
Computational Intelligence, Volume 59, Number 000, 2010

Undirected Dependency Parsing

CARLOS GÓMEZ-RODRÍGUEZ

cgomezr@udc.es
Depto. de Computación, Universidade da Coruña. Facultad de Informática,

Campus de Elviña s/n, 15071 A Coruña, Spain

DANIEL FERNÁNDEZ-GONZÁLEZ
danifg@uvigo.es

Depto. de Informática, Universidade de Vigo. Campus As Lagoas
32004 Ourense, Spain

V ÍCTOR MANUEL DARRIBA BILBAO
darriba@uvigo.es

Depto. de Informática, Universidade de Vigo. Campus As Lagoas
32004 Ourense, Spain

Dependency parsers, which are widely used in natural language processing tasks, employ a representation of
syntax in which the structure of sentences is expressed in the form of directed links (dependencies) between their
words. In this article, we introduce a new approach to transition-based dependency parsing in which the parsing
algorithm does not directly construct dependencies, but rather undirected links, which are then assigned a direction
in a post-processing step. We show that this alleviates error propagation, since undirected parsers do not need to
observe the single-head constraint, resulting in better accuracy.

Undirected parsers can be obtained by transforming existing directed transition-based parsers as long as
they satisfy certain conditions. We apply this approach to obtain undirected variants of three different parsers
(the Planar, 2-Planar and Covington algorithms) and perform experiments on several datasets from the CoNLL-X
shared tasks, showing that our approach is successful in reducing error propagation and produces improvements in
parsing accuracy in most of the cases, achieving results competitive with state-of-the-art transition-based parsers.

Key words: natural language processing, dependency parsing, parsing, computational linguistics, au-
tomata

This is the pre-peer reviewed version of the following article: Carlos Gómez-Rodrı́guez,
Daniel Fernández-González and Vı́ctor M. Darriba, Undirected Dependency Parsing, Com-
putational Intelligence, 31(2):348-384, 2015 (ISSN 1467-8640); which has been published
in final form at:
http://onlinelibrary.wiley.com/doi/10.1111/coin.12027/abstract

1. INTRODUCTION
Syntactic parsing is the process of determining the grammatical structure of a sentence:

given an input sentence, a parsing algorithm (or parser) will analyze it in order to output a
representation of its underlying structure. The format of this representation and the informa-
tion it contains depends on the particular syntactic theory used by the parser. In constituency
parsers, or phrase structure parsers, sentences are analyzed by breaking them down into
meaningful parts called constituents, which are in turn divided into smaller constituents. The
result of such an analysis is represented with a constituency tree, like the one shown in Figure
1. On the other hand, in dependency parsers, the structure of the sentence is represented by
a set of directed links (called dependencies) between its words, forming a graph like the one
in Figure 2.

Dependency parsing has gained wide popularity in the natural language processing com-

iC 2010 The Authors. Journal Compilation iC 2010 Wiley Periodicals, Inc.



2 COMPUTATIONAL INTELLIGENCE

S

VP

NP

N

tree

NMOD

constituency

D

a

V

is

NP

Prn

This

FIGURE 1. Constituency tree for an English sentence.

ROOT0 This1 is2 a3 dependency4 tree5

ROOT

SBJ

PRED

NMOD

DET

FIGURE 2. Dependency tree for an English sentence.

munity, and it has recently been applied to a wide range of problems, like machine translation
(Ding and Palmer, 2005; Shen et al., 2008; Xu et al., 2009; Katz-Brown et al., 2011), textual
entailment recognition (Herrera et al., 2005; Berant et al., 2010), relation extraction (Culotta
and Sorensen, 2004; Fundel et al., 2006; Miyao et al., 2009; Katrenko et al., 2010), question
answering (Cui et al., 2005; Comas et al., 2010), opinion mining (Joshi and Penstein-Rosé,
2009) or learning for game AI agents (Branavan et al., 2012).

Some important advantages of dependency representations over constituency trees when
applied to natural language processing tasks are that they provide a more explicit representa-
tion of the semantic information that is useful for applications (for example, the subject and
object of a sentence in Figure 2 are explicitly represented in its dependency graph); they do
not need intermediate nodes (non-terminals) and hence allow for simpler and more efficient
parsing algorithms; and they represent discontinuous linguistic phenomena caused by long-
range dependencies or free word order in a natural way by using crossing dependencies.

While there has been research in grammar-driven dependency parsing, where formal
grammatical rules are used to define the set of dependency structures that can appear in
a language (Tapanainen and Järvinen, 1997; Lombardo and Lesmo, 1996); most current
dependency parsers are data-driven, i.e., they use learning techniques to automatically infer
linguistic knowledge from annotated corpora, which can then be used to parse new sentences
without the need for an explicit grammar.

In particular, the vast majority of data-driven dependency parsers that have been defined
in recent years can be described as being either graph-based or transition-based dependency
parsers (Zhang and Clark, 2008; McDonald and Nivre, 2011). Graph-based parsing uses
global optimization on models that score dependency graphs (Eisner, 1996; McDonald et al.,
2005). In transition-based parsing, which is the focus of this article, dependency graphs are



UNDIRECTED DEPENDENCY PARSING 3

ROOT0 This1 is2 a3 dependency4 tree5

ROOT

SBJ

PRED

NMOD

DET

FIGURE 3. Undirected dependency graph for the sentence in Figure 2.

built by sequences of actions by an automaton that transitions between parser states, and each
action is scored individually. These scores are used to find a suitable sequence of actions for
each given sentence, typically by greedy deterministic search or beam search (Yamada and
Matsumoto, 2003; Nivre et al., 2004a; Nivre, 2008). Some key advantages of transition-
based parsers are their high efficiency (many of them have linear time complexity, while still
providing state-of-the-art accuracy) and the possibility of easily incorporating arbitrarily rich
feature models, including non-local features (Zhang and Nivre, 2011).

However, it has been shown by McDonald and Nivre (2007) that transition-based parsers
suffer from error propagation: as the generation of a dependency parse for a sentence is
modelled as a sequential process, an early erroneous decision may place the parser into an
incorrect state, causing more errors later on. In particular, one source of error propagation in
transition-based parsers is the need to enforce the single-head constraint, i.e., the common
restriction in dependency syntax that forbids each node from having more than one incoming
arc. For instance, if we are parsing the sentence in Figure 2 with a transition-based parser
that uses greedy deterministic search and we mistakenly make a decision to build an arc
from a3 to tree5 instead of the correct dependency from tree5 to a3; we will not only miss
this dependency but also the one from is2 to tree5, since we will be in a parser state where
the single-head constraint makes it illegal to create it (due to not allowing the node tree5 to
have two incoming arcs).

In this article, we introduce a new approach to transition-based parsing that improves
accuracy by alleviating this kind of error propagation. To do so, we build novel undirected
dependency parsers by modifying existing transition-based dependency parsers – namely, the
Planar and 2-Planar parsers by Gómez-Rodrı́guez and Nivre (2013) and the non-projective
list-based parser by Nivre (2008), which is a variant of the algorithm by Covington (2001).

The obtained undirected parsers are algorithms that build an undirected graph (like the
one on Figure 3) rather than a dependency graph. This means that the single-head constraint
need not be observed during the parsing process, since the directed notions of head and
dependent (or of incoming and outgoing arcs) are lost in undirected graphs. Therefore, this
gives the parser more freedom, and can prevent situations where enforcing the constraint
leads to error propagation, like the previous example.

On the other hand, these new algorithms have the obvious disadvantage that their output
is an undirected graph, and not a dependency graph. We will need a post-processing step
to recover the direction of the dependencies, generating a valid dependency structure. Thus,
some complexity is moved from the transition-based parsing process to this post-processing
step; and each undirected parser will outperform the original directed version only if the
simplification of the parsing phase is able to avoid more errors than are generated in the
post-processing step. Fortunately, as we will see in the experimental sections, this is in
fact the case for most of the algorithm-dataset combinations that we tried, showing that
the undirected parsing approach is useful to improve parsing accuracy.

The remainder of this article is structured as follows: Section 2 introduces common
notation and concepts regarding transition-based dependency parsing, which will be used



4 COMPUTATIONAL INTELLIGENCE

throughout the article. Section 3 describes a technique to transform transition-based depen-
dency parsers satisfying certain conditions into undirected parsers, and applies it to the
Planar, 2-Planar and Covington algorithms. In Section 4, we discuss two different post-
processing techniques that can be used to recover dependency trees from undirected graphs.
Section 5 puts the ideas in previous sections into practice and presents an empirical study of
the accuracy of undirected dependency parsers compared to their directed counterparts, and
Section 6 presents error analysis to see the effect of undirected parsing on error propagation.
Finally, Section 7 concludes the article with a discussion of the results.

2. TRANSITION-BASED DEPENDENCY PARSING
We now introduce some definitions and notation concerning transition-based depen-

dency parsing, which will serve as a basis to present our undirected parsing approach.

2.1. Dependency parsing and dependency graphs
A dependency parser is a system that analyzes natural language sentences and outputs

a representation of their syntactic structure in the form of a dependency graph, like the one
shown in Figure 2. More formally, a dependency graph can be defined as follows:

Definition 1: Letw = w1 . . . wn be an input sentence. Given a setL of labels, a dependency
graph for w1 . . . wn is a labelled directed graph G = (Vw, A), where Vw = {0, . . . , n} is the
set of nodes, and A ⊆ Vw × L× Vw is the set of labelled directed arcs.

Each of the nodes in Vw encodes the position of a token in w, except for the node 0
which is a dummy node used to mark the root of the sentence and cannot have incoming
arcs. Each of the arcs inA encodes a dependency relation between two tokens. We will write
the arc (i, l, j) ∈ A as i l→ j, which will also be called a dependency link labelled l from
i to j. We then say that i is the head of j and, conversely, that j is a syntactic dependent of
i. The labels on dependency links are typically used to represent their associated syntactic
functions, such as SBJ for subject in Figure 2.

Given a dependency graph G = (Vw, A), we will write i → j ∈ A if there is a
dependency link from i to j, regardless of its label. We will write i →? j ∈ A if there
is a (possibly empty) path from i to j; and i ↔? j ∈ A if there is a (possibly empty)
path connecting i and j in the undirected graph underlying G. When using these notational
conventions, we will omit the references to A when the relevant set of edges is clear from
the context.

Most dependency-based syntactic formalisms do not allow arbitrary dependency graphs
as syntactic representations. Instead, they are typically restricted to acyclic graphs where
each node has at most one head. Such dependency graphs are called dependency forests.

