
Divisible Transition Systems and Multiplanar
Dependency Parsing

Carlos Gómez-Rodrı́guez∗
Universidade da Coruña

Joakim Nivre∗∗
Uppsala University

Transition-based parsing is a widely used approach for dependency parsing that combines high
efficiency with expressive feature models. Many different transition systems have been proposed,
often formalized in slightly different frameworks. In this article, we show that a large number
of the known systems for projective dependency parsing can be viewed as variants of the same
stack-based system with a small set of elementary transitions that can be composed into complex
transitions and restricted in different ways. We call these systems divisible transition systems
and prove a number of theoretical results about their expressivity and complexity. In particular,
we characterize an important subclass called efficient divisible transition systems that parse
planar dependency graphs in linear time. We go on to show, first, how this system can be
restricted to capture exactly the set of planar dependency trees and, secondly, how the system can
be generalized to k-planar trees by making use of multiple stacks. Using the first known efficient
test for k-planarity, we investigate the coverage of k-planar trees in available dependency
treebanks and find a very good fit for 2-planar trees. We end with an experimental evaluation
showing that our 2-planar parser gives significant improvements in parsing accuracy over the
corresponding 1-planar and projective parsers for data sets with non-projective dependency trees
and performs on a par with the widely used arc-eager pseudo-projective parser.

1. Introduction

Syntactic parsing using dependency-based representations has attracted considerable
interest in computational linguistics in recent years, both because it appears to provide
a useful interface to downstream applications of parsing and because many dependency
parsers combine competitive parsing accuracy with highly efficient processing. Among
the most efficient systems available are transition-based dependency parsers, which
perform a greedy search through a transition system, or abstract state machines, that
map sentences to dependency trees, guided by statistical models trained on treebank

∗ Departamento de Computación, Universidade da Coruña, Facultad de Informtica, Campus de Elviña
s/n, 15071 A Coruña, Spain. E-mail: cgomezr@udc.es.

∗∗ Department of Linguistics and Philology, Uppsala University, Box 635, 75126 Uppsala, Sweden.
E-mail: joakim.nivre@lingfil.uu.se.

Submission received: 13 October 2011; revised submission received: 29 August 2012; accepted for publication:
7 November 2012.

doi:10.1162/COLI a 00150

© 2013 Association for Computational Linguistics

Computational Linguistics Volume 39, Number 4

data (Yamada and Matsumoto 2003; Nivre, Hall, and Nilsson 2004; Attardi 2006; Zhang
and Clark 2008). Transition systems for dependency parsing come in many different
varieties, and our aim in the first part of this article is to deepen our understanding of
these systems by analyzing them in a uniform framework.

More precisely, we demonstrate that a number of well-known systems from the
literature can all be viewed as variants of a stack-based system with five elementary
transitions, where different variants are obtained by composing elementary transitions
into complex transitions and by adding restrictions on their applicability. We call such
systems divisible transition systems and prove a number of theoretical results about
their expressivity (which classes of dependency graphs they can handle) and their com-
plexity (what upper bounds exist on the length of transition sequences). In particular,
we show that an important subclass called efficient divisible transition systems derive
planar dependency graphs in time that is linear in the length of the sentence using stan-
dard inference methods for transition-based dependency parsing. Even though many
of these results were already known for particular systems, the general framework
allows us to derive these results from more general principles and thereby to establish
connections between previously unrelated systems. We then go on to show that there
are interesting cases of efficient divisible transition systems that have not yet been
explored, notably a system that is sound and complete for planar dependency trees, a
mild extension to the class of projective trees that are assumed in most existing systems.

In the second part of the article, we take the planar parsing system as our point of
departure for addressing the problem of non-projective dependency parsing. Despite
the impressive results obtained with dependency parsers limited to strictly projective
dependency trees—that is, trees where every subtree has a contiguous yield—it is clear
that most if not all languages have syntactic constructions whose analysis requires non-
projective trees. It is also clear, however, that allowing arbitrary non-projective trees
makes parsing computationally hard (McDonald and Satta 2007) and does not seem
justified by the data in available treebanks (Kuhlmann and Nivre 2006; Nivre 2006a;
Havelka 2007). This suggests that we should try to find a superset of projective trees
that is permissive enough to encompass constructions found in natural language yet
restricted enough to permit efficient parsing. Proposals for such a set include trees with
bounded arc degree (Nivre 2006a, 2007), well-nested trees with bounded gap degree
(Kuhlmann and Nivre 2006; Kuhlmann and Möhl 2007), as well as trees parsable by a
particular transition system such as that proposed by Attardi (2006).

In the same vein, Yli-Jyrä (2003) introduced the concept of multiplanarity, which
generalizes the simple notion of planarity by saying that a dependency tree is k-planar
if it can be decomposed into at most k planar subgraphs, a proposal that remains largely
unexplored because an efficient test for k-planarity has been lacking. In this article, we
construct a test for k-planarity by reducing it to a graph coloring problem. Applying this
test to a wide range of dependency treebanks, we show that, although simple planarity
(or 1-planarity) is clearly insufficient (Kuhlmann and Nivre 2006), the set of 2-planar
dependency trees gives a very good fit with the available data, better than many of
the previously proposed superclasses of projective trees. We then demonstrate how the
transition system for planar dependency parsing can be generalized to k-planarity by
introducing additional stacks. In particular, we define a two-stack system for 2-planar
dependency parsing that is provably correct and has linear complexity. Finally, we show
that the 2-planar parser, when evaluated on data sets with a non-negligible proportion
of non-projective trees, gives significant improvements in parsing accuracy over the
corresponding 1-planar and projective parsers, and provides comparable accuracy to
the widely used arc-eager pseudo-projective parser.

800

Gómez-Rodrı́guez and Nivre Divisible Transition Systems and Multiplanarity

The remainder of the article is structured as follows. Section 2 reviews basic
concepts of dependency parsing and in particular the formalization of stack-based
transition systems from Nivre (2008). Section 3 introduces our system of elementary
transitions, uses it to analyze a number of parsing algorithms from the literature as
divisible transition systems, proves a number of theoretical results about the expres-
sivity and complexity of such systems, and finally introduces a divisible transition
system for 1-planar dependency parsing. Section 4 reviews the notion of multiplanarity,
introduces an efficient procedure for determining the smallest k for which a dependency
tree is k-planar, and uses this procedure in an empirical investigation of available
dependency treebanks. Section 5 shows how the divisible transition system framework
and the 1-planar parser can be generalized to handle k-planar trees by introducing
additional stacks, presents proofs of correctness and complexity for the 2-planar case,
and reports the results of an experimental evaluation of projective, pseudo-projective,
1-planar and 2-planar dependency parsing. Section 6 reviews related work, and
Section 7 concludes and makes suggestions for future research.

Part of the contributions in this article (namely, the test for multiplanarity and the
1-planar and 2-planar parsers) have been published previously by Gómez-Rodrı́guez
and Nivre (2010); this article substantially revises and extends the ideas presented in
that paper. The framework of divisible transition systems and all the derived theoretical
results, including the properties and proofs regarding the 1-planar and 2-planar parsers,
are entirely new contributions of this article.

2. Dependency Parsing

Dependency parsing is based on the idea that syntactic structure can be analyzed in
terms of binary, asymmetric relations between the words of a sentence, an idea that has
a long tradition in descriptive and theoretical linguistics (Tesnière 1959; Sgall, Hajičová,
and Panevová 1986; Mel’čuk 1988; Hudson 1990). In computational linguistics, depen-
dency structures have become increasingly popular in the interface to downstream
applications of parsing, such as information extraction (Culotta and Sorensen 2004;
Stevenson and Greenwood 2006; Buyko and Hahn 2010), question answering (Shen
and Klakow 2006; Bikel and Castelli 2008), and machine translation (Quirk, Menezes,
and Cherry 2005; Xu et al. 2009). And although dependency structures can easily be
extracted from other syntactic representations, such as phrase structure trees, this has
also led to an increased interest in statistical parsers that specifically produce depen-
dency trees (Eisner 1996; Yamada and Matsumoto 2003; Nivre, Hall, and Nilsson 2004;
McDonald, Crammer, and Pereira 2005).

Current approaches to statistical dependency parsing can be broadly grouped into
graph-based and transition-based techniques (McDonald and Nivre 2007). Graph-
based parsers parameterize the parsing problem by the structure of the dependency
trees and learn models for scoring entire parse trees for a given sentence. Many of these
models permit exact inference using dynamic programming (Eisner 1996; McDonald,
Crammer, and Pereira 2005; Carreras 2007; Koo and Collins 2010), but recent work has
explored approximate search methods in order to widen the scope of features especially
when processing non-projective trees (McDonald and Pereira 2006; Riedel and Clarke
2006; Nakagawa 2007; Smith and Eisner 2008; Martins, Smith, and Xing 2009; Koo et al.
2010; Martins et al. 2010). Transition-based parsers parameterize the parsing problem by
the structure of a transition system, or abstract state machine, for mapping sentences to
dependency trees and learn models for scoring individual transitions from one state to
the other. Traditionally, transition-based parsers have relied on local optimization and

801

Computational Linguistics Volume 39, Number 4

(“Only one of them concerns quality.”)

ROOT1 Z2
(Out-of

✞ �

❄

AuxP

nich3
them

✞ �

❄

Atr

je4
is

✞ �

❄

Pred

jen5
only

✞ �

❄

AuxZ

jedna6
one-FEM-SG

✞ �

❄

Sb

na7

to

✞ �

❄

AuxP

kvalitu8
quality

❄
✞ �Adv

.9

.)

✞ �

❄

AuxK

Figure 1
Dependency graph for a Czech sentence from the Prague Dependency Treebank.

greedy, deterministic parsing (Yamada and Matsumoto 2003; Nivre, Hall, and Nilsson
2004; Attardi 2006; Nivre 2008), but globally trained models and non-greedy parsing
methods such as beam search are increasingly used (Johansson and Nugues 2006; Titov
and Henderson 2007; Zhang and Clark 2008; Huang, Jiang, and Liu 2009; Huang and
Sagae 2010; Zhang and Nivre 2011). In empirical evaluations, the two main approaches
to dependency parsing often achieve very similar accuracy, but transition-based parsers
tend to be more efficient. In this article, we will be concerned exclusively with transition-
based models.

In the remainder of this background section, we first introduce the syntactic rep-
resentations used by dependency parsers, starting from a general characterization of
dependency graphs and discussing a number of different restrictions of this class that
will be relevant for the analysis later on. We then go on to review the formalization of
transition systems proposed by Nivre (2008), and in particular the class of stack-based
systems that provides the framework for our discussion of existing and novel transition-
based models. Finally, we discuss the implementation of efficient parsers based on these
transition systems.

2.1 Dependency Graphs

In dependency parsing, the syntactic structure of a sentence is modeled by a depen-
dency graph, which represents each token and its syntactic dependents through labeled,
directed arcs. This is exemplified in Figure 1 for a Czech sentence taken from the Prague
Dependency Treebank (Hajič et al. 2001; Böhmová et al. 2003), and in Figure 2 for an
English sentence taken from the Penn Treebank (Marcus, Santorini, and Marcinkiewicz
1993; Marcus et al. 1994).1 In the former case, an artificial token ROOT has been inserted
at the beginning of the sentence, serving as the unique root of the graph and ensuring
that the graph is a tree even if more than one token is independent of all other tokens.
In the latter case, no such device has been used, and we will not in general assume the
existence of an artificial root node prefixed to the sentence, although all our models will
be compatible with such a device.

1 The dependency graph has in this case been derived automatically from the constituency-based
annotation in the treebank using standard head-finding rules and heuristics for inferring
dependency labels.

802

Gómez-Rodrı́guez and Nivre Divisible Transition Systems and Multiplanarity

Economic1

✞ �

❄

NMOD

news2

✞ �

❄

SBJ

had3 little4

✞ �

❄

NMOD

effect5

✞ �

❄

OBJ

on6

✞ �

❄

NMOD

financial7

✞ �

❄

NMOD

markets8

✞ �

❄

PMOD

.9
❄

✞ �
P

Figure 2
Dependency graph for an English sentence from the Penn Treebank.

Definition 1

A dependency graph for a sentence x = w1, . . . , wn is a directed graph G = (V, A), where

1. V = {1, . . . , n} is a set of nodes,
2. A ⊆ V × V is a set of directed arcs, containing no loops (i.e., arcs of the

form (v, v) are disallowed for all v ∈ V).

The set V of nodes (or vertices) is the set of positive integers up to and including n, each
corresponding to the linear position of a token in the sentence (where the first token
may or may not be the special token ROOT). The set A of arcs (or directed edges) is a
set of pairs (i, j), where i and j are distinct nodes. Because arcs are used to represent
dependency relations, we say that i is the head of j; conversely, we say that j is a
dependent of i. A node with no incoming arcs is called a root.

We will say that two arcs (i, j) and (k, l) cross if min(i, j) < min(k, l) < max(i, j) <
max(k, l) or min(k, l) < min(i, j) < max(k, l) < max(i, j), and that an arc (i, j) covers a
node k if min(i, j) < k < max(i, j).

Note that the dependency graphs defined by Definition 1 are unlabeled depen-
dency graphs. Adding labels is straightforward by redefining arcs as triples (i, l, j),
consisting of a head i, a label l, and a dependent j, but excluding labels for now will
simplify the formal analysis without limiting the generality of the results. We will
discuss the generalization to labeled dependency graphs whenever relevant, and the
experiments reported in Section 5 all use labeled graphs.

Definition 2

Let G = (V, A) be a dependency graph.

1. SINGLE-HEAD(G)⇔ every node in G has at most one incoming arc.
2. ACYCLIC(G)⇔ there are no (directed) cycles in G.
3. CONNECTED(G)⇔ G is weakly connected.
4. TREE(G)⇔ G is a directed tree.
5. PLANAR(G)⇔ there are no crossing arcs in G.
6. NO-COVERED-ROOTS(G)⇔ there is no root covered by an arc in G.
7. PROJECTIVE(G)⇔ PLANAR(G) and NO-COVERED-ROOTS(G).

Definition 2 lists a number of constraints that can be imposed on dependency graphs.
The most common of these is the TREE constraint, which requires that there is a root
from which all other nodes are reachable by a unique directed path, and which in turn
entails SINGLE-HEAD, ACYCLIC, and CONNECTED. A dependency graph that satisfies
the TREE constraint is called a dependency tree.

803

Computational Linguistics Volume 39, Number 4

The final three constraints are usually defined only for dependency trees, although
we have extended them to apply to dependency graphs in general. The most common
of these is the PROJECTIVE constraint, which for dependency trees is equivalent to
the requirement that every subtree must have a contiguous yield and rules out both
crossing arcs and covered roots. By contrast, the PLANAR constraint forbids crossing
arcs but allows covered roots, which in the case of dependency trees is a very mild
relaxation because there can be at most one covered root without violating the TREE
constraint.

Example 1

Consider the dependency graphs depicted in Figures 1 and 2, ignoring labels for the
time being:

Figure 1: G1 = (V1, A1)
V1 = {1, 2, 3, 4, 5, 6, 7, 8, 9}
A1 = {(1, 4), (1, 9), (2, 3), (4, 6), (4, 7), (6, 2), (6, 5), (7, 8)}

Figure 2: G2 = (V2, A2)
V2 = {1, 2, 3, 4, 5, 6, 7, 8, 9}
A2 = {(2, 1), (3, 2), (3, 5), (3, 9), (5, 4), (5, 6), (6, 8), (8, 7)}

G1 satisfies TREE (hence also SINGLE-HEAD, ACYCLIC, and CONNECTED) and NO-
COVERED-ROOTS but violates PLANAR (hence also PROJECTIVE) because there are
crossing arcs. By contrast, G2 satisfies all constraints listed in Definition 2.

2.2 Transition Systems for Dependency Parsing

Transition-based dependency parsing is based on the notion of a transition system, or
abstract state machine, for mapping sentences to dependency graphs. Such systems are
nondeterministic in general and usually combined with heuristic search, guided by a
treebank-induced function for scoring different transitions out of a given configuration.
For the time being, we will ignore the details of the search procedure and concentrate on
the underlying transition systems. We will adopt the general framework of Nivre (2008)
but restricted to stack-based systems.2

Definition 3

A transition system for dependency parsing is a quadruple S = (C, T, cs, Ct), where

1. C is a set of configurations, each of which contains a buffer β of
(remaining) nodes and a set A of dependency arcs,

2. T is a set of transitions, each of which is a (partial) function t : C→ C,
3. cs is an initialization function, mapping a sentence x = w1, . . . , wn to a

configuration with β = [1, . . . , n],
4. Ct ⊆ C is a set of terminal configurations.

2 In addition to stack-based systems, Nivre (2008) also investigates list-based systems, which make use of
arbitrary lists instead of stacks that obey the last-in first-out constraint.

804

Gómez-Rodrı́guez and Nivre Divisible Transition Systems and Multiplanarity

In stack-based transition systems, a configuration takes the form of a triple c = (σ,β, A),
where σ is a stack of nodes, β is a buffer of nodes, and A is a set of dependency arcs;
the initialization function is cs(x) = ([], [1, . . . , n],∅) (for x = w1, . . . , wn); and the set of
terminal configurations is Ct = {c | c = (σ, [], A) for any σ, A} (Nivre 2008).

We use the notation σc, βc, and Ac to refer to the value of σ, β, and A in a given
configuration c; we use |σ| and |β| to refer to the size of σ and β (i.e., the number of
nodes), and we use [] to denote an empty stack or buffer.

Definition 4

Let S = (C, T, cs, Ct) be a transition system. A transition sequence3 for a sentence x =
w1, . . . , wn in S is a sequence C0,m = (c0, c1, . . . , cm) of configurations, such that

1. c0 = cs(x),
2. cm ∈ Ct,
3. for every i (1 ≤ i ≤ m), ci = t(ci−1) for some t ∈ T.

