some information generatedwhen matching an element can be needed to
generate the matching code for subsequent elements. This can be seen in this sample of generated
code§, which checks whether an item in the Earley algorithm conforms to a generic specification
[A → α.Bβ, i, j] (where the variables are not yet instantiated and could takeany value):

// structural check
if (((Object []) item). length != 3)return result ;
if (item[0] instanceof Object [])
{

if (((Object []) item [0]). length< 3) return result ;
}
else

return result ; // matching failed
// ”matching” with trigger item
if (((Object []) item [0])[0] instanceof element.Symbol)// class check

sp A = (element.Symbol) ((Object []) item [0])[0];
else

return result ; // matching failed
int sp alphaindex = 1; // variable to read symbols from the sequence alpha
while (sp alphaindex < ((Object []) item [0]). length

&& ((Object[]) item [0])[sp alphaindex] instanceof element.Symbol)
{

sp alpha .add(((Object []) item [0])[spalphaindex]);
sp alphaindex ++;

}

§The generated code is not shown literally. It has been simplified by removing some optimizations in order to make the example
more compact and readable.

Copyright c© 2000 John Wiley & Sons, Ltd. Softw. Pract. Exper.2000;00:1–6
Prepared usingspeauth.cls

20 C. GÓMEZ-RODŔıGUEZ, J. VILARES, M.A. ALONSO

if (item[0] instanceof Object [])
{

if (((Object []) item [0]). length< 2+spalphaindex)
return result ; // matching failed

}
else

return result ; // matching failed
if (!((Object []) item [0])[0+ spalphaindex]. equals (Dot. getInstance ()))

return result ; // matching failed
if (((Object []) item [0])[1+ spalphaindex] instanceof element.Symbol)
{

sp B = (element.Symbol) ((Object []) item [0])[1+ spalphaindex];
}
else

return result ; // matching failed
int sp betaindex = 2+spalphaindex ;
(...)

When the visitor that generates matching code visits the sequence element node corresponding to
α, it inserts the declaration for a new variablesp alpha index into the code. This variable is used
as a loop index when reading symbols in the sequenceα, and its value at the end of the loop will
depend on the number of symbols that matchα for each particular item. This value must then be
used to access the subsequent elements: for example, in order to accessB in [A → α.Bβ, i, j] the code
((Object[])item[0])[1+sp alpha index] is used. A representation of the code being used
to access the item is stored in the visitor’s state so that this information can be kept between invocations.

6.5. Search specifications

In the previous section we mentioned that one of the operations theapplyTomethod needs to perform
is to search for all the items matching a specification known at compile time. While the rest of the
operations that we have mentioned work on a single item, thisone must access the item set. This
operation is not really implemented by the deduction step classes, but in anItemHandler class that
provides efficient access to items by using indexes specifically generated for each schema.

TheItemHandler class provides three services: adding an item to the item setincluding it in the
corresponding indexes, checking whether a given item is present or not in the item set, and returning
all items verifying certain characteristics. All of these methods need indexing techniques in order to
work efficiently.

In order to call the third method, which is the one used byapplyTo to search for antecedent
items, we need a way of specifying constraints on items. A simple and efficient way to do this is
by representing search constraints in the same way as items,but usingnull values to represent
unconstrained elements. Therefore, in our example where the CYK D2 step needed to search for items
of the form[V P, 2, ?], the deduction step class would pass the specification[V P, 2, null] to the item
handler class. TheItemHandler will then return all items of this form by using its indexes.

Copyright c© 2000 John Wiley & Sons, Ltd. Softw. Pract. Exper.2000;00:1–6
Prepared usingspeauth.cls

A COMPILER FOR PARSING SCHEMATA 21

Object [] spskeletonSPCYKMainStep01 = newObject[]{ sp C, spi2 , null };
List items1 =
ItemHandler. instance (). getBySpecification (spskeletonSP CYKMainStep01);

7. INDEXING

If we wish our generated parsers to achieve the efficiency goal mentioned in section3.2, access to items
and deduction steps must be efficient. As we have seen in the previous section, when we execute a step
we often need to search the item set for all the items verifying a given specification. In order to maintain
the theoretical complexity of parsing schemata, we must provide constant-time access to items. In this
case, each single deduction takes place in constant time, and the worst-case complexity is bounded by
the maximum possible number of step executions: all complexity in the generated implementation is
inherent to the schema.

As an example, the theoretical complexity of the CYK parsingalgorithm isO(n3), wheren is the
length of the input. This is because the most complex step in this algorithm is

@step D2
[B , i , j]
[C , j , k]
--------------------- A -> B C
[A , i , k]

which can be executed on at mostO(n3) combinations of antecedents, since positionsi, j andk take
values between0 andn and symbolsA,B,C come from a finite set.