Definition 2: A dependency graph G is said to be a dependency forest if it satisfies the
following:

(1) Single-head constraint: if i→ j, then there is no k 6= i such that k → j.
(2) Acyclicity constraint: if i→? j, then there is no arc j → i.

Nodes that have no head in a dependency forest are called roots. Apart from the previous
two constraints, some dependency formalisms add the additional constraint that a depen-
dency forest can have only one root (or, equivalently, that it must be connected). A forest of
this form is called a dependency tree.



UNDIRECTED DEPENDENCY PARSING 5

In this article, we will work with dependency parsers that output dependency forests, i.e.,
that enforce the single-head and acyclicity constraints. While we do not require the parsers to
explicitly enforce connectedness, we note that any dependency forest can be easily converted
to a dependency tree (and thus made connected) by linking the dummy root node 0 as the
parent of all its other root nodes. Therefore, from now on, we will refer to dependency trees
and forests interchangeably.

2.2. Transition systems
In a transition-based dependency parser, the dependency analysis for an input sentence

is built by a non-deterministic state machine that reads the input sentence and builds depen-
dency arcs. Following the framework of Nivre (2008), this non-deterministic automaton is
called a transition system, and is defined as follows:

Definition 3: A transition system for dependency parsing is a tuple S = (C, T, cs, Ct),
where

(1) C is a set of possible parser configurations,
(2) T is a finite set of transitions, which are partial functions t : C → C,
(3) cs is a total initialization function that maps each input string w to a unique initial

configuration cs(w), and
(4) Ct ⊆ C is a set of terminal configurations.

Although the specific nature of configurations varies among parsers, they are required to
contain at least a set A of dependency arcs and a buffer B of unread words, which initially
holds all the words in the input sentence. A transition-based parser will be able to read input
words by popping them from the buffer, and to create dependency arcs by adding them to
the set A.

Given an input string w = w1 . . . wn, each of the sequences of configurations that the
transition system S can traverse by sequentially applying transitions starting from the initial
configuration cs(w) and ending at some terminal configuration ct ∈ Ct is called a transition
sequence for w in S. The parse assigned to w by a transition sequence ending at the terminal
configuration ct is the dependency graph G = ({0, . . . , n}, Act), where Act is the set of arcs
stored in the configuration ct.

Note that, from a theoretical standpoint, it is possible to define a transition system such
that no transition sequences exist for a given sentence w. However, this is usually avoided
in practice, since robustness (the ability to terminate producing a parse for every possible
input) is seen as a desirable quality in data-driven natural language parsers. Therefore, all
the transition systems that we will use and define in this article have the property that there
is at least one (and typically more than one) transition sequence for every sentence w.

In order to use a transition system to obtain the best dependency analysis for a given
sentence, we need to have a mechanism that will select the most suitable among all the
transition sequences that the system allows for that sentence. A standard method to achieve
this is by using a classifier to select the best transition to execute at each configuration.

To do so, we define an oracle for the transition system S = (C, T, cs, Ct) as a function
o : C → T , i.e., an oracle is a function that selects a single transition to take at each
configuration, and thus can be used to determinize the parsing process. Given a training
treebank containing manually annotated dependency trees for sentences, we train a classifier
to approximate an oracle by building a canonical transition sequence for each tree in the
treebank, and using each of the configurations in the sequence and the corresponding chosen
transition as a training instance.



6 COMPUTATIONAL INTELLIGENCE

Then, to parse a sentence w, we only need to initialize the parser to the initial configu-
ration cs(w) and iteratively apply the transitions suggested by the classifier until a terminal
configuration is reached. This results in a parser that performs a greedy deterministic search
for the best transition sequence, one of the most widely used approaches in transition-based
parsing (Yamada and Matsumoto, 2003; Nivre et al., 2004b; Attardi, 2006; Nivre, 2008;
Gómez-Rodrı́guez and Nivre, 2010; Goldberg and Elhadad, 2010; Tratz and Hovy, 2011;
Gómez-Rodrı́guez and Nivre, 2013); although other optimization and search strategies, such
as beam search, can also be used (Johansson and Nugues, 2006; Titov and Henderson, 2007;
Zhang and Clark, 2008; Huang et al., 2009; Huang and Sagae, 2010; Zhang and Nivre, 2011;
Hayashi et al., 2012).

2.3. An example transition system: The Planar transition system
A simple example of a practical transition system for dependency parsing is the Planar

transition system, introduced by Gómez-Rodrı́guez and Nivre (2010). The Planar parser is an
extension of the well-known arc-eager projective parser by Nivre (2003), which can handle
all dependency trees that are planar, i.e., those whose arcs can be drawn above the words
(as in Figure 2) in such a way that no two arcs cross. In contrast, the arc-eager parser by
Nivre (2003) can only build so-called projective trees, which is a slightly more restricted set
of syntactic structures (Gómez-Rodrı́guez and Nivre, 2010).

The Planar transition system is a transition system S = (C, T, cs, Ct) such that

• C is the set of all configurations of the form c = 〈σ,B,A〉, where σ and B are disjoint
lists of nodes from Vw (for some input w), and A is a set of dependency arcs over Vw. The
list B, called the buffer, is used to hold nodes corresponding to input words that have not
yet been read. The list σ, called the stack, contains nodes for words that have already been
read, but still have dependency links pending to be created. For perspicuity, we will use
the notation σ|i to denote a stack with top i and tail σ, and the notation j|B to denote a
buffer with top j and tail B. The set A of dependency arcs contains the part of the output
parse that the system has constructed at each given point.
• The initial configuration is cs(w1 . . . wn) = 〈[], [1 . . . n], ∅〉, i.e., the buffer initially holds

the whole input string while the stack is empty.
• The set of terminal configurations is Ct = {〈σ, [], A〉 ∈ C}, i.e., final configurations are

those where the buffer is empty, regardless of the contents of the stack.
• The set T has the following transitions:

SHIFT 〈σ, i|B,A〉 ⇒ 〈σ|i, B,A〉

REDUCE 〈σ|i, B,A〉 ⇒ 〈σ,B,A〉

LEFT-ARCl 〈σ|i, j|B,A〉 ⇒ 〈σ|i, j|B,A∪{j l→ i}〉
only if @k | k → i ∈ A (single-head) and i↔∗ j 6∈ A (acyclicity).

RIGHT-ARCl 〈σ|i, j|B,A〉 ⇒ 〈σ|i, j|B,A∪{i l→ j}〉
only if @k | k → j ∈ A (single-head) and i↔∗ j 6∈ A (acyclicity).The SHIFT transition is used to read words from the input string, by moving the next

node in the buffer to the top of the stack. The LEFT-ARC and RIGHT-ARC transitions build
leftward and rightward dependency arcs, respectively, connecting the first node on the buffer
and the topmost node on the stack. Finally, the REDUCE transition is used to pop the topmost
node from the stack when we have finished building arcs to or from it.

Figure 4 shows a transition sequence in the Planar transition system which derives the
labelled dependency graph in Figure 2.

Note that the Planar parser is a linear-time parser, since each word in the input can be
shifted and reduced at most once, and the number of arcs that can be built by LEFT-ARC



UNDIRECTED DEPENDENCY PARSING 7

Transition Stack (σ) Buffer (B) Added Arc

[ROOT0] [This1,...,tree5]
SHIFT [ROOT0, This1] [is2,..., tree5]
LASBJ [ROOT0, This1] [is2,..., tree5] (2, SBJ, 1)
REDUCE [ROOT0] [is2,..., tree5]
RAROOT [ROOT0] [is2,..., tree5] (0, ROOT, 2)
SHIFT [ROOT0, is2] [a3,..., tree5]
SHIFT [ROOT0, is2, a3] [dependency4, tree5]
SHIFT [ROOT0, is2, a3, dependency4] [tree5]
LANMOD [ROOT0, is2, a3, dependency4] [tree5] (5, NMOD, 4)
REDUCE [ROOT0, is2, a3] [tree5]
LADET [ROOT0, is2, a3] [tree5] (5, DET, 3)
REDUCE [ROOT0, is2] [tree5]
RAPRED [ROOT0, is2] [tree5] (2, PRED, 5)
SHIFT [ROOT0, is2, tree5] [ ]
REDUCE [ROOT0, is2] [ ]
REDUCE [ROOT0] [ ]

FIGURE 4. Transition sequence for parsing the sentence in Figure 2 using the Planar parser
(LA=LEFT-ARC, RA=RIGHT-ARC).

and RIGHT-ARC transitions is strictly bounded by the number of words by the single-head
constraint.

2.4. The 2-Planar and Covington transition systems
The undirected dependency parsers defined and tested in this article are based on the Pla-

nar transition system described above, the 2-Planar transition system by Gómez-Rodrı́guez
and Nivre (2010) and the version of the Covington (2001) non-projective parser defined by
Nivre (2008). We now outline the two latter parsers briefly, a more comprehensive descrip-
tion can be found in the above references.

The 2-Planar transition system is an extension of the Planar system that can recognize
a larger set of dependency trees, called 2-planar dependency trees. A dependency tree is
said to be 2-planar if it is possible to draw it assigning one out of two colors to each of
its dependency arcs, in such a way that arcs sharing the same color do not cross. Gómez-
Rodrı́guez and Nivre (2010) have shown that well over 99% of the dependency trees in
natural language treebanks fall into this set, making this parser practical for languages that
contain a significant proportion of crossing links, so that planar and projective parsers fall
short in coverage.

To handle 2-planar structures, the 2-Planar transition system uses two stacks instead
of one, with each stack corresponding to one of the colors that can be assigned to arcs.
At each given configuration, one of the stacks is said to be active (meaning that we are
building arcs of that color), while the other is inactive. Configurations are thus of the form
c = 〈σ0, σ1, B,A〉, where σ0 is the active stack and σ1 the inactive stack. The initial
configuration is cs(w1 . . . wn) = 〈[], [], [1 . . . n], ∅〉 and the set of terminal configurations
is Ct = {〈σ0, σ1, [], A〉 ∈ C}, analogously to the Planar transition system. The system has
the following transitions:



8 COMPUTATIONAL INTELLIGENCE

SHIFT 〈σ0, σ1, i|B,A〉 ⇒ 〈σ0|i, σ1|i, B,A〉

REDUCE 〈σ0|i, σ1, B,A〉 ⇒ 〈σ0, σ1, B,A〉

LEFT-ARCl 〈σ0|i, σ1, j|B,A〉 ⇒ 〈σ0|i, σ1, j|B,A∪{j
l→ i}〉

only if @k | k → i ∈ A(single-head) and i↔∗ j 6∈ A (acyclicity).

