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Abstract. The parsing schemata formalism allows us to describe pars-
ing algorithms in a simple, declarative way by capturing their fundamen-
tal semantics while abstracting low-level detail. In this work, we present a
compilation technique allowing the automatic transformation of parsing
schemata to efficient executable implementations of their corresponding
algorithms. Our technique is general enough to be able to handle all
kinds of schemata for context-free grammars, tree adjoining grammars
and other grammatical formalisms, providing an extensibility mechanism
which allows the user to define custom notational elements.

1 Introduction

The process of parsing, by which we obtain the structure of a sentence as a
result of the application of grammatical rules, is a highly relevant step in the
automatic analysis of natural language sentences. Parsing schemata, described
in [14], provide a formal, simple and uniform way to describe, analyze and com-
pare different parsing algorithms. The notion of a parsing schema comes from
considering parsing as a deduction process which generates intermediate results
called items. Each item contains a piece of information about the sentence’s
structure, and a successful parsing process will produce at least one final item
containing a full parse tree for the sentence or guaranteeing its existence. An
initial set of items is directly obtained from the input sentence, and the parsing
process consists of the application of inference rules, called deductive steps, of
the form η1...ηm

ξ Φ that allow us to infer the item specified by its consequent
ξ from those in its antecedents η1 . . . ηm. Side conditions (Φ) specify the valid
values for the variables appearing in the antecedents and consequent, and may
refer to grammar rules or specify other constraints that must be verified in order
to infer the consequent.
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A schema specifies the steps that must be executed and the intermediate
results that must be obtained in order to parse a given string, but it makes no
claim about the order in which to execute the steps or the data structures to
use for storing the results. Their abstraction of low-level details makes parsing
schemata very useful, allowing us to define parsers in a simple and straightfor-
ward way. Comparing parsers, or considering aspects such as their correctness
and completeness or their computational complexity, also becomes easier if we
think in terms of schemata. However, when we want to actually test a parser
and check its results, we need to implement it in a programming language, so
we have to abandon the high level of abstraction and worry about implementa-
tion details that were irrelevant at the schema level. The technique presented in
this paper automates this task, by compiling parsing schemata to Java language
implementations of their corresponding parsers.

2 From declarative descriptions to program code

Our compilation process proceeds according to the following principles:

– A class is generated for each deductive step in the schema.
– The generated implementation will create an instance of this class for each

possible set of values satisfying the side conditions that refer to production
rules.

– The classes representing deductive steps have an apply method which tries to
apply the deductive step to a given item. If the step is in fact applicable to the
item, the method returns the new items obtained from the inference. In order
to achieve this functionality, the method works as follows: first, it checks if
the given item matches any of the step’s antecedents. For every successful
match found, the method searches for combinations of previously-generated
items in order to satisfy the rest of the antecedents. Each combination of
items satisfying all antecedents corresponds to an instantiation of the step
variables which is used to generate an item from the consequent.

– The execution of deductive steps in the generated code is coordinated by
a deductive parsing engine. This is a schema-independent algorithm, and
therefore its implementation is the same for any schema:

steps = {deductive step instances};
items = {initial items};
agenda = [initial items];
For each deductive step with an empty antecedent (s) in steps {
result = s.apply([]);
items.add(result);
agenda.enqueue(result);
steps.remove(s);

}
While agenda not empty {
curItem = agenda.removeFirst();
For each deductive step applicable to curItem (p) in steps {
result = p.apply(curItem);
items.add(result);
agenda.enqueue(result);

}
}
return items;



The algorithm works with the set of all items that have been generated (either
as initial hypotheses or as a result of the application of deductive steps) and an
agenda, implemented as a queue, which contains the items we have not yet
tried to trigger new deductions with. When the agenda is emptied, all possible
items will have been generated, and the presence or absence of final items in
the item set at this point indicates whether or not the input sentence belongs to
the language defined by the grammar. The correctness and completeness of this
algorithm can easily be proved by induction. The parse forest can be recovered
easily from the item set, as in [1].