The parse assigned to x by C0,m is the dependency graph Gcm = ({1, . . . , n}, Acm), where
Acm is the set of dependency arcs in cm.

Starting from the initial configuration for the sentence to be parsed, transitions will
manipulate σ, β, and A until a terminal configuration is reached (β is empty). Be-
cause the node set V is given by the input sentence itself, the set Acm of depen-
dency arcs in the terminal configuration will determine the output dependency graph
Gcm = (V, Acm).

Definition 5

Let S = (C, T, cs, Ct) be a transition system for dependency parsing.

1. S is sound for a class G of dependency graphs if and only if, for every
sentence x and every transition sequence C0,m for x in S, the parse
Gcm ∈ G.

2. S is complete for a class G of dependency graphs if and only if, for every
sentence x and every dependency graph Gx for x in G, there is a transition
sequence C0,m for x in S such that Gcm = Gx.

3. S is correct for a class G of dependency graphs if and only if it is sound
and complete for G.

As observed by Nivre (2008), soundness and completeness for transition systems are
analogous to soundness and completeness for grammar parsing algorithms, according
to which an algorithm is sound if it only derives parses licensed by the grammar and
complete if it derives all such parses (Shieber, Schabes, and Pereira 1995).

3 Please note that, according to standard terminology both in transition-based dependency parsing and for
transition systems more generally in computer science, a transition sequence is a sequence of configurations,
not a sequence of transitions. We will later introduce the term transition chain for the corresponding
sequence of transitions. We realize that these terms are potentially confusing but prefer not to deviate
from the standard terminology.

805

Computational Linguistics Volume 39, Number 4

Example 2

Nivre’s (2008) arc-standard transition system uses three transitions:

SHIFTAS (σ, i|β, A)⇒ (σ|i,β, A)

LEFT-ARCAS (σ|i, j|β, A)⇒ (σ, j|β, A∪{(j, i)})
RIGHT-ARCAS (σ|i, j|β, A)⇒ (σ, i|β, A∪{(i, j)})

The unlabeled dependency graph in Figure 2 is derived by the transition sequence in
Figure 3. For labeled dependency parsing, the LEFT-ARC and RIGHT-ARC transitions in
addition have a parameter for the label l of the arc being added.

2.3 Transition-Based Parsing

A transition system is an abstract machine that computes the mapping of a sentence to
a dependency graph through a sequence of steps called transitions. In order to build a
practical parsing system on top of this, we essentially need two additional components:
a model for scoring transition sequences and an algorithm for finding the optimal
transition sequence for a given sentence. Although many different scoring models are
conceivable, practically all existing parsers use a linear model for scoring individual
transitions whose scores are then added to get the score for an entire sequence:

SCORE(C0,m) =
m∑

i=1

f(ci−1, ti) ·w

where f(ci−1, ti) is a feature vector representation of transition ti out of configuration
ci−1 and w is a corresponding weight vector. Finding the highest scoring transition

([], [1, . . . , 9], ∅)
SHIFT ⇒ ([1], [2, . . . , 9], ∅)

LEFT-ARC ⇒ ([], [2, . . . , 9], A1 = {(2, 1)})
SHIFT ⇒ ([2], [3, . . . , 9], A1)

LEFT-ARC ⇒ ([], [3, . . . , 9], A2 = A1∪{(3, 2)})
SHIFT ⇒ ([3], [4, . . . , 9], A2)
SHIFT ⇒ ([3, 4], [5, . . . , 9], A2)

LEFT-ARC ⇒ ([3], [5, . . . , 9], A3 = A2∪{(5, 4)})
SHIFT ⇒ ([3, 5], [6, . . . , 9], A3)
SHIFT ⇒ ([3, 5, 6], [7, 8, 9], A3)
SHIFT ⇒ ([3, . . . , 7], [8, 9], A3)

LEFT-ARC ⇒ ([3, 5, 6], [8, 9], A4 = A3∪{(8, 7)})
RIGHT-ARC ⇒ ([3, 5], [6, 9], A5 = A4∪{(6, 8)})
RIGHT-ARC ⇒ ([3], [5, 9], A6 = A5∪{(5, 6)})
RIGHT-ARC ⇒ ([], [3, 9], A7 = A6∪{(3, 5)})

SHIFT ⇒ ([3], [9], A7)
RIGHT-ARC ⇒ ([], [3], A8 = A7∪{(3, 9)})

SHIFT ⇒ ([3], [], A8)

Figure 3
Arc-standard transition sequence for the (unlabeled) dependency graph in Figure 2.

806

Gómez-Rodrı́guez and Nivre Divisible Transition Systems and Multiplanarity

sequence under this model is a hard problem in general, and transition-based parsers
therefore have to rely on heuristic search for the optimal transition sequence. Many
systems simply use greedy 1-best search (Yamada and Matsumoto 2003; Nivre, Hall,
and Nilsson 2004; Attardi 2006):

PARSE(x = (w1, . . . , wn))
1 c← cs(x)
2 while c �∈ Ct
3 t∗ ← argmaxt f(c, t) ·w
4 c← t∗(c)
5 return Gc

Another common approach is to use beam search with a fixed beam size (Johansson
and Nugues 2006; Titov and Henderson 2007; Zhang and Clark 2008). In this case,
lines 3 and 4 are replaced by an inner loop that expands all configurations in the current
beam using all permissible transitions and then discards all except the k highest scoring
configurations. The outer loop terminates when all configurations in the beam are
terminal, and the dependency graph corresponding to the highest scoring configuration
is returned. Setting the beam size to 1 makes this equivalent to greedy 1-best search.

The time complexity of transition-based parsing depends not only on the underly-
ing transition system but also on the scoring model and the search algorithm. As long
as the number of configurations considered by the search algorithm is bounded by a
constant k and as long as every transition can be scored and executed in constant time
relative to a fixed model, however, then the asymptotic time complexity of a parser
using a transition system S is given by an upper bound on the length of transition
sequences in S (Nivre 2008). Similarly, the space complexity is given by an upper bound
on the size of a configuration c ∈ C, because at most k configurations need to be stored
at any given time. For most of the systems considered in this article, we will see that
the length of a transition sequence is O(n), where n is the length of the input sentence,
which translates into a linear bound on parsing time for transition-based parsers using
beam search (with greedy 1-best search as a special case).

Transition-based dependency parsing using beam search has the advantage of
low parsing complexity in combination with very few restrictions on feature repre-
sentations, which enables fast and accurate parsing, but does not guarantee that the
optimal transition sequence is found. Recent work on tabularization for transition-
based parsing has shown that it is possible to use exact dynamic programming under
certain conditions, but this leads either to very inefficient parsing or to very restricted
feature representations. Thus, Huang and Sagae (2010) present a dynamic programming
scheme for a feature-rich arc-standard parser, but the resulting parsing complexity is
O(n7) and they therefore have to resort to beam search in practical parsing experiments.
Conversely, Kuhlmann, Gómez-Rodrı́guez, and Satta (2011) show how to obtain cubic
complexity for a tabularized arc-eager parser but only for very impoverished feature
representations. Hence, for the remainder of this article, we will assume that transition
sequence length is a relevant complexity bound, because it translates into a bound
on running time for parsers that use beam search, as practically all state-of-the-art
transition-based parsers currently do. This bound holds as long as every transition can
be scored and executed in constant time, which is true even when including complex
features like the valency features of Zhang and Nivre (2011), which are expensive to
use in dynamic programming because of the combinatorial effect they have on parsing
complexity.

807

Computational Linguistics Volume 39, Number 4

3. Divisible Transition Systems

In the last decade, several different dependency parsers have been defined as stack-
based transition systems, which differ from each other in the order in which they add
dependency arcs as well as in the constraints that they impose on output dependency
graphs. In their original definitions, these differences arise from the fact that each algo-
rithm uses a distinct set of transitions. In this section, we show how these algorithms
can be expressed using a common set of transitions, which we call elementary transi-
tions. Under this framework, the original transitions of each algorithm are viewed as
combinations of one or more elementary transitions by means of the standard function
operations of composition and restriction. A direct consequence of this is that each of the
parsers expressed in this framework can be viewed as a restriction of the algorithm that
uses elementary transitions directly, allowing any possible concatenation of elementary
transitions. We call the systems that are analyzable within this framework divisible
transition systems.

The elementary transitions in our framework represent five primitive operations
that can be applied to stack-based configurations:

SHIFT (σ, j|β, A)⇒ (σ|j,β, A)

UNSHIFT (σ|i,β, A)⇒ (σ, i|β, A)

REDUCE (σ|i,β, A)⇒ (σ,β, A)

LEFT-ARC (σ|i, j|β, A)⇒ (σ|i, j|β, A∪{(j, i)})
RIGHT-ARC (σ|i, j|β, A)⇒ (σ|i, j|β, A∪{(i, j)})

The first three operations modify the stack and/or buffer by moving a word from the
buffer to the top of the stack (SHIFT), moving a word from the stack to the buffer
(UNSHIFT), or popping a word from the stack (REDUCE). The remaining two operations
create dependency arcs involving the top of the stack and the first word in the buffer
(LEFT-ARC, RIGHT-ARC). We assume that LEFT-ARC and RIGHT-ARC only apply to
configurations where the new arc is not already an element of the arc set A, an assump-
tion that is needed in certain cases to guarantee termination (that is, to rule out transition
sequences where the same arc is added an indefinite number of times). Note that, in
the case of labeled dependency graphs, the LEFT-ARC and RIGHT-ARC transitions will
have a label parameter, and this restriction should not prevent the addition of an arc
with the same head and dependent as one or more existing arcs, as long as the label
is different.

Different parsing algorithms can now be defined using composition of elementary
transitions, which is defined as standard function composition.

Definition 6

Let t1, t2 : C→ C be transitions. Their composition is the partial function t1; t2 : C→ C
mapping each c ∈ C to t2(t1(c)).

Elementary transitions are defined as partial functions t : C→ C, and we use Te to refer
to the set of elementary transitions. In addition, we use function restriction to impose
constraints on their domain, traditionally expressed in the literature as side conditions.

808

Gómez-Rodrı́guez and Nivre Divisible Transition Systems and Multiplanarity

For this purpose, we use the standard notation by which the restriction of a function
f : X→ Y to a subset A ⊆ X is written as:

f A(x) =
{

f (x) if x ∈ A
undefined if x �∈ A

Transition systems that can be defined using composition of elementary transitions with
restrictions are said to be divisible.

Definition 7

A stack-based transition system S = (C, T, cs, Ct) is divisible if and only if every transi-
tion in T is of the form t1 s1

; t2 s2
; . . .; tp sp

, where p > 0, ti ∈ Te, si ⊆ C.

In other words, a stack-based transition system is divisible if and only if each of its
transitions can be written as a composition of restrictions of the elementary transitions
SHIFT, UNSHIFT, REDUCE, LEFT-ARC, and RIGHT-ARC. Note that the definition allows
the use of unrestricted elementary transitions in the composition, because for any
transition t, we have that t C = t.4

3.1 Examples of Divisible Transition Systems

In this section, we show that a number of transition-based parsers from the literature use
divisible transition systems that can be defined using only elementary transitions. This
includes the arc-eager and arc-standard projective parsers described in Nivre (2003) and
Nivre (2008), the arc-eager and arc-standard parsers for directed acyclic graphs from
Sagae and Tsujii (2008), the hybrid parser of Kuhlmann, Gómez-Rodrı́guez, and Satta
(2011), and the easy-first parser of Goldberg and Elhadad (2010). We also give examples
of transition systems that are not divisible (Attardi 2006; Nivre 2009).

First of all, we define four standard subsets of the configuration set C:

Hσ(C) = {(σ|i,β, A) ∈ C | ∃j : (j, i) ∈ A}
Hσ(C) = {(σ|i,β, A) ∈ C | ¬∃j : (j, i) ∈ A}
Hβ(C) = {(σ, i|β, A) ∈ C | ∃j : (j, i) ∈ A}
Hβ(C) = {(σ, i|β, A) ∈ C | ¬∃j : (j, i) ∈ A}

The set Hσ(C) is the subset of configurations where the node on top of the stack has
been assigned a head in A, and Hσ(C) is the subset where the top node has not been
assigned a head in A. Similarly, the set Hβ(C) is the subset of configurations where the
first node in the buffer has been assigned a head in A, and Hσ(C) is the subset where the
first node has not been assigned a head in A. Note that there are configurations that are
neither in Hσ(C) nor in Hσ(C), namely, those where the stack is empty. There are also

4 It is worth noting that the assumption that LEFT-ARC and RIGHT-ARC only apply to configurations
where the new arc is not already in the arc set A could be formally stated by restricting these transitions
to the sets LA = {(σ|i, j|β, A) | (j, i) �∈ A} (for LEFT-ARC) and RA = {(σ|i, j|β, A) | (i, j) �∈ A} (for
RIGHT-ARC). Because these restrictions are part of the definition of the elementary transitions
themselves, however, we prefer to leave it implicit notationwise.

809

Computational Linguistics Volume 39, Number 4

configurations that are neither in Hβ(C) nor in Hβ(C), because the buffer is empty, but
these are all terminal configurations.

Example 3

Nivre’s (2008) arc-standard parser, previously defined in Example 2, is a bottom–up
parser for projective dependency trees. Its transitions can be defined in terms of ele-
mentary transitions as follows:

SHIFTAS = SHIFT

LEFT-ARCAS = LEFT-ARC; REDUCE

RIGHT-ARCAS = RIGHT-ARC; SHIFT; REDUCE; UNSHIFT

The SHIFTAS transition is the same as the elementary SHIFT transition. The LEFT-ARCAS
transition composes the elementary LEFT-ARC transition with the REDUCE transition to
ensure that the left dependent of the new arc is popped from the stack and therefore
cannot be assigned more than one head. The RIGHT-ARCAS transition, finally, composes
four elementary transitions, where RIGHT-ARC is responsible for adding a left-headed
arc, SHIFT and REDUCE jointly remove the dependent of the new arc from the buffer,
and UNSHIFT moves the head of the new arc back to the buffer so that it can find a head
to the left. It is worth noting that the arc-standard system for projective trees does not
make use of restrictions.

Although this description of the arc-standard parser corresponds to its definition
in Nivre (2008), where arcs are created involving the topmost stack node and the first
buffer node, the system has also been presented in an equivalent form with arcs built be-
tween the two top nodes in the stack (Nivre 2004). This variant can also be described as a
divisible transition system, with LEFT-ARCAS′ = UNSHIFT; LEFT-ARC; REDUCE; SHIFT
and RIGHT-ARCAS′ = UNSHIFT; RIGHT-ARC; SHIFT; REDUCE.5

Example 4

Nivre’s (2003) arc-eager parser is a parser for projective dependency trees, which adds
arcs in a strict left-to-right order using the following transitions:

SHIFTAE = SHIFT

REDUCEAE = REDUCE Hσ(C)

LEFT-ARCAE = LEFT-ARC Hσ(C); REDUCE

RIGHT-ARCAE = RIGHT-ARC; SHIFT

As in the first example, the SHIFTAE transition is equivalent to the elementary SHIFT
transition, but the RIGHT-ARCAE transition differs from RIGHT-ARCAS by not popping

5 Additionally, it is also possible to define the divisible transition system framework itself in such a way
that the LEFT-ARC and RIGHT-ARC elementary transitions themselves act upon the two topmost stack
nodes, rather than on the topmost stack node and first buffer node. Although this definition can capture
exactly the same set of parsers as the one we are using and makes it more natural to describe the
mentioned arc-standard variant, we have not used it because it significantly complicates the definition of
other algorithms, such as the arc-eager or 1-planar parsers.

810

Gómez-Rodrı́guez and Nivre Divisible Transition Systems and Multiplanarity

the right dependent from the stack after adding the arc and shifting. Instead, right
dependents are removed from the stack in a separate transition REDUCEAE, which is
equivalent to the elementary transition REDUCE but restricted to Hσ(C) to ensure that
unattached nodes are not removed. The LEFT-ARCAE transition, finally, is the same as
LEFT-ARCAS but restricted to Hσ(C), a restriction that is not needed in the arc-standard
system where nodes on the stack can never have a head.

Example 5

The easy-first parser of Goldberg and Elhadad (2010) is a parser for projective trees that
adds arcs in a bottom–up order but in a non-directional manner, trying to make the
easier attachment decisions first regardless of the position of the corresponding words
in the sentence. This parsing strategy corresponds to the following divisible transition
system:

SHIFTEF = SHIFT

ATTACH-RIGHT(i)EF = SHIFTi; LEFT-ARC; REDUCE; UNSHIFTi−1

ATTACH-LEFT(i)EF = SHIFTi; RIGHT-ARC; SHIFT; REDUCE; UNSHIFT; UNSHIFTi−1

where i is a strictly positive integer. Note that this means that the system has an
infinite set of transitions. In practice, however, only the ATTACH-RIGHT(i)EF and
ATTACH-LEFT(i)EF transitions such that 1 ≤ i ≤ n− 1 need to be considered when pars-
ing a string of length n: Because the number of nodes in the buffer is bounded by n,
transitions with i ≥ n will always be undefined because the buffer will become empty
before the first i + 1 elementary transitions can be applied. Therefore, to parse strings of
length n we only need 2n− 1 transitions.

The purpose of an ATTACH-RIGHT(i)EF (or ATTACH-LEFT(i)EF) is to create a right-
ward (or leftward) arc involving the ith and (i + 1)th words in the input string, and
then remove the dependent. This means that the system is not limited to building
arcs in a predetermined order (such as left to right). Instead, it can generate the
same tree in different orders depending on the criterion used to choose a transition
at each configuration. In particular, the parser by Goldberg and Elhadad (2010) can
be seen as an implementation of this transition system, which uses a training algo-
rithm that assigns a weight to each of the ATTACH-RIGHT(i)EF and ATTACH-LEFT(i)EF
transitions in such a way that “easier” (more reliable) attachments are performed
first.