As we have seen, theapplyTo method that executes this step in the generated code matchesthe
item received as a parameter with the specification[B, i, j] and then searches for all items in the item
set of the form[C, j, k] for fixed values ofC andj. If we can obtain a list of these items in constant
time, theapplyTo method will run inO(n)¶ (since we have to traverse this list and generate a
conclusion for each of the items), and it will generateO(n) items. Since the total number of items
generated in a CYK parser isO(n2) (items have two indexes ranging from0 to n), this applyTo
method will be invokedO(n2) times during the execution of the parser. Therefore, the total complexity
is O(n2) × O(n) = O(n3), matching the theoretical computational complexity of CYK. However, if
we had no indexation and the search for items were sequential, theapplyTo method would run in
O(n2) (there areO(n2) items to search among) and the generated implementation forCYK would be
O(n4).

¶In this reasoning about complexity, we are only taking into account the first part of theapplyTo method, which matches
the parameter item with the first specification and then searches for items conforming to the second. However, if we apply an
analogous reasoning to the second part of the method (i.e. applying matching to the second specification and searching to the
first), we obtain that the second part is alsoO(n), so the method is globallyO(n).

Copyright c© 2000 John Wiley & Sons, Ltd. Softw. Pract. Exper.2000;00:1–6
Prepared usingspeauth.cls

22 C. GÓMEZ-RODŔıGUEZ, J. VILARES, M.A. ALONSO

7.1. Static analysis and index descriptors

Generating indexes that can provide constant-time access to items is not a trivial task, since a generic
indexing technique does not suffice: the elements by which weshould index items in order to achieve
efficiency vary among schemata. For example, the CYK parser’s deduction steps perform two different
kinds of searches for items: searches for items of the form[C, j, ?] (where? can take any value) and
searches for items of the form[B, ?, j]. Thus, in order to ensure that these searches access items in
constant time, we need at least two indexes: one by the first and second components and another one
by the first and third. Different parsing schemata, as well asdifferent steps in the same schema, will
have different needs. Therefore, in order to generate indexing code, we must take the distinct features
of each schema into account.

The decision of which indexes to create for a given schema is taken by performing a static analysis
of each deduction step in order to determine the kind of searches it needs to perform. This information
is known at schema compilation time and is gathered by our system during deduction step code
generation, stored in data structures calledsearch descriptors. For example, when the code generator
produces the code for this search in the CYK parser:

Object [] spskeletonSPCYKMainStep01 = newObject[]{ sp C, spi2 , null };
List items1 =
ItemHandler. instance (). getBySpecification (spskeletonSP CYKMainStep01);

the code-generating visitors, apart from outputting the search specification
new Object[] { sp__C, sp_i2, null }, also produce a tree structure of the form[
Symbol , StringPosition , null]. This structure, called asearch descriptor, specifies
the structure of the items that are searched for and the positions and classes of elements which take
concrete values in the search specification.

Search descriptors from all the deduction steps in the inputschema are gathered into a list, and
used to decide which indexes to create. It will be convenientto create indexes by non-null components
of search descriptors that can be used for indexing (i.e. belonging to a class that provides a method
to obtain an indexing key, see section6.1). The simplest way to do this is by creating an index for
every search descriptor, indexing by all components meeting these conditions. With this approach, the
presence of our search descriptor[Symbol , StringPosition , null] means that we
should generate an index on the first and second components ofitems, and the other search descriptor
obtained from the same step (which is[Symbol , null , StringPosition]) means that
we should generate an index on the first and third component.

The decisions that the system takes about the indexes it needs to create are encoded into objects
called index descriptors, which are lists containing the positions of elements used for indexing and
the type of indexes that are going to be used. For example, an index descriptor for our first index in
this case could be[0:hash,1:hash], meaning that we are going to use the elements in positions 0
and 1 as keys for hash indexes‖. The decision as to which particular data structures to use for indexes

‖Note that items are trees, not lists, so in a general case the position of an element cannot be denoted by a single integer. Positions
are represented by lists of integers: for example, when working with Earley items of the form[A → α.Bβ, i, j], we can have a

Copyright c© 2000 John Wiley & Sons, Ltd. Softw. Pract. Exper.2000;00:1–6
Prepared usingspeauth.cls

A COMPILER FOR PARSING SCHEMATA 23

(hashes, arrays...) can be configured as an option, either bysetting a global default or by configuring it
for each particular element class.

