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Abstract
We present a technique for the construction
of efficient prototypes for natural language
parsing based on the compilation of parsing
schemata to executable implementations of
their corresponding algorithms. Taking a
simple description of a schema as input, Java
code for the corresponding parsing algorithm
is generated, including schema-specific index-
ing code in order to attain efficiency.
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1 Introduction

The process of parsing, by which we obtain the struc-
ture of a sentence as a result of the application of
grammatical rules, is a highly relevant step in the au-
tomatic analysis of natural language sentences. In the
last decades, various parsing algorithms have been de-
veloped to accomplish this task. Although all of these
algorithms essentially share the common goal of gen-
erating a tree structure describing the input sentence
by means of a grammar, the approaches used to attain
this result vary greatly between algorithms, so that dif-
ferent parsing algorithms are best suited to different
situations.

Parsing schemata, described in [16], provide a for-
mal, simple and uniform way to describe, analyze and
compare different parsing algorithms. The notion of
a parsing schema comes from considering parsing as
a deduction process which generates intermediate re-
sults called items. An initial set of items is directly
obtained from the input sentence, and the parsing pro-
cess consists of the application of inference rules which
produce new items from existing ones. Each item con-
tains a piece of information about the sentence’s struc-
ture, and a successful parsing process will produce at
least one final item containing a full parse tree for the
sentence or guaranteeing its existence.

In this paper, we will give a brief insight into the
concept of parsing schemata by introducing a concrete
example: a parsing schema for Earley’s algorithm [5].
Given a context-free grammar G = (N,Σ, P, S)1 and
a sentence of length n which we denote by a1 a2 . . .
an, the schema describing Earley’s algorithm is as

1 Where N denotes the set of nonterminal symbols, Σ the set
of terminal symbols, P the production rules and S the axiom.

follows2:

Item set:
{[A → α.β, i, j] | A → αβ ∈ P ∧ 0 ≤ i < j}

Initial items (hypotheses):
{[ai, i− 1, i] | 0 < i ≤ n}

Deductive steps:

Earley Initter:
[S → .α, 0, 0]

S → α ∈ P

Earley Scanner:
[A → α.aβ, i, j] [a, j, j + 1]

[A → αa.β, i, j + 1]

Earley Predictor:
[A → α.Bβ, i, j]

[B → .γ, j, j]
B → γ ∈ P

Earley Completer:

[A → α.Bβ, i, j]
[B → γ., j, k]

[A → αB.β, i, k]

Final items:
{[S → γ., 0, n]}

Items in the Earley algorithm are of the form
[A → α.β, i, j], where A → α.β is a grammar rule
with a special symbol (dot) added at some position in
its right-hand side, and i, j are integer numbers denot-
ing positions in the input string. The meaning of such
an item can be interpreted as: “There exists a valid
parse tree with root A, such that the direct children of
A are the symbols in the string αβ, and the leaf nodes
of the subtrees rooted at the symbols in α form the
substring ai+1 . . . aj of the input string”.

The algorithm will produce a valid parse for the
input sentence if an item of the form [S → γ., 0, n] is
generated: according to the aforesaid interpretation,
this item guarantees the existence of a parse tree with
root S whose leaves are a1 . . . an, that is, a complete
parse tree for the sentence.

A deductive step η1...ηm

ξ Φ allows us to infer the
item specified by its consequent ξ from those in its an-
tecedents η1 . . . ηm. Side conditions (Φ) specify the
valid values for the variables appearing in the an-
tecedents and consequent, and may refer to grammar
2 From now on, we will follow the usual conventions by which

nonterminal symbols are represented by uppercase letters (A,
B . . .), terminals by lowercase letters (a, b . . .) and strings of
symbols (both terminals and nonterminals) by Greek letters
(α, β...).
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rules as in this example or specify other constraints
that must be verified in order to infer the consequent.

2 Motivation

Parsing schemata are located at a higher abstraction
level than algorithms. As can be seen in the example,
a schema specifies the steps that must be executed
and the intermediate results that must be obtained in
order to parse a given string, but it makes no claim
about the order in which to execute the steps or the
data structures to use for storing the results.

Their abstraction of low-level details makes parsing
schemata very useful, allowing us to define parsers in
a simple and straightforward way. Comparing parsers,
or considering aspects such as their correction and
completeness or their computational complexity, also
becomes easier if we think in terms of schemata. How-
ever, when we want to actually test a parser by running
it on a computer and checking its results, we need to
implement it in a programming language, so we have
to abandon the high level of abstraction and worry
about implementation details that were irrelevant at
the schema level.