The ATTACH-LEFT(i)EF and ATTACH-RIGHT(i)EF transitions are essentially the
same as LEFT-ARCAS and RIGHT-ARCAS in the arc-standard system, but preceded by
i instances of SHIFT and succeeded by i− 1 instances of UNSHIFT, which means that a
separate SHIFT transition is needed only to reach a terminal configuration by pushing
the final root(s) onto the stack. This analysis reveals that the two systems are similar
in that they build dependency trees bottom–up but differ with respect to the order
in which arcs are added. It is worth pointing out that using sequences of SHIFT and
UNSHIFT transitions is not the most efficient way of implementing easy-first parsing in
practice.

Example 6

The hybrid parser introduced by Kuhlmann, Gómez-Rodrı́guez, and Satta (2011) is a
bottom–up projective transition system that builds each given dependency tree in a

811

Computational Linguistics Volume 39, Number 4

unique order, rather than allowing each node to collect its dependents in different orders
like the arc-standard or easy-first systems. Its transitions can be defined as follows:

SHIFTHY = SHIFT

LEFT-ARCHY = LEFT-ARC; REDUCE

RIGHT-ARCHY = UNSHIFT; RIGHT-ARC; SHIFT; REDUCE

Note that this parser creates leftward arcs between the first node in the buffer and the
top node on the stack, just like arc-standard and arc-eager. Rightward arcs, however,
are created by making the topmost stack node a dependent of the second topmost stack
node, and removing the former from the stack.

Example 7

Sagae and Tsujii’s (2008) arc-standard DAG parser performs bottom–up parsing without
the common assumption that syntactic structures are represented as trees, allowing
nodes to have multiple heads. It uses the following transitions:

SHIFTDS = SHIFT

LEFT-REDUCEDS = LEFT-ARC; REDUCE

RIGHT-REDUCEDS = RIGHT-ARC; SHIFT; REDUCE; UNSHIFT

LEFT-ATTACHDS = LEFT-ARC {(σ|i,j|β,A)∈C|¬((i,j)∈A)}

RIGHT-ATTACHDS = RIGHT-ARC {(σ|i,j|β,A)∈C|¬((j,i)∈A)}; UNSHIFT

Whereas the first three transitions are exactly the same as in Nivre’s (2008) arc-
standard parser, the LEFT-ATTACHDS and RIGHT-ATTACHDS transitions differ from
LEFT-REDUCEDS and RIGHT-REDUCEDS in that they do not remove the dependent of
the new arc, thus allowing it to have additional incoming arcs. The restrictions on these
transitions disallow the creation of both a left and a right arc between the same pair of
nodes. Note that the class of dependency structures that can be output by this system
does not exactly correspond to DAGs, however, because the system allows transition
sequences that create dependency graphs with cycles. For example, starting from any
configuration with at least two nodes on the stack and one node in the buffer and
applying RIGHT-ATTACHDS, RIGHT-REDUCEDS, SHIFTDS, and LEFT-ATTACHDS gives
rise to a cyclic structure.

Example 8

Sagae and Tsujii’s (2008) arc-eager DAG parser allows nodes with multiple heads like
the previous one but adds arcs in a strict left-to-right order like Nivre’s (2003) arc-eager
parser. The transition system can be defined as follows:

SHIFTDE = SHIFT

REDUCEDE = REDUCE Hσ(C)

LEFT-ARCDE = LEFT-ARC {(σ|i,j|β,A)∈C|¬((i,j)∈A)}

RIGHT-ARCDE = RIGHT-ARC {(σ|i,j|β,A)∈C|¬((j,i)∈A)}

812

Gómez-Rodrı́guez and Nivre Divisible Transition Systems and Multiplanarity

Here the first two transitions are the same as in Nivre’s (2003) arc-eager parser,
whereas the LEFT-ARCDE and RIGHT-ARCDE transitions differ from their counterparts
LEFT-ARCAE and RIGHT-ARCAE by not removing the dependent of the new arc. Like the
previous arc-standard system, this system can produce cyclic dependency graphs. For
example, starting from any configuration with at least one node in the stack and two
nodes in the buffer and applying RIGHT-ARCDE, SHIFTDE, RIGHT-ARCDE, REDUCEDE,
and LEFT-ARCDE creates a cycle of length 3.

Before we close this section we will briefly consider two transition systems that
are not divisible. Attardi’s (2006) non-projective parser extends the arc-standard sys-
tem of Nivre (2004) with transitions that directly add non-projective arcs like the
following:

LEFT-ARC2 (σ|i|k, j|β, A)⇒ (σ|k, j|β, A∪{(j, i)})
RIGHT-ARC2 (σ|i|k, j|β, A)⇒ (σ|i, k|β, A∪{(i, j)})

Nivre’s (2009) non-projective parser constructs non-projective arcs in an indirect fashion
by first swapping the order of two adjacent nodes on the stack:

SWAP (σ|i|j,β, A)⇒ (σ|j, i|β, A)

Neither of these systems can be formalized using only elementary transitions as
defined herein, although they both represent straightforward extensions of the basic
system.

3.2 Properties of Divisible Transition Systems

The elementary transition framework not only allows us to describe a wide range of
transition-based parsers in a clear and concise way, but it can also easily be used to
prove formal properties of transition systems. To do so, we consider the successions of
transitions allowed by these algorithms, and break their transitions up into chains of
elementary transitions.

Definition 8

Let C0,m = (c0, c1, . . . , cm) be a transition sequence for a sentence x under a transition sys-
tem S. The standard transition chain associated with C0,m is the sequence of transitions
T0,m = (t1, t2, . . . , tm) such that ti(ci−1) = ci for each i ∈ [1, m].

Definition 9

Let T0,m = (t1, t2, . . . , tm) be the standard transition chain for a transition sequence C0,m
under a divisible transition system S. Its associated elementary transition chain is the
sequence of elementary transitions

E0,m = (t1,1, t1,2, . . . , t1,p1 , t2,1, t2,2, . . . , t2,p2 , . . . , tm,1, tm,2, . . . , tm,pm)

such that t1 = t1,1 s1,1
; t1,2 s1,2

; . . .; t1,p1 s1,p1
, . . . , tm = tm,1 sm,1

; tm,2 sm,2
; . . .; tm,pm sm,pm

for some
values of the restrictions s1,1, . . . , s1,p1 , . . . , sm,1, . . . , sm,pm .

813

Computational Linguistics Volume 39, Number 4

Definition 10

Let E0,m = (e1, e2, . . . , eq) be the elementary transition chain for some transition sequence
C0,m = (c0, c1, . . . , cm). Then:

� The computation function associated with C0,m is the function e1; e2; . . .; eq,
resulting from composing the elementary transitions in the chain. Note
that the same function could also be obtained from composing the
transitions in the standard transition chain associated with C0,m, and that
this function will always map c0 to cm.

� The elementary transition sequence associated with C0,m is the sequence
of configurations C′

0,m = (c′0, c′1, . . . , c′q) such that c′0 = c0, and c′i = ei(c′i−1)
for all i ∈ [1, q]. Note that c′q will always equal cm. We will say that ei is
applied to the configuration ci−1 in C′

0,m.

After these preliminaries, we will now prove a number of results about divisible
transition systems, first about the classes of dependency graphs that they can derive
(Section 3.2.1) and secondly about termination and parsing complexity (Section 3.2.2).

3.2.1 Constraints on Dependency Graphs. Here we consider properties related to the graph
constraints NO-COVERED-ROOTS, SINGLE-HEAD, ACYCLICITY, and PLANAR.

Proposition 1

If all elementary REDUCE transitions in the elementary transition chains under S are
applied to configurations in Hσ(C), then no dependency graph generated by S contains
covered roots.

This property implies that algorithms where REDUCE transitions are restricted to the set
Hσ(C) always satisfy the NO-COVERED-ROOTS constraint. Note that this restriction may
be expressed explicitly in the transition definitions (as in Example (4)), but it may also be
implicit. For example, in Example (3), we defined LEFT-ARCAS = LEFT-ARC; REDUCE.
Although we did not explicitly write LEFT-ARC; REDUCE Hσ(C), the LEFT-ARC transi-
tion always produces configurations that are trivially in Hσ(C) (because the transition
gives the topmost stack node a head), so the REDUCE transition in this algorithm is
implicitly restricted to Hσ(C). The same observation can be applied to subsequent
properties.

Proof

To prove this proposition, we first make some simple observations about divisible
transition systems that will be useful for this and subsequent proofs.

Lemma 1

In every configuration in an (elementary) transition sequence under a divisible transi-
tion system S, elements in the stack and buffer are ordered, that is, if the configuration
is of the form ([s1, . . ., sk], [b1, . . ., bl], A), then we know that s1 < . . . < sk < b1 < . . . < bl.
This can be easily seen by induction. It holds in initial configurations, because the stack
is empty and the buffer is ordered, and all of the elementary transitions preserve the
order of the nodes. Note that this lemma implies that a node cannot be in both the stack
and the buffer of the same configuration.

814

Gómez-Rodrı́guez and Nivre Divisible Transition Systems and Multiplanarity

Lemma 2

We will call Π(c) the set of elements that are present either in the stack or in the buffer in
a configuration c. Let C′

0,m = (c′0, c′1, . . . , c′q) be an (elementary) transition sequence under
a divisible transition system S. Then, we have that Π(c′q) ⊆ Π(c′q−1) ⊆ . . . ⊆ Π(c′0) =
{1, . . . , n}. This means that the set Π monotonically decreases in the course of an
(elementary) transition sequence or, in plain language, that a node that is removed from
the stack and buffer can never be placed back there by elementary transitions. This can
be easily seen by observing that the transitions SHIFT, UNSHIFT, LEFT-ARC, and RIGHT-
ARC leave the set Π unchanged, whereas the REDUCE transition removes one element
from it by popping the stack.

Lemma 3

Let E0,m = (e0, e1, . . . , eq) and C′
0,m = (c′0, c′1, . . . , c′q) be an elementary transition chain and

its corresponding elementary transition sequence under a divisible transition system S.
If v �∈ Π(c′i) for some v ∈ [0, n] and i ∈ [0, q], then there exists some j ∈ [0, i] such that
ej = REDUCE and c′j−1 has v on the top of the stack. This amounts to saying that the only
way an element can be removed from the set Π in a divisible system is by a REDUCE
transition, as observed earlier. Thus, whenever a token v is not present in Π(c′i) for a
given configuration c′i , we can assume that it was previously popped by a REDUCE
transition applied to a configuration that had v on the top of the stack.

With these observations, it is easy to show that if a graph generated by a transition
sequence in a divisible transition system S has at least one covered root, then the
transition sequence applies at least one REDUCE transition to a configuration that is
not in Hσ(C). Let G be a dependency graph in which the node j is a root, covered by
an arc connecting the nodes i and k (i < k). If a transition sequence C0,m generates G,
then it must apply a LEFT-ARC or RIGHT-ARC transition to a configuration having i
at the top of the stack and k as the first element in the buffer, which is the only way
of adding the arc involving i and k. By Lemma 1, we know that in that configuration
c, j �∈ Π(c). By Lemma 3, we know that there must thus be a previous application of a
REDUCE transition with j on the top of the stack. Because j is a root, by definition this
configuration is not in Hσ(C), and the proposition is proved. �

Proposition 2

If all the elementary LEFT-ARC transitions in the elementary transition chains under S
are applied to configurations in Hσ(C), and all the RIGHT-ARC elementary transitions
are applied to configurations in Hβ(C), then all the dependency graphs generated by S
obey the SINGLE-HEAD constraint.

Proof

The proof of this proposition is straightforward. Because elementary transitions
either leave the generated dependency graph as it is or add one dependency arc to
it, an elementary transition sequence will generate a graph violating the SINGLE-HEAD
constraint if and only if it contains a LEFT-ARC or RIGHT-ARC transition that adds an
incoming arc to a node that already has a head in the graph. �

Proposition 3

If all the elementary LEFT-ARC and RIGHT-ARC transitions in the elementary transition
chains under S are applied to configurations (σ|i, j|β, A) ∈ C where i and j belong to

815

Computational Linguistics Volume 39, Number 4

different connected components of the undirected graph underlying A, then the un-
directed graphs underlying all the dependency graphs generated by S are acyclic (i.e.,
the dependency graphs generated by S have no undirected cycles). Note that this in turn
implies ACYCLICITY.

Proof

Again, this proposition is straightforward, because a cycle can only be created in
the undirected graph underlying the generated dependency graph if an arc is added
between nodes that are already connected. �

Proposition 4

All dependency graphs generated by a divisible system S are planar.

Proof

To prove this proposition, we observe that a graph is non-planar if and only if it
contains two arcs (i, j) and (k, l) such that min(i, j) < min(k, l) < max(i, j) < max(k, l). We
can show that there is no elementary transition chain that creates such a pair of arcs.

� An elementary transition chain that first adds the arc (i, j) and later the arc
(k, l) must apply a LEFT-ARC or RIGHT-ARC transition to a configuration
having min(i, j) at the top of the stack and max(i, j) as the first element in
the buffer, which is the only way of adding the first arc. By Lemma 1, we
know that in that configuration c, min(k, l) �∈ Π(c); and by Lemma 2, we
know that min(k, l) �∈ Π(c′) for every subsequent configuration c′ in the
sequence. Given that an arc involving min(k, l) and max(k, l) can only be
built from a configuration having min(k, l) in the stack, we conclude that
after adding the arc (i, j) to the arc set, the parser will never be able to
reach a configuration allowing it to add the arc (k, l).

� An elementary transition chain that first adds the arc (k, l) and later the arc
(i, j) is not possible. The reasoning is analogous, but in this case max(i, j)
is the node that gets removed from the set Π when the arc (k, l) is added,
making it impossible to add the arc (i, j) afterwards.

Therefore, divisible systems can only generate planar dependency graphs. �

The properties considered in this section can be used as a tool set for easily proving the
soundness of transition systems with respect to different sets of dependency graphs, as
well as for designing new transition systems. We exemplify the former in Example (9)
and the latter in Section 3.3.

Example 9

Consider the transition set of the arc-eager parser in Example (4), repeated here for
convenience:

SHIFTAE = SHIFT

REDUCEAE = REDUCE Hσ(C)

LEFT-ARCAE = LEFT-ARC Hσ(C); REDUCE

RIGHT-ARCAE = RIGHT-ARC; SHIFT

816

Gómez-Rodrı́guez and Nivre Divisible Transition Systems and Multiplanarity

We can easily conclude the following:
� The algorithm enforces the NO-COVERED-ROOTS constraint by

Proposition 1, because REDUCE transitions are restricted to Hσ(c).
� The algorithm enforces the SINGLE-HEAD constraint by Proposition 2,

because LEFT-ARC elementary transitions are explicitly restricted to Hσ(C)
and RIGHT-ARC transitions are implicitly restricted to Hβ(C). (Trivially,
none of the transitions can produce a configuration outside Hβ(C).)

� The algorithm enforces the ACYCLICITY constraint by Proposition 3,
because by construction none of the transitions can produce a
configuration c where the first node in the buffer is connected to any node
in Π(c).

� The graphs it generates are planar by Proposition 4.
� The algorithm generates only projective dependency graphs, because the

combination of PLANAR, ACYCLICITY, SINGLE-HEAD, and
NO-COVERED-ROOTS implies PROJECTIVE.

3.2.2 Termination and Complexity. In general, there are two ways in which a transition-
based parser may fail to parse a given input sentence. On the one hand, it may terminate
in a non-terminal configuration where no transition can be applied. On the other hand, it
may fail to terminate at all, because the system allows an infinite sequence of transitions.
We say that a system is robust if it can never get stuck in a non-terminal configuration
and bounded if it does not permit infinite loops.

Definition 11
A divisible transition system S = (C, T, cs, Ct) is robust if and only if, for every non-
terminal configuration c ∈ C \ Ct, there is some transition t ∈ T such that t(c) ∈ C.

Definition 12
A divisible transition system S = (C, T, cs, Ct) is bounded if and only if there exists no
non-terminal configuration c ∈ C \ Ct and (non-empty) sequence of transitions t1, . . . tk
(ti ∈ T) such that t1; . . .; tk(c) = c.

In this section, we first provide sufficient conditions for robustness and boundedness
and then go on to discuss the parsing complexity for a subset of divisible systems that
are guaranteed to be robust and bounded.

Proposition 5

Let S = (C, T, cs, Ct) be a divisible transition system. If SHIFT ∈ T, then S is robust.

Proof

It is clear that SHIFT ∈ T is sufficient for robustness, because it applies to every configu-
ration that has a non-empty buffer β, which by definition includes every non-terminal
configuration. �

Thus, in order to guarantee robustness, it is enough that a divisible transition system
includes the elementary SHIFT transition. This is the case for all the divisible systems

817

Computational Linguistics Volume 39, Number 4

exemplified in Section 3.1. Before we go on to characterize bounded systems, it is
convenient to introduce three auxiliary functions that characterize the effect a transition
t has on an arbitrary configuration c:

� A(t) = |At(c)| − |Ac|
� Π(t) = |Π(c)| − |Π(t(c))|
� β(t) = |βc| − |βt(c)|

A(t) is the increase in size of the arc set A, which is always non-negative as there are no
elementary transitions that remove arcs. Π(t) is the decrease in size of the set of nodes
that are on the stack σ or in the buffer β, which is also non-negative as there are no
elementary transitions that add new nodes. β(t) is the decrease in the size of the buffer
β, which can be negative as well as positive (or zero).