2.1 Indexing

The implementation described above will only be efficient if we can efficiently
access items and deductive steps. In particular, implementation of the operations
checking if a given item exists in the item set (implicitly used by the items.add
operation in the pseudocode above) and searching the item set for all items satis-
fying a certain specification (used by the apply method of deductive steps) affects
the resulting parser’s computational complexity. An inefficient implementation
of any of these operations will give as result a parser with a computational com-
plexity above the expected theoretical bounds for the corresponding algorithms.
In order to maintain the theoretical complexity, we must provide constant-time
access to items. In this case, each single deduction takes place in constant time,
and the worst-case complexity is bounded by the maximum possible number of
step executions: all complexity in the generated implementation is inherent to
the schema.

In order to achieve this, we generate indexing code allowing efficient access
to the item set. Two distinct kinds of indexes are generated for each schema,
corresponding to the operations mentioned before: existence indexes are used
to check whether an item exists in the item set, and search indexes allow us
to search for items conforming to a given specification. Apart from items, de-
ductive steps are also indexed in deductive step indexes. These indexes are used
to restrict the set of “applicable deductive steps” for a given item, discarding
those known not to match it. Deductive step indexes usually have no influence
on computational complexity with respect to input string size, but they do have
an influence on complexity with respect to the size of the grammar, since the
number of deductive step instances depends on grammar size when production
rules are used as side conditions.

Our indexing mechanism is explained in detail in [7]. As an example of how
the adequate indexes can be determined by a static analysis of the schema prior
to compilation, we analyze the case where we have a deductive step of the form

[a, d, e, g] [b, d, f, g]
(consequent)

c e f g

where each lowercase letter represents the set of elements (be them grammar
symbols, string positions or other entities) appearing at particular positions in



the step, so that a stands for the set of elements appearing only in the first
antecedent item, e represents those appearing in the first antecedent and side
condition, g those appearing in both antecedents and side condition, and the rest
of the letters represent the other possible combinations as can be seen in the step.
In this example, we consider only two antecedents for the sake of simplicity, but
the technique is general and can be applied to deductive steps with an arbitrary
number of antecedents.

In this case, the following indexes are generated:

1. One deductive step index for each antecedent, using as keys the elements ap-
pearing both in the side condition and in that particular antecedent: there-
fore, two indexes are generated using the values (e, g) and (f, g). These in-
dexes are used to restrict the set of deductive step instances applicable to
items. As each instance corresponds to a particular instantiation of the side
conditions, in this case each step instance will have different values for c, e,
f and g. When the deductive engine asks for the set of steps applicable to a
given item [w, x, y, z], the deductive step handler will use the values of (y, z)
as keys in order to return only instances with matching values of (e, g) or
(f, g). Instances of the steps where these values do not match can be safely
discarded, as we know that our item will not match any of both antecedents.

2. One search index for each antecedent, using as keys the elements appearing
in that antecedent which are also present in the side condition or in the
other antecedent. Therefore, a search index is generated by using (d, e, g)
as keys in order to recover items of the form [a, d, e, g] when d, e and g are
known and a can take any value; and another index using the keys (d, f, g)
is generated and used to recover items of the form [b, d, f, g] when d, f and g
are known. The first index allows us to efficiently search for items matching
the first antecedent when we have already found a match for the second,
while the second one can be used to search for items matching the second
antecedent when we have started our deduction by matching the first one.

3. One existence index using as keys all the elements appearing in the conse-
quent, since all of them are instantiated to concrete values when the step
successfully generates a consequent item. This index is used to check whether
the generated item already exists in the item set before adding it.

As this index generation process must be applied to all deductive steps in
the schema, the number of indexes needed to guarantee constant-time access to
items increases linearly with the number of steps. However, in practice we do not
usually need to generate all of these indexes, since many of them are repeated or
redundant. For example, if we suppose that the sets e and f in our last example
contain the same number and type of elements, and elements are ordered in the
same way in both antecedents, the two search indexes generated would in fact
be the same, and our compiler would detect this fact and generate only one.
In practical cases, the items used by different steps of a parsing schema usually
have the same structure, so most indexes can be shared among several deductive
steps and the amount of indexes generated is small.



All the generated indexing code is placed into two classes (the item handler
and the deductive step handler) whose function is to provide efficient access to
items and deductive steps, responding to queries issued by the deductive parsing
engine.