The technique presented in this paper automates
this task, by compiling parsing schemata to Java lan-
guage implementations of their corresponding parsers.
The input to the compiler is a simple and declarative
representation of a parsing schema, which is practi-
cally equal to the formal notation that we used previ-
ously. For example, a valid schema file describing the
Earley parser is:

@goal [ S -> alpha . , 0 , length ]

@step EarleyInitter
------------------------ S -> alpha
[ S -> . alpha , 0 , 0 ]

@step EarleyScanner
[ A -> alpha . a beta , i , j ]
[ a , j , j+1 ]
---------------------------------
[ A -> alpha a . beta , i , j+1 ]

@step EarleyCompleter
[ A -> alpha . B beta , i , j ]
[ B -> gamma . , j , k ]
---------------------------------
[ A -> alpha B . beta , i , k ]

@step EarleyPredictor
[ A -> alpha . B beta , i , j ]
-------------------------- B -> gamma
[ B -> . gamma , j , j ]

3 Compiling Parsing Schemata

The compilation process, which transforms a declar-
ative description of a parsing schema into a Java im-
plementation of its corresponding parser, proceeds ac-
cording to the following principles:

• A class is generated for each deductive step in
the schema.

• The generated implementation will create an in-
stance of this class for each possible set of values
satisfying the side conditions that refer to pro-
duction rules. For example, a distinct instance
of the Earley predictor step will be created

for each grammar rule of the form B → γ ∈ P ,
which is specified in the step’s side condition.

• The classes representing deductive steps have an
apply method which tries to apply the deduc-
tive step to a given item. If the step is in fact
applicable to the item (as determined by check-
ing if the given item matches any of the step’s
antecedents), the method returns the new items
obtained from the inference once all combina-
tions of previously-generated items that satisfy
the rest of the antecedents have been found.

• In order for our implementations to maintain
the theoretical complexity of parsing algorithms,
two distinct kind of indexes are generated for
each schema: existence indexes, used to check
whether an item exists in the item set, and search
indexes, used to search for items conforming to a
given specification. Apart from items, deductive
steps are also indexed in deductive step indexes.
These indexes are used to restrict the set of “ap-
plicable deductive steps” for a given item, dis-
carding those known not to match it. Deductive
step indexes usually have no influence on compu-
tational complexity with respect to input string
size, but they do have an influence on complex-
ity with respect to the size of the grammar, since
the number of deductive step instances depends
on grammar size when production rules are used
as side conditions. All the generated indexing
code is placed into two classes (the item handler
and the deductive step handler) whose function
is to provide efficient access to items and deduc-
tive steps, responding to queries issued by the
deductive parsing engine. The indexing mecha-
nism is explained in detail in [9].

• The execution of deductive steps in the gener-
ated code is coordinated by a deductive parsing
engine [15] as described by the pseudocode in
Figure 1. This is a schema-independent algo-
rithm, and therefore its implementation is the
same for any schema. It works with the set of all
items that have been generated (either as initial
hypotheses or as a result of the application of de-
ductive steps) and an agenda, implemented as a
queue, which contains the items we have not yet
tried to trigger new deductions with. When the
agenda is emptied, all possible items will have
been generated, and the presence or absence of
final items in the item set at this point indicates
whether or not the input sentence belongs to the
language defined by the grammar.

4 Parsing Context-Free Gram-
mars

We have used our technique to generate implementa-
tions of three popular parsing algorithms for context-
free grammars: CYK [11, 18], Earley and Left-Corner
[12].

The schemata we have used describe recognizers,
and therefore their generated implementation only
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s t ep s = { deduct ive s tep i n s t an c e s } ;
i tems = { i n i t i a l i tems } ;
agenda = [ i n i t i a l i tems ] ;
for each deduct ive s tep with an empty antecedent ( s ) in s t ep s {
r e s u l t = s . apply ( [ ] ) ;
i tems . add ( r e s u l t ) ;
agenda . enqueue ( r e s u l t ) ;
s t ep s . remove ( s ) ;

}
while agenda not empty {
curItem = agenda . removeFirst ( ) ;
for each deduct ive s tep app l i c ab l e to curItem (p) in s t ep s {
r e s u l t = p . apply ( curItem ) ;
i tems . add ( r e s u l t ) ;
agenda . enqueue ( r e s u l t ) ;
}
}
return i tems ;

Fig. 1: Pseudocode of the deductive parsing engine

checks sentences for grammaticality by launching the
deductive engine and testing for the presence of final
items in the item set. However, these schemata can
easily be modified to produce a parse forest as output
[3]. If we want to use a probabilistic grammar in or-
der to modify the schema so that it produces the most
probable parse tree, this requires slight modifications
of the deductive engine, since it should only choose the
item with the highest probability when several items
are available to match an antecedent.