Proposition 6

Let S = (C, T, cs, Ct) be a divisible transition system. If every transition t ∈ T is such that
A(t) > 0 or Π(t) > 0 or β(t) > 0, then S is bounded.

Proof

To see why the disjunctive condition excludes looping transition sequences, consider
an arbitrary configuration c and an arbitrary transition t for which the condition holds.
If A(t) > 0 or Π(t) > 0, then c is clearly not reachable from t(c), because there are no
transitions that delete arcs (first case) or insert nodes (second case). If A(t) = 0 and
Π(t) = 0, then β(t) > 0 and c could be reachable from t(c) only if there is a transition
t′ such that β(t′) < 0 (that is, a transition that puts nodes back in the buffer). But any
such transition t′ would have to have either A(t) > 0 or Π(t) > 0, which would again
rule out the possibility of a loop. We may therefore conclude that there is no sequence
of transitions t1, . . . , t2 such that t1; . . .; tk(c) = c and, hence, that S is bounded. �

Example 10

The condition of Proposition 6 does not hold for the elementary transition system,
because A(UNSHIFT) = 0, Π(UNSHIFT) = 0, and β(UNSHIFT) = −1. In fact, this system
is not bounded, because we can have an unbounded number of alternating SHIFT and
UNSHIFT transitions without reaching a terminal configuration.

By contrast, the arc-eager system from Examples (4) and (9) is bounded, which can
be seen by observing that β(SHIFTAE) = 1, Π(REDUCEAE) = 1, A(LEFT-ARCAE) = 1, and
A(LEFT-ARCAE) = 1. The same reasoning can be applied to show that all the transition
systems introduced in Examples (3)–(8) are bounded.

As already stated, the running time of a transition-based parser that only explores a
constant number of transition sequences (such as a greedy deterministic parser or a
beam-search parser with a constant-size beam) is given by an upper bound on the length
of a transition sequence. To prove such bounds for divisible transition systems, we will
first prove a linear bound on the number of arcs in planar graphs.

Lemma 4

A planar dependency graph with n nodes (n > 1) has no more than 4n− 6 arcs.

818

Gómez-Rodrı́guez and Nivre Divisible Transition Systems and Multiplanarity

Proof

For n = 2, we can trivially have at most two arcs, (1, 2) and (2, 1), and thus the lemma
holds because 2 = 4 · 2− 6. For the induction step, let n > 2. We will show that if the
lemma holds for graphs with less than n nodes, then it also holds for graphs with n
nodes.

To do so, we first give some preliminary definitions. We will say that the length
of an arc (i, j) is �(i, j) = max(i, j)−min(i, j). We will call the domain of an arc (i, j) the
set δ(i, j) = {min(i, j), min(i, j) + 1, . . . , max(i, j)− 1}. Note that the number of elements
in the domain of an arc equals its length. We will say that an arc (i, j) covers an arc
(k, l) if (i, j) �= (k, l) and min(i, j) ≤ min(k, l) < max(k, l) ≤ max(i, j). Note that an arc (i, j)
covers an arc (k, l) if and only if δ(k, l) ⊂ δ(i, j), and a pair of distinct arcs (i, j) and (k, l)
cross (as defined in Section 2.1) if and only if none of them covers the other and δ(k, l) ∩
δ(i, j) �= ∅. Thus, we conclude that a pair of distinct arcs that do not cross or cover each
other have disjoint domains.

Let G be a planar dependency graph G = (V = {1, . . . , n}, A). Let Ac = {a1, . . . , am}
be the set of arcs in A with length strictly smaller than n− 1, and that are not covered by
any arc in A with length strictly smaller than n− 1. By definition of Ac, we know that

�(ai) < �(1, n) = n− 1 (1)

On the other hand, because G is planar, a pair of arcs in Ac cannot cross each other.
Furthermore, by definition of Ac, an arc in Ac cannot cover another arc in Ac. Therefore,
the domains of a1, . . . , am are disjoint subsets of {1, . . . , n}, and thus

�(a1) + . . .+ �(ai) ≤ �(1, n) = n− 1 (2)

By definition of Ac, every arc in A is either (i) an arc of length at least n− 1 (i.e., (1, n)
or (n, 1)), or (ii) an arc ai ∈ Ac, or (iii) an arc covered by some arc ai ∈ Ac. For each given
i ∈ {1, . . . , m}, the arcs of types (ii) and (iii) form a subgraph of G with �(ai) + 1 nodes.
Because �(ai) + 1 < n, we can apply the induction hypothesis to conclude that there
are at most 4(�(ai) + 1)− 6 arcs of this type for each value of i. Combining this with
Equations (1) and (2), we conclude that the total amount of arcs in A is bounded by

max
a1, . . . , am

s.t. �(ai) < n− 1
and

∑m
i=1 �(ai) ≤ n− 1

2 +
m∑

i=1

[4(�(ai) + 1)− 6]

= 2 + max
a1, . . . , am

s.t. �(ai) < n− 1
and

∑m
i=1 �(ai) ≤ n− 1

(−2m + 4
m∑

i=1

�(ai))

It is easy to see that the expression is maximized for m = 2, and in that case the value
of the expression is bounded by 2− 2 · 2 + 4(n− 1) = 4n− 6. This proves the induction
step and thus concludes the proof of Lemma 4. �

819

Computational Linguistics Volume 39, Number 4

Thanks to the result in Lemma 4, we can now proceed to prove bounds on the length of
transition sequences in divisible systems that are guaranteed to be robust and bounded,
that is, systems that satisfy the conditions of Propositions 5 and 6. We call such systems
efficient divisible transition systems.

Definition 13

A divisible transition system S = (C, T, cs, Ct) is efficient if and only if SHIFT ∈ T and,
for every t ∈ T, A(t) > 0 or Π(t) > 0 or β(t) > 0.

We give three increasingly tight bounds for (i) arbitrary efficient divisible transition
systems, (ii) systems that in addition have a constant bound on the growth of the buffer,
and (iii) systems that have a constant bound on the number of elementary transitions
that a composite transition can contain.

Proposition 7

Let S = (C, T, cs, Ct) be an efficient divisible transition system. Then the length of a
transition sequence for a sentence x of length n in S is O(n2).

Proof

Consider an arbitrary transition sequence C0,m = (cs(x), . . . , cm) in S for a sentence x of
length n and the corresponding transition chain T1,m = (t1, . . . , tm). The following must
hold:

� The number of transitions t in T1,m for which A(t) > 0 is bounded by the
maximum number of arcs in a planar dependency graph, which is 4n− 6
(by Lemma 4).

� The number of transitions t in T1,m for which Π(t) > 0 is according to
Lemma 2 bounded by the number of nodes in the initial configuration
cs(x), which is n.

� The longest contiguous subsequence Ti,k = (ti, . . . , tk) of T1,m such that all
transitions tj ∈ Ti,k have A(t) = 0, Π(t) = 0 and β(t) > 0 is bounded by the
maximum size of the buffer, which again according to Lemma 2 is
bounded by the number n of nodes in the initial configuration cs(c).

Hence, T1,m can contain at most O(n) transitions of the first two types and at most O(n2)
transitions of the third type, because there are at most O(n) transitions that increase the
size of the buffer. �

Proposition 8

Let S = (C, T, cs, Ct) be an efficient divisible transition system such that, for every transi-
tion t ∈ T, β(t) > k for some constant k. Then the length of every transition sequence for
a sentence x of length n in S is O(n).

Proof

This follows from the same kind of considerations as in the proof of Proposition 7
together with the observation that the total number of transitions t for which A(t) = 0,

820

Gómez-Rodrı́guez and Nivre Divisible Transition Systems and Multiplanarity

Π(t) = 0, and β(t) > 0 is now bounded by kn instead of n2, because each of the O(n)
transitions that may increase the size of the buffer can only do so by at most k. �

Proposition 9

Let S = (C, T, cs, Ct) be an efficient divisible transition system such that, for every tran-
sition t = t1 s1

; . . .; tm sm
(t ∈ T, ti ∈ Te), m ≤ k for some constant k. The length of every

elementary transition sequence for a sentence x of length n in S is O(n).

Proof

This follows from Proposition 8 together with the constant bound on the number of
elementary transitions in a composite transition. �

Example 11

All the systems defined in Section 3.1 satisfy the condition of Proposition 8 and therefore
have a linear bound on the length of their transition sequences. In addition, all the
systems except the easy-first parser satisfy the condition of Proposition 9 and there-
fore also have a linear bound on the number of elementary transitions. To see why
this fails for the easy-first parser, note that the number of elementary transitions in
ATTACH-LEFT(i)EF and ATTACH-RIGHT(i)EF depends on i, which can grow with the size
of the sentence. Nevertheless, β(ATTACH-LEFT(i)EF) = β(ATTACH-RIGHT(i)EF) = 1 (for
all values of i), which guarantees the linear bound on composite transitions.

3.3 Planar Dependency Parsing

So far in this section, we have shown how a number of well-known transition systems
from the literature can be formulated and studied as divisible transition systems, that is,
as restrictions of the same generic system based on five elementary transitions. In this
section, we show how this formulation can also be used to define a novel algorithm.
Specifically, we can obtain a transition system that will be able to parse any planar
dependency graph (regardless of projectivity) if we use all elementary transitions except
UNSHIFT directly as the transitions of the system. On top of this system, we can use
Propositions 1–4 to add optional restrictions to the system in order to enforce the
SINGLE-HEAD, ACYCLICITY, and NO-COVERED-ROOTS constraints. In addition, we
can use Propositions 5–9 to show that there is a linear bound on the length of elementary
transition sequences in this system. In this way, we obtain an efficient parser for planar
dependency graphs, optionally restricted to trees, which is a novel contribution in itself.
More importantly, however, we will show in Section 5 how this system can be gener-
alized to a system capable of handling non-planar, hence non-projective, dependency
trees using the concept of multiplanarity (to be introduced in Section 4).

First, we define a planar transition system as the divisible transition system SP
having the following transitions:

SHIFTP = SHIFT

REDUCEP = REDUCE

LEFT-ARCP = LEFT-ARC

RIGHT-ARCP = RIGHT-ARC

821

Computational Linguistics Volume 39, Number 4

3.3.1 Correctness. This transition system can parse all the planar dependency graphs. To
prove its correctness, we must show soundness (all the graphs produced by the system
are planar) and completeness (all the planar graphs can be obtained by the system).
Soundness is trivial given Property 4, so we only need to prove completeness. To do so,
we prove the stronger claim in Lemma 5.

Lemma 5

Let G = (V, A) be a planar dependency graph for a sentence w1 . . .wn. Then there is a
transition sequence in SP ending in a terminal configuration of the form (σ, [], A) such
that all the nodes that are not covered by any dependency arc in A are in σ.

Proof

To prove this lemma, we proceed by induction on the length n of the sentence. In the
case where n = 1, the only possible planar dependency graph is the graph G0 = ({1},∅)
with a single node and no arcs. It is easy to see that the transition sequence that applies
a single SHIFT transition meets the required conditions, because it ends in a terminal
configuration ([1], [],∅).

For the induction step, we assume that the lemma holds for sentences of length n
and prove that it then also holds for sentences of length n + 1, for any n ≥ 1. Let Gn+1 =
(Vn+1, An+1) be a planar dependency graph for a sentence w1 . . .wn+1. We denote by
Ln+1 the set of arcs

Ln+1 = {(n + 1, i) ∈ An+1} ∪ {(j, n + 1) ∈ An+1}

that is, the set of incoming and outgoing arcs from the node n + 1 in Gn+1, and we
denote by Gn the graph

Gn = (Vn = Vn+1 \ {n + 1} , An = An+1 \ Ln+1)

that is, the graph obtained by removing the node n + 1 and all its incoming and out-
going arcs from Gn+1. By the induction hypothesis, there exists a transition sequence Cn
whose final configuration is of the form (σn, [], An), such that σn contains all the nodes
that are not covered by any dependency arc in An. From this transition sequence Cn, we
will obtain a transition sequence Cn+1 meeting the conditions asserted by the lemma for
the graph Gn+1. To do so, we first observe that the planarity of the graph Gn+1 implies
that the left endpoints of the arcs in Ln+1 cannot be covered by any arc in An, because
this would mean that the arc in Ln+1 and the covering arc would cross. Therefore, by
the induction hypothesis, we know that all the left endpoints of the arcs in Ln+1 are in
σn. Thus, if the left endpoints of the arcs in Ln+1 are i1, i2, . . . , ie; then the stack σn (which
is ordered, by Lemma 1) is of the form

σn = [s1, . . . , sz1 = i1, . . . , sz2 = i2, . . . , sze = ie, . . . , sm]

With this in mind, we can obtain the transition sequence Cn+1 from Cn by adding the
following extra transitions at the end of its associated transition chain:

REDUCEm−ze ; arcs(ie); REDUCEze−ze−1 ; arcs(ie−1); . . . ; REDUCEz2−z1 ; arcs(i1); SHIFT

822

Gómez-Rodrı́guez and Nivre Divisible Transition Systems and Multiplanarity

where we use the notation arcs(i) as shorthand for:

� LEFT-ARC, if (n + 1, i) ∈ Ln+1 ∧ (i, n + 1) �∈ Ln+1,
� RIGHT-ARC, if (n + 1, i) �∈ Ln+1 ∧ (i, n + 1) ∈ Ln+1,
� LEFT-ARC; RIGHT-ARC, if (n + 1, i) ∈ Ln+1 ∧ (i, n + 1) ∈ Ln+1.

The final configuration of the transition sequence obtained by applying these transitions
at the end of Cn is of the form (σ,β, A), where:

� β = []; since the nodes 1, . . . , n are removed from the buffer by Cn, and
n + 1 is removed by the extra SHIFT transition,

� A = An+1, because An+1 = An ∪ Ln+1, the arcs in An are added to the set by
Cn, and all the arcs in Ln+1 are added by arcs(ie), . . . , arcs(i1),

� All the nodes that are not covered by arcs in An+1 are in σ, because they
were in σn (a node not covered by arcs in An+1 is trivially not covered by
arcs in An) and the REDUCE transitions applied after Cn only remove nodes
to the right of i1, which are covered by the arc (n + 1, i1) or (i1, n + 1).6

This proves the induction step for Lemma 5, and thus correctness is proved. �

3.3.2 Constraints on Planar Dependency Parsing. As we have just proved, the transition
system SP is able to parse all planar dependency graphs. In many practical applications,
however, it is convenient to exclude some subset of those graphs, for example, those
that have cycles or more than one head per node. The results obtained in Section 3.2
can be used to easily add common constraints to the planar parser. The constraints can
be added individually or jointly, so that we can obtain a variant of the planar parser
with the SINGLE-HEAD, ACYCLICITY, and NO-COVERED-ROOTS constraint, or with any
combination of them.

Single-Head Constraint. To add the SINGLE-HEAD constraint to the SP transition
system, we restrict the LEFT-ARCP transition to Hσ(C), and the RIGHT-ARCP transition
to Hβ(C):

LEFT-ARCP−Sh = LEFT-ARC Hσ(C)

RIGHT-ARCP−Sh = RIGHT-ARC Hβ(C)

The soundness of this variant for the set of planar dependency graphs that meet
the SINGLE-HEAD constraint is trivially given by Proposition 2. Completeness is also
straightforward, because, as discussed in Proposition 2, applying a LEFT-ARC transition
to a configuration of Hσ(C) or a RIGHT-ARC transition to a configuration of Hβ(C) will
always generate a graph violating the SINGLE-HEAD constraint. Therefore, any graph
that meets the SINGLE-HEAD constraint and can be obtained using the SP transition
system (which has been proven complete) can also be generated by this one.

6 This assumes that at least one arc was created to or from node n + 1 (i.e., that e > 0). In the case where
e = 0, it is trivial to show that all nodes not covered by arcs in Gn+1 are in σ, because in that case no
REDUCE transitions are applied at all after Cn.

823

Computational Linguistics Volume 39, Number 4

Acyclicity Constraint. Analogously to the case for the SINGLE-HEAD constraint, we can
add the ACYCLICITY constraint to the SP transition system by applying Proposition 3.
To do so, we restrict the LEFT-ARCP and RIGHT-ARCP transitions as follows:

LEFT-ARCP−Ac = LEFT-ARC {(σ|i,j|β,A)∈C|¬(i↔∗j∈A)}
RIGHT-ARCP−Ac = RIGHT-ARC {(σ|i,j|β,A)∈C|¬(i↔∗j∈A)}

The soundness of this variant for the set of acyclic planar dependency graphs is trivially
implied by Proposition 3. This variant is not complete for acyclic planar dependency
graphs, because it actually enforces a stronger variant of ACYCLICITY, namely, it will
only accept dependency graphs that have no undirected cycles. We can combine this
acyclicity check with the SINGLE-HEAD constraint by intersecting the restrictions:

LEFT-ARCP−ShAc = LEFT-ARC Hσ(C)∩{(σ|i,j|β,A)∈C|¬(i↔∗j∈A)}
RIGHT-ARCP−ShAc = RIGHT-ARC Hβ(C)∩{(σ|i,j|β,A)∈C|¬(i↔∗j∈A)}

We then obtain a parser that is sound and complete for the set of planar dependency
graphs that meet the SINGLE-HEAD and ACYCLICITY constraints. The reason is that,
under the SINGLE-HEAD constraint, standard ACYCLICITY and undirected acyclicity
are equivalent, because every undirected cycle is also a directed cycle. If we need a
parser that enforces only directed ACYCLICITY but allows nodes with multiple heads,
this can also be achieved. Instead of checking ¬(i↔∗ j ∈ A), the restrictions must check
that the arc does not create a directed cycle (that is, ¬(i→∗ j ∈ A) for LEFT-ARC and
¬(j→∗ i ∈ A) for RIGHT-ARC). Although the check for undirected cycles can be im-
plemented in constant time if the parser implementation keeps track of the connected
component of each node in A, the check for directed cycles is more computationally
costly, however.7

No-Covered-Roots Constraint. Similarly to the other constraints, we can add the NO-
COVERED-ROOTS constraint to SP by applying Proposition 1. To do so, we restrict the
REDUCEP transition as follows:

REDUCEP−Nc = REDUCE Hσ(C)

The soundness of the resulting parser with respect to planar dependency graphs com-
plying with the NO-COVERED-ROOTS constraint is directly given by Proposition 1. To
prove completeness, we observe that the transition sequences that we build for each
graph in the proof of Lemma 5 only reduce nodes that are then covered by an arc. There-
fore, given a graph G that satisfies the NO-COVERED-ROOTS constraint, we know that
the transition sequence built as in that proof will never reduce a root node. Therefore,
all of its REDUCE transitions will be applied to configurations in Hσ(C) and, hence, that
same transition sequence will also parse G in this variant of the transition system, which
proves completeness. The NO-COVERED-ROOTS restriction can be combined with any
combination of the other two restrictions. Note that the result of applying the NO-
COVERED-ROOTS restriction alone is equivalent to the arc-eager parser by Sagae and

7 Strictly speaking, for undirected cycles using the techniques of path compression and union by rank for
disjoint sets, the amortized time per operation is O(α(n)), where n is the number of nodes and α(n) is the
inverse of the Ackermann function, which means that α(n) is less than 5 for all remotely practical values
of n and is effectively a small constant (Cormen, Leiserson, and Rivest 1990).