7.2. Generation of indexing code

Once we have index descriptors for all the search indexes we will need, we can proceed to generate
indexing code. This code is located in theItemHandler class which, as mentioned in section6.5,
provides three services: finding all items verifying a givenspecification (getBySpecification),
checking whether a given item exists in the set (exists) and adding an item to the set (add).

The getBySpecification service usessearch indexes, which are obtained from index
descriptors obtained as described in the previous section.Theexists service uses a different kind
of indexes calledexistence indexes. These are obtained in the same way as search indexes, but their
search descriptors come from a full consequent item insteadof from a search specification, and have
no null values. Theadd service must use both search indexes and existence indexes,since every item
added to the set must be accessible to the other two services.

Although the functionality of each of the three services is different, their implementation can be done
in such a way that a significant part of the code is common to allof them, and we can take advantage
of this fact during code generation. In particular, we can describe the three methods with the following
high-level pseudocode:

method (item or specification)
{

test whether parameter conforms to search descriptor associated to index 1;
if it does
{

access index 1 using parameter ;
process obtained list ;

}
(...)
test whether parameter conforms to search descriptor associated to index d;
if it does
{

access index d using parameter ;
process obtained list ;

}
}

Note that, although we mention search descriptors in the pseudocode, search descriptors are not
accessible from the code, they are only used to generate it. Each of thed tests in the pseudocode
corresponds to a different series of conditional statements that check if the parameter conforms to the

search descriptor[[null,null,null,Symbol,null],null,IntElement], and the corresponding index descriptor
for an index byB andj would be[[0,3]:hash,[3]:hash].

Copyright c© 2000 John Wiley & Sons, Ltd. Softw. Pract. Exper.2000;00:1–6
Prepared usingspeauth.cls

24 C. GÓMEZ-RODŔıGUEZ, J. VILARES, M.A. ALONSO

structure expressed by a search descriptor, but they do not use the descriptor itself: its constraints are
directly compiled into code. Also note that, although the conditions and bodies of theif statements are
expressed in an uniform way in the pseudocode, they are different in the code, since they are generated
from different search descriptors. This is the reason why wehave expressed the pseudocode as a series
of conditional statements, and not as a loop.

The main conceptual difference between the three methods isthe meaning of “process obtained
list”. In the case ofadd, processing the list means initializing it if it is null and adding the parameter
item to it. In the case ofexists, it consists of checking if the list is empty. Finally, in thecase of
getBySpecification, the method will simply return the obtained list.

In reality, the parts appearing as common in the pseudocode are also slightly different, but the
differences are small enough to allow us to reuse most of the generator code.

The strategy for generating the code for these methods is similar to the one used in step classes.
In this case, instead of traversing an element tree, we traverse a search descriptor, generating code at
each node. We do not use the Visitor design pattern because the behaviour at each node depends on its
content, not its class.

A high level pseudocode for generating the code to test whether a parameter conforms to the search
descriptor is the following:

generateIndexingCheckCode (SearchDescriptorNode node ,List address , String objectName)
{

if (node is associated to aclass)
objectName = ”(Class)” + objectName;

add (address ,objectName) to address map;

if (node is not associated to aclass)
return ””; // null node => this part of items is not used in the indexing code

if (node associated to aclass other than SequenceElement)
generate type check:

”(object in ObjectName) instanceof (class associated to node)”

if (node is associated toclass SequenceElement)
{

if (operation = getBySpecification)// parameter is a specification
generate type check:

”(object in ObjectName) instanceof SequenceElement”
if (operation = exists or add)// parameter is a concrete item
{

Class cl = expectedclass for members of the sequence;
if objectName is of the form ” (∗)[i]”
{

generate loop:

Copyright c© 2000 John Wiley & Sons, Ltd. Softw. Pract. Exper.2000;00:1–6
Prepared usingspeauth.cls

A COMPILER FOR PARSING SCHEMATA 25

” int newIndex = 0;
while (i+newIndex< (∗). length && (∗)[i+newIndex] instanceof cl)
newIndex++;”

objectName = (∗)[i+newIndex];
}

}
}

if (node is associated to array)
{

generate length checks;
for i = 0.. numChildren()−1
{

child = i+1th child of node;
address = add(address , i);
update objectName to traverse child ;
doGenerateCode (child , address , objectName);
address = removeLast(address);

}
}

}

In this recursive method,node holds a particular node in a search descriptor that we are using to
generate code,address holds its address expressed as a list of integers, and the stringobjectName
stores the code that should be used to access the corresponding element in the generated code.

