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ABSTRACT

The ability to produce and understand an unlimited number of different sentences is a hallmark

of human language. Linguists have sought to define the essence of this generative capacity using

formal grammars that describe the syntactic dependencies between constituents, independent of the

computational limitations of the human brain. Here, we evaluate this independence assumption

by sampling sentences uniformly from the space of possible syntactic structures. We find that the

average dependency distance between syntactically related words, a proxy for memory limitations, is

less than expected by chance in a collection of state-of-the-art classes of dependency grammars. Our

findings indicate that memory limitations have permeated grammatical descriptions, suggesting that

it may be impossible to build a parsimonious theory of human linguistic productivity independent

of non-linguistic cognitive constraints.

Keywords: dependency syntax, dependency distance minimization, memory, grammar, network
science

1 Introduction

An often celebrated aspect of human language is its capacity to produce an unbounded number of

different sentences (Chomsky, 1965; Miller, 2000). For many centuries, the goal of linguistics has

been to capture this capacity by a formal description—a grammar—consisting of a systematic set of

rules and/or principles that determine which sentences are part of a given language and which are not

(Bod, 2013). Over the years, these formal grammars have taken many forms but common to them

all is the assumption that they capture the idealized linguistic competence of a native speaker/hearer,

independent of any memory limitations or other non-linguistic cognitive constraints (Chomsky, 1965;

Miller, 2000). These abstract formal descriptions have come to play a foundational role in the language

sciences, from linguistics, psycholinguistics, and neurolinguistics (Hauser et al., 2002; Pinker, 2003) to
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computer science, engineering, and machine learning (Dyer et al., 2016; Gómez-Rodríguez et al., 2018;

Klein and Manning, 2003). Despite evidence that processing difficulty underpins the unacceptability

of certain sentences (Hawkins, 2004; Morrill, 2010), the cognitive independence assumption that is a

defining feature of linguistic competence has not been examined in a systematic way using the tools of

formal grammar. It is therefore unclear whether these supposedly idealized descriptions of language are

free of non-linguistic cognitive constraints, such as memory limitations.

If the cognitive independence assumption should turn out not to hold, then it would have wide-spread

theoretical and practical implications for our understanding of human linguistic productivity. It would

require a reappraisal of key parts of linguistic theory that hitherto have posed formidable challenges

for explanations of language processing, acquisition and evolution (Gold, 1967; Hauser et al., 2002;

Pinker, 2003)—pointing to new ways of thinking about language that may simplify the problem space

considerably by making it possible to explain apparently arbitrary aspects of linguistic structure in

terms of general learning and processing biases (Christiansen and Chater, 2008; Gómez-Rodríguez

and Ferrer-i-Cancho, 2017). In terms of practical ramifications, engineers may benefit from building

human cognitive limitations directly into their natural language processing systems, so as to better mimic

human language skills and thereby improve performance. Here, we therefore evaluate the cognitive

independence assumption using a state-of-the-art grammatical framework, dependency grammar (Nivre,

2005), to search for possible hidden memory constraints in these formal, idealized descriptions of natural

language.

In dependency grammar, the syntactic structure of a sentence is defined by two components. First, a

directed graph where vertices are words and arcs indicate syntactic dependencies between a head and its

dependent. Such a graph has a root (a vertex that receives no edges) and edges are oriented away from

the root (Figure 1). Second, the linear arrangement of the vertices of the graph (defined by the sequential

order of the words in a sentence). Thus, syntactic dependency structures constitute a particular kind of

spatial network where the graph is embedded in one dimension (Barthélemy, 2018), a correspondence

that has led to the development of syntactic theory from a network theory standpoint (Gómez-Rodríguez

and Ferrer-i-Cancho, 2017).

Dependency grammar is an important framework for various reasons. First, categorial grammar defines

the syntactic structure of a sentence as dependency grammar (Morrill, 2010). Second, equivalences exist

between certain formalisms of dependency grammar and constituency grammar (Gaifman, 1965; Kahane

and Mazziotta, 2015). Third, there has been an evolution of minimalism towards dependency grammar

(Osborne et al., 2011). Finally, dependency grammar has become a de facto standard in computational
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Figure 1: Examples of syntactic dependency structures. Arcs indicate syntactic dependencies from a head to its dependent

and are labelled with the distance between them (distance is measured in words; consecutive words are at distance 1). 𝑛 is

the number of words of the sentence, 𝐷 is the sum of dependency distances and ⟨𝑑⟩ = 𝐷/(𝑛 − 1) is the average dependency

distance. A. A mildly non-projective tree from the classes 1𝐸𝐶 and 𝑀𝐻4 (adapted from Nivre, 2009) where 𝑛 = 8 and

⟨𝑑⟩ = 13/7 ≈ 1.85. B. A planar but non-projective tree where 𝑛 = 5 and ⟨𝑑⟩ = 3/2 (adapted from Groß and Osborne, 2009).