824

Gómez-Rodrı́guez and Nivre Divisible Transition Systems and Multiplanarity

Tsujii (2008). If the SINGLE-HEAD, ACYCLICITY, and NO-COVERED-ROOTS restrictions
are applied at the same time, together with the PLANAR constraint that is implicit in
the algorithm itself, we obtain a projective parser different from the projective parsers
described in Section 3.1.

3.3.3 Complexity of Planar Dependency Parsing. To study the runtime complexity of the
planar parser, it suffices to observe that the planar transition system in any of its variants
(with or without constraints) satisfies the following:

� It is efficient, by Definition 13, because it contains the elementary SHIFT
transition and β(SHIFTP) = 1, Π(REDUCEP) = 1, A(LEFT-ARCP) = 1,
and A(RIGHT-ARCP) = 1. This implies that the system is robust
(by Proposition 5) and bounded (by Proposition 6).

� The length of every transition sequence in the planar parser is O(n)
(by Proposition 8) and the same holds for elementary transition
sequences (by Proposition 9).

We also note that each transition in any of the variants of the planar parser can be
executed in constant time, because their execution only requires us to keep track of a
constant number of nodes at the top of the stack and at the beginning of the buffer. The
exception is the check for ACYCLICITY if this restriction is required. As explained in
Section 3.3.2, however, this can be implemented in constant time if the SINGLE-HEAD
constraint is present by keeping track of the undirected connected component of each
node in the generated dependency graph. Therefore, as explained in Section 2.3, the
complexity of the planar parser with beam search is O(n), both for the unrestricted ver-
sion and for the variant that enforces the SINGLE-HEAD and ACYCLICITY constraints.

3.4 Beyond Planarity

Although the divisible transition system framework introduced in Section 3 can be used
to represent and study a wide range of parsers, we have seen by Proposition 4 that it is
limited to parsers that generate planar dependency graphs. As already noted, planarity
is a very mild relaxation of the better known projectivity constraint, the only difference
being that planarity allows graphs with covered roots (see Definition 2), and studies of
natural language treebanks have shown the vast majority of non-projective structures to
be non-planar as well (Kuhlmann and Nivre 2006; Havelka 2007).8 Therefore, being able
to parse planar dependency graphs only provides a modest improvement in practical
coverage with respect to projective parsing. To increase this coverage further, we need
to be able to handle dependency graphs with crossing arcs.

To be able to build such graphs, several stack-based transition systems have been
proposed in the literature that introduce extra flexibility by allowing actions that fall
outside the divisible transition system framework, like the systems by Attardi (2006)
and Nivre (2009) shown at the end of Section 3.1. Because these parsers use diverse
strategies to support different subsets of non-planar structures—allowing arcs to be
built to or from nodes deep in the stack in the case of Attardi (2006), adding transitions
able to reorder stack nodes in the case of (Nivre 2009)—it seems unlikely that a simple

8 This is true in particular if dependency graphs are restricted to trees that have their roots at the
periphery, as in Figure 1, in which case the two notions become equivalent.

825

Computational Linguistics Volume 39, Number 4

extension of the framework can encompass all of them in a natural way. We can, how-
ever, extend the framework individually for each approach by adding the respective
new transitions as elementary transitions, but the details and properties of each of these
extensions fall outside the scope of this article.

Instead, in the next sections we will focus on introducing a different extension
of the framework that is achieved by adding additional stacks, giving support to a
generalization of the planar transition system described in Section 3.3 that can parse
a large set of non-planar graphs.

4. Multiplanar Dependency Graphs

Because it has been shown that exact parsing becomes computationally intractable
when arbitrary non-projective dependency graphs are allowed (McDonald and Satta
2007), a substantial amount of research in recent years has been devoted to finding a
superset of projective dependency graphs that is rich enough to cover the non-projective
phenomena found in natural language and restricted enough to allow for simple and
efficient parsing, that is, a suitable set of mildly non-projective dependency structures.
To this end, different sets of dependency trees have been proposed, such as trees with
bounded arc degree (Nivre 2006a, 2007), well-nested trees with bounded gap degree
(Kuhlmann and Nivre 2006; Kuhlmann and Möhl 2007), mildly ill-nested trees with
bounded gap degree (Gómez-Rodrı́guez, Weir, and Carroll 2009), or the operationally
defined set of trees parsed by the transition system of Attardi (2006).

In the same vein, a straightforward way to relax the planarity constraint to obtain
richer sets of non-projective dependency graphs is the notion of multiplanarity, or
k-planarity, originally introduced by Yli-Jyrä (2003). Quite simply, a dependency graph
is said to be k-planar if it can be decomposed into k planar dependency graphs.

Definition 14

A dependency graph G = (V, A) is kkk-planar if there exist planar dependency graphs
G1 = (V, A1), . . . , Gk = (V, Ak) (called planes) such that A = A1 ∪ · · · ∪ Ak.

Intuitively, we can associate planes with colors and say that a dependency graph G
is k-planar if it is possible to assign one of k colors to each of its arcs in such a way
that arcs with the same color do not cross. Note that there may be multiple ways of
dividing a k-planar graph into planes, as shown in the example of Figure 4. Therefore,

Figure 4
A 2-planar dependency structure with two different ways of distributing its arcs into two planes
(represented by solid and dotted lines).

826

Gómez-Rodrı́guez and Nivre Divisible Transition Systems and Multiplanarity

1-planarity is equivalent to planarity, and increasing values of k yield increasingly rich
sets of dependency graphs.

The notion of k-planarity has so far played a marginal role in the dependency
parsing literature, because little was known about the properties of these structures.
No algorithm was known to determine whether a given graph was k-planar, and no
efficient parsing algorithm existed for k-planar dependency structures. In this article,
we overcome these problems. In the remainder of this section, we present a procedure
to determine the minimum value of k for which a given structure is k-planar, and we
use it to show that the overwhelming majority of sentences in a number of dependency
treebanks have a tree that is at most 2-planar. In Section 5, we then show how the
1-planar dependency parser described in Section 3.3 can be generalized to handle
k-planar dependency graphs by introducing additional stacks. In particular, we present
a linear-time transition-based parser that is provably correct for 2-planar dependency
trees.9

4.1 Test for Multiplanarity

In order for a constraint on non-projective dependency structures to be useful for
practical parsing, it must provide a good balance between parsing efficiency and cover-
age of non-projective phenomena present in natural language treebanks. For example,
Kuhlmann and Nivre (2006) and Havelka (2007) have shown that the vast majority
of structures present in existing treebanks are well-nested and have a small gap de-
gree (Bodirsky, Kuhlmann, and Möhl 2005), leading to an interest in parsers for these
kinds of structures (Gómez-Rodrı́guez, Weir, and Carroll 2009; Kuhlmann and Satta
2009). No similar analysis has been performed for k-planar structures, however. Yli-Jyrä
(2003) does provide evidence that all except two structures in the Danish Dependency
Treebank (Kromann 2003) are at most 3-planar, but his analysis is based on con-
straints that restrict the possible ways of assigning planes to dependency arcs, and
he is not guaranteed to find the minimal number k for which a given structure is
k-planar.

Here we provide a procedure for finding the minimal natural number k such that a
dependency graph is k-planar and use it to show that the vast majority of sentences in
a number of dependency treebanks are at most 2-planar, with a coverage comparable
to that of well-nestedness. The idea is to reduce the problem of determining whether
a dependency graph G = (V, A) is k-planar, for a given value of k, to a standard graph
coloring problem. To do this, we first consider the following undirected graph:

U(G) = (A, C) where C = {{ei, ej} | ei, ej are crossing arcs in G}

Note that we can formally say that two arcs (i, j) and (k, l) in a dependency graph G
such that i < k are crossing arcs if and only if min(i, j) < min(k, l) < max(i, j) < max(k, l).
These are the pairs of arcs that were forbidden in the planarity constraint introduced
in Definition 2. The graph U(G), which we call the crossings graph of G, has one node
corresponding to each arc in the dependency graph G, with an undirected edge between

9 The test for multiplanarity and the 2-planar parser have previously been described in Gómez-Rodrı́guez
and Nivre (2010).

827

Computational Linguistics Volume 39, Number 4

Figure 5
The crossings graph corresponding to the dependency structure of Figure 4.

two nodes if they correspond to crossing arcs in G. Figure 5 shows the crossings graph
of the 2-planar structure in Figure 4.

As noted earlier, a dependency graph G is k-planar if each of its arcs can be assigned
one of k colors in such a way that two arcs that cross each other are not assigned the
same color. In terms of the crossings graph, because each arc in G corresponds to a
node in U(G) and each pair of crossing arcs in G corresponds to an edge in U(G), this is
equivalent to saying that G is k-planar if each of the nodes of U(G) can be assigned one
of k colors such that no two neighbors have the same color. This amounts to solving the
well-known k-coloring problem for U(G).

For k = 1 the problem is trivial: A graph is 1-colorable only if it has no edges. This
corresponds to a dependency graph being planar only if it does not have crossing arcs.
For k = 2, the problem is equivalent to determining whether the graph is bipartite, and
it can be solved in time linear in the size of the graph by simple breadth-first search.
Given any undirected graph U = (V, E), we pick an arbitrary node v and give it one of
two colors. This forces us to give the other color to all its neighbors, the first color to
the neighbors’ neighbors, and so on. This process continues until we have processed
all the nodes in the connected component of v. If this has resulted in assigning two
different colors to the same node, the graph is not 2-colorable. Otherwise, we have
obtained a 2-coloring of the connected component of U that contains v. If there are still
unprocessed nodes, we repeat the process by arbitrarily selecting one of them, continue
with the rest of the connected components, and in this way obtain a 2-coloring of the
whole graph if it exists. Because this process can be completed by visiting each node
and edge of the graph U once, its complexity is O(V + E). The crossings graph of a de-
pendency graph with n nodes can trivially be built in time O(n2) by checking each pair
of dependency arcs to determine if they cross, and cannot contain more than n2 edges,
meaning that we can check if the dependency graph for a sentence of length n is 2-planar
in O(n2) time.

For k > 2, the k-coloring problem is known to be NP-complete (Karp 1972).10 We
have found this not to be a problem in practice when using it to measure multiplanarity
in natural language treebanks, because the effective problem size can be reduced by
noting that each connected component of the crossings graph can be treated separately,
and that nodes that are not part of a cycle need not be considered. If we have a valid
coloring for all the cycles in the graph, the rest of the nodes can be safely colored
by breadth-first search as in the k = 2 case. Given that non-projective sentences in
natural language tend to have a small proportion of non-projective arcs, the connected
components of their crossings graphs tend to be very small and with few cycles, and
k-colorings for them can quickly be found by brute-force search.

10 Note that this does not necessarily imply that the problem of determining whether a graph is k-planar is
also NP-complete, because there might be polynomial algorithms that solve it without involving a
reduction to the k-coloring problem.

828

Gómez-Rodrı́guez and Nivre Divisible Transition Systems and Multiplanarity

4.2 Treebank Coverage

To find out the prevalence of k-planar trees in natural language treebanks for various
values of k, we applied the technique described in the previous section to all the trees
in the training set for eight languages in the CoNLL-X shared task on dependency
parsing (Buchholz and Marsi 2006): Arabic (Hajič et al. 2004), Czech (Hajič et al. 2006),
Danish (Kromann 2003), Dutch (Van der Beek et al. 2002), German (Brants et al. 2002),
Portuguese (Afonso et al. 2002), Swedish (Nilsson, Hall, and Nivre 2005), and Turkish
(Atalay, Oflazer, and Say 2003; Oflazer et al. 2003). The results are shown in Table 1.

As we can see, the coverage provided by the 2-planarity constraint is comparable
to that of well-nestedness. In most of the treebanks, well over 99% of the sentences are
2-planar, and 3-planarity has almost total coverage. In comparison to well-nestedness,
it is worth noting that no efficient parser has been proposed that is able to handle all
well-nested dependency trees, only well-nested trees with bounded gap degree, which
reduces coverage (Kuhlmann and Möhl 2007; Gómez-Rodrı́guez, Carroll, and Weir
2011). As will be seen in the next section, the class of 2-planar dependency trees not
only has good coverage of linguistic structures in existing treebanks but is also parsable
with a linear-time transition-based parser, making it a theoretically as well as practically
interesting subclass of non-projective dependency trees.

5. Multiplanar Dependency Parsing

The divisible transition system framework introduced in Section 3 can be generalized
to support k-planar dependency graphs by using k stacks instead of only one and
applying the SHIFT and UNSHIFT elementary transitions to all of them at the same
time, whereas REDUCE, LEFT-ARC, and RIGHT-ARC only affect one stack at a time. The
stack on which these latter transitions are applied is decided by an extra elementary
transition, called SWITCH, which cycles through the k stacks selecting one of them as the
active stack.

This generalization has the property that the set of arcs created in the context of each
individual stack will be planar, but pairs of arcs created in different stacks are allowed
to cross. In this way, a k-stack parser will be able to build a k-planar dependency forest
by using each of the stacks to construct one of its k planes.

Although the general case of k-planar dependency parsing is interesting as a theo-
retical construction, we will limit ourselves in this article to the 2-planar case and show

Table 1
Proportion of dependency trees classified by projectivity, planarity, k-planarity, and
ill-nestedness in a sample of treebanks.

Language Trees Non-Projective Not Planar Not 2-Pl. Not 3-Pl. Not 4-Pl. Ill-nested

Arabic 2,995 205 (6.84%) 158 (5.28%) 0 (0.00%) 0 (0.00%) 0 (0.00%) 1 (0.03%)
Czech 87,889 20,353 (23.16%) 16,660 (18.96%) 82 (0.09%) 0 (0.00%) 0 (0.00%) 96 (0.11%)
Danish 5,512 853 (15.48%) 827 (15.00%) 1 (0.02%) 1 (0.02%) 0 (0.00%) 6 (0.11%)
Dutch 13,349 4,865 (36.44%) 4,115 (30.83%) 162 (1.21%) 1 (0.01%) 0 (0.00%) 15 (0.11%)
German 39,573 10,927 (27.61%) 10,908 (27.56%) 671 (1.70%) 0 (0.00%) 0 (0.00%) 419 (1.06%)
Portuguese 9,071 1,718 (18.94%) 1,713 (18.88%) 8 (0.09%) 0 (0.00%) 0 (0.00%) 7 (0.08%)
Swedish 6,159 293 (4.76%) 280 (4.55%) 5 (0.08%) 0 (0.00%) 0 (0.00%) 14 (0.23%)
Turkish 5,510 657 (11.92%) 657 (11.92%) 10 (0.18%) 0 (0.00%) 0 (0.00%) 20 (0.36%)

829

Computational Linguistics Volume 39, Number 4

how a system built by generalizing the planar parser defined in Section 3.3 to use two
stacks instead of one can yield an efficient parser for 2-planar dependency graphs, in
particular 2-planar trees. As we saw in Section 4.2, this class of structures gives almost
perfect coverage in existing treebanks, and we will therefore leave the exploration of
k-planar dependency parsing for k higher than 2 as future work.

Note that, because we are only interested in defining a single transition system
using the multi-stack generalization of the divisible transition system framework, we
will introduce the system directly as a generalization of the planar transition system,
rather than showing the step-by-step details of how the general framework is first
extended to multiple stacks (as outlined earlier) and then defining the new system on
top of the extended framework.

5.1 2-Planar Dependency Parsing

The 2-planar transition system S2P has configurations of the form (σ1,σ2, B, A), where
we call σ1 the active stack and σ2 the inactive stack. Because the system uses two stacks
rather than one, it does not conform to the standard definition of a stack-based transition
system given in Section 2.2, but it behaves analogously. In this case, the initialization
function is cs(w1, . . . , wn) = ([], [], [1, . . . , n],∅) and the set of terminal configurations
is Ct = {c | c = (σ1,σ2, [], A) for any σ1, σ2, A}. The transitions of this system are the
following:

SHIFT2P = (σ1,σ2, i|B, A)⇒ (σ1|i,σ2|i, B, A)

REDUCE2P = (σ1|i,σ2, B, A)⇒ (σ1,σ2, B, A)

LEFT-ARC2P = (σ1|i,σ2, j|B, A)⇒ (σ1|i,σ2, j|B, A ∪ {(j, i)})
RIGHT-ARC2P = (σ1|i,σ2, j|B, A)⇒ (σ1|i,σ2, j|B, A ∪ {(i, j)})
SWITCH2P = (σ1,σ2, B, A)⇒ (σ2,σ1, B, A)

The SHIFT2P transition pops the first (leftmost) word in the buffer, and pushes it to both
stacks. The LEFT-ARC2P transition adds an arc from the first word in the buffer to the
top of the active stack. The RIGHT-ARC2P transition adds an arc from the top of the active
stack to the first word in the buffer. The REDUCE2P transition pops the top word from
the active stack, implying that we have added all arcs to or from it on the plane tied
to that stack. The SWITCH2P transition, finally, makes the active stack inactive and vice
versa, changing the plane the parser is working with. In order to exemplify how this
system can parse non-planar dependency graphs, Figure 6 shows a transition sequence
for the tree in Figure 1.