Apart from generating the checks needed to match an item or specification to a search descriptor,
this method also introduces entries into anaddress map, as can be seen in the code. The address map is
used to convert positions in a search descriptor (which are lists of integers) to the string used to access
the corresponding parts of items and specifications in the generated code. For example, the following
address map is produced when executing this code on a search specification for items of the form
[A → α.Bβ, i, j] in Earley’s algorithm:

Address Object name
[] ((Object[])item)
[0] ((Object[])item)[0]

[0, 0] (A) ((Object[])((Object[])item)[0])[0]
[0, 1] (α) ((Object[])((Object[])item)[0])[1]
[0, 2] (.) ((Object[])((Object[])item)[0])[1+ind4]
[0, 3] (B) ((Object[])((Object[])item)[0])[2+ind4]
[0, 4] (β) ((Object[])((Object[])item)[0])[3+ind4]
[1] (i) ((Object[])item)[1]
[2] (j) ((Object[])item)[2]

The information in the address map is then used to generate the code to actually access the indexes.
The need for the address map arises because the values of loopindexes declared as part of the checking
code (such asind4 in this case) will be used by the index access code.

Copyright c© 2000 John Wiley & Sons, Ltd. Softw. Pract. Exper.2000;00:1–6
Prepared usingspeauth.cls

26 C. GÓMEZ-RODŔıGUEZ, J. VILARES, M.A. ALONSO

Generation of the index access code has a quite complex implementation, as we support different
indexing data structures including arrays and collections(such as hash maps), which are accessed
through different Java syntax. We also must take into account that indexes can be nested, but the result
of an intermediate query can benull. For example, if we use hash indexing with two components of
items as keys, a hash map will be queried by using the first component, and the result of the query will
be a second hash map that can be queried by using the first component. But the first query can also
returnnull, and we have to check this condition to avoid trying the second query on a null object and
causing an exception.

For space reasons, we will not go into further details on thispart of the code generator. An example
of the code generated for hash indexes, and using the addressmap shown before, is the following:

if ((partial0 =((HashMap)(exindex2).get(
((element.Symbol)((Object [])((Object []) item)[0])[0]). getHashKey())

)) != null)
{

result =((HashMap)partial0.get (
((element.Symbol)((Object [])((Object []) item)[0])[2+ind4]). getHashKey()

));
}

7.3. Indexing deduction steps

Apart from the indexes on items explained above, our system also includesdeduction step indexesin
the generated parsers. These indexes are used to optimize the process of deciding which deduction step
instances can be applicable to a given item. Instead of blindly trying to apply every step and let the
pattern-matching processes discard those not matching theprocessed item, we use the index to obtain
a set of potentially applicable step instances, the rest (which are known not to be useful) being directly
discarded.

As particular instances of deduction steps in a schema are usually tied to grammar rules, deduction
step indexes do not improve computational complexity with respect to string length (which is already
optimized by item indexing), but they can improve complexity with respect to grammar size. This is
usually an important factor for performance in natural language applications, since it is common to use
grammars with thousands of rules.

Deduction step indexes are generated by taking into accountstep variables which take a value during
the creation of a step instance, i.e. variables appearing onside conditions. Since these variables will
have a concrete value for each step instance, they can be usedto filter instances in which they take a
value that will not allow matching with a given item.

Copyright c© 2000 John Wiley & Sons, Ltd. Softw. Pract. Exper.2000;00:1–6
Prepared usingspeauth.cls

A COMPILER FOR PARSING SCHEMATA 27

8. EXPERIMENTAL RESULTS

As an example of the performance that can be achieved by the parsers generated by our system in
real-life domains, we will show empirical results obtainedby generating implementations of several
different natural language parsing algorithms and applying them to natural-language grammars.

8.1. Context-free grammars

We have used our system to generate implementations of threepopular algorithms for context-free
grammars: CYK, Earley and Left-Corner [23]. The schemata we have used describe recognizers, and
therefore their generated implementation only checks sentences for grammaticality by launching the
deductive engine and testing for the presence of final items in the item set. However, these schemata can
easily be modified to produce a parse forest as output [4]. If we want to use a probabilistic grammar
in order to modify the schema so that it produces the most probable parse tree, this requires slight
modifications of the deductive engine, since it should only store and use the item with the highest
probability when several items differing only in their associated probabilities are found.

The three algorithms have been tested with sentences from three different natural language
grammars: the English grammar from the Susanne corpus [25], the Alvey grammar [6] (which is also
an English-language grammar) and the Deltra grammar [26], which generates a fragment of Dutch.
The Alvey and Deltra grammars were converted to plain context-free grammars by removing their
arguments and feature structures.