C. A projective tree (adapted from Groß and Osborne, 2009) where 𝑛 = 4 and ⟨𝑑⟩ = 4/3. D. A diagram of the superset

relationships between projective, planar, mildly non-projective and unrestricted (all) syntactic dependency structures.

Glottometrics 52, 2022 41



Gómez-Rodríguez, Christiansen and Ferrer-i-Cancho Memory limitations are hidden in grammar

linguistics (Kübler et al., 2009).

To delimit the set of possible grammatical descriptions, various classes or sets of syntactic dependency

structures have been proposed. These classes can be seen as filters on the possible linear arrangements

of a given tree. Here, we consider four main classes. First, consider planar structures, where edges

do not cross when drawn above the words of the sentence. The structure in Figure 1 B-C are planar

while that of Figure 1 A is not. Second, we have projective structures, the most well-known class. A

dependency tree is projective if, and only if, it is planar and its root is not covered by any dependency

(Figure 1 C). Third, there are mildly non-projective structures, comprising the union of planar structures

and additional structures with further (but slight) deviations from projectivity, e.g., by having a low

number of edge crossings (Figure 1 A). Finally, the class of all structures, that has no constraints on the

possible structures.

Figure 1 D shows the inclusion relationships among these classes. However, the whole picture, encom-

passing state-of-the-art classes is more complex. Mildly non-projective structures are not actually a class

but a family of classes. We have selected three representative classes: 𝑀𝐻𝑘 ,𝑊𝐺1 and 1𝐸𝐶 structures,

that are supersets of projective structures but whose definition is more complex (see Methods).

Here we validate the assumption of independence between grammatical constraints and cognitive limita-

tions in these classes of grammar using the distance between syntactically related words in a dependency

tree as a proxy for memory constraints (Liu et al., 2017; Temperley and Gildea, 2018). Such a distance

is defined as the number of intermediate words plus one. Thus, if the linked words are consecutive

they are at distance 1, if they are separated by an intermediate word they are at distance two, and so on,

as shown in Figure 1. Dependency distance minimization is a pressure to reduce the distance between

syntactically related words that is supported statistically by large-scale analyses of syntactic dependency

structures in languages (Ferrer-i-Cancho et al., 2022; Futrell et al., 2020; Futrell et al., 2015; Jing et al.,

2021; Liu, 2008). As such, dependency distance minimization is a type of memory constraint, believed

to result from pressure against decay of activation or interference during the processing of sentences

(Liu et al., 2017; Temperley and Gildea, 2018). Dependency distances tax memory and cognition in

general. Dependency distances reduce in case of cognitive impairment (Aronsson et al., 2021; Roark

et al., 2011). There is an association between the level of cognitive impairment and dependency distance:

as the severity of the impairment increases, dependency distances tend to be reduced (Aronsson et al.,

2021). Moreover, an association between the level of competence of L2 learners and dependency distance

has also been found: as learners of a second language become more competent in the new language,

dependency distances increase (Ouyang and Jiang, 2018; Yuan et al., 2021).

The article is written so that reading the next section,Materials and methods (Section 2) is not essential
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to understand the Results section (Section 3). Therefore, it is up to reader to decide whether to proceed

with Section 2 or to skip to Section 3, reading Section 2 later on.

2 Material and Methodology

2.1 Control for Sentence Length

In our study, we do not investigate the average dependency distance over a whole ensemble of dependency

structures but instead we condition on sentence length (Ferrer-i-Cancho and Liu, 2014; Futrell et al.,

2015). Then for a given 𝑛, we calculate ⟨𝑑⟩𝐴𝑆 , the average dependency length for an ensemble of artificial

syntactic dependency structures (AS), and also ⟨𝑑⟩𝑅𝑆 , the average dependency length for an ensemble

of attested syntactic dependency structures (RS). By doing that, we are controlling for sentence length,

getting rid of the possible influence of the distribution of sentence length in the calculation of ⟨𝑑⟩𝑅𝑆 or

⟨𝑑⟩𝐴𝑆 (Ferrer-i-Cancho and Liu, 2014).