5.1.1 Correctness of 2-Planar Dependency Parsing. To show that this transition system is
correct for the set of 2-planar dependency graphs, we need to prove that it is sound
(every graph produced by the system is 2-planar) and complete (all 2-planar graphs can
be derived from the system). We do this by proving two corresponding lemmas, the
second of which is a stronger claim than mere completeness.

Lemma 6

The system S2P is sound for the set of 2-planar dependency graphs.

830

Gómez-Rodrı́guez and Nivre Divisible Transition Systems and Multiplanarity

([], [], [1, . . . , 9], ∅)
SHIFT ⇒ ([1], [1], [2, . . . , 9], ∅)
SHIFT ⇒ ([1, 2], [1, 2], [3, . . . , 9], ∅)

RIGHT-ARC ⇒ ([1, 2], [1, 2], [3, . . . , 9], A1 = {(2, 3)})
SHIFT ⇒ ([1, 2, 3], [1, 2, 3], [4, . . . , 9], A1)

REDUCE ⇒ ([1, 2], [1, 2, 3], [4, . . . , 9], A1)
REDUCE ⇒ ([1], [1, 2, 3], [4, . . . , 9], A1)

RIGHT-ARC ⇒ ([1], [1, 2, 3], [4, . . . , 9], A2 = A1 ∪ {(1, 4)})
SHIFT ⇒ ([1, 4], [1, . . . , 4], [5, . . . , 9], A2)
SHIFT ⇒ ([1, 4, 5], [1, . . . , 5], [6, . . . , 9], A2)

LEFT-ARC ⇒ ([1, 4, 5], [1, . . . , 5], [6, . . . , 9], A3 = A2 ∪ {(6, 5)})
REDUCE ⇒ ([1, 4], [1, . . . , 5], [6, . . . , 9], A3)

RIGHT-ARC ⇒ ([1, 4], [1, . . . , 5], [6, . . . , 9], A4 = A3 ∪ {(4, 6)})
SWITCH ⇒ ([1, . . . , 5], [1, 4], [6, . . . , 9], A4)
REDUCE ⇒ ([1, . . . , 4], [1, 4], [6, . . . , 9], A4)
REDUCE ⇒ ([1, 2, 3], [1, 4], [6, . . . , 9], A4)
REDUCE ⇒ ([1, 2], [1, 4], [6, . . . , 9], A4)

LEFT-ARC ⇒ ([1, 2], [1, 4], [6, . . . , 9], A5 = A4 ∪ {(6, 2)})
SHIFT ⇒ ([1, 2, 6], [1, 4, 6], [7, 8, 9], A5)

SWITCH ⇒ ([1, 4, 6], [1, 2, 6], [7, 8, 9], A5)
REDUCE ⇒ ([1, 4], [1, 2, 6], [7, 8, 9], A5)

RIGHT-ARC ⇒ ([1, 4], [1, 2, 6], [7, 8, 9], A6 = A5 ∪ {(4, 7)})
SHIFT ⇒ ([1, 4, 7], [1, . . . , 7], [8, 9], A6)

RIGHT-ARC ⇒ ([1, 4, 7], [1, . . . , 7], [8, 9], A7 = A6 ∪ {(7, 8)})
SHIFT ⇒ ([1, 4, 7, 8], [1, . . . , 8], [9], A7)

REDUCE ⇒ ([1, 4, 7], [1, . . . , 8], [9], A7)
REDUCE ⇒ ([1, 4], [1, . . . , 8], [9], A7)
REDUCE ⇒ ([1], [1, . . . , 8], [9], A7)

RIGHT-ARC ⇒ ([1], [1, . . . , 8], [9], A8 = A7 ∪ {(1, 9)})
SHIFT ⇒ ([1, 9], [1, . . . , 9], [], A8)

Figure 6
2-planar transition sequence for the (unlabeled) dependency graph in Figure 1.

Proof

This lemma is proven by showing that the algorithm cannot create a pair of crossing
arcs on the same stack. This is done by applying the proof of Proposition 4 separately
to each of the two stacks of the 2-planar system (or, alternatively, by observing that
the transition system resulting from ignoring one of the stacks in the 2-planar system
is divisible). This implies that, given each of the two stacks, the subgraph formed
by the arcs created by a transition sequence in configurations where that stack was
active is planar, which trivially implies that the graph generated by the sequence is
2-planar. �

Lemma 7

Let G = (V, A) be a 2-planar dependency graph for a sentence w1 . . .wn, with planes P1
and P2. Then there is a transition sequence in S2P ending in a terminal configuration of
the form (σ1,σ2, [], A) such that all the nodes that are not covered by any dependency
arc in P1 are in σ1, and all the nodes that are not covered by any dependency arc in P2
are in σ2.

831

Computational Linguistics Volume 39, Number 4

Proof

The proof is analogous to that of the planar parser, but we have to handle two stacks
and two planes. As in the planar case, we proceed by induction on the length n of the
sentence. In the case where n = 1, the only possible 2-planar dependency graph is the
graph G0 = ({1},∅) with a single node and no arcs, and the transition sequence that
applies a single SHIFT transition meets the conditions of the lemma, because it ends in
a terminal configuration ([1], [1], [],∅).

For the induction step, we assume that the lemma holds for sentences of length
n and prove that it also holds for sentences of length n + 1, for any n ≥ 0. Let
Gn+1 = (Vn+1, An+1) be a 2-planar dependency graph for a sentence w1 . . .wn+1,
with planes P1

n+1 = (Vn+1, A1
n+1) and P2

n+1 = (Vn+1, A2
n+1). We denote by Ln+1 the set

of arcs

Ln+1 = {(n + 1, i) ∈ An+1} ∪ {(j, n + 1) ∈ An+1}

that is, the set of incoming and outgoing arcs from the node n + 1 in Gn+1, and we
denote by Gn the graph

Gn = (Vn = Vn+1 \ {n + 1} , An = An+1 \ Ln+1)

that is, the graph obtained by removing the node n + 1 and all its incoming and out-
going arcs from Gn+1. It is easy to show that the graphs P1

n = (Vn, A1
n+1 \ Ln+1) and

P2
n = (Vn, A2

n+1 \ Ln+1) are planes of Gn. They are planar graphs (being subgraphs of
P1

n+1 and P2
n+1, which are planar) and the union of their arc set is An+1 \ Ln+1 = An

(because A1
n+1 ∪ A2

n+1 = An+1, as P1
n+1 and P2

n+1 are planes of Gn+1).
By the induction hypothesis, there exists a transition sequence Cn whose final

configuration is of the form (σ1
n,σ2

n, [], An), such that σb
n contains all the nodes that are

not covered by any dependency arc in Pb
n, for b = 1, 2. From this transition sequence Cn,

we will obtain a transition sequence Cn+1 meeting the conditions asserted by the lemma
for the graph Gn+1.

To do so, we first observe that for b = 1, 2, the planarity of the graph Pb
n+1 implies

that the left endpoints of the arcs in Ab
n+1 cannot be covered by any arc in Pb

n, because
this would mean that the arc in Ab

n+1 and the covering arc would cross. Therefore,
by the induction hypothesis, we know that all the left endpoints of the arcs in Ab

n+1
are in σb

n. Thus, if the left endpoints of the arcs in A1
n+1 are i1, i2, . . . , ie and those

of the arcs in A2
n+1 are j1, j2, . . . , jf ; then the stack σ1

n (which is ordered, because the
same reasoning as in Lemma 1 can be applied to the 2-planar transition system) is of
the form

σ1
n = [s1, . . . , sz1 = i1, . . . , sz2 = i2, . . . , sze = ie, . . . , sm]

and the stack σ2
n is of the form

σ2
n = [t1, . . . , ty1 = j1, . . . , ty2 = j2, . . . , tyf

= jf , . . . , tq]

832

Gómez-Rodrı́guez and Nivre Divisible Transition Systems and Multiplanarity

With this in mind, we can obtain the transition sequence Cn+1 from Cn by adding the
following extra transitions at the end of its associated transition chain:

REDUCEm−ze ; arcs(ie); REDUCEze−ze−1 ; arcs(ie−1); . . . ; REDUCEz2−z1 ; arcs(i1); SWITCH;
REDUCEq−yf ; arcs(jf); REDUCEyf−yf−1 ; arcs(jf−1); . . . ; REDUCEy2−y1 ; arcs(j1); SHIFT;
SWITCH

where we use the notation arcs(i) as shorthand for:

� LEFT-ARC, if (n + 1, i) ∈ Ln+1 ∧ (i, n + 1) �∈ Ln+1,
� RIGHT-ARC, if (n + 1, i) �∈ Ln+1 ∧ (i, n + 1) ∈ Ln+1,
� LEFT-ARC; RIGHT-ARC, if (n + 1, i) ∈ Ln+1 ∧ (i, n + 1) ∈ Ln+1.

The final configuration of the transition sequence obtained by applying these transitions
at the end of Cn is of the form (σ1,σ2,β, A), where:

� β = [], because the nodes 1, . . . , n are removed from the buffer by Cn,
and n + 1 is removed by the extra SHIFT transition;

� A = An+1, because the arcs in An are added to the set by Cn, and all the
arcs in Ln+1 are added by arcs(ie), . . . , arcs(i1), arcs(jf), . . . , arcs(j1);

� all the nodes that are not covered by arcs in Pb
n+1 are in σb, for b = 1, 2,

because they were in σb
n (a node not covered by arcs in Pb

n+1 is trivially not
covered by arcs in Pb

n) and the REDUCE transitions applied after Cn only
remove nodes to the right of i1 from the first stack, which are covered by
the arc (n + 1, i1) or (i1, n + 1), and from the right of j1 from the second
stack, which are covered by the arc (n + 1, j1) or (j1, n + 1).11

This proves the induction step for Lemma 7. �

Proposition 10

The system S2P is correct for the set of 2-planar dependency graphs.

Proof

The proposition follows from Lemma 6 and Lemma 7. �

5.1.2 Constraints on 2-Planar Dependency Parsing. The 2-planar parser can be restricted to
graphs satisfying the SINGLE-HEAD and ACYCLICITY constraints in exactly the same
way as the planar parser, and the proofs follow the same line of reasoning. Therefore,
a version of the 2-planar parser that is sound and complete for the set of 2-planar

11 This is assuming that arcs are created to or from node n + 1 in both planes (i.e., that e > 0 and f > 0), but
the cases where e = 0 or f = 0 are trivial, because in those cases no new REDUCE transitions are applied
to the respective stacks after Cn.

833

Computational Linguistics Volume 39, Number 4

dependency forests (that is, 2-planar dependency graphs without cycles and with each
node having at most one head) can be defined as follows:

SHIFT2P = (σ1,σ2, i|B, A)⇒ (σ1|i,σ2|i, B, A)

REDUCE2P = (σ1|i,σ2, B, A)⇒ (σ1,σ2, B, A)

LEFT-ARC2P−ShAc = LEFT-ARC Hσ(C)∩{(σ1|i,σ2,j|β,A)∈C|¬(i↔∗j∈A)}
= (σ1|i,σ2, j|B, A)⇒ (σ1|i,σ2, j|B, A ∪ {(j, i)})

only if ¬∃k | (k, i) ∈ A (single-head) and ¬i↔∗ j ∈ A (acyclicity)

RIGHT-ARC2P−ShAc = RIGHT-ARC Hβ(C)∩{(σ1|i,σ2,j|β,A)∈C|¬(i↔∗j∈A)}
= (σ1|i,σ2, j|B, A)⇒ (σ1|i,σ2, j|B, A ∪ {(i, j)})

only if ¬∃k|(k, j) ∈ A (single-head) and ¬i↔∗ j ∈ A (acyclicity)

SWITCH2P = (σ1,σ2, B, A)⇒ (σ2,σ1, B, A)

Because structures in dependency treebanks are typically restricted to forests, this is the
version of the 2-planar parser that we use in the experimental evaluation in Section 5.2.

The NO-COVERED-ROOTS constraint is not so straightforward to implement in the
2-planar parser, because in the 2-planar case a node without a head may need to be
reduced from one stack and get a head later from the other stack, so restricting the
REDUCE transitions in the 2-planar parser to nodes with a head would also forbid some
structures without covered roots. In any case, the NO-COVERED-ROOTS constraint does
not seem practically meaningful when we go beyond planar structures.

5.1.3 Complexity of 2-Planar Dependency Parsing. To reason about the complexity of the
2-planar parser, we first note that a naive implementation of the transition system as
given here does not guarantee termination. The reason is that the system allows an
infinite sequence of SWITCH transitions, switching the active and inactive stacks repeat-
edly and cycling between the same two configurations without making any advance.
This can easily be avoided in practice by forbidding SWITCH transitions from being
executed if the last transition in the sequence was also a SWITCH. Note that we could
also have incorporated this restriction into the formal system (for example, by adding
a flag to configurations to indicate whether the previous transition was a SWITCH or
not), but this would have unnecessarily complicated the notation. Assuming that our
implementation of the 2-planar parser has this restriction on SWITCH transitions, we
can show that the length of a transition sequence for a sentence of length n is O(n) in
the same way as for efficient divisible systems (see Section 3.2.2).

Proposition 11

Let S2P be the 2-planar system restricted so that two consecutive SWITCH transitions are
not permitted. Then the length of every transition sequence for a sentence x of length n
in S2P is O(n).

Proof

The proof follows the same lines as for efficient divisible transition systems. For every
transition chain T1,m = t1, . . . , tm for x = w1, . . . , wn, the following must hold:

� The number of SHIFT transitions in T1,m is at most n, because each node in
{1, . . . , n} can only be shifted once.

834

Gómez-Rodrı́guez and Nivre Divisible Transition Systems and Multiplanarity

� The number of REDUCE transitions in T1,m is at most 2n, because each node
in {1, . . . , n} can only be reduced twice (once per stack).

� The number of LEFT-ARC and RIGHT-ARC transitions in T1,m is bounded
by the maximum number of arcs in a 2-planar dependency graph with n
nodes, which is 8n− 12.12

� Given the ban on consecutive SWITCH transitions, the maximum number
of SWITCH transitions in T1,m is 1 plus the number of other transitions.

It follows that m ≤ 2(n + 2n + 8n− 12) + 1 and hence that m is O(n). �

Applying the same reasoning as for the planar parser regarding constant-time execu-
tion of transitions and fixed-size beam search, we conclude that the complexity of the
2-planar parser is still O(n), both for the unrestricted version and for the variant with
the SINGLE-HEAD and ACYCLICITY constraints.

Throughout this article, we have presented complexity results for transition-based
parsers under the assumption that these parsers use deterministic search or fixed-
size beam search because this is the most straightforward method to make parsing
practically feasible with the rich history-based feature models that are the key com-
ponent of accurate transition-based parsers. The relevance of this assumption is further
supported by recent results on tabularization and dynamic programming for transition-
based parsing, which show that such techniques either lead to a significant increase in
parsing complexity or require drastic simplifications in the feature models used. In the
former case, practical parsing still has to rely on approximate inference, as in Huang
and Sagae (2010). In the latter case, dynamic programming provides an exact inference
method only for a very simple approximation of the original transition-based model,
as in Kuhlmann, Gómez-Rodrı́guez, and Satta (2011). In general, this exemplifies the
tradeoff between approximate inference with richer models (beam search) and exact
inference with simpler models (dynamic programming). Thus, although the feature
model used by Zhang and Nivre (2011) to achieve state-of-the-art accuracy for English
makes dynamic programming very difficult due to the combinatorial effect on parsing
complexity of complex valency and label set features, the feature representation of a
single configuration can still be computed in constant time, which is all that is required
to achieve linear-time parsing with beam search. The same is true for all the transition
systems and feature models explored in this article. Nevertheless, it is an interesting
theoretical question whether the novel 2-planar system allows for tabularization and
what the resulting complexity would be. At present, we do not know the exact answer
to this question, but a reasonable conjecture is that complexity would be exponential for
the class of feature models that are relevant for transition-based parsing.

5.2 Experimental Evaluation

In this section, we present an experimental evaluation of the novel 1-planar and
2-planar transition systems in comparison to the widely used arc-eager projective sys-
tem of Nivre (2003) (analyzed earlier in Example (4)). Besides being the default parsing

12 This follows from Lemma 4, because a 2-planar graph can be broken up into two planes, each of which
is a planar graph with n nodes. Moreover, if the SINGLE-HEAD and ACYCLICITY constraints are used,
the maximum number of arcs is n− 1, because every node can have at most one incoming arc and
there must be at least one root.

835

Computational Linguistics Volume 39, Number 4

algorithm in MaltParser (Nivre, Hall, and Nilsson 2006), this system is also the basis
of the ISBN Dependency Parser (Titov and Henderson 2007) and ZPar (Zhang and
Clark 2008; Zhang and Nivre 2011). In addition to a strictly projective arc-eager parser,
we also include a version that uses pseudo-projective parsing (Nivre and Nilsson
2005) to recover non-projective arcs. This is the most widely used method for non-
projective transition-based parsing and as such a competitive baseline for the 2-planar
parser.