RIGHT-ARCl 〈σ0|i, σ1, j|B,A〉 ⇒ 〈σ0|i, σ1, j|B,A∪{i
l→ j}〉

only if @k | k → j ∈ A (single-head) and i↔∗ j 6∈ A (acyclicity).

SWITCH 〈σ0, σ1, B,A〉 ⇒ 〈σ1, σ0, B,A〉

The SHIFT transition reads words from the input string exactly as in the Planar transition
system, but in this case their corresponding nodes are placed into both stacks. REDUCE,
LEFT-ARC and RIGHT-ARC work similarly as in the Planar parser, but they only take into
account the active stack, ignoring the inactive one. Finally, a SWITCH transition is added
that makes the active stack inactive and vice versa, allowing us to alternate between the two
possible arc colors. Despite this added functionality, the 2-Planar parser still runs in linear
time.

On the other hand, the Covington algorithm is a transition system that runs in quadratic
time, but it has the advantage of being able to parse every possible dependency tree, without
restrictions like planarity or 2-planarity. The basic algorithm was first described by Coving-
ton (1990, 2001). Nivre (2008) implements a variant of this strategy as a transition system,
which is the version we use here.

Configurations in this system are of the form c = 〈λ1, λ2, B,A〉, where λ1 and λ2
are lists containing nodes associated with partially processed words, and B is the buffer of
unprocessed words. The idea of the algorithm is that, after reading each given word, we can
do a right-to-left traversal of all the nodes for already-read words in the input and create
links between them and the first node in the buffer. This traversal is implemented by moving
nodes from λ1 (untraversed nodes) to λ2 (already traversed nodes). After reading each new
input word, all the nodes in both lists are moved back to λ1 for a new right-to-left traversal
to start, hence the quadratic complexity.

The algorithm starts with an initial configuration cs(w1 . . . wn) = 〈[], [], [1 . . . n], ∅〉, and
will terminate in final configurations of the set Cf = {〈λ1, λ2, [], A〉 ∈ C}. The system has
the following transitions:

SHIFT 〈λ1, λ2, i|B,A〉 ⇒ 〈λ1 · λ2|i, [], B,A〉

NO-ARC 〈λ1|i, λ2, B,A〉 ⇒ 〈λ1, i|λ2, B,A〉

LEFT-ARCl 〈λ1|i, λ2, j|B,A〉 ⇒ 〈λ1, i|λ2, j|B,A ∪ {j
l→ i}〉

only if @k | k → i ∈ A (single-head) and i↔∗ j 6∈ A (acyclicity).

RIGHT-ARCl 〈λ1|i, λ2, j|B,A〉 ⇒ 〈λ1, i|λ2, j|B,A ∪ {i
l→ j}〉

only if @k | k → j ∈ A (single-head) and i↔∗ j 6∈ A (acyclicity).

The SHIFT transition advances the parsing process by reading the first node in the buffer B
and inserting it at the head of a list obtained by concatenating λ1 and λ2, thus starting a new
right-to-left traversal to find candidate nodes to be linked to the one now heading the buffer.
This traversal is implemented by the other three transitions: NO-ARC is used when there
is no dependency relation between the first node in the buffer and the head of the list α1,
and it moves the head of the list α1 to α2 without creating any arcs; while LEFT-ARC and
RIGHT-ARC create a leftward (rightward) arc connecting the first node in the buffer and the



UNDIRECTED DEPENDENCY PARSING 9

head of the list α1, and then move the head of α1 to α2. The traversal will end when a new
SHIFT transition is executed, signifying that no more arcs will be created involving the first
node in the buffer and the nodes in α1.

3. TRANSFORMING DIRECTED PARSERS INTO UNDIRECTED PARSERS
As mentioned in Section 2.2, practical implementations of transition systems use greedy

search or beam search to find the best transition sequence (and thus obtain a dependency tree)
for each given input. Since these strategies build transition sequences and dependency arcs
in a sequential way from the beginning of the sentence to the end, early parsing decisions
may condition and restrict later decisions, causing error propagation. McDonald and Nivre
(2007) present an empirical study whose results highlight this phenomenon, showing that a
transition-based parser tends to be more accurate than a graph-based parser on arcs that are
built early in the transition sequence, but less acurate on arcs built later on.

In particular, one possible source of error propagation is the single-head constraint de-
scribed in Definition 2. In order to return a valid dependency tree, a transition system must
obey this constraint during the whole parsing process. This means that a transition that
creates a dependency arc is permissible only if its application does not violate the single-
head constraint, i.e., if it does not result in assigning more than one head to the same
node. For instance, Figure 4 shows a transition sequence for the Planar parser that correctly
parses a sample sentence, assigning it the dependency tree in Figure 2. However, in an
alternative scenario where the classifier made a mistake in the eighth transition choosing to
apply RANMOD instead of the correct choice LANMOD, this would result into building
a dependency link from dependency4 to tree5 instead of the correct link from tree5 to
dependency4. In turn, this would lead to a situation where creating the (correct) link from
is2 to tree5 would be forbidden by the single-head constraint, as node tree5 would already
have an incoming arc. Therefore, in this example, a single erroneous choice of transition
initially affecting a single dependency arc propagates to other arcs, due to the single-head
constraint, causing at least two attachment errors in the output tree.

In order to remove this source of error propagation, we transform the Planar, 2-Planar
and Covington transition systems into variants that build undirected graphs instead of di-
rected dependency trees. The goal of this transformation is to allow transition-based parsers
to work without needing to obey the single-head constraint. This will make these parsers less
sensitive to error propagation, since they will be able to create arcs freely at any point in the
parsing sequence, regardless of the existing arcs that have been created before.

The mentioned transformation consists in redesigning the transition systems so that they
create dependency links without a direction. In this way, it is not necessary to observe the
single-head contraint during the parsing process, since the directed concepts of head and
dependent do not apply to undirected links. As a result, the output of these new variants is
an undirected graph instead of a tree. This transformation has previously been described in
Gómez-Rodrı́guez and Fernández-González (2012).

3.1. The Undirected Planar, 2-Planar and Covington transition systems
With the goal of obtaining undirected transition systems from the directed ones described

in Sections 2.3 and 2.4, we replace the LEFT-ARC and RIGHT-ARC transitions in those
systems (which create directed arcs in each direction) with a new transition (ARC) that builds
an undirected link. This can be done because, in these three transition systems, the effect of
the two directed transitions is the same except for the direction of the created link, so that
their behaviour can be collapsed into one common transition: the undirected ARC transition.

In addition to this, the configurations of the undirected transition systems must be changed



10 COMPUTATIONAL INTELLIGENCE

so that the arc set A is a set of undirected edges, instead of directed arcs. Analogously to our

notation for directed arcs, we will use the notation i
l
− j as shorthand for an undirected edge

labelled l connecting the nodes i and j.
Furthermore, since the direction of the arcs is lost in undirected graphs, the preconditions

of transitions that guarantee the single-head constraint are simply removed from the systems.
If we apply these transformations and leave the Planar, 2-Planar and Covington tran-

sition systems otherwise unchanged, we will obtain the respective undirected variants: the
undirected Planar, the undirected 2-Planar and the undirected Covington transition systems.
The transition set of each undirected transition system is as follows:

Undirected Planar

SHIFT 〈σ, i|B,A〉 ⇒ 〈σ|i, B,A〉

REDUCE 〈σ|i, B,A〉 ⇒ 〈σ,B,A〉

ARCl 〈σ|i, j|B,A〉 ⇒ 〈σ|i, j|B,A∪{j
l
− i}〉

only if i↔∗ j 6∈ A (acyclicity).

Undirected 2-Planar

SHIFT 〈σ0, σ1, i|B,A〉 ⇒ 〈σ0|i, σ1|i, B,A〉

REDUCE 〈σ0|i, σ1, B,A〉 ⇒ 〈σ0, σ1, B,A〉

ARCl 〈σ0|i, σ1, j|B,A〉 ⇒ 〈σ0|i, σ1, j|B,A∪{j
l
− i}〉

only if i↔∗ j 6∈ A (acyclicity).

SWITCH 〈σ0, σ1, B,A〉 ⇒ 〈σ1, σ0, B,A〉

Undirected Covington

SHIFT 〈λ1, λ2, i|B,A〉 ⇒ 〈λ1 · λ2|i, [], B,A〉

NO-ARC 〈λ1|i, λ2, B,A〉 ⇒ 〈λ1, i|λ2, B,A〉

ARCl 〈λ1|i, λ2, j|B,A〉 ⇒ 〈λ1, i|λ2, j|B,A ∪ {j
l
− i}〉

only if i↔∗ j 6∈ A (acyclicity).

We show in Figure 5 how the undirected Planar parser analyses a sentence using its own set
of transitions. Note that the output of this parsing process is the undirected graph presented in
Figure 3 instead of the expected dependency tree in Figure 2. In order to obtain a dependency
tree as the final output of the analysis, we will need to apply a post-processing step, which
will be described in Section 4.

It is worth remarking that, in order to apply this transformation to obtain an undirected
parser from a directed one, the original transition system must satisfy the condition that their
arc-building transitions (conventionally called LEFT-ARC and RIGHT-ARC) be identical
except for the directions of the links that they create. This condition holds in some transition
systems in the literature – such as the three systems described above, or the arc-eager DAG
parser for enriched dependency representations described by Sagae and Tsujii (2008) –, but
not in others. For example, in the well-known arc-eager parser by Nivre (2003), LEFT-ARC
transitions pop a node from the stack in addition to creating an arc, while RIGHT-ARC
transitions instead remove the topmost buffer node and then push the top stack node back



UNDIRECTED DEPENDENCY PARSING 11

Transition Stack (σ) Buffer (B) Added Arc

[ROOT0] [This1,...,tree5]
SHIFT [ROOT0, This1] [is2,..., tree5]
ARCSBJ [ROOT0, This1] [is2,..., tree5] (1, SBJ, 2)
REDUCE [ROOT0] [is2,..., tree5]
ARCROOT [ROOT0] [is2,..., tree5] (0, ROOT, 2)
SHIFT [ROOT0, is2] [a3,..., tree5]
SHIFT [ROOT0, is2, a3] [dependency4, tree5]
SHIFT [ROOT0, is2, a3, dependency4] [tree5]
ARCNMOD [ROOT0, is2, a3, dependency4] [tree5] (4, NMOD, 5)
REDUCE [ROOT0, is2, a3] [tree5]
ARCDET [ROOT0, is2, a3] [tree5] (3, DET, 5)
REDUCE [ROOT0, is2] [tree5]
ARCPRED [ROOT0, is2] [tree5] (2, PRED, 5)
SHIFT [ROOT0, is2, tree5] [ ]
REDUCE [ROOT0, is2] [ ]
REDUCE [ROOT0] [ ]

FIGURE 5. Transition sequence for parsing the sentence in Figure 1 using the Undirected
Planar parser.

to the buffer. One could still try to transform the arc-eager parser into an undirected variant
by converting each of its arc transitions into an undirected transition, without necessarily
collapsing them into one, but this would result into a parser that violates the acyclicity
constraint; because the original system is designed in such a way that both constraints are
enforced jointly and acyclicity is only guaranteed if the single-head constraint is also kept.
It is easy to check that this problem cannot happen in parsers where LEFT-ARC and RIGHT-
ARC transitions are symmetrical in the manner described above: in these systems, if a given
graph is not parsable in the original system, then its underlying undirected graph will not be
parsable in the transformed system.