2.2 Attested Syntactic Dependency Structures

We estimated the average dependency distances in attested sentences using collections of syntactic

dependency treebanks from different languages. A syntactic dependency treebank is a database of

sentences and their syntactic dependency trees.

To provide results on a wide range of languages while controlling for the effects of different syntactic

annotation theories, we use two collections of treebanks:

• Universal Dependencies (UD), version 2.4 (Nivre et al., 2019). This is the largest available collec-

tion of syntactic dependency treebanks, featuring 146 treebanks from 83 distinct languages. All of

these treebanks are annotated following the common Universal Dependencies annotation criteria,

which are a variant of the Stanford Dependencies for English (de Marneffe and Manning, 2008),

based on lexical-functional grammar (Bresnan, 2000), adapting them to be able to represent syn-

tactic phenomena in diverse languages under a common framework. This collection of treebanks

can be freely downloaded1 and is available under free licenses.

• HamleDT 2.0 (Rosa et al., 2014). This collection is smaller than UD, featuring 30 languages, all of

which (except for one: Bengali) are also available in UD, often with overlapping source material.

Thus, using this collection does not meaningfully extend the diversity of languages covered beyond

using only UD. However, the interest of HamleDT 2.0 lies in that each of the 30 treebanks is anno-

tated with not one, but two different sets of annotation criteria: Universal Stanford dependencies

(de Marneffe et al., 2014) and Prague Dependencies (Hajič et al., 2006). We abbreviate these two

1https://universaldependencies.org/. Last accessed 17 February 2022.
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subsets of the HamleDT 2.0 collection as “Stanford” and “Prague”, respectively. While Universal

Stanford dependencies are closely related to UD, Prague dependencies provide a significantly

different view of syntax, as they are based on the functional generative description (Sgall, 1969)

of the Praguian linguistic tradition (Hajicova, 1995), which differs from Stanford dependencies in

substantial ways, like the annotation of conjunctions or adpositions (Passarotti, 2016). Thus, using

this version of HamleDT2 makes our analysis more robust, as we can draw conclusions without

being tied to a single linguistic tradition. The HamleDT 2.0 treebanks are available online.3 While

not all of the treebanks are made fully available to the public under free licenses, to reproduce

our analysis it is sufficient to use a stripped version where the words have been removed from the

sentences for licensing reasons, but the bare trees are available. This version is distributed freely.4

A preprocessed file with the minimal information needed to reproduce our measurements on attested

syntactic structures (Figure 6 A) is available. 5

To preprocess the treebanks for our analysis, we removed punctuation, following common practice in

statistical research of dependency structures (Gómez-Rodríguez and Ferrer-i-Cancho, 2017). We also

removed tree nodes that do not correspond to actual words, such as the null elements in the Bengali,

Hindi and Telugu HamleDT corpora and the empty nodes in several UD treebanks. To ensure that the

dependency structures are still valid trees after these removals, we reattached nodes whose head has

been deleted as dependents of their nearest non-deleted ancestor. Finally, in our analysis we disregarded

syntactic trees with less than three nodes, as their statistical properties are trivial and provide no useful

information (a single-node dependency tree has no dependencies at all, and a 2-node tree always has

a single dependency of distance 1). Tables 1 and 2 summarize the languages in each collection of

treebanks.

2.3 Artificial Syntactic Dependency Structures

Apart from the attested trees, we used a collection of over 16 billion randomly-generated trees. For

values of 𝑛 (the length or number of nodes) from 3 to 𝑛∗ = 10, we exhaustively obtained all possible

trees. The number of possible dependency trees for a given length 𝑛 is given by 𝑛𝑛−1, ranging from 9

possible trees for 𝑛 = 3 to 109 for 𝑛 = 𝑛∗. From 𝑛 > 𝑛∗ onwards, the number of trees grows too large to

be manageable, so we resort to uniformly random sampling of 109 trees for 𝑛∗ < 𝑛 ≤ 25. For each tree

2While there is a later version (HamleDT 3.0), it abandoned the dual annotation and adopted Universal Dependencies

instead, thus making it less useful for our purposes.
3https://ufal.mff.cuni.cz/hamledt/hamledt-treebanks-20. Last accessed 17 February 2022.
4https://lindat.mff.cuni.cz/repository/xmlui/handle/11858/00-097C-0000-0023-9551-4?show=full. Last accessed 17

February 2022.
5https://doi.org/10.7910/DVN/XHRIYX
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Table 1: The languages in the UD collection grouped by family. The counts attached to the collection name indicate the

number of different families and the number of different languages. The counts attached to family names indicate the number

of different languages.