In order to make the comparison as exact as possible, we have chosen to implement
all four systems in the MaltParser framework and use the same type of classifiers and
feature models. For the arc-eager baselines, we copy the set-up from the CoNLL-X
shared task on dependency parsing, which includes the use of support vector machines
with a polynomial kernel, history-based feature models tuned separately for each
language, and pseudo-projective parsing with the Head encoding (Nivre et al. 2006).
For the 1-planar and 2-planar parsers, we use the same type of classifier but modify
the feature model to take into account the following systematic differences between
the transition systems:

� In both the 1-planar and 2-planar parser, we need to add features over
the arc connecting the top node of the stack and the first node of the
buffer (if any). No such arc can exist in the arc-eager system used by
the projective and pseudo-projective baseline systems.

� In the 2-planar parser, we need to add features over the top nodes of the
inactive stack. No such nodes exist in the 1-planar and arc-eager systems.

We did not perform extensive feature optimization experiments for the new systems,
so it is likely that there is room for further improvement. For replicability, the complete
experimental settings are available at http://stp.lingfil.uu.se/∼nivre/exp.

Table 2 shows parsing results for the same eight data sets from the CoNLL-X shared
task that were investigated with respect to k-planarity in Section 4.2: Arabic, Czech,
Danish, Dutch, German, Portuguese, Swedish, and Turkish. The overall accuracy metric
is labeled attachment score (LAS), the percentage of tokens that are assigned both the

Table 2
Parsing accuracy for projective, 1-planar, pseudo-projective, and 2-planar transition systems
in MaltParser. LAS = labeled attachment score; LP-NP = labeled precision on non-projective
arcs; LR-NP = labeled recall on non-projective arcs. Statistical significance of LAS differences
reported at the 0.05 level using McNemar’s test: � = significantly better than one other system;
�� = significantly better than two other systems; ��� = significantly better than three other systems.

LAS LP-NP LR-NP

Language Pr 1Pl PPr 2Pl Pr 1Pl PPr 2Pl Pr 1Pl PPr 2Pl

Arabic 66.2 66.7 66.1 ��67.1 – 25.0 – 10.0 0.0 9.1 18.2 27.3
Czech 77.6 78.3 ��79.7 ��80.1 – 52.0 77.0 71.4 7.5 15.9 58.9 58.9
Danish 85.1 84.6 84.9 84.8 – 56.5 42.9 55.6 0.0 12.5 22.5 17.5
Dutch 75.2 74.9 ���78.1 ��77.2 – 59.9 62.1 66.0 1.9 11.7 47.0 46.2
German 85.6 85.7 �86.2 ��86.9 – 54.7 61.4 71.2 16.9 35.6 42.4 45.8
Portuguese 85.6 �86.3 ��87.1 ��87.6 – 43.8 82.4 77.8 1.5 3.1 44.6 35.4
Swedish �84.0 83.0 �84.0 83.5 – 24.4 16.7 6.9 12.5 12.5 12.5 4.2
Turkish 63.7 63.8 64.2 63.5 – 25.9 12.5 7.0 6.6 13.2 10.5 10.5

836

Gómez-Rodrı́guez and Nivre Divisible Transition Systems and Multiplanarity

correct head and the correct label. In addition, we report labeled precision (LP-NP) and
recall (LR-NP) specifically on non-projective dependency arcs, where an arc (i, j) is taken
to be non-projective if and only if there is some node k such that min(i, j) < k < max(i, j)
and not i→∗ k. Precision is the percentage of non-projective arcs output by the system
that are correct, and recall is the percentage of non-projective arcs in the gold standard
that are output by the system. Note that, although precision is undefined for the projec-
tive parser because it does not output any non-projective arcs, recall may nevertheless
be greater than zero because arcs that are non-projective in the gold standard can be
projective in the output of the parser.13

Looking first at the overall LAS results, we see that the 2-planar parser outperforms
both the 1-planar and the projective parser for languages with a high proportion of
non-projective trees (≥ 19%): Czech, Dutch, German, and Portuguese. This is in line
with our expectations, given the substantially higher coverage of the 2-planar parser
for non-projective structures, and the difference is statistically significant at the 0.05
level for all languages in this group (McNemar’s test). For three of these languages, the
2-planar parser also outperforms the pseudo-projective parser, although the differences
are not statistically significant, and only in the case of Dutch is the pseudo-projective
parser significantly better. Given the relatively small difference in coverage between the
projective and 1-planar parser, one would expect these systems to have very similar
performance, and this is also what we find except for Portuguese where the 1-planar
parser is significantly better than the projective arc-eager parser.

For languages with a lower proportion of non-projective trees (Arabic, Danish,
Swedish, Turkish), there are generally smaller differences between the parsers, and
for Danish and Turkish there are in fact no statistically significant differences at all,
which indicates that the increased expressivity is not beneficial (nor harmful) when
non-projective structures are rare. Interestingly, it seems that the planar parsers have
an advantage over the arc-eager parsers for Arabic, where the 2-planar parser is
significantly better than both the projective and pseudo-projective parsers. By contrast,
the arc-eager parsers seem to have an advantage for Swedish, where the projective
and pseudo-projective parsers are both significantly better than the 1-planar parser. At
present, we have no explanation for this language-specific variation.

Turning next to labeled precision (LP-NP) and recall (LR-NP) on non-projective
dependency arcs, we again find that the 2-planar parser does quite well on the four
languages with 19% or more non-projective trees, with precision consistently over 50%
and recall in the 35–60% range. Again, the results are very similar to those achieved
with the pseudo-projective parser, with the 2-planar parser giving higher precision for
Dutch and German and higher recall for German. For the remaining four languages,
both precision and recall remains low, which probably points to a sparse data problem
when learning how to switch between the two planes during parsing, but the same
holds true for the pseudo-projective parser. As expected, the 1-planar parser has only
marginally higher recall than the projective parser (which, as pointed out earlier, may
recover non-projective dependencies by accident), but it is interesting to note that the
1-planar parser has relatively high precision on the few non-projective arcs that it
predicts, in some cases comparable to that of the 2-planar parser.

In conclusion, the experimental evaluation shows that the 2-planar parser has the
potential to improve parsing accuracy over a strictly projective (or 1-planar) parser

13 When this happens, there is by necessity an error elsewhere in the parser output, because the projectivity
of the arc implies that at least one gold standard arc must be missing.

837

Computational Linguistics Volume 39, Number 4

for languages with a sufficient proportion of non-projective trees, and that it generally
performs at about the same level as the widely used arc-eager pseudo-projective parser.
We believe that it is possible to improve results even further by careful optimization of
features and other parameters, but this will have to be left for future research. It would
also be interesting to explore the use of global optimization and beam search, which
has been shown to improve accuracy over local learning and greedy search (Titov and
Henderson 2007; Zhang and Clark 2008; Zhang and Nivre 2011).

6. Related Work

The literature on dependency parsing has grown enormously in recent years and we
will not attempt a comprehensive review here but focus on previous research related to
the three main themes of the article: a formal framework for analyzing and construct-
ing transition systems for dependency parsing (Section 3), a procedure for classifying
mildly non-projective dependency structures in terms of multiplanarity (Section 4), and
a novel transition-based parser for (a subclass of) non-projective dependency structures
(Section 5).

6.1 Frameworks for Dependency Parsing

Due to the growing popularity of dependency parsing, several proposals have been
made that group and study different dependency parsers under common (more or less
formal) frameworks. Thus, Buchholz and Marsi (2006) observed that almost all of the
systems participating in the CoNLL-X shared task could be classified as belonging to
one of two approaches, which they called the “all pairs” and the “stepwise” approaches.
This was taken up by McDonald and Nivre (2007), who called the first approach global
exhaustive graph-based parsing and the second approach local greedy transition-based
parsing. The terms graph-based and transition-based have become well established, even
though there now exist graph-based models that do not perform exhaustive search
(McDonald and Pereira 2006; Koo et al. 2010) as well as transition-based models that
are neither local nor greedy (Titov and Henderson 2007; Zhang and Clark 2008).

Nivre (2008), building on earlier work in Nivre (2006b), formalizes transition-based
parsing by means of transition systems and oracles. Two distinct types of transition sys-
tems are described, differing in the data structures they use to store partially processed
tokens: stack-based and list-based systems. The formalization of stack-based systems
provided there has been one point of departure for the present article (see Section 2.2)
but, whereas general stack-based systems allow transitions to be arbitrary partial func-
tions from configurations to configurations, we have focused on a class of systems
where transitions are obtained by composing a small set of elementary transitions,
allowing us to derive specific formal properties.

Gómez-Rodrı́guez, Carroll, and Weir (2011) propose a common deductive frame-
work that can be used to describe a wide range of dependency parsers, including both
graph-based and transition-based algorithms. Although the high abstraction level of
this framework makes it able to describe and relate very different parsing strategies,
it also means that it is not suitable to describe lower-level properties of transition-
based parsers such as their computational complexity when implemented with beam
search. Kuhlmann, Gómez-Rodrı́guez, and Satta (2011) introduce a technique to obtain
polynomial-time deductive parsers that simulate all the transition sequences allowed
by a transition system.

838

Gómez-Rodrı́guez and Nivre Divisible Transition Systems and Multiplanarity

6.2 Mildly Non-Projective Dependency Structures

Most natural language treebanks contain non-projective dependency analyses (Havelka
2007), but the general problem of parsing arbitrary non-projective dependency graphs
has been shown to be computationally intractable except under strong independence
assumptions (McDonald and Satta 2007). This has motivated researchers to look for sets
of dependency structures that have more coverage of linguistic phenomena than pro-
jective structures, while being more efficiently parsable than unrestricted non-projective
graphs.

Several sets have been defined by applying different restrictions to dependency
graphs, such as arc degree (Nivre 2006a, 2007), gap degree and well-nestedness
(Bodirsky, Kuhlmann, and Möhl 2005; Kuhlmann and Nivre 2006; Kuhlmann and
Möhl 2007), and k-ill-nestedness (Maier and Lichte 2009). Among these sets, only well-
nested dependency structures with bounded gap degree have been shown to have
exact polynomial-time algorithms (Kuhlmann 2010; Gómez-Rodrı́guez, Carroll, and
Weir 2011). For dependency structures with bounded arc degree, a greedy transition-
based parser based on the algorithm of Covington (2001) is described in Nivre (2007).

Other sets have been defined operationally as the set of dependency structures that
are parsable by a given algorithm. These include the graphs parsable by the transition
system of Attardi (2006) or the more restrictive dynamic programming variant of Cohen,
Gómez-Rodrı́guez, and Satta (2011), the set of structures that yield binarizable produc-
tions with the algorithm of Kuhlmann and Satta (2009), or the set of mildly ill-nested
structures (Gómez-Rodrı́guez, Weir, and Carroll 2009; Gómez-Rodrı́guez, Carroll, and
Weir 2011).

As mentioned earlier, the notion of multiplanarity was originally introduced by
Yli-Jyrä (2003), who also presents additional constraints on k-planar graphs. No algo-
rithms were previously known to determine whether a given graph was k-planar or to
efficiently parse k-planar dependency structures, however.

6.3 Non-Projective Transition-Based Parsing

Whereas early transition-based dependency parsers were restricted to projective de-
pendency graphs (Yamada and Matsumoto 2003; Nivre 2003), several techniques have
been proposed to accomodate non-projectivity within the transition-based framework.
Pseudo-projective parsing, proposed by Nivre and Nilsson (2005), is a general technique
applicable to any data-driven parser. Before training the parser, dependency structures
are projectivized using lifting operations (Kahane, Nasr, and Rambow 1998), and partial
information about the lifting paths is encoded in augmented arc labels. After parsing,
dependency structures are deprojectivized using a heuristic search procedure guided
by the augmented arc labels.

A more integrated approach is to deal with with non-projectivity by adding extra
transitions to projective transition systems. Attardi (2006) parses a restricted set of non-
projective trees by adding transitions that create arcs using nodes deeper than the top
of the stack. Nivre (2009) instead uses a transition that changes the order of input
words, obtaining full coverage of non-projective structures in quadratic worst-case time
(but achieving linear practical performance). A similar technique is used by Tratz and
Hovy (2011) to develop an O(n2 log n) non-projective version of the easy-first parser of
Goldberg and Elhadad (2010).

Finally, the parsing algorithm described by Covington (2001) can be imple-
mented as a list-based transition system that in its unrestricted form is complete for

839

Computational Linguistics Volume 39, Number 4

all non-projective trees (Nivre 2008). The worst-case complexity for this system is
O(n2), but efficiency can be improved in practice by bounding the arc degree (Nivre
2006a, 2007).

7. Conclusion

Although data-driven dependency parsing has seen tremendous progress during the
last decade in terms of empirically observed accuracy for a wide range of languages,
it is probably fair to say that our theoretical understanding of the methods used is still
less developed than for the more familiar paradigm of context-free grammar parsing.
In this article, we have tried to contribute to the theoretical foundations of dependency
parsing in essentially two ways.

Our first contribution is the framework of divisible transition systems, where tran-
sition systems for dependency parsing can be defined by composition and restriction
of the five elementary transitions SHIFT, UNSHIFT, REDUCE, LEFT-ARC, and RIGHT-
ARC. On the one hand, this can be used as an analytical tool to characterize existing
systems for dependency parsing and prove formal properties related to expressivity
and complexity. Thus, we have shown that all divisible systems, including a number
of well-known systems from the literature, are sound for planar dependency graphs
and can be restricted to satisfy a number of other formal constraints, and we have
characterized the subclass of efficient divisible transition systems that give linear pars-
ing complexity when combined with greedy inference or beam search as is customary
in transition-based parsing. Even though most of these results have been established
previously for particular systems, the general framework allows us to show how the
results follow from more general principles. On the other hand, the framework can
be used to develop new systems with required formal properties. To illustrate this,
we have presented a system that is both sound and complete for planar dependency
graphs (with or without additional formal constraints) and that fills a gap in the
dependency parsing literature.

Our second contribution consists in extending the available techniques for depen-
dency parsing to multiplanar dependency graphs, an interesting hierarchy of mildly
non-projective dependency structures that have remained unexplored due to the lack
of suitable formal tools. First of all, we have shown that the problem of finding the
smallest k such that a dependency graph is k-planar can be reduced to the familiar
k-coloring problem for undirected graphs and can thereby be solved efficiently for k ≤ 2
but in practice also for higher k due to the sparseness of non-projective dependencies in
natural language. Using this procedure, we have shown that the set of 2-planar depen-
dency trees have a coverage in existing treebanks that is at least as good as alternative
characterizations of mildly non-projective dependency structures. In addition, we have
shown how the planar dependency parser defined in the first part of the article can be
generalized to the k-planar dependency graphs and in particular to the 2-planar case.
Preliminary experiments using standard methods for transition-based parsing show
that this system can give significant improvements over a strictly projective system for
languages with a non-negligible proportion of non-projective dependencies.

There are a number of directions for future research that suggest themselves. First
of all, there are many instances of divisible transition systems that have not yet been
explored, either theoretically or for practical parsing applications. For example, as
remarked in Section 3.3.2, there is a way of restricting the 1-planar parser to projective
forests, which is different from previously explored systems for projective dependency
parsing. Secondly, it may be interesting to study different ways of extending divisible

840

Gómez-Rodrı́guez and Nivre Divisible Transition Systems and Multiplanarity

transition systems for greater expressivity, besides introducing additional stacks. This
may involve the addition of new transition types, as proposed by Attardi (2006) and
Nivre (2009), or new data structures, as in the list-based systems of Nivre (2008).
Finally, it would be interesting to see what level of accuracy can be reached for 2-planar
dependency parsing with proper feature selection in combination with the latest
techniques for global optimization and non-greedy search (Titov and Henderson 2007;
Zhang and Clark 2008; Huang and Sagae 2010; Zhang and Nivre 2011).

Acknowledgments
The authors would like to thank Johan Hall
for support with the MaltParser system
and three anonymous reviewers for useful
comments on previous versions of the
manuscript. The first author has been
partially funded by the Spanish Ministry
of Economy and Competitiveness and
FEDER (project TIN2010-18552-C03-02)
and Xunta de Galicia (Rede Galega de
Recursos Lingüı́sticos para unha Sociedade
do Coñecemento). Part of the reported
experiments were conducted with the help
of computing resources provided by the
Supercomputing Center of Galicia (CESGA).

References
Afonso, Susana, Eckhard Bick, Renato

Haber, and Diana Santos. 2002. “Floresta
sintá(c)tica”: A treebank for Portuguese.
In Proceedings of the 3rd International
Conference on Language Resources and
Evaluation (LREC 2002), pages 1,968–1,703,
Paris.

Atalay, Nart B., Kemal Oflazer, and Bilge
Say. 2003. The annotation process in the
Turkish treebank. In Proceedings of EACL
Workshop on Linguistically Interpreted
Corpora (LINC-03), pages 243–246,
Morristown, NJ.

Attardi, Giuseppe. 2006. Experiments
with a multilanguage non-projective
dependency parser. In Proceedings of
the 10th Conference on Computational
Natural Language Learning (CoNLL),
pages 166–170, New York, NY.

Bikel, Daniel M. and Vittorio Castelli.
2008. Event matching using the
transitive closure of dependency
relations. In Proceedings of ACL-08:
HLT, Short Papers, pages 145–148,
Columbus, OH.

Bodirsky, Manuel, Marco Kuhlmann,
and Mattias Möhl. 2005. Well-nested
drawings as models of syntactic
structure. In Proceedings of FG-MoL
2005: The 10th Conference on Formal
Grammar, pages 195–203, Edinburgh.

Böhmová, Alena, Jan Hajič, Eva Hajičová,
and Barbora Hladká. 2003. The Prague
Dependency Treebank: A three-level
annotation scenario. In Anne Abeillé,
editor, Treebanks: Building and Using
Parsed Corpora. Kluwer, pages 103–127.