The test sentences were randomly generated. As we are interested in measuring and comparing the
performance of the parsers, not the coverage of the grammars, randomly-generated sentences are a
good input in this case: by generating a large number of different sentences of a given length, parsing
them and averaging the resulting runtimes, we get a good ideaof the performance of the parsers for
sentences of that length. Note that the generation process was oriented to obtaining sentences of the
lengths we wished to study, rather than to simulating the balance of sentence lengths found in naturally-
occurring language use.

TableI shows performance results (in terms of runtime and amount ofitems generated) for all these
algorithms and grammars. The tests were performed on a low-end laptop with an Intel 1500 MHz
Pentium M processor, 512 MB RAM, Sun Java Hotspot virtual machine (version 1.4.2 01-b06) and
Windows XP.

The success of the index generation techniques described inthis article is shown by the fact that
the empirical computational complexity of the three parsers is below their worst-case complexity of
O(n3). Additionally, the results of the test can be used to comparethe algorithms and grammars in an
homogeneous environment, drawing the following conclusions (described in more detail in [16]):

• By looking for functionsf(n) such that the sequencesT (n)/f(n) seem to converge to a
positive constant (T (n) being the average time elapsed by a parser when processing strings of
lengthn) we can estimate computational complexities. This allows us to see that the empirical
computational complexity is lower in the case of the Susannegrammar (where it is close to
linear) than in the other two grammars. The Susanne grammar also provides the best parsing

Copyright c© 2000 John Wiley & Sons, Ltd. Softw. Pract. Exper.2000;00:1–6
Prepared usingspeauth.cls

28 C. GÓMEZ-RODŔıGUEZ, J. VILARES, M.A. ALONSO

Table I. Performance measurements for generated parsers.

Grammar String Time Elapsed (s) Items Generated
length CYK Earley LC CYK Earley LC

Susanne 2 0.000 1.450 0.030 28 14,670 330
4 0.004 1.488 0.060 59 20,945 617
8 0.018 4.127 0.453 341 51,536 2,962
16 0.050 13.162 0.615 1,439 137,128 7,641
32 0.072 17.913 0.927 1,938 217,467 9,628
64 0.172 35.026 2.304 4,513 394,862 23,393
128 0.557 95.397 4.679 17,164 892,941 52,803

Alvey 2 0.000 0.042 0.002 61 1,660 273
4 0.002 0.112 0.016 251 3,063 455
8 0.010 0.363 0.052 915 7,983 1,636
16 0.098 1.502 0.420 4,766 18,639 6,233
32 0.789 9.690 3.998 33,335 66,716 39,099
64 5.025 44.174 21.773 133,884 233,766 170,588
128 28.533 146.562 75.819 531,536 596,108 495,966

Deltra 2 0.000 0.084 0.158 1,290 1,847 1,161
4 0.012 0.208 0.359 2,783 3,957 2,566
8 0.052 0.583 0.839 6,645 9,137 6,072
16 0.204 2.498 2.572 20,791 28,369 22,354
32 0.718 6.834 6.095 57,689 68,890 55,658
64 2.838 31.958 29.853 207,745 282,393 261,649
128 14.532 157.172 143.730 878,964 1,154,710 1,110,629

times in absolute terms. The probable reason for this is thatthe Alvey and Deltra grammars have
more ambiguity, since they are designed to be used with feature structures, and information has
been lost when these features were removed from them.

• CYK is the fastest algorithm in all cases, and generates fewer items than the others.
• Left-corner is notably faster than Earley in all cases, but the degree of improvement it provides

depends on each particular grammar. The Susanne grammar seems to be particularly well suited
for left-corner parsing.

8.2. Tree-adjoining grammars

Although all the examples we have seen so far correspond to context-free parsing, our system is not
limited to working with context-free grammars, since parsing schemata can be used to represent parsers
for other grammar formalisms as well. Different formalismscan be added by defining element classes
for their rules using the extensibility mechanism explained in section6.1.

In particular, we have also used our system to generate parsers for tree-adjoining grammars [29].
A tree-adjoining grammar (TAG) includes a set ofelementary treesof arbitrary depth which can be
combined by using thesubstitutionandadjunctionoperations. The substitution operation is used to

Copyright c© 2000 John Wiley & Sons, Ltd. Softw. Pract. Exper.2000;00:1–6
Prepared usingspeauth.cls

A COMPILER FOR PARSING SCHEMATA 29

Table II. Runtimes obtained by applying different TAG parsers to several sentences from the XTAG distribution.