Collection Family Languages

UD (19, 83) Afro-Asiatic (7) Akkadian, Amharic, Arabic, Assyrian, Coptic, Hebrew, Maltese

Turkik (3) Kazakh, Turkish, Uyghur

Austro-Asiatic (1) Vietnamese

Austronesian (2) Indonesian, Tagalog

Basque (1) Basque

Dravidian (2) Tamil, Telugu

Indo-European (46) Afrikaans, Ancient Greek, Armenian, Belarusian, Breton, Bulgarian, Catalan, Croa-

tian, Czech, Danish, Dutch, English, Faroese, French, Galician, German, Gothic,

Greek, Hindi, Hindi-English, Irish, Italian, Kurmanji, Latin, Latvian, Lithuanian,

Marathi, Norwegian, Old Church Slavonic, Old French, Old Russian, Persian, Pol-

ish, Portuguese, Romanian, Russian, Sanskrit, Serbian, Slovak, Slovenian, Spanish,

Swedish, Ukrainian, Upper Sorbian, Urdu, Welsh

Japanese (1) Japanese

Korean (1) Korean

Mande (1) Bambara

Mongolic (1) Buryat

Niger-Congo (2) Wolof, Yoruba

Other (1) Naija

Pama-Nyungan (1) Warlpiri

Sign Language (1) Swedish Sign Language

Sino-Tibetan (3) Cantonese, Chinese, Classical Chinese

Tai-Kadai (1) Thai

Tupian (1) Mbya Guarani

Uralic (7) Erzya, Estonian, Finnish, Hungarian, Karelian, Komi Zyrian, North Sami
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Table 2: The languages in the HamleDT collections (Stanford and Prague) grouped by family. The counts attached to the

collection names indicate the number of different families and the number of different languages. The counts attached to family

names indicate the number of different languages.

Collection Family Languages

Stanford (7, 30) Afro-Asiatic (1) Arabic

Turkik (1) Turkish

Basque (1) Basque

Dravidian (2) Tamil, Telugu

Indo-European (21) Ancient Greek, Bengali, Bulgarian, Catalan, Czech, Danish, Dutch, English,

German, Greek, Hindi, Italian, Latin, Persian, Portuguese, Romanian, Russian,

Slovak, Slovenian, Spanish, Swedish

Japanese (1) Japanese

Uralic (3) Estonian, Finnish, Hungarian

Prague (7, 30) Afro-Asiatic (1) Arabic

Turkik (1) Turkish

Basque (1) Basque

Dravidian (2) Tamil, Telugu

Indo-European (21) Ancient Greek, Bengali, Bulgarian, Catalan, Czech, Danish, Dutch, English,

German, Greek, Hindi, Italian, Latin, Persian, Portuguese, Romanian, Russian,

Slovak, Slovenian, Spanish, Swedish

Japanese (1) Japanese

Uralic (3) Estonian, Finnish, Hungarian

Glottometrics 52, 2022 46



Gómez-Rodríguez, Christiansen and Ferrer-i-Cancho Memory limitations are hidden in grammar

in the collection, the classes it belongs to are indicated in the dataset6.

The reason why we do not go beyond length 25 is that, for larger lengths, trees that belong to our classes

under analysis are very scarce (Figure 2 A). For example, even sampling 109 random trees for each length,

no projective trees are found for 𝑛 > 18. The same can be said of planar trees for 𝑛 > 19, 1𝐸𝐶 trees for

𝑛 > 22, 𝑀𝐻4 trees for 𝑛 > 23, and 𝑊𝐺1 trees for 𝑛 > 24. For the 𝑀𝐻5 class, some trees can still be

found in the sample for length 25, but only 69 out of 109 belong to the class. Due to undersampling, the

plot on artificial structures in the results section only shows points represented by at least 30 structures

for 𝑛 > 𝑛∗. 30 is considered a rule of thumb for the minimum sample size that is needed to estimate

the mean of random variables that follow short tailed distributions (Hogg and Tanis, 1997). Figure 2 B

shows average dependency distances not excluding any point.