Brants, Sabine, Stefanie Dipper, Silvia
Hansen, Wolfgang Lezius, and
George Smith. 2002. TIGER treebank.
In Proceedings of the 1st Workshop on
Treebanks and Linguistic Theories (TLT),
pages 24–42, Sozopol.

Buchholz, Sabine and Erwin Marsi.
2006. CoNLL-X shared task on
multilingual dependency parsing.
In Proceedings of the 10th Conference
on Computational Natural Language
Learning (CoNLL), pages 149–164,
New York, NY.

Buyko, Ekaterina and Udo Hahn. 2010.
Evaluating the impact of alternative
dependency graph encodings on
solving event extraction tasks.
In Proceedings of the Conference on
Empirical Methods in Natural Language
Processing (EMNLP), pages 982–992,
Cambridge, MA.

Carreras, Xavier. 2007. Experiments with
a higher-order projective dependency
parser. In Proceedings of the CoNLL
Shared Task of EMNLP-CoNLL 2007,
pages 957–961, Prague.

Cohen, Shay B., Carlos Gómez-Rodrı́guez,
and Giorgio Satta. 2011. Exact inference
for generative probabilistic non-projective
dependency parsing. In Proceedings of the
2011 Conference on Empirical Methods in
Natural Language Processing (EMNLP 2011),
pages 1,234–1,245, Edinburgh.

Cormen, Thomas H., Charles E. Leiserson,
and Ronald L. Rivest. 1990. Introduction to
Algorithms. MIT Press.

Covington, Michael A. 2001. A fundamental
algorithm for dependency parsing.
In Proceedings of the 39th Annual ACM
Southeast Conference, pages 95–102,
Athens, GA.

Culotta, Aron and Jeffery Sorensen. 2004.
Dependency tree kernels for relation
extraction. In Proceedings of the 42nd Annual

841

Computational Linguistics Volume 39, Number 4

Meeting of the Association for Computational
Linguistics (ACL), pages 423–429,
Barcelona.

Eisner, Jason M. 1996. Three new
probabilistic models for dependency
parsing: An exploration. In Proceedings
of the 16th International Conference on
Computational Linguistics (COLING),
pages 340–345, Copenhagen.

Goldberg, Yoav and Michael Elhadad.
2010. An efficient algorithm for easy-first
non-directional dependency parsing.
In Human Language Technologies: The 2010
Annual Conference of the North American
Chapter of the Association for Computational
Linguistics (NAACL HLT), pages 742–750,
Los Angeles, CA.

Gómez-Rodrı́guez, Carlos, John Carroll, and
David Weir. 2011. Dependency parsing
schemata and mildly non-projective
dependency parsing. Computational
Linguistics, 37(3):541–586.

Gómez-Rodrı́guez, Carlos and Joakim
Nivre. 2010. A transition-based parser
for 2-planar dependency structures.
In Proceedings of the 48th Annual Meeting
of the Association for Computational
Linguistics (ACL), pages 1,492–1,501,
Uppsala.

Gómez-Rodrı́guez, Carlos, David Weir,
and John Carroll. 2009. Parsing mildly
non-projective dependency structures.
In Proceedings of the 12th Conference of the
European Chapter of the Association for
Computational Linguistics (EACL),
pages 291–299, Athens.

Hajič, Jan, Jarmila Panevová, Eva Hajičová,
Jarmila Panevová, Petr Sgall, Petr Pajas,
Jan Štěpánek, Jiřı́ Havelka, and Marie
Mikulová. 2006. Prague Dependency
Treebank 2.0. CDROM CAT: LDC2006T01,
ISBN 1-58563-370-4. Linguistic Data
Consortium.

Hajič, Jan, Otakar Smrž, Petr Zemánek,
Jan Šnaidauf, and Emanuel Beška.
2004. Prague Arabic Dependency
Treebank: Development in data and
tools. In Proceedings of the NEMLAR
International Conference on Arabic
Language Resources and Tools,
pages 110–117, Cairo.

Hajič, Jan, Barbora Vidova Hladka, Jarmila
Panevová, Eva Hajičová, Petr Sgall, and
Petr Pajas. 2001. Prague Dependency
Treebank 1.0. LDC, 2001T10.

Havelka, Jiri. 2007. Beyond projectivity:
Multilingual evaluation of constraints and
measures on non-projective structures.
In Proceedings of the 45th Annual Meeting of

the Association of Computational Linguistics,
pages 608–615, Prague.

Huang, Liang, Wenbin Jiang, and Qun
Liu. 2009. Bilingually-constrained
(monolingual) shift-reduce parsing.
In Proceedings of the Conference on Empirical
Methods in Natural Language Processing
(EMNLP), pages 1,222–1,231, Suntec.

Huang, Liang and Kenji Sagae. 2010.
Dynamic programming for linear-time
incremental parsing. In Proceedings of the
48th Annual Meeting of the Association
for Computational Linguistics (ACL),
pages 1,077–1,086, Uppsala.

Hudson, Richard A. 1990. English Word
Grammar. Blackwell.

Johansson, Richard and Pierre Nugues.
2006. Investigating multilingual
dependency parsing. In Proceedings
of the 10th Conference on Computational
Natural Language Learning (CoNLL),
pages 206–210, New York, NY.

Kahane, Sylvain, Alexis Nasr, and Owen
Rambow. 1998. Pseudo-projectivity:
A polynomially parsable non-projective
dependency grammar. In Proceedings of
the 36th Annual Meeting of the Association
for Computational Linguistics (ACL)
and the 17th International Conference on
Computational Linguistics (COLING),
pages 646–652, Montréal.

Karp, Richard M. 1972. Reducibility among
combinatorial problems. In R. Miller
and J. Thatcher, editors, Complexity of
Computer Computations. Plenum Press,
pages 85–103.

Koo, Terry and Michael Collins. 2010.
Efficient third-order dependency parsers.
In Proceedings of the 48th Annual Meeting of
the Association for Computational Linguistics
(ACL), pages 1–11, Uppsala.

Koo, Terry, Alexander M. Rush, Michael
Collins, Tommi Jaakkola, and David
Sontag. 2010. Dual decomposition for
parsing with non-projective head
automata. In Proceedings of the 2010
Conference on Empirical Methods in Natural
Language Processing, pages 1,288–1,298,
Cambridge, MA.

Kromann, Matthias Trautner. 2003. The
Danish Dependency Treebank and the
DTAG treebank tool. In Proceedings of
the 2nd Workshop on Treebanks and Linguistic
Theories (TLT), pages 217–220, Växjö.

Kuhlmann, Marco. 2010. Dependency
Structures and Lexicalized Grammars:
An Algebraic Approach, volume 6270
of Lecture Notes in Computer Science.
Springer.

842

Gómez-Rodrı́guez and Nivre Divisible Transition Systems and Multiplanarity

Kuhlmann, Marco, Carlos
Gómez-Rodrı́guez, and Giorgio Satta.
2011. Dynamic programming algorithms
for transition-based dependency parsers.
In Proceedings of the 49th Annual Meeting
of the Association for Computational
Linguistics (ACL), pages 673–682,
Portland, OR.

Kuhlmann, Marco and Mathias Möhl.
2007. Mildly context-sensitive
dependency languages. In Proceedings
of the 45th Annual Meeting of the
Association of Computational Linguistics,
pages 160–167, Prague.

Kuhlmann, Marco and Joakim Nivre.
2006. Mildly non-projective dependency
structures. In Proceedings of the
COLING/ACL 2006 Main Conference
Poster Sessions, pages 507–514, Sydney.

Kuhlmann, Marco and Giorgio Satta.
2009. Treebank grammar techniques
for non-projective dependency parsing.
In Proceedings of the 12th Conference of the
European Chapter of the Association for
Computational Linguistics (EACL),
pages 478–486, Athens.

Maier, Wolfgang and Timm Lichte.
2009. Characterizing discontinuity in
constituent treebanks. In Proceedings of
the 14th Conference on Formal Grammar,
pages 164–179, Opole.

Marcus, Mitchell P., Beatrice Santorini, and
Mary Ann Marcinkiewicz. 1993. Building
a large annotated corpus of English: The
Penn Treebank. Computational Linguistics,
19:313–330.

Marcus, Mitchell P., Beatrice Santorini,
Mary Ann Marcinkiewicz, Robert
MacIntyre, Ann Bies, Mark Ferguson,
Karen Katz, and Britta Schasberger.
1994. The Penn Treebank: Annotating
predicate-argument structure.
In Proceedings of the ARPA Human
Language Technology Workshop,
pages 114–119, Plainsboro, NJ.

Martins, Andre, Noah Smith, and Eric Xing.
2009. Concise integer linear programming
formulations for dependency parsing.
In Proceedings of the Joint Conference of the
47th Annual Meeting of the ACL and the
4th International Joint Conference on
Natural Language Processing of the AFNLP
(ACL-IJCNLP), pages 342–350, Suntec.

Martins, Andre, Noah Smith, Eric Xing,
Pedro Aguiar, and Mario Figueiredo.
2010. Turbo parsers: Dependency parsing
by approximate variational inference.
In Proceedings of the Conference on
Empirical Methods in Natural Language

Processing (EMNLP), pages 34–44,
Cambridge, MA.

McDonald, Ryan, Koby Crammer, and
Fernando Pereira. 2005. Online
large-margin training of dependency
parsers. In Proceedings of the 43rd Annual
Meeting of the Association for Computational
Linguistics (ACL), pages 91–98,
Ann Arbor, MI.

McDonald, Ryan and Joakim Nivre. 2007.
Characterizing the errors of data-driven
dependency parsing models. In Proceedings
of the 2007 Joint Conference on Empirical
Methods in Natural Language Processing and
Computational Natural Language Learning
(EMNLP-CoNLL), pages 122–131, Prague.

McDonald, Ryan and Fernando Pereira.
2006. Online learning of approximate
dependency parsing algorithms.
In Proceedings of the 11th Conference of the
European Chapter of the Association for
Computational Linguistics (EACL),
pages 81–88, Trento.

McDonald, Ryan and Giorgio Satta. 2007.
On the complexity of non-projective
data-driven dependency parsing. In
Proceedings of the 10th International
Conference on Parsing Technologies
(IWPT), pages 122–131, Prague.

Mel’čuk, Igor. 1988. Dependency Syntax:
Theory and Practice. State University of
New York Press.

Nakagawa, Tetsuji. 2007. Multilingual
dependency parsing using global features.
In Proceedings of the CoNLL Shared Task of
EMNLP-CoNLL 2007, pages 952–956,
Prague.

Nilsson, Jens, Johan Hall, and Joakim
Nivre. 2005. MAMBA meets TIGER:
Reconstructing a Swedish treebank
from Antiquity. In Proceedings of the
NODALIDA Special Session on Treebanks,
pages 121–132, Joensuu.

Nivre, Joakim. 2003. An efficient algorithm
for projective dependency parsing.
In Proceedings of the 8th International
Workshop on Parsing Technologies (IWPT),
pages 149–160, Nancy.

Nivre, Joakim. 2004. Incrementality in
deterministic dependency parsing.
In Proceedings of the Workshop on Incremental
Parsing: Bringing Engineering and Cognition
Together (ACL), pages 50–57, Barcelona.

Nivre, Joakim. 2006a. Constraints on
non-projective dependency graphs.
In Proceedings of the 11th Conference of
the European Chapter of the Association
for Computational Linguistics (EACL),
pages 73–80, Trento.

843

Computational Linguistics Volume 39, Number 4

Nivre, Joakim. 2006b. Inductive Dependency
Parsing. Springer.

Nivre, Joakim. 2007. Incremental
non-projective dependency parsing.
In Proceedings of Human Language
Technologies: The Annual Conference
of the North American Chapter of the
Association for Computational Linguistics
(NAACL HLT), pages 396–403,
Rochester, NY.

Nivre, Joakim. 2008. Algorithms for
deterministic incremental dependency
parsing. Computational Linguistics,
34:513–553.

Nivre, Joakim. 2009. Non-projective
dependency parsing in expected
linear time. In Proceedings of the Joint
Conference of the 47th Annual Meeting
of the ACL and the 4th International
Joint Conference on Natural Language
Processing of the AFNLP (ACL-IJCNLP),
pages 351–359, Suntec.

Nivre, Joakim, Johan Hall, and Jens Nilsson.
2004. Memory-based dependency
parsing. In Proceedings of the 8th Conference
on Computational Natural Language
Learning (CoNLL), pages 49–56,
Boston, MA.

Nivre, Joakim, Johan Hall, and Jens Nilsson.
2006. Maltparser: A data-driven
parser-generator for dependency parsing.
In Proceedings of the 5th International
Conference on Language Resources and
Evaluation (LREC), pages 2,216–2,219,
Genoa.

Nivre, Joakim, Johan Hall, Jens Nilsson,
Gülsen Eryiğit, and Svetoslav Marinov.
2006. Labeled pseudo-projective
dependency parsing with support
vector machines. In Proceedings of the
10th Conference on Computational
Natural Language Learning (CoNLL),
pages 221–225, New York, NY.

Nivre, Joakim and Jens Nilsson. 2005.
Pseudo-projective dependency parsing.
In Proceedings of the 43rd Annual Meeting
of the Association for Computational
Linguistics (ACL), pages 99–106,
Ann Arbor, MI.

Oflazer, Kemal, Bilge Say, Dilek Zeynep
Hakkani-Tür, and Gökhan Tür. 2003.
Building a Turkish treebank. In Anne
Abeillé, editor, Treebanks: Building
and Using Parsed Corpora. Kluwer,
pages 261–277.

Quirk, Chris, Arul Menezes, and Colin
Cherry. 2005. Dependency treelet
translation: Syntactically informed
phrasal SMT. In Proceedings of the

43rd Annual Meeting of the Association
for Computational Linguistics (ACL),
pages 271–279, Ann Arbor, MI.

Riedel, Sebastian and James Clarke.
2006. Incremental integer linear
programming for non-projective
dependency parsing. In Proceedings
of the Conference on Empirical Methods in
Natural Language Processing (EMNLP),
pages 129–137, Sydney.

Sagae, Kenji and Jun’ichi Tsujii. 2008.
Shift-reduce dependency DAG parsing.
In Proceedings of the 22nd International
Conference on Computational Linguistics
(COLING), pages 753–760, Manchester.

Sgall, Petr, Eva Hajičová, and Jarmila
Panevová. 1986. The Meaning of the
Sentence in Its Pragmatic Aspects. Reidel.

Shen, Dan and Dietrich Klakow. 2006.
Exploring correlation of dependency
relation paths for answer extraction.
In Proceedings of the 21st International
Conference on Computational Linguistics
and the 44th Annual Meeting of the
Association for Computational Linguistics,
pages 889–896, Sydney.

Shieber, Stuart M., Yves Schabes, and
Fernando C. N. Pereira. 1995. Principles
and implementation of deductive
parsing. Journal of Logic Programming,
24:3–36.

Smith, David and Jason Eisner. 2008.
Dependency parsing by belief
propagation. In Proceedings of the
Conference on Empirical Methods in
Natural Language Processing (EMNLP),
pages 145–156, Waikiki, HI.

Stevenson, Mark and Mark A. Greenwood.
2006. Comparing information extraction
pattern models. In Proceedings of the
Workshop on Information Extraction
Beyond The Document, pages 12–19,
Sydney.

Tesnière, Lucien. 1959. Éléments de syntaxe
structurale. Editions Klincksieck.

Titov, Ivan and James Henderson. 2007.
A latent variable model for generative
dependency parsing. In Proceedings of the
10th International Conference on Parsing
Technologies (IWPT), pages 144–155,
Prague.

Tratz, Stephen and Eduard Hovy. 2011.
A fast, accurate, non-projective,
semantically-enriched parser. In
Proceedings of the 2011 Conference on
Empirical Methods in Natural Language
Processing, pages 1,257–1,268, Edinburgh.

Van der Beek, Leonoor, Gosse Bouma,
Robert Malouf, and Gertjan Van Noord.

844

Gómez-Rodrı́guez and Nivre Divisible Transition Systems and Multiplanarity

2002. The Alpino dependency treebank.
In Mariet Theune, Anton Nijholt, and
Hendri Hondorp, editors, Language
and Computers, Computational Linguistics
in the Netherlands 2001. Selected Papers
from the Twelfth CLIN Meeting,
pages 8–22, Rodopi.

Xu, Peng, Jaeho Kang, Michael Ringgaard,
and Franz Och. 2009. Using a
dependency parser to improve SMT
for subject-object-verb languages.
In Proceedings of Human Language
Technologies: The 2009 Annual Conference
of the North American Chapter of the
Association for Computational Linguistics
(NAACL HLT), pages 245–253,
Boulder, CO.

Yamada, Hiroyasu and Yuji Matsumoto.
2003. Statistical dependency analysis
with support vector machines.
In Proceedings of the 8th International

Workshop on Parsing Technologies (IWPT),
pages 195–206, Nancy.

Yli-Jyrä, Anssi. 2003. Multiplanarity—
a model for dependency structures
in treebanks. In Proceedings of the 2nd
Workshop on Treebanks and Linguistic
Theories (TLT), pages 189–200, Växjö.

Zhang, Yue and Stephen Clark. 2008.
A tale of two parsers: Investigating
and combining graph-based and
transition-based dependency parsing.
In Proceedings of the Conference on
Empirical Methods in Natural Language
Processing (EMNLP), pages 562–571,
Waikiki, HI.

Zhang, Yue and Joakim Nivre. 2011.
Transition-based parsing with rich
non-local features. In Proceedings of the
49th Annual Meeting of the Association
for Computational Linguistics (ACL),
pages 188–193, Portland, OR.

845