2.2 Elements in schemata

The variety of elements that may be present in parsing schemata poses an inter-
esting difficulty if we want our technique to be general enough to cope with all
sorts of schemata. The schemata notation is open, and any mathematical object
could potentially appear as part of the definition of a schema.

As it is obviously impossible to provide a system that will recognize any kind
of element that we could potentially include in a schema, but neither do we
want our compiler to be limited to certain types of elements, we have defined
an extensibility mechanism which allows us to define new elements that can
be handled by the system in an easy way. For this purpose, we will classify all
notational elements into four basic types, according to the treatment they should
receive during code generation. Any new kind of element added to the system
should be classified into one of these types:

– Simple Elements: Atomic, unstructured elements, which can be instantiated
or not in a given moment. When simple elements are instantiated, they take
a single value from a set of possible values, which can be bounded or not.
Values can be converted to indexing keys. Examples of simple elements are
grammar symbols, integers, string positions, probabilities...

– Expression Elements: These elements denote expressions which take simple
elements or other expressions as arguments. For example, i + 1 is an ex-
pression element representing the sum of two string position arguments, and
tree[A,B] is an expression over nonterminal symbols. Feature structures and
logic terms are also represented by this kind of elements. When all simple
elements in an expression are instantiated to concrete values, the expression
will be treated as a simple element whose value is obtained by applying the
operation it defines (for example, summation). For the code generator to be
able to do this, a Java expression must be provided as part of the expression
element type definition, so that, for example, sums of string positions ap-
pearing in schemata can be converted to Java integer sums in the generated
implementation. Unification of feature-structures has been implemented in
this way.

– Composite Elements: Composite elements represent sequences of elements
whose length must be finite and known. Composite elements are used to
structure items. For instance, the Earley item [A → α.Bβ, i, j] is represented
as a composite element with three components: the first one is in turn a
composite element, representing a grammar rule, while the remaining two
are simple elements which denote string positions.

– Sequence Elements: These elements denote sequences of elements of any
kind whose length is finite, but only becomes known when the sequence is



Table 1. Information about the grammars used in the experiments: total number of
symbols, nonterminals, terminals, production rules, distribution of rule lengths, and
average rule length.

Grammar |N ∪ Σ| |N | |Σ| |P | Epsilon Unary Binary Other Rule length

Susanne 1,921 1,524 397 17,633 0% 5.26% 22.98% 71.76% 3.54
Alvey 498 266 232 1,485 0% 10.64% 50.17% 39.19% 2.4
Deltra 310 282 28 704 15.48% 41.05% 18.18% 25.28% 1.74

instantiated to a concrete value. The strings appearing in Earley items are
examples of sequence elements, being able to represent symbol strings of any
length. The code generator must take this fact into account when generating
matching code for these elements.

In order to add a new kind of element to the schema compiler, the user will
have to define it as a subclass of one of these four basic types, and implement
that type’s interface by following some simple guidelines. In addition to this,
the user must provide one or more regular expressions in order to specify the
format of the strings representing the new kind of element in schemata definition
files. These expressions can be included in a global configuration file or directly
in the schema files that will use the element. The schema parser will use the
regular expressions to identify our new type of element in schema files. When
one of these elements is found in a schema, the compiler will dynamically load
the corresponding class and instantiate it by using Java’s reflection mechanisms,
thus avoiding the need to recompile the system in order to add new element
classes. This makes our technique highly extensible, and easily allows us to work
with schemata containing all kinds of non-predefined items.

3 Experimental results

We have used our technique to generate implementations of three popular pars-
ing algorithms for context-free grammars: CYK [9, 15], Earley [3] and Left-
Corner [10]. The schemata we have used describe recognizers, and therefore their
generated implementation only checks sentences for grammaticality by launch-
ing the deductive engine and testing for the presence of final items in the item
set. However, these schemata can easily be modified to produce a parse forest
as output [1]. If we want to use a probabilistic grammar in order to modify the
schema so that it produces the most probable parse tree, this requires slight
modifications of the deductive engine, since it should only choose the item with
the highest probability when several items are available to match an antecedent.