The three algorithms have been tested with sen-
tences from three different natural language gram-
mars: the English grammar from the Susanne cor-
pus [13], the Alvey grammar [4] (which is also an
English-language grammar) and the Deltra grammar
[14], which generates a fragment of Dutch. The Alvey
and Deltra grammars were converted to plain context-
free grammars by removing their arguments and fea-
ture structures. The test sentences were randomly
generated by starting with the axiom and randomly se-
lecting nonterminals and rules to perform expansions,
until valid sentences consisting only of terminals were
produced. Note that, as we are interested in mea-
suring and comparing the performance of the parsers,
not the coverage of the grammars; randomly-generated
sentences are a good input in this case: by generating
several sentences of a given length, parsing them and
averaging the resulting runtimes, we get a good idea
of the performance of the parsers for sentences of that
length.

For Earley’s algorithm, we have used the schema
file described earlier. For the CYK algorithm, gram-
mars were converted to Chomsky normal form (CNF),
since this is a precondition of the algorithm. In the
case of the Deltra grammar, which is the only one of
our test grammars containing epsilon rules, we have
used a weak variant of CNF allowing epsilon rules.
For the Left-Corner parser, the schema used is the
sLC variant described in [16].

The experiments are described in detail in [8]. The
following conclusions can be drawn from them:

• The empirical computational complexity of the
three algorithms is below their theoretical worst-
case complexity of O(n3), where n denotes the
length of the input string. In the case of the
Susanne grammar, the measurements we obtain
are close to being linear with respect to string
size. In the other two grammars, the measure-
ments grow faster with string size, but are still
far below the cubic worst-case bound.

• CYK is the fastest algorithm in all cases, and it
generates less items than the other ones. This
may come as a surprise at first, as CYK is gen-
erally considered slower than Earley-type algo-
rithms, particularly than Left-Corner. However,
these considerations are based on time complex-
ity relative to string size, and do not take into
account complexity relative to grammar size. In
this aspect, CYK is better than Earley-type al-
gorithms, providing linear - O(|P |) - worst-case
complexity with respect to grammar size, while
Earley is O(|P |2).3 Therefore, the fact that CYK
outperforms the other algorithms in our tests is
not so surprising, as the grammars we have used
have a large number of productions. The great-
est difference between CYK and the other two al-
gorithms in terms of the amount of items gener-
ated appears with the Susanne grammar, which
has the largest number of productions. It is also
worth noting that the relative difference in terms
of items generated tends to decrease when string
length increases, at least for Alvey and Deltra,
suggesting that CYK could generate more items
than the other algorithms for larger values of n.

3 It is possible to reduce the computational complexity of Ear-
ley’s parser to linear with respect to the grammar size by
defining a new set of intermediate items and transforming ac-
cordingly prediction and completion deduction steps. Even in
this case, CYK performs better that Earley’s algorithm due
to the lower number of items generated: O(|N ∪ Σ| n2) for
CYK vs. O(|G| n2) for Earley’s algorithm, where |G| denotes
the size of the grammar measured as |P | plus the summation
of the lengths of all productions.
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• Left-Corner is notably faster than Earley in all
cases, except for some short sentences when us-
ing the Deltra grammar. The Left-Corner parser
always generates fewer items than the Earley
parser, since it avoids unnecessary predictions
by using information about left-corner relation-
ships. The Susanne grammar seems to be very
well suited for Left-Corner parsing, since the
number of items generated decreases by an or-
der of magnitude with respect to Earley. On the
other hand, the Deltra grammar’s left-corner re-
lationships seem to contribute less useful infor-
mation than the others’, since the difference be-
tween Left-Corner and Earley in terms of items
generated is small when using this grammar. In
some of the cases, Left-Corner’s runtimes are a
bit slower than Earley’s because this small dif-
ference in items is not enough to compensate for
the extra time required to process each item due
to the extra steps in the schema, which make
Left-Corner’s matching and indexing code more
complex than Earley’s.