Sentence Runtime (s)

CYK
Ear. no
VPP

Ear.
VPP Neder.

He was a cow 2.985 0.750 0.750 2.719
He loved himself 3.109 1.562 1.219 6.421
Go to your room 4.078 1.547 1.406 6.828
He is a real man 4.266 1.563 1.407 4.703
He was a real man 4.234 1.921 1.421 4.766
Who was at the door 4.485 1.813 1.562 7.782
He loved all cows 5.469 2.359 2.344 11.469
He called up her 7.828 4.906 3.563 15.532
He wanted to go to the city 10.047 4.422 4.016 18.969
That woman in the city contributed to this article 13.641 6.515 7.172 31.828
That people are not really amateurs at intelectual duelling 16.500 7.781 15.235 56.265
The index is intended to measure future economic performance16.875 17.109 9.985 39.132
They expect him to cut costs throughout the organization 25.859 12.000 20.828 63.641
He will continue to place a huge burden on the city workers 54.578 35.829 57422 178.875
He could have been simply being a jerk 62.157 113.532 109.062 133.515
A few fast food outlets are giving it a try 269.187 3122.860 3315.359

substitute an elementary tree for a leaf node (which must be labelled as asubstitution node) in another
elementary tree. The adjunction operation allows us to insert anauxiliary tree(an elementary tree with
a distinguished frontier node, called thefoot nodeand labelled with the same nonterminal as its root)
into another elementary tree.

The possibility of using elementary trees of arbitrary depth and the adjunction operation provide an
extended domain of locality with respect to context-free grammars, and the set of languages which can
be recognized with TAG is a strict superset of context-free languages. This makes TAG an interesting
formalism for natural language parsing, since some phenomena present in natural languages cannot be
represented by context-free grammars.

We have used our compiler to generate implementations for four different parsers for tree-adjoining
grammars [1, 2]: a CYK-based algorithm, two extensions of Earley’s algorithm with and without the
valid prefix property (VPP), and Nederhof’s parsing algorithm. These implementations were tested
with a real-life, wide-coverage feature-based tree-adjoining grammar: the XTAG English grammar
[32].

The TAG parsing schemata can be written in a format readable by our compiler in the same way
as the context-free parsing schemata seen in the previous sections. Although the main elements of
TAG’s are elementary trees instead of productions, each elementary tree may be expressed as a set of
productions which can be used as side conditions for deduction steps. In order for the steps to be able
to check whether an adjunction or substitution operation isallowed at a given node, we define boolean
expressions that query the grammar for this information. Inthe case of the XTAG grammar, we also
need to include feature structures inside items and add unification operations to the deduction steps.

Table II contains a summary of the execution times obtained by our parsers for some sample
sentences from the XTAG distribution. The runtimes are within the expected complexity bounds, but

Copyright c© 2000 John Wiley & Sons, Ltd. Softw. Pract. Exper.2000;00:1–6
Prepared usingspeauth.cls

30 C. GÓMEZ-RODŔıGUEZ, J. VILARES, M.A. ALONSO

not as fast as the ones we would obtain if we used Sarkar’s XTAGdistribution parser written in C [24].
This is not surprising, since our parsers have been generated by a generic tool without knowledge of
the grammar, while the XTAG parser has been designed specifically for optimal performance in this
particular grammar and uses additional information (such as tree usage frequency data from several
corpora, see [32]).

However, our comparison allows us to draw conclusions aboutwhich parsing algorithms are better
suited for the XTAG grammar. In this case there is not a singlebest algorithm in terms of execution
time, since the performance results depend on the size and complexity of the sentences. Therefore, in
practical cases, we should take into account the most likelykind of sentences that will be passed to the
parser in order to select the best algorithm. For example, wecan see that the CYK parser has a poorer
performance than others for short sentences, but is faster for longer sentences.

More detailed information on these experiments with the XTAG English grammar and other tree-
adjoining grammars can be found at [14, 13].

9. CONCLUSIONS AND FUTURE WORK

In this paper, we have described the design and implementation of a working compiler which is
able to automatically transform formal specifications of parsing algorithms (expressed as parsing
schemata) into efficient implementations of the corresponding parsers. The system’s source code can
be downloaded fromhttp://www.grupocole.org/software/COMPAS/.

Our compiler takes a simple representation of a parsing schema as input and uses it to produce
optimized Java code for the parsing algorithm it describes.The system performs a static analysis of the
input schema in order to determine the adequate indexes and data structures that will provide constant-
time access to items, ensuring the efficiency of the generated implementation.