The three algorithms have been tested with sentences from three different
natural language grammars: the English grammar from the Susanne corpus [11],
the Alvey grammar [2] (which is also an English-language grammar) and the
Deltra grammar [12], which generates a fragment of Dutch. The Alvey and Del-
tra grammars were converted to plain context-free grammars by removing their



arguments and feature structures. The test sentences were randomly generated
by starting with the axiom and randomly selecting nonterminals and rules to
perform expansions, until valid sentences consisting only of terminals were pro-
duced. Note that, as we are interested in measuring and comparing the per-
formance of the parsers, not the coverage of the grammars; randomly-generated
sentences are a good input in this case: by generating several sentences of a given
length, parsing them and averaging the resulting runtimes, we get a good idea of
the performance of the parsers for sentences of that length. Table 1 summarizes
some facts about the three grammars, where by “Rule Length” we mean the
average length of the right-hand side of a grammar’s rules.

For Earley’s algorithm, we have used the schema described in [14]. For the
CYK algorithm, grammars were converted to Chomsky normal form (CNF),
since this is a precondition of the algorithm. In the case of the Deltra grammar,
which is the only one of our test grammars containing epsilon rules, we have
used a weak variant of CNF allowing epsilon rules. For the Left-Corner parser,
the schema used is the sLC variant described in [14].

Performance results1 for all these algorithms and grammars are shown in
table 2. The following conclusions can be drawn from the measurements:

– The empirical computational complexity of the three algorithms is below
their theoretical worst-case complexity of O(n3), where n denotes the length
of the input string. In the case of the Susanne grammar, the measurements
we obtain are close to being linear with respect to string size. In the other
two grammars, the measurements grow faster with string size, but are still
far below the cubic worst-case bound.

– CYK is the fastest algorithm in all cases, and it generates less items than the
other ones. This may come as a surprise at first, as CYK is generally con-
sidered slower than Earley-type algorithms, particularly than Left-Corner.
However, these considerations are based on time complexity relative to string
size, and do not take into account complexity relative to grammar size. In
this aspect, CYK is better than Earley-type algorithms, providing linear —
O(|P |) — worst-case complexity with respect to grammar size, while Earley
is O(|P |2). Therefore, the fact that CYK outperforms the other algorithms
in our tests is not so surprising, as the grammars we have used have a large
number of productions2. The greatest difference between CYK and the other
two algorithms in terms of the amount of items generated appears with the
Susanne grammar, which has the largest number of productions. It is also
worth noting that the relative difference in terms of items generated tends

1 The machine used for these tests was a standard laptop: Intel 1500 MHz Pentium M
processor, 512 MB RAM, Sun Java Hotspot virtual machine (version 1.4.2 01-b06)
and Windows XP.

2 It is possible to reduce the computational complexity of Earley’s parser by applying
some transformations to the schema. Even in this case, CYK performs better than
Earley’s algorithm due to the smaller number of items generated: O(|N ∪ Σ|n2) for
CYK vs. O(|G|n2) for Earley, where |G| denotes the size of the grammar measured
as the number of productions plus the summation of the lengths of all productions.



Table 2. Performance measurements for generated parsers.

Grammar String Time Elapsed (s) Items Generated
length CYK Earley LC CYK Earley LC

Susanne 2 0.000 1.450 0.030 28 14,670 330
4 0.004 1.488 0.060 59 20,945 617
8 0.018 4.127 0.453 341 51,536 2,962
16 0.050 13.162 0.615 1,439 137,128 7,641
32 0.072 17.913 0.927 1,938 217,467 9,628
64 0.172 35.026 2.304 4,513 394,862 23,393
128 0.557 95.397 4.679 17,164 892,941 52,803

Alvey 2 0.000 0.042 0.002 61 1,660 273
4 0.002 0.112 0.016 251 3,063 455
8 0.010 0.363 0.052 915 7,983 1,636
16 0.098 1.502 0.420 4,766 18,639 6,233
32 0.789 9.690 3.998 33,335 66,716 39,099
64 5.025 44.174 21.773 133,884 233,766 170,588
128 28.533 146.562 75.819 531,536 596,108 495,966