3.2. Undirected Feature Models
To implement a practical parser on top of a transition system, we need a feature model to

extract relevant information from configurations that will serve to train a classifier. Therefore,
apart from modifying the transition system, creating a practical undirected parser necessarily
implies to adapt its feature model to work with undirected graphs.

Some features usually employed in transition-based parsers depend on the direction of
the arcs that have already been created. Examples of such features are the part-of-speech
tag associated with the head of the topmost stack node, or the label of the arc going from
the first node in the buffer to its leftmost dependent.1 However, since we cannot tell heads
from dependents in an undirected graph, these features cannot be used to train an undirected
parser.

Therefore, we convert these features into their closest undirected versions: in the previ-
ous examples, those would be the part-of-speech tag associated with the closer node linked
to the topmost stack node, and the label of the arc that connects the first node in the buffer

1These example features are taken from the default model for the Planar parser in version 1.5 of MaltParser (Nivre et al.,
2006).



12 COMPUTATIONAL INTELLIGENCE

to the leftmost node linked to it. Notice that now a node (topmost stack or first node in the
buffer) has neither head nor dependents, it only has some other nodes linked to it.

More formally, these are the undirected features obtained from the directed ones:

• Information (e.g. part-of-speech, label, lemma, etc.) about the ith node linked to a given
node (topmost stack node, topmost buffer node, etc.) on the left or on the right, and about
the associated undirected arc, typically for i = 1, 2, 3,
• Information (e.g. part-of-speech, label, lemma, etc.) about the closest left and right “undi-

rected siblings” of a given node, i.e., the closest node q located to the left of the given node
p such that p and q are linked to some common node r located to the right of both, and
vice versa. Note that this notion of undirected siblings does not necessarily correspond to
siblings in the directed graph: it can also capture other second-order interactions, such as
grandparents.

In addition, we create new features based on undirected relations between nodes that
provide further context information for the parser. In particular, we found that the following
features worked well in practice:

• A boolean feature representing whether two given nodes are linked or not in the undirected
graph, and a feature representing the label of the arc between them.

4. RECOVERING ARC DIRECTIONS
The transformed transition systems described in Section 3 have the drawback that the

output they produce is an undirected graph, like the one in Figure 3, rather than a proper
dependency tree. In order to use these systems and still obtain a directed dependency tree
as the final output of the parsing process, we will apply a post-processing step to assign an
orientation to the undirected graph (i.e., choose a direction for each of its edges), in such a
way that the single-head constraint is obeyed and the result is a valid dependency tree.

For this purpose, we have developed two different reconstruction techniques to recover
arc directions from the undirected graph, previously described in less detail in Gómez-
Rodrı́guez and Fernández-González (2012). The first one, called naive reconstruction, is
based on using the dummy root node to decide the direction that should be assigned to edges,
by choosing the unique orientation of the undirected graph obtained by traversing it from the
dummy root. The second technique, label-based reconstruction, consists of using the edge
labels generated by the transition system to assign a preferred direction to each undirected
edge, and then choosing the orientation that conforms to as many preferred directions as
possible (note that it will not always be possible to conform to the preferred directions of all
the arcs, as that may generate a graph violating the single-head constraint).

To describe these reconstruction techniques more formally and view them under a com-
mon framework, we can formulate the problem of recovering arc directions as an optimum
branching (i.e., directed minimum spanning tree) problem on a weighted graph. Given the
undirected graph U produced by an undirected parser, we consider its isomorphic symmetric
directed graph, i.e., the directed graph which has an arc for each of both possible directions
of an undirected edge in U . Each directed spanning tree of that graph corresponds to an
orientation of U . Then, reconstruction techniques can be implemented by assigning weights
to each of the arcs in the symmetric graph, so that they encode a criterion to prefer certain
orientations of arcs over others, and then using an optimum branching algorithm to find the
minimum spanning tree. Different criteria for assigning weights to arcs will produce different
reconstruction techniques.



UNDIRECTED DEPENDENCY PARSING 13

More formally, let U = (Vw, E) be the undirected graph produced by some undirected
parser2 for an input string w (we omit labels for simplicity and readability).

We define the following sets of arcs:

A1(U) = {(i, j) | j 6= 0 ∧ {i, j} ∈ E},
A2(U) = {(0, i) | i ∈ Vw}.

The set A1(U) contains the two possible orientations of each edge in U (i.e., the arcs
in the symmetric directed graph isomorphic to U ) except for those arcs that would have the
node 0 as a dependent, which we disallow because we are using that node as a dummy root,
and therefore it cannot be assigned a head. On the other hand, the set A2(U) contains all the
possible arcs that link the nodes in Vw as dependents of the dummy root node, regardless
of whether their underlying undirected edges were present in U or not. This is so that
the reconstruction techniques defined under this framework are allowed to link unattached
tokens to the dummy root.

With these arc sets, we define a graph D(U) containing all the candidate arcs that we
will consider when reconstructing a dependency structure from U :

D(U) = {Vw, A(U) = A1(U) ∪A2(U)}.
The reconstruction process for an undirected graph U consists on finding an optimum

branching (i.e., a directed minimum spanning tree) for a weighted directed graph obtained
from assigning a cost c(i, j) to each arc (i, j) of the graph D(U), that is, we are looking for
a dependency tree T = (Vw, AT ⊆ A(U)) that minimizes

∑
(i,j)∈At

c(i, j).
Such an tree can be calculated using well-known algorithms for the optimum branching

problem, like the Chu-Liu-Edmonds algorithm (Chu and Liu, 1965; Edmonds, 1967). In this
particular case, we can take advantage of the fact that the graph D(U) has O(n) nodes and
O(n) arcs for a string of length n, and use the implementation by Tarjan (1977) to achieve a
time complexity of O(n log n).

The different reconstruction techniques can be defined by establishing different criteria
to assign the costs c(i, j) to the arcs in A(U).

4.1. Naive Reconstruction
A first, very simple reconstruction technique can be defined by assigning costs to the

arcs of D(U) as follows:

c(i, j)

{
1 if (i, j) ∈ A1(U),
2 if (i, j) ∈ A2(U) ∧ (i, j) 6∈ A1(U).

This criterion assigns the same cost to both the orientations of each undirected edge in
U , and a higher cost to attaching any node to the dummy root that was not directly linked to
it in U . To obtain satisfactory results with this approach, we must train the undirected parser
to explicitly build undirected arcs from the dummy root node to the root word(s) of each
sentence using arc transitions. This means that, if our training treebank contains forests, we
need to transform them into trees by explicitly linking each of their roots as dependents of
the node 0, as explained at the end of Section 2.

Under this assumption, if no classification errors are made, the undirected graph U
output by the undirected parser will always be an undirected tree, and the minimum spanning
tree will correspond to the unique orientation of U making its edges point away from the

2Note that, while the approach taken in this article is to obtain undirected parsers by transforming directed parsers, it would
also be possible in theory to design an undirected parser from scratch and apply the same reconstruction techniques to it.



14 COMPUTATIONAL INTELLIGENCE

dummy root.3 It is easy to see that this orientation must be the correct parse, since any other
orientation violates the assumption that node 0 is a root.

This naive reconstruction technique has the advantage of being very simple, while guar-
anteeing that the correct parse will be recovered if the undirected parser is able to correctly
generate its underlying undirected tree. However, this approach lacks robustness, because it
decides the direction of all the arcs in the final output based on which node(s) are chosen as
sentence heads and linked to the dummy root. This means that a parsing error affecting the
undirected edges that involve the root may propagate and result in many dependency links
being erroneous. For this reason, this approach for recovering arc directions will not produce
good empirical results, as will be seen in Section 5. Fortunately, we can define a more robust
criterion where the orientation of arcs is defined in a more distributed manner, without being
so sensible to the edges involving the root.

4.2. Label-based Reconstruction
To obtain a more robust and effective reconstruction technique, we first apply a simple

transformation to the training corpus so that arcs will have their direction encoded as a part
of their label. To do so, if a leftward arc in the training set is labelled X , we relabel it Xl,
meaning “a leftward arc labelled X”. If a rightward arc in the training set is labelled X , we
relabel it Xr, meaning “a rightward arc labelled X”.

After training the undirected parser with this modified treebank, its output for a new sen-
tence will be an undirected graph where each edge’s label includes an annotation indicating
whether the reconstruction process should prefer to link the corresponding pair of nodes
with a leftward or with a rightward arc. Note that those annotations represent preferred
directions — not hard constraints — because, although in the absence of errors it would
be possible to simply use the annotations to decode the correct parse for the sentence, in
practice parsing errors can create situations where it is not possible to conform to all the
annotations without violating the single-head constraint in the directed graph resulting from
the reconstruction. In these cases, the reconstruction technique will have to decide which
annotations to follow and which have to be ignored. For this purpose, we will assign the
costs for our minimum branching algorithm so that it will return a tree agreeing with as
many annotations as possible.

To achieve this, we denote byA1+(U) ⊆ A1(U) the set of arcs inA1(U) that agree with
the annotations, that is, arcs (i, j) ∈ A1(U) where either i < j and {i, j} is labelled Xr in
U , or i > j and {i, j} is labelled Xl in U . Conversely, we call A1−(U) the set of arcs in
A1(U) that disagree with the annotations, that is, A1−(U) = A1(U) \ A1+(U). Then, we
assign costs to the directed arcs in A(U) as follows:

c(i, j)

{
1 if (i, j) ∈ A1+(U),
2 if (i, j) ∈ A1−(U),
2n if (i, j) ∈ A2(U) ∧ (i, j) 6∈ A1(U).

where n is the length of the string.
With these costs, the optimum branching algorithm will find a spanning tree that agrees

with as many annotations as possible, since assigning the direction that agrees with an edge’s
annotation has a lower cost than assigning the opposite direction. Additional arcs from the
root not appearing in the parsing output (i.e. arcs inA2(U)\A1(U)) can be added, but only if
this is strictly necessary to guarantee connectedness (i.e., if the graph U was disconnected),

3Note that, while we previously suggested using optimum branching algorithms to find the spanning tree for the sake of
generality, in this particular case it is not necessary to use such a generic algorithm: the spanning tree can simply be built in
O(n) by starting a traversal from the root and orienting each arc in the sense of the traversal. However, this is only valid for
this particular reconstruction technique.