The ability to easily produce parsers from schemata is very useful for the design, analysis and
comparison of parsing algorithms, as it allows us to test them and check their results and performance
without having to implement them in a programming language.The implementations generated by
our system are efficient enough to be used as prototypes in real-life domains, so they provide a quick
means of evaluating several parsing algorithms in order to find the best one for a particular application.
This is especially useful in practice, since different parsing algorithms can be better suited to different
grammars and domains.

The system is general enough to be applicable to different grammatical formalisms, and has been
used to generate parsers for context-free grammars and tree-adjoining grammars. In addition, we
provide an extensibility mechanism that allows the user to add new kinds of elements to schemata
apart from the predefined ones. This same mechanism has been used to provide predefined extensions
like those for feature structure unification and probabilistic parsing.

Currently, we are using the system to automatically derive robust, error-correcting parsers from
standard parsers for context-free grammars and tree-adjoining grammars. Additionally, we are working
on its application to projective and nonprojective dependency-based parsing [22], since dependency
parsers can also be represented by parsing schemata, as described in [15].

Copyright c© 2000 John Wiley & Sons, Ltd. Softw. Pract. Exper.2000;00:1–6
Prepared usingspeauth.cls

http://www.grupocole.org/software/COMPAS/

A COMPILER FOR PARSING SCHEMATA 31

REFERENCES

1. Alonso MA, Cabrero D, Clergerie EV, Vilares M. Tabular algorithms for TAG parsing. InProc. of the 9th Conference of
the European Chapter of the Association for Computational Linguistics (EACL’99), pages 150–157, 1999.

2. Alonso MA, Clergerie EV, D́ıaz VJ, Vilares M. Relating tabular parsing algorithms for LIG and TAG. In New
Developments in Parsing Technology, pages 157–184, Kluwer Academic Publishers, Dordrecht-Boston-London, 2004.

3. Alonso MA, D́ıaz VJ. Variants of mixed parsing of TAG and TIG. InTraitement Automatique des Langues, 44(3):41–65,
2003.

4. Billot S, Lang B. The Structure of Shared Forest in Ambiguous Parsing. InProc. of the 27th Annual Meeting of the
Association for Computational Linguistics, pages 143–151, 1989.

5. Carpenter B.The logic of typed feature structures. Cambridge University Press, Cambridge/New York/Melbourne, 1992.
6. Carroll J. Practical unification-based parsing of natural language. Technical report No. 314, University of Cambridge,

Computer Laboratory, England. PhD Thesis, 1993.
7. Carroll J. Parsing. In Mitkov R (ed.),The Oxford Handbook of Computational Linguistics. Oxford University Press,

Oxford, UK, 2003.
8. Clergerie EV. DyALog: a tabular logic programming based environment for NLP. InProc. of the 2nd International

Workshop on Constraint Solving and Language Processing, Barcelona, Spain, 2005.
9. D́ıaz VJ, Alonso MA. Comparing Tabular Parsers for Tree Adjoining Grammars. InProc. of Tabulation in Parsing and

Deduction (TAPD 2000), pages 91–100, Vigo, Spain, 2000.
10. Earley J. An efficient context-free parsing algorithm.Communications of the ACM, 13(2):94–102, 1970.
11. Eisner J, Goldlust E, Smith NA. Dyna: A declarative language for implementing dynamic programs. InProceedings of

the 42nd Annual Meeting of the Association for Computational Linguistics (ACL), pp. 218–221, Barcelona, 2004.
12. Gamma E, Helm R, Johnson R, Vlissides J.Design patterns: Elements of reusable object oriented software. Addison-

Wesley, Reading, Massachusetts, 1995.
13. Gómez-Rodŕıguez C, Alonso MA, Vilares M. Generating XTAG parsers from algebraic specifications. InProc. of TAG+8,

the Eighth International Workshop on Tree Adjoining Grammar and Related Formalisms, Sydney, Australia, 2006.
14. Gómez-Rodŕıguez C, Alonso MA, Vilares M. On theoretical and practical complexity of TAG parsers. InFG 2006: The

11th conference on Formal Grammar. CSLI Online Proceedings. Chapter 5, pp. 61–75, 2006.
15. Gómez-Rodŕıguez C, Carroll J, Weir D. A Deductive Approach to Dependency Parsing. InProc. of The 46th Annual

Meeting of the Association for Computational Linguistics:Human Language Technologies (ACL’08:HLT), pp. 968–976,
Columbus, Ohio, USA, 2008.