Deltra 2 0.000 0.084 0.158 1,290 1,847 1,161
4 0.012 0.208 0.359 2,783 3,957 2,566
8 0.052 0.583 0.839 6,645 9,137 6,072
16 0.204 2.498 2.572 20,791 28,369 22,354
32 0.718 6.834 6.095 57,689 68,890 55,658
64 2.838 31.958 29.853 207,745 282,393 261,649
128 14.532 157.172 143.730 878,964 1,154,710 1,110,629

to decrease when string length increases, at least for Alvey and Deltra, sug-
gesting that CYK could generate more items than the other algorithms for
larger values of n.

– Left-Corner is notably faster than Earley in all cases, except for some short
sentences when using the Deltra grammar. The Left-Corner parser always
generates fewer items than the Earley parser, since it avoids unnecessary pre-
dictions by using information about left-corner relationships. The Susanne
grammar seems to be very well suited for Left-Corner parsing, since the
number of items generated decreases by an order of magnitude with respect
to Earley. On the other hand, the Deltra grammar’s left-corner relationships
seem to contribute less useful information than the others’, since the differ-
ence between Left-Corner and Earley in terms of items generated is small
when using this grammar. In some of the cases, Left-Corner’s runtimes are a
bit slower than Earley’s because this small difference in items is not enough
to compensate for the extra time required to process each item due to the
extra steps in the schema, which make Left-Corner’s matching and indexing
code more complex than Earley’s.

– The parsing of the sentences generated using the Alvey and Deltra grammars
tends to require more time, and the generation of more items, than that of



the Susanne sentences. This happens in spite of the fact that the Susanne
grammar has more rules. The probable reason is that the Alvey and Deltra
grammars have more ambiguity, since they are designed to be used with their
arguments and feature structures, and information has been lost when these
features were removed from them. On the other hand, the Susanne grammar
is designed as a plain context-free grammar and therefore its symbols contain
more information.

– Execution times for the Alvey grammar quickly grow for sentence lengths
above 16. This is because sentences generated for these lengths tend to be
repetitions of a single terminal symbol, and are highly ambiguous.

4 Conclusions

In this paper, we have presented a compilation technique which allows us to au-
tomatically transform a parsing schema into an implementation of the algorithm
it describes, keeping the theoretical computational complexity of the algorithm.
This makes our work different from the parsing machine described by Shieber
et al. in [13], a Prolog implementation of a deductive parsing engine which can
also be used to implement parsing schemata; however, its input notation is less
declarative, since schemata have to be programmed in Prolog, and it does not
support automatic indexing, so the resulting parsers are inefficient unless the
user programs indexing code by hand, abandoning the high abstraction level.
Another alternative for implementing parsing schemata is the Dyna language
[4], which can be used to implement some kinds of dynamic programs; but it
has a complex notation, clearly less declarative than ours, which is specifically
designed for denoting schemata: in our approach, the user only has to write the
schema without worrying about implementation details. In addition, we provide
an extensibility mechanism that allows the user to add new kinds of elements to
schemata apart from the predefined ones.

Compilation of parsing schemata has been shown very useful for the design,
analysis and prototyping of parsing algorithms, as it has allowed us to test them
(even variants with “tricks” that improve practical performance in some cases)
and check their results and performance without having to implement them in
a programming language. As we have seen by comparing the performance of
CYK, Earley and Left-Corner parsers for several grammars, not all algorithms
are equally suitable for all grammars. In this work we provide a quick way to
evaluate several parsing algorithms in order to find the best one for a particular
application.

Our compilation technique is not limited to working with context-free gram-
mars, since all grammars in the Chomsky hierarchy can be handled in the same
way as context-free grammars, and other formalisms can be added by defining
element classes for their rules using the extensibility mechanism. In this way,
we have used our compiler to generate implementations for some of the most
popular parsers for tree adjoining grammars (TAG) [8]. A detailed explanation
of the performance results obtained by applying our compilation technique to
TAG parsers can be found at [5, 6].



Currently, we are applying our compilation technique to generate robust,
error-correcting parsers for context-free grammars and tree adjoining grammars.
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