UNDIRECTED DEPENDENCY PARSING 15

0        1       2        3       4        5

R

R L L L

0        1       2        3       4        5

0        1       2        3       4        5

a.

b.

c.

FIGURE 6. a) An undirected graph obtained by the undirected parser trained with a trans-
formed corpus where arcs have been relabelled to specify their direction, b) and c) The
dependency graph obtained by each of the variants of the label-based reconstruction (note
how the second variant moves an arc from the root).

since the cost of such an arc (2n) is greater than the sum of costs of any combination of arcs
originating from edges in U .

While this may be the simplest cost assignment to implement label-based reconstruc-
tion, we have found experimentally that better practical results are obtained if we give the
algorithm more freedom to create new arcs from the root, as follows:

c(i, j)

{
1 if (i, j) ∈ A1+(U) ∧ (i, j) 6∈ A2(U),
2 if (i, j) ∈ A1−(U) ∧ (i, j) 6∈ A2(U),
2n if (i, j) ∈ A2(U).

The difference with the previous variant is that arcs originating from the root now have
a cost of 2n even if their underlying undirected arcs were present in the output of the
undirected parser. Informally, this means that the postprocessor will not “trust” the links
from the dummy root created by the parser, and may choose to change them (at no extra
cost) if this is convenient to obtain a better agreement with the label annotations of the rest
of the arcs (see Figure 6 for an example of the difference between both cost assignments). We
believe that the higher empirical accuracy obtained with this criterion is probably due to the
fact that it is biased towards changing links from the root, which tend to be more problematic
for transition-based parsers, while respecting the parser output as much as possible for links
located deeper in the dependency structure, for which transition-based parsers have been
shown to be more accurate (McDonald and Nivre, 2007).

Note that both variants of label-based reconstruction share the property that, if the undi-
rected parser produces the correct labelled undirected graph for a given sentence, then the
post-processing will transform it into the correct parse, which is simply the one obtained by
following all the annotations in the undirected arcs.

4.3. Example
We can see how the reconstruction techniques work by going back to our running exam-

ple sentence (Figure 2). In Section 2.3, we saw that the directed Planar parser could parse
this sentence with the transition sequence shown in Figure 4. Then, at the beginning of
Section 3, we illustrated how a wrong choice by the parser could cause error propagation: if
an erroneous link from dependency4 to tree5 were created instead of the correct link from



16 COMPUTATIONAL INTELLIGENCE

tree5 to dependency4, the single-head constraint would then disallow creating the correct
link from is2 to tree5, causing another attachment error.

If we parsed this sentence with the undirected Planar parser and the naive reconstruction,
this error would never happen, since the undirected parser would simply not need to make
the choice between linking dependency4 → tree5 or dependency4 ← tree5. It would
simply execute an ARC transition, as in Figure 5, and produce the undirected arc between
dependency4 and tree5 that can be seen in Figure 3. The naive reconstruction technique
would then extract from this graph the correct orientation (Figure 2), which is the one where
every arc points away from the root.

On the other hand, if instead of the naive reconstruction we used the label-based re-
construction, the direction error in the example would translate into a labelling error in the
undirected parser: instead of creating an undirected edge labelled NMODL between the
nodes dependency4 and tree5, the edge would be labelledNMODR, indicating a preference
for right attachment. However, this preference would not be followed by the reconstruction
technique, since there would be no possible way to conform to all the preferences at the
same time without the node tree5 getting two heads, and the only way of disobeying only
one annotation (corresponding to the minimum spanning tree, with cost 15 in the second
variant of label-based reconstruction) would be to disregard precisely that annotation and
output, again, the parse of Figure 2.

Therefore, in this particular toy example, the combination of undirected parsing and any
of the reconstruction techniques not only avoids the error propagation due to erroneously
linking from dependency4 to → tree5, but even eliminates the original error itself during
post-processing. Of course, not all the cases will be so favorable when applying these tech-
niques in practice, hence the need to evaluate them empirically to see whether undirected
parsing can improve accuracy in real-life settings.

5. EXPERIMENTS
In this section, we evaluate the performance of the undirected Planar, 2-Planar and

Covington parsers. For each transition system, we compare the accuracy of the undirected
versions with naive and label-based reconstruction to that of the original, directed version.
In addition, we provide a comparison to well-known state-of-the-art projective and non-
projective parsers.

To evaluate the performance of the parsers in different languages, we use the following
eight datasets from the CoNLL-X shared task: Arabic (Hajič et al., 2004), Chinese (Chen
et al., 2003), Czech (Hajič et al., 2006), Danish (Kromann, 2003), German (Brants et al.,
2002), Portuguese (Afonso et al., 2002), Swedish (Nilsson et al., 2005) and Turkish (Oflazer
et al., 2003; Atalay et al., 2003); and we score the parsers on the following standard evalua-
tion metrics:

• Labelled Attachment Score (LAS): The proportion of tokens (nodes) that are assigned
both the correct head and the correct dependency relation label.
• Unlabelled Attachment Score (UAS): The proportion of tokens (nodes) that are assigned

the correct head (regardless of the dependency relation label).

In our results, we show both LAS and UAS considering every token in the input sentences,
including punctuation, as a scoring token.

In particular, Table 1 shows the results obtained by the undirected Planar parser with re-
spect to the original Planar parser by Gómez-Rodrı́guez and Nivre (2010). Table 2 compares
the results of the undirected 2-Planar parser to the 2-Planar parser by Gómez-Rodrı́guez



UNDIRECTED DEPENDENCY PARSING 17

TABLE 1. Parsing accuracy of the undirected Planar parser with naive (UPlanarN) and label-based
(UPlanarL) postprocessing in comparison to the directed Planar parser (Planar).

Planar UPlanarN UPlanarL

Language LAS UAS LAS UAS LAS UAS

Arabic 67.34 77.22 66.33 76.75 67.50 77.57
Chinese 84.20 88.33 83.10 86.95 84.50 88.35
Czech 77.70 83.24 75.60 81.14 77.93 83.41
Danish 82.60 86.64 82.45 86.67 83.83 88.17
German 83.60 85.67 82.77 84.93 85.67 87.69
Portug. 83.82 86.88 83.82 87.06 84.83 88.03
Swedish 82.44 87.36 81.10 85.86 82.66 87.45
Turkish 71.27 78.57 68.31 75.17 71.63 78.72

TABLE 2. Parsing accuracy of the undirected 2-Planar parser with naive (U2PlanarN) and label-based
(U2PlanarL) postprocessing in comparison to the directed 2-Planar parser (2Planar).

2Planar U2PlanarN U2PlanarL

Language LAS UAS LAS UAS LAS UAS

Arabic 67.19 77.11 66.93 77.09 66.52 76.70
Chinese 84.32 88.27 82.98 86.81 83.94 87.75
Czech 77.91 83.32 75.19 80.80 78.59 84.21
Danish 83.61 87.63 81.63 85.80 83.65 87.82
German 85.76 87.86 82.53 84.81 85.99 87.92
Portug. 84.92 88.14 83.45 86.65 84.75 87.88
Swedish 82.71 87.59 80.71 85.68 82.25 87.29
Turkish 70.09 77.39 67.44 74.06 70.64 77.46

and Nivre (2010). Finally, Table 3 shows the results obtained by the undirected Covington
non-projective parser in comparison to the directed implementation by Nivre (2008).

The results show that the use of undirected parsing with label-based reconstruction
(UPlanarL) improves the scores of the Planar parser on all of the eight datasets tested. In
most cases, it even attains higher scores than the 2-Planar baseline parser considered, which
is remarkable if we take into account that the 2-Planar parser has more theoretical coverage
due to its support of crossing links. In the case of 2-planar parsing, applying this technique
(U2PlanarL) outperforms the scores of the directed 2-Planar parser on the Czech, Danish,
German and Turkish datasets. Finally, the undirected Covington non-projective parser with
label-based reconstruction (UCovingtonL) outperforms the results obtained by the baseline
parser (Covington) on seven out of eight datasets.

The improvements achieved in LAS by undirected parsers with label-based reconstruc-
tion over the directed versions are statistically significant at the .05 level4 for Danish, German
and Portuguese for the Planar parser; and Czech, Danish and Turkish in the case of the
Covington parser. Furthermore, no statistically significant decrease in accuracy was observed
in any of the algorithm/dataset combinations.

4Statistical significance was assessed using Dan Bikel’s randomized comparator: http://www.cis.upenn.edu/
˜dbikel/software.html



18 COMPUTATIONAL INTELLIGENCE

TABLE 3. Parsing accuracy of the undirected Covington non-projective parser with naive (UCovingtonN)
and label-based (UCovingtonL) postprocessing in comparison to the directed algorithm (Covington).

Covington UCovingtonN UCovingtonL

Language LAS UAS LAS UAS LAS UAS

Arabic 65.49 75.69 63.93 74.20 65.81 75.66
Chinese 85.61 89.62 84.02 87.73 86.17 90.04
Czech 77.43 83.15 74.78 79.92 78.69 84.16
Danish 82.89 87.06 81.61 85.51 83.85 87.75
German 85.69 87.78 83.51 85.39 85.90 87.95
Portug. 82.56 86.30 81.71 85.17 82.70 86.31
Swedish 82.76 87.61 81.47 85.96 82.73 87.23
Turkish 72.70 79.75 72.08 79.10 73.38 80.40

As expected, the undirected parsers with naive reconstruction (UPlanarN, U2PlanarN,
UCovingtonN) performed worse than those with label-based reconstruction in all the exper-
iments.

To further put these results into context, we provide a comparison of the novel undi-
rected parsers, configured with label-based reconstruction, to well-known projective and
non-projective parsers. Table 4 compares the undirected Planar parser to the arc-eager pro-
jective parser by Nivre (2003), a well-known algorithm that is also restricted to planar
dependency structures.5 The arc-eager parser is the default parsing algorithm in MaltParser
(Nivre et al., 2006), and is also the dependency parser used in other current systems like ZPar
(Zhang and Clark, 2011). In addition, Table 5 shows the results of the undirected 2-Planar
and the undirected Covington algorithms compared to those of the arc-eager parser with
the pseudo-projective transformation of Nivre and Nilsson (2005), which is able to handle
non-planar dependencies, and is probably the most widely used method for non-projective
transition-based parsing.