16. Gómez-Rodŕıguez C, Vilares J, Alonso MA. Compiling Declarative Specifications of Parsing Algorithms. In R. Wagner,
R. Newell and G. Pernul (eds.),Database and Expert Systems Applications, volume 4653 ofLecture Notes in Computer
Science, pp. 529-538, Springer-Verlag, Berlin-Heidelberg-New York, 2007.

17. Johnson SC. YACC: Yet another compiler compiler. Computer Science Technical Report 32, AT&T Bell Laboratories,
Murray Hill, New Jersey, USA, 1975.

18. Kasami T.An efficient recognition and syntax-analysis algorithm forcontext-free languages. Scientific Report AFCRL-
65-758, Air Force Cambridge Research Lab, Bedford, MA, 1965.

19. Kay M. Algorithm schemata and data structures in syntactic processing. Report CSL-80-12, Xerox PARC, Palo Alto,
Ca., 1980. Reprinted in: Grosz BJ et al. (Eds.):Readings in Natural Language Processing. Morgan Kaufmann, Los Altos,
Ca., 1982.

20. Liu YA, Stoller SD. From Datalog rules to efficient programs with time and space guarantees. InProc. of the 5th ACM
SIGPLAN Conference on Principles and Practice of Declarative Programming, pp. 172–183, 2003.

21. McAllester D. On the complexity analysis of static analyses. InProc. of the 6th International Static Analysis Symposium,
volume 1694 ofLecture Notes in Computer Science, pp. 312–329. Springer-Verlag, Berlin, 1999.

22. Nivre J. Inductive dependency parsing (Text, Speech and Language Technology). Springer-Verlag New York, Inc.,
Secaucus, NJ, USA. 2006.

23. Rosenkrantz DJ, Lewis II PM. Deterministic Left Corner Parsing. InConference Record of 1970 Eleventh Annual Meeting
on Switching and Automata Theory, pages 139–152, 1970.

24. Sarkar A. Practical experiments in parsing using tree adjoining grammars. InProc. of TAG+5, the Fifth International
Workshop on Tree Adjoining Grammar and Related Formalisms, Paris, France, 2000.

25. Sampson G. The Susanne corpus, release 3. 1994.
26. Schoorl JJ, Belder S.Computational linguistics at Delft: A status report, Report WTM/TT 90–09, 1990.
27. Shieber SM, Schabes Y, Pereira FCN. Principles and implementation of deductive parsing.Journal of Logic Programming,

24(1–2):3–36, July-August 1995.
28. Sikkel K. Parsing Schemata — A Framework for Specification and Analysis of Parsing Algorithms. Texts in Theoretical

Computer Science — An EATCS Series. Springer-Verlag, Berlin/Heidelberg/New York, 1997.

Copyright c© 2000 John Wiley & Sons, Ltd. Softw. Pract. Exper.2000;00:1–6
Prepared usingspeauth.cls

32 C. GÓMEZ-RODŔıGUEZ, J. VILARES, M.A. ALONSO

29. Vijay-Shanker K, Joshi AK. Some Computational Propertiesof tree Adjoining Grammars. In23rd Annual Meeting of the
Association for Computational Linguistics, pages 82–93, 1985.

30. Viswanadha S. Java Compiler Compiler (JavaCC): The Java Parser Generator.https://javacc.dev.java.net/
31. Younger DH. Recognition and parsing of context-free languages in timen3. Information and Control, 10(2): 189-208,

1967.
32. XTAG Research Group.A lexicalized tree adjoining grammar for English. Technical Report IRCS-01-03, IRCS, Univ. of

Pennsylvania, 2001.

Copyright c© 2000 John Wiley & Sons, Ltd. Softw. Pract. Exper.2000;00:1–6
Prepared usingspeauth.cls

https://javacc.dev.java.net/

	1 INTRODUCTION
	2 PARSING SCHEMATA
	2.1 Languages and grammars
	2.2 Parsing schemata: an example

	3 SYSTEM OVERVIEW
	3.1 Motivation for our system
	3.2 Goals
	3.3 Related work
	3.4 System architecture

	4 ARCHITECTURE OF THE GENERATED CODE
	5 READING SCHEMATA
	6 CODE GENERATION
	6.1 Types of element
	6.2 Deduction step classes
	6.3 Representation of items in the generated code
	6.4 Visitors for code generation
	6.5 Search specifications

	7 INDEXING
	7.1 Static analysis and index descriptors
	7.2 Generation of indexing code
	7.3 Indexing deduction steps

	8 EXPERIMENTAL RESULTS
	8.1 Context-free grammars
	8.2 Tree-adjoining grammars

	9 CONCLUSIONS AND FUTURE WORK