• The parsing of the sentences generated using
the Alvey and Deltra grammars tends to require
more time, and the generation of more items,
than that of the Susanne sentences. This hap-
pens in spite of the fact that the Susanne gram-
mar has more rules. The probable reason is that
the Alvey and Deltra grammars have more am-
biguity, since they are designed to be used with
their arguments and feature structures, and in-
formation has been lost when these features were
removed from them. On the other hand, the Su-
sanne grammar is designed as a plain context-
free grammar and therefore its symbols contain
more information.

5 Parsing Tree-Adjoining
Grammars

Although all the examples we have seen so far cor-
respond to context-free parsing, our compilation tech-
nique is not limited to working with context-free gram-
mars, since parsing schemata can be used to repre-
sent parsers for other grammar formalisms as well. All
grammars in the Chomsky hierarchy can be handled
in the same way as context-free grammars, and other
formalisms can be added by defining element classes
for their rules using the extensibility mechanism in-
cluded in the system for defining new kinds of objects
to use in schemata. The code generator can deal with
these user-defined objects as long as some simple and
well-defined guidelines are followed in their specifica-
tion.

In particular, we have also used our system to gen-
erate parsers for tree-adjoining grammars [10]. A tree-
adjoining grammar (TAG) includes a set of elementary
trees of arbitrary depth which can be combined by us-
ing the substitution and adjunction operations. The
substitution operation is used to substitute an elemen-
tary tree for a leaf node (which must be labelled as a
substitution node) in another elementary tree. The
adjunction operation allows us to insert an auxilliary

tree (an elementary tree with a distinguished frontier
node, called the foot node and labelled with the same
nonterminal as its root) into another elementary tree.

The possibility of using elementary trees of arbi-
trary depth and the adjunction operation provide an
extended domain of locality with respect to context-
free grammars, and the set of languages which can be
recognized with TAG is a strict superset of context-free
languages. This makes TAG an interesting formalism
for natural language parsing, since some phenomena
present in natural languages cannot be represented by
context-free grammars.

We have used our compiler to generate implemen-
tations for some of the most popular parsers for tree
adjoining grammars [1, 2]: a CYK-based algorithm,
two extensions of Earley’s algorithm with and without
the valid prefix property, and Nederhof’s parsing algo-
rithm. These implementations were tested both with
artificially-generated grammars and a real-life, wide-
coverage Feature-Based Tree Adjoining Grammar: the
XTAG English grammar [17].

The TAG parsing schemata can be written in a
format readable by our compiler in the same way as
the context-free parsing schemata seen in the previous
sections. Although the main constituents of TAG’s
are elementary trees instead of productions, each el-
ementary tree may be expressed as a set of produc-
tions which can be used as side conditions for deduc-
tive steps. In order for the steps to be able to check
whether the adjunction or substitution operation is al-
lowed at a given node, we define boolean expressions
that query the grammar for this information. In the
case of the XTAG, we also need to include feature
structures inside items and add unification operations
to the deductive steps.

The performance results obtained from TAG
parsers show that both string length and grammar size
can be important factors in performance, and the in-
teractions between them sometimes make their influ-
ence hard to quantify. The influence of string length in
practical cases is usually below the theoretical worst-
case bounds (we found the empirical complexity to be
around O(n3), while the worst-case bound for these
TAG parsers is O(n6)). Grammar size becomes the
dominating factor in large TAG’s such as the XTAG,
making tree filtering techniques advisable in order to
achieve faster execution times.

By comparing performance of TAG and CFG
parsers on artificially-generated grammars generating
the same languages, we could see that using TAG’s to
parse context-free languages causes a significant over-
head both in practical computational complexity and
in constant factors, increasing execution times by sev-
eral orders of magnitude with respect to CFG parsers.

A detailed explanation of the performance results
obtained by applying our compilation technique to
TAG parsers can be found at [6, 7].

6 Conclusions and future work

The construction of efficent prototypes directly from
parsing schemata is very useful for the design, analysis
and comparison of parsing algorithms, as it allows us
to test them and check their results and performance
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without having to implement them in a programming
language. As we have seen by comparing the per-
formance of several well-known parsers for natural
language grammars (context-free grammars and tree-
adjoining grammars), not all algorithms are equally
suitable for all grammars. In this work we provide
a quick way to evaluate several parsing algorithms in
order to find the best one for a particular application.

Currently, we are applying our compilation tech-
nique to automatically derive robust, error-correcting
parsers from standard parsers for context-free gram-
mars and tree adjoining grammars.
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