As we can see in these experiments, the undirected Planar parser obtains a better score
than the arc-eager algorithm (MaltP) on seven out of eight tests; whilst the accuracy of the
pseudo-projective arc-eager parser (MaltPP) is outperformed on five out of eight languages
by the undirected Covington parser, and on the Arabic, Czech and Danish datasets by the
undirected 2-Planar algorithm. Therefore, undirected parsing with label-based reconstruction
can be used to improve the accuracy of parsing algorithms, and produces results that are
competitive with state-of-the-art transition-based parsers.

For our tests, all the algorithms were implemented in MaltParser (Nivre et al., 2006),
and trained with classifiers from the LIBSVM (Chang and Lin, 2001) and LIBLINEAR (Fan
et al., 2008) packages. In particular, in order to reduce the training time for larger datasets,
we employed the LIBLINEAR package for Chinese, Czech and German; and we used SVM
classifiers from the LIBSVM package for the rest of the languages.

The arc-eager projective and pseudo-projective parsers were trained with the LIBSVM
feature models presented in the CoNLL 2006 shared task, where the pseudo-projective ver-
sion of MaltParser was one of the two top performing systems (Buchholz and Marsi, 2006).
The feature models for the 2-Planar parser were taken from Gómez-Rodrı́guez and Nivre
(2010) for the languages included in that paper. Regarding the new undirected parsers, their

5The arc-eager parser covers the set of projective dependency structures. Planar structures are a very mild relaxaction of
projective structures, and in fact both sets become equivalent when sentences are required to have a single root node at position
0.



UNDIRECTED DEPENDENCY PARSING 19

TABLE 4. Parsing accuracy of the undirected Planar (UPlanarL) with label-based postprocessing in
comparison to the MaltParser arc-eager projective (MaltP) algorithm.

UPlanarL MaltP

Language LAS UAS LAS UAS

Arabic 67.50 77.57 66.74 76.83
Chinese 84.50 88.35 86.39 90.02
Czech 77.93 83.41 77.57 83.19
Danish 83.83 88.17 82.64 86.91
German 85.67 87.69 85.48 87.58
Portug. 84.83 88.03 84.66 87.73
Swedish 82.66 87.45 82.44 87.55
Turkish 71.63 78.72 70.96 77.95

TABLE 5. Parsing accuracy of the undirected 2-Planar parser (U2PlanarL) and the undirected Covington
non-projective parser (UCovingtonL) with label-based postprocessing in comparison to the MaltParser arc-eager
pseudo-projective (MaltPP) algorithm.

U2PlanarL UCovingtonL MaltPP

Language LAS UAS LAS UAS LAS UAS

Arabic 66.52 76.70 65.81 75.66 66.02 76.14
Chinese 83.94 87.75 86.17 90.04 86.39 90.02
Czech 78.59 84.21 78.69 84.16 78.47 83.89
Danish 83.65 87.82 83.85 87.75 83.54 87.70
German 85.99 87.92 85.90 87.95 86.62 88.69
Portug. 84.75 87.88 82.70 86.31 84.90 87.95
Swedish 82.25 87.29 82.73 87.23 82.67 87.38
Turkish 70.64 77.46 73.38 80.40 71.33 78.44

feature models for each algorithm and dataset were created from those of the directed parsers
as described in Section 3.2.

6. ERROR ANALYSIS
The results in the previous section show that undirected parsing with label-based re-

construction can improve the accuracy of several parsing algorithms, and obtain results that
are competitive with the state of the art in transition-based parsing. These results seem to
support our hypothesis that the undirected parsing approach can successfully alleviate error
propagation, formulated in Section 3.

To further test whether this is in fact the reason for the improvements in accuracy, we
conduct a more in-depth analysis of the outputs produced by the parsers in Section 5, going
beyond the global LAS and UAS metrics to see the circumstances under which parsing errors
are being made.

In particular, as observed by McDonald and Nivre (2007), a good indicator of error prop-
agation in transition-based parsers is the loss of dependency precision for longer dependency
arcs (with the length of an arc i l→ j being defined as |j−i|). In most transition-based parsers,
shorter arcs tend to be created earlier in transition sequences than longer ones: for example,



20 COMPUTATIONAL INTELLIGENCE

0 5 10 15 20 25 30 35
0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

Dependency Length

D
ep

en
de

nc
y 

P
re

ci
si

on
 Planar Parser
 UPlanarL Parser

FIGURE 7. Dependency arc precision relative to predicted dependency length for the Planar
parser (Planar) and the undirected Planar parser with label-based reconstruction (UPlanarL)
on the eight datasets.

all the algorithms considered here (like the one used in McDonald and Nivre (2007)) have the
property that given nodes i < j < k < l, an arc connecting j and k will always be created
before an arc connecting i and l. This means that longer arcs, being created later, will be
more likely to be affected by the propagation of errors made in previous parsing decisions.

Figure 7 shows the labelled dependency arc precision obtained by the directed and
undirected planar parsers for different predicted dependency lengths, i.e., for each length
l, it shows the percentage of correct arcs among the arcs of length l in the parser output.
Figure 8 shows the labelled dependency arc recall for those same parsers as a function of
gold dependency length, i.e., the percentage of gold standard arcs of each length l in the test
set that were correctly predicted by the parser.

Instead of doing a language by language analysis, we measure these values across all
datasets by aggregating the parser outputs for every language into a single file, and evaluating
it with respect to a corresponding joined gold standard file, thus following the same method
as McDonald and Nivre (2007). This ensures that we gain a better insight into the distribution
of parsing errors, since the datasets for each individual language are too small to have a
meaningful sample of arcs for each given distance. Note that, although this form of data
aggregation means that the obtained precision and recall values are micro averages, the
CoNLL-X test sets purposely have roughly the same size (5000 tokens), so the result would
be roughly the same if we computed a macro average instead.

Starting from length 20, we group the data into bins of size 5 — [20, 25), etc. — for a
more meaningful visualization because, even with the mentioned aggregation, data become
sparser from that point and there may be no arcs at all for some particular lengths.

As we can see in Figure 7, both the directed and the undirected planar parsers ex-
periment a drop in precision for longer-distance dependencies, which is expected, among



UNDIRECTED DEPENDENCY PARSING 21

0 5 10 15 20 25 30 35
0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

Dependency Length

D
ep

en
de

nc
y 

R
ec

al
l

 Planar Parser
 UPlanarL Parser

FIGURE 8. Dependency arc recall relative to gold dependency length for the Planar parser
(Planar) and the undirected Planar parser with label-based reconstruction (UPlanarL) on the
eight datasets.

other reasons, because both are transition-based parsers and will exhibit error propagation.6
However, this phenomenon is significantly more pronounced in the directed parser, and while
the accuracies of both algorithms are practically indistinguishable for arcs of length smaller
than 5, the undirected Planar parser obtains a clearly better precision on longer arcs, with
the difference in precision typically being above 3 points, and reaching up to 10 points on
some lengths. Note that the difference in global LAS was not so huge (cf. Section 5) because
shorter dependencies are more frequent in treebanks than longer ones, and thus they have a
higher weight in the overall LAS metric.

The recall measurements, shown in Figure 8, exhibit a very similar trend. Note that,
in principle, precision is a more useful metric than recall for the purpose of estimating the
impact of error propagation, because the order in which dependency arcs are built is directly
related to their relative length and position in the output trees, with the relation to the gold
standard tree being more indirect. However, we include recall for completeness.

These results for the directed and undirected planar parsers suggest that, as we hypothe-
sized, the undirected variant of the parser is less affected by error propagation than the orig-
inal, directed version. This is the cause of the higher precision and recall for longer-distance

6While error propagation is probably the most important reason why a transition-based parser’s performance drops for
longer dependencies, it is not the only cause for this phenomenon: McDonald and Nivre (2007) observe that even in the
graph-based parser by McDonald et al. (2006), which does not analyze sentences sequentially and thus cannot exhibit error
propagation, there is a slight drop in accuracy for longer dependencies. A reason for this is that longer dependencies tend to
occur more frequently in ambiguous constructions and in complex, relatively infrequent linguistic phenomena that are difficult
to parse (Nivre et al., 2010), while short dependencies include many trivial instances like the attachment of determiners to
nouns, where there is little ambiguity and many examples in training sets allowing for a high parsing accuracy.



22 COMPUTATIONAL INTELLIGENCE

0 5 10 15 20 25 30 35
0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

Dependency Length

D
ep

en
de

nc
y 

P
re

ci
si

on
 2Planar Parser
 U2PlanarL Parser

FIGURE 9. Dependency arc precision relative to predicted dependency length for the 2-
Planar parser (2Planar) and the undirected 2-Planar parser with label-based reconstruction
(U2PlanarL) on the eight datasets.

dependencies reflected in Figures 7 and 8, and of the improvement in overall accuracy that
we observed in Section 5.

Figures 9 and 10 provide precision and recall measurements analogous to those in Fig-
ures 7 and 8, but this time for the directed and undirected 2-planar parsers. In this case,
the differences between both parsers are not as marked as in the planar case, just as the
diferences in overall accuracy were not as marked either (cf. Section 5). However, it is still
clearly visible in Figure 9 that the undirected 2-Planar parser improves the precision for
long-distance dependencies, supporting the hypothesis that the increases in accuracy that it
produces are due to being less affected by error propagation.

Finally, Figures 11 and 12 provide the same comparison for the two variants of the Cov-
ington algorithm. In this case, the results are less conclusive, at least in the case of precision,
with the undirected parser still clearly improving the recall for longer dependencies. This
may indicate that the undirected Covington parser tends to generate more long arcs than the
directed one (hence the improvement in recall but not in precision).

Summing up the results of the error analysis, we can see that undirected parsing clearly
increases the precision for longer-distance dependency arcs, at least in the planar and 2-
planar cases; providing evidence that this technique successfully alleviates error propagation.
In the case of the Covington algorithm, the results are less conclusive, since there no clear
increase (or decrease) in precision has been observed for longer dependencies.

7. CONCLUSION
In this article, we have presented a technique to transform transition-based dependency

parsers satisfying certain conditions into undirected dependency parsers, which can then



UNDIRECTED DEPENDENCY PARSING 23

0 5 10 15 20 25 30 35
0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

Dependency Length

D
ep

en
de

nc
y 

R
ec

al
l

 2Planar Parser
 U2PlanarL Parser

FIGURE 10. Dependency arc recall relative to gold dependency length for the 2-Planar
parser (2Planar) and the undirected 2-Planar parser with label-based reconstruction
(U2PlanarL) on the eight datasets.

be implemented and trained with feature models that do not depend on the directions of
dependency links. The resulting parsers have the drawback that they generate undirected
graphs instead of dependency trees, but we have shown how arc directions can be recovered
from the undirected output by means of one of two different post-processing techniques, so
that the final result is a fully functional dependency parser.

The advantage of the parsers obtained in this way is that they do not need to obey the
single-head constraint until the post-processing step. This gives the parser more freedom
when choosing transitions to apply, and alleviates error propagation, thus producing im-
provements in accuracy with respect to directed parsers. We have backed this claim with ex-
periments in which we evaluated the directed and undirected version of the Planar, 2-Planar
(Gómez-Rodrı́guez and Nivre, 2010; Gómez-Rodrı́guez and Nivre, 2013) and Covington
(Nivre, 2008; Covington, 2001) parsing algorithms, obtaining improvements in labelled
attachment score in 19 out of 24 algorithm-dataset combinations, with statistically significant
differences for several of them, outperforming well-known state-of-the-art transition-based
parsers. A more in-depth analysis has shown that the undirected parsers tend to perform
especially well for longer-distance dependencies, which supports the hypothesis that the
increase in accuracy is due to alleviation of error propagation.

The idea of parsing with undirected relations between words has been applied before in
the work on Link Grammar (Sleator and Temperley, 1991). However, in that case undirected
arcs are the desired final result, and not an intermediate result, since the Link Grammar
formalism itself represents the syntactic structure of sentences by means of undirected links.
To the best of our knowledge, the idea of obtaining an undirected graph as an intermediate
step for parsing directed dependency structures has not been explored before in the literature.

Note that this article we have obtained undirected parsers by transforming existing di-



24 COMPUTATIONAL INTELLIGENCE

0 5 10 15 20 25 30 35
0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

Dependency Length

D
ep

en
de

nc
y 

P
re

ci
si

on
 Covington Parser
 UCovingtonL Parser

FIGURE 11. Dependency arc precision relative to predicted dependency length for the
Covington parser (Covington) and the undirected Covington parser with label-based recon-
struction (UCovingtonL) on the eight datasets.

rected parsers, and this provided a good baseline to assess the usefulness of the undirected
parsing technique. However, it would also be possible to define undirected parsers from
scratch, without necessarily being based on any directed parsers, and apply the same recon-
struction techniques to them so as to obtain directed dependency structures as output. This
is an interesting avenue for future work.

ACKNOWLEDGMENT
Partially funded by the Spanish Ministry of Economy and Competitiveness and FEDER

(projects TIN2010-18552-C03-01 and TIN2010-18552-C03-02), Ministry of Education (FPU
Grant Program) and Xunta de Galicia (Rede Galega de Recursos Lingüı́sticos para unha
Soc. do Coñec., Rede Galega de Proc. da Ling. e Recup. da Inf.). The experiments were
conducted with the help of computing resources provided by the Supercomputing Center of
Galicia (CESGA). We thank Joakim Nivre for helpful input in the early stages of this work.

REFERENCES
AFONSO, SUSANA, ECKHARD BICK, RENATO HABER, and DIANA SANTOS. 2002. “Floresta sintá(c)tica”: a

treebank for Portuguese. In Proceedings of the 3rd International Conference on Language Resources and
Evaluation (LREC 2002), ELRA, Paris, France, pp. 1968–1703.

ATALAY, NART B., KEMAL OFLAZER, and BILGE SAY. 2003. The annotation process in the Turkish treebank.
In Proceedings of EACL Workshop on Linguistically Interpreted Corpora (LINC-03), Association for
Computational Linguistics, Morristown, NJ, USA, pp. 243–246.

ATTARDI, GIUSEPPE. 2006. Experiments with a multilanguage non-projective dependency parser. In Proceed-



UNDIRECTED DEPENDENCY PARSING 25

0 5 10 15 20 25 30 35
0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

Dependency Length

D
ep

en
de

nc
y 

R
ec

al
l

 Covington Parser
 UCovingtonL Parser

FIGURE 12. Dependency arc recall relative to gold dependency length for the Covington
parser (Covington) and the undirected Covington parser with label-based reconstruction
(UCovingtonL) on the eight datasets.

ings of the 10th Conference on Computational Natural Language Learning (CoNLL), pp. 166–170.
BERANT, JONATHAN, IDO DAGAN, and JACOB GOLDBERGER. 2010. Global learning of focused entailment

graphs. In Proceedings of the 48th Annual Meeting of the Association for Computational Linguistics,
ACL ’10, Association for Computational Linguistics, Stroudsburg, PA, USA, pp. 1220–1229. http:
//dl.acm.org/citation.cfm?id=1858681.1858805.

BRANAVAN, S. R. K., DAVID SILVER, and REGINA BARZILAY. 2012. Learning to win by reading manuals in
a monte-carlo framework. J. Artif. Int. Res., 43(1):661–704. ISSN 1076-9757. http://dl.acm.org/
citation.cfm?id=2387915.2387932.

BRANTS, SABINE, STEFANIE DIPPER, SILVIA HANSEN, WOLFGANG LEZIUS, and GEORGE SMITH. 2002.
The tiger treebank. In Proceedings of the Workshop on Treebanks and Linguistic Theories, September
20-21, Sozopol, Bulgaria. http://www.coli.uni-sb.de/˜sabine/tigertreebank.pdf.

BUCHHOLZ, SABINE, and ERWIN MARSI. 2006. CoNLL-X shared task on multilingual dependency parsing.
In Proceedings of the 10th Conference on Computational Natural Language Learning (CoNLL), pp. 149–
164.

CHANG, CHIH-CHUNG, and CHIH-JEN LIN. 2001. LIBSVM: A Library for Support Vector Machines. Software
available at http://www.csie.ntu.edu.tw/∼cjlin/libsvm.

CHEN, K., C. LUO, M. CHANG, F. CHEN, C. CHEN, C. HUANG, and Z. GAO. 2003. Sinica treebank: Design
criteria, representational issues and implementation. In Treebanks: Building and Using Parsed Corpora.
Edited by A. Abeillé. Kluwer, pp. 231–248.

CHU, Y. J., and T. H. LIU. 1965. On the shortest arborescence of a directed graph. Science Sinica, 14:1396–
1400.

COMAS, PERE R., JORDI TURMO, and LLUÍS MÁRQUEZ. 2010. Using dependency parsing and machine
learning for factoid question answering on spoken documents. In Proceedings of the 13th International
Conference on Spoken Language Processing (INTERSPEECH 2010), Makuhari, Japan.

COVINGTON, MICHAEL A. 1990. A dependency parser for variable-word-order languages. Technical Report
AI-1990-01, University of Georgia, Athens, GA.



26 COMPUTATIONAL INTELLIGENCE

COVINGTON, MICHAEL A. 2001. A fundamental algorithm for dependency parsing. In Proceedings of the 39th
Annual ACM Southeast Conference, pp. 95–102.

CUI, HANG, RENXU SUN, KEYA LI, MIN-YEN KAN, and TAT-SENG CHUA. 2005. Question answering
passage retrieval using dependency relations. In SIGIR ’05: Proceedings of the 28th Annual International
ACM SIGIR Conference on Research and Development in Information Retrieval, ACM, New York, NY,
USA. ISBN 1-59593-034-5. pp. 400–407.

CULOTTA, ARON, and JEFFREY SORENSEN. 2004. Dependency tree kernels for relation extraction. In ACL ’04:
Proceedings of the 42nd Annual Meeting of the Association for Computational Linguistics, Association for
Computational Linguistics, Morristown, NJ, USA, pp. 423–429.

DING, YUAN, and MARTHA PALMER. 2005. Machine translation using probabilistic synchronous dependency
insertion grammars. In ACL ’05: Proceedings of the 43rd Annual Meeting of the Association for
Computational Linguistics, Association for Computational Linguistics, Morristown, NJ, USA, pp. 541–
548.

EDMONDS, JACK. 1967. Optimum branchings. Journal of Research of the National Bureau of Stan-
dards, 71B:233–240.

EISNER, JASON M. 1996. Three new probabilistic models for dependency parsing: An exploration. In Proceed-
ings of the 16th International Conference on Computational Linguistics (COLING), pp. 340–345.

FAN, R.-E., K.-W. CHANG, C.-J. HSIEH, X.-R. WANG, and C.-J. LIN. 2008. LIBLINEAR: A library for
large linear classification. Journal of Machine Learning Research, 9:1871–1874.

FUNDEL, KATRIN, ROBERT KÜFFNER, and RALF ZIMMER. 2006. RelEx—Relation extraction using depen-
dency parse trees. Bioinformatics, 23(3):365–371. ISSN 1367-4803.

GOLDBERG, YOAV, and MICHAEL ELHADAD. 2010. An efficient algorithm for easy-first non-directional
dependency parsing. In Human Language Technologies: The 2010 Annual Conference of the North
American Chapter of the Association for Computational Linguistics (NAACL HLT), pp. 742–750.

GÓMEZ-RODRÍGUEZ, CARLOS, and DANIEL FERNÁNDEZ-GONZÁLEZ. 2012. Dependency parsing with
undirected graphs. In Proceedings of the 13th Conference of the European Chapter of the Association
for Computational Linguistics, Association for Computational Linguistics, Stroudsburg, PA, USA. ISBN
978-1-937284-19-0. pp. 66–76.

GÓMEZ-RODRÍGUEZ, CARLOS, and JOAKIM NIVRE. 2010. A transition-based parser for 2-planar dependency
structures. In Proceedings of the 48th Annual Meeting of the Association for Computational Linguistics,
ACL ’10, Association for Computational Linguistics, Stroudsburg, PA, USA, pp. 1492–1501. http:
//portal.acm.org/citation.cfm?id=1858681.1858832.

GÓMEZ-RODRÍGUEZ, CARLOS, and JOAKIM NIVRE. 2013. Divisible transition systems and multiplanar
dependency parsing. Computational Linguistics, 39(4):799–845.

HAJIČ, JAN, JARMILA PANEVOVÁ, EVA HAJIČOVÁ, JARMILA PANEVOVÁ, PETR SGALL, PETR PAJAS, JAN

ŠTĚPÁNEK, JIŘÍ HAVELKA, and MARIE MIKULOVÁ. 2006. Prague Dependency Treebank 2.0. CDROM
CAT: LDC2006T01, ISBN 1-58563-370-4. Linguistic Data Consortium.

HAJIČ, JAN, OTAKAR SMRŽ, PETR ZEMÁNEK, JAN ŠNAIDAUF, and EMANUEL BEŠKA. 2004. Prague Arabic
Dependency Treebank: Development in data and tools. In Proceedings of the NEMLAR International
Conference on Arabic Language Resources and Tools.

HAYASHI, KATSUHIKO, TARO WATANABE, MASAYUKI ASAHARA, and YUJI MATSUMOTO. 2012. Head-
driven transition-based parsing with top-down prediction. In Proceedings of the 50th Annual Meeting of
the Association for Computational Linguistics (Volume 1: Long Papers), Association for Computational
Linguistics, Jeju Island, Korea, pp. 657–665. http://www.aclweb.org/anthology/P12-1069.

HERRERA, JESÚS, ANSELMO PEÑAS, and FELISA VERDEJO. 2005. Textual entailment recognition based on
dependency analysis and WordNet. In Machine Learning Challenges, volume 3944 of Lecture Notes in
Computer Science, Springer-Verlag, Berlin-Heidelberg-New York, pp. 231–239.

HUANG, LIANG, WENBIN JIANG, and QUN LIU. 2009. Bilingually-constrained (monolingual) shift-reduce
parsing. In Proceedings of the Conference on Empirical Methods in Natural Language Processing
(EMNLP), pp. 1222–1231.

HUANG, LIANG, and KENJI SAGAE. 2010. Dynamic programming for linear-time incremental parsing.
In Proceedings of the 48th Annual Meeting of the Association for Computational Linguistics (ACL), pp.
1077–1086.

JOHANSSON, RICHARD, and PIERRE NUGUES. 2006. Investigating multilingual dependency parsing. In Pro-
ceedings of the 10th Conference on Computational Natural Language Learning (CoNLL), pp. 206–210.



UNDIRECTED DEPENDENCY PARSING 27

JOSHI, MAHESH, and CAROLYN PENSTEIN-ROSÉ. 2009. Generalizing dependency features for opinion
mining. In Proceedings of the ACL-IJCNLP 2009 Conference Short Papers, ACLShort ’09, Association for
Computational Linguistics, Stroudsburg, PA, USA, pp. 313–316. http://dl.acm.org/citation.
cfm?id=1667583.1667680.

KATRENKO, SOPHIA, PIETER ADRIAANS, and MAARTEN VAN SOMEREN. 2010. Using local alignments
for relation recognition. J. Artif. Int. Res., 38(1):1–48. ISSN 1076-9757. http://dl.acm.org/
citation.cfm?id=1892211.1892212.

KATZ-BROWN, JASON, SLAV PETROV, RYAN MCDONALD, FRANZ OCH, DAVID TALBOT, HIROSHI

ICHIKAWA, and MASAKAZU SENO. 2011. Training a parser for machine translation reordering. In Pro-
ceedings of the 2011 Conference on Empirical Methods in Natural Language Processing (EMNLP ’11).
http://petrovi.de/data/emnlp11b.pdf.

KROMANN, MATTHIAS T. 2003. The Danish dependency treebank and the underlying linguistic theory.
In Proceedings of the 2nd Workshop on Treebanks and Linguistic Theories (TLT), Växjö University Press,
Växjö, Sweden, pp. 217–220.

LOMBARDO, VINCENZO, and LEONARDO LESMO. 1996. An Earley-type recognizer for dependency grammar.
In Proceedings of the 16th International Conference on Computational Linguistics (COLING 96), ACL /
Morgan Kaufmann, San Francisco, CA, USA, pp. 723–728.

MCDONALD, RYAN, KEVIN LERMAN, and FERNANDO PEREIRA. 2006. Multilingual dependency analysis
with a two-stage discriminative parser. In Proceedings of the 10th Conference on Computational Natural
Language Learning (CoNLL), pp. 216–220.

MCDONALD, RYAN, and JOAKIM NIVRE. 2007. Characterizing the errors of data-driven dependency parsing
models. In Proceedings of the 2007 Joint Conference on Empirical Methods in Natural Language Processing
and Computational Natural Language Learning (EMNLP-CoNLL), pp. 122–131.

MCDONALD, RYAN, and JOAKIM NIVRE. 2011. Analyzing and integrating dependency parsers. Comput.
Linguist., 37:197–230. ISSN 0891-2017.

MCDONALD, RYAN, FERNANDO PEREIRA, KIRIL RIBAROV, and JAN HAJIČ. 2005. Non-projective de-
pendency parsing using spanning tree algorithms. In Proceedings of the Human Language Technology
Conference and the Conference on Empirical Methods in Natural Language Processing (HLT/EMNLP),
pp. 523–530.

MIYAO, Y., K. SAGAE, R. SÆTRE, T. MATSUZAKI, and J. TSUJII. 2009. Evaluating contributions of
natural language parsers to protein-protein interaction extraction. Bioinformatics, 25(3):394–400. http:
//bioinformatics.oxfordjournals.org/cgi/content/abstract/25/3/394.

NILSSON, JENS, JOHAN HALL, and JOAKIM NIVRE. 2005. MAMBA meets TIGER: Reconstructing a Swedish
treebank from Antiquity. In Proceedings of the NODALIDA Special Session on Treebanks. Edited by P. J.
Henrichsen.

NIVRE, JOAKIM. 2003. An efficient algorithm for projective dependency parsing. In Proceedings of the 8th
International Workshop on Parsing Technologies (IWPT), pp. 149–160.

NIVRE, JOAKIM. 2008. Algorithms for Deterministic Incremental Dependency Parsing. Computational
Linguistics, 34(4):513–553. ISSN 0891-2017. http://www.mitpressjournals.org/doi/abs/
10.1162/coli.07-056-R1-07-027.

NIVRE, JOAKIM, JOHAN HALL, and JENS NILSSON. 2004a. Memory-based dependency parsing. In Proceed-
ings of the 8th Conference on Computational Natural Language Learning (CoNLL-2004), Association for
Computational Linguistics, Morristown, NJ, USA, pp. 49–56.

NIVRE, JOAKIM, JOHAN HALL, and JENS NILSSON. 2004b. Memory-based dependency parsing. In Proceed-
ings of the 8th Conference on Computational Natural Language Learning (CoNLL), pp. 49–56.

NIVRE, JOAKIM, JOHAN HALL, and JENS NILSSON. 2006. Maltparser: A data-driven parser-generator for
dependency parsing. In Proceedings of the 5th International Conference on Language Resources and
Evaluation (LREC), pp. 2216–2219.

NIVRE, JOAKIM, and JENS NILSSON. 2005. Pseudo-projective dependency parsing. In Proceedings of the 43rd
Annual Meeting of the Association for Computational Linguistics (ACL), pp. 99–106.

NIVRE, JOAKIM, LAURA RIMELL, RYAN MCDONALD, and CARLOS GÓMEZ RODRÍGUEZ. 2010. Evaluation
of dependency parsers on unbounded dependencies. In Proceedings of the 23rd International Conference
on Computational Linguistics (Coling 2010), pp. 833–841.

OFLAZER, KEMAL, BILGE SAY, DILEK ZEYNEP HAKKANI-TÜR, and GÖKHAN TÜR. 2003. Building a
Turkish treebank. In Treebanks: Building and Using Parsed Corpora. Edited by A. Abeillé. Kluwer, pp.



28 COMPUTATIONAL INTELLIGENCE

261–277.
SAGAE, KENJI, and JUN’ICHI TSUJII. 2008. Shift-reduce dependency DAG parsing. In COLING ’08: Proceed-

ings of the 22nd International Conference on Computational Linguistics, Association for Computational
Linguistics, Morristown, NJ, USA. ISBN 978-1-905593-44-6. pp. 753–760.

SHEN, LIBIN, JINXI XU, and RALPH WEISCHEDEL. 2008. A new string-to-dependency machine translation
algorithm with a target dependency language model. In Proceedings of the 46th Annual Meeting of the
Association for Computational Linguistics: Human Language Technologies (ACL-08: HLT), Association
for Computational Linguistics, Morristown, NJ, USA, pp. 577–585.

SLEATOR, DANIEL, and DAVY TEMPERLEY. 1991. Parsing English with a link grammar. Technical Report
CMU-CS-91-196, Carnegie Mellon University, Computer Science.

TAPANAINEN, PASI, and TIMO JÄRVINEN. 1997. A non-projective dependency parser. In Proceedings of
the fifth conference on Applied natural language processing, ANLC ’97, Association for Computational
Linguistics, Stroudsburg, PA, USA, pp. 64–71. http://dx.doi.org/10.3115/974557.974568.

TARJAN, R. E. 1977. Finding optimum branchings. Networks, 7:25–35.
TITOV, IVAN, and JAMES HENDERSON. 2007. A latent variable model for generative dependency parsing.

In Proceedings of the 10th International Conference on Parsing Technologies (IWPT), pp. 144–155.
TRATZ, STEPHEN, and EDUARD HOVY. 2011. A fast, accurate, non-projective, semantically-enriched parser.

In Proceedings of the 2011 Conference on Empirical Methods in Natural Language Processing, Association
for Computational Linguistics, Edinburgh, Scotland, UK., pp. 1257–1268. http://www.aclweb.
org/anthology/D11-1116.

XU, PENG, JAEHO KANG, MICHAEL RINGGAARD, and FRANZ OCH. 2009. Using a dependency parser to
improve smt for subject-object-verb languages. In Proceedings of Human Language Technologies: The
2009 Annual Conference of the North American Chapter of the Association for Computational Linguistics,
NAACL ’09, Association for Computational Linguistics, Stroudsburg, PA, USA. ISBN 978-1-932432-41-1.
pp. 245–253. http://dl.acm.org/citation.cfm?id=1620754.1620790.

YAMADA, HIROYASU, and YUJI MATSUMOTO. 2003. Statistical dependency analysis with support vector
machines. In Proceedings of the 8th International Workshop on Parsing Technologies (IWPT), pp. 195–206.

ZHANG, YUE, and STEPHEN CLARK. 2008. A tale of two parsers: Investigating and combining graph-based and
transition-based dependency parsing. In Proceedings of the Conference on Empirical Methods in Natural
Language Processing (EMNLP), pp. 562–571.

ZHANG, YUE, and STEPHEN CLARK. 2011. Syntactic processing using the generalized perceptron and beam
search. Computational Linguistics, 37(1):105–151.

ZHANG, YUE, and JOAKIM NIVRE. 2011. Transition-based dependency parsing with rich non-local features.
In Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human
Language Technologies: short papers - Volume 2, HLT ’11, Association for Computational Linguistics,
Stroudsburg, PA, USA. ISBN 978-1-932432-88-6. pp. 188–193.