For 𝑛 ≤ 𝑛∗, the ensemble of AS used to calculate ⟨𝑑⟩𝐴𝑆 contains all possible syntactic dependency

structures for all classes. For 𝑛 > 𝑛∗, it contains a random sample of them. Within a given ensemble,

each structure is generated from a labelled directed tree whose vertex labels are interpreted as vertex

positions in the linear arrangement. The values of ⟨𝑑⟩𝐴𝑆 for each class are exact (the mean over all

possible syntactic dependency structures) for 𝑛 ≤ 𝑛∗ and random sampling estimates for 𝑛 > 𝑛∗. A

detailed explanation follows.

For a given 𝑛, an ensemble of syntactic dependency structures is generated with a procedure that is a

generalization of the procedure used to generate random structures formed by an undirected tree and a

linear arrangement (Esteban et al., 2016). The procedure has two versions: the exhaustive version, that

was used for 𝑛 ≤ 𝑛∗, and the random sampling version, that was used for 𝑛 > 𝑛∗. The exhaustive version

consists of

1. Generating all the 𝑇 (𝑛) labelled (undirected) trees of 𝑛 vertices using Prüfer codes (Prüfer, 1918).

It is known that 𝑇 (𝑛) = 𝑛𝑛−2 (Cayley, 1889).

2. Converting each of these random trees into labelled directed trees (i.e., dependency trees) by

rooting it in all possible ways. A rooting consists in choosing one node of the tree as the root, and

making all edges point away from the root via a depth-first traversal. This produces 𝑛𝑇 (𝑛) = 𝑛𝑛−1

syntactic dependency structures.

3. Producing a syntactic dependency structure from every directed tree using vertex labels (integers

from 1 to 𝑛) as vertex positions in a linear arrangement (Esteban et al., 2016).

6The trees are freely available from https://doi.org/10.7910/DVN/XHRIYX
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Figure 2: Undersampling in artificial syntactic dependency structures (AS). A. 𝑝, the proportion of artificial structures of a

certain class in the sample. B. The average dependency length (in words), ⟨𝑑⟩𝐴𝑆 , as a function of 𝑛, the sentence length (in

words). For reference, the base line defined by a random linear arrangement of the words of the sentence, ⟨𝑑⟩𝑟𝑙𝑎 (Eq. 3) is also

shown (dashed line).
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4. Discarding the trees that do not belong to the target class.

The random sampling version consists of

1. Generating 𝑆 uniformly random labelled (undirected) trees of 𝑛 vertices, via uniformly random

Prüfer codes (Prüfer, 1918).

2. Converting these uniformly random labelled trees to uniformly random labelled directed trees

(i.e., dependency trees) by randomly choosing one node of each tree as the root, and making all

edges point away from the root via a depth-first traversal. This produces 𝑆 syntactic dependency

structures.

3. Same as exhaustive version.

4. Same as exhaustive version.

Note that Step 2 warrants that labelled directed trees in the ensemble are uniformly random: if we call

𝐾𝑛 the probability of generating each undirected tree of 𝑛 vertices with a random Prüfer code, we can

observe that each possible directed tree corresponds to exactly one undirected tree (obtained by ignoring

arc directions), and each undirected tree corresponds to exactly 𝑛 distinct directed trees (resulting from

picking each of its 𝑛 nodes as the root). Thus, the method of generating a random Prüfer code and then

choosing a root generates each possible directed tree with a uniform probability 𝐾𝑛/𝑛 (as the probability

of choosing the underlying undirected tree is 𝐾𝑛, and the probability of choosing the relevant root is

1/𝑛).

After each procedure, the average dependency length ⟨𝑑⟩ for a given 𝑛 and a given class is calculated.

While the exhaustive procedure allows one to calculate the true average dependency length over a certain

class, the random sampling algorithm only allows one to estimate the true average. Put differently, the

exhaustive procedure allows one to calculate exactly the expected dependency length in a class assuming

that all labelled directed trees are equally likely whereas the random sampling procedure only allows one

to obtain an approximation.

We explore all values of 𝑛 within the interval [𝑛𝑚𝑖𝑛, 𝑛𝑚𝑎𝑥] with 𝑛𝑚𝑖𝑛 = 3 and 𝑛𝑚𝑎𝑥 = 25 and 𝑛∗ = 10

and 𝑆 = 109. The total number of syntactic dependency structures generated for our study is

𝑈 = (𝑛𝑚𝑎𝑥 − 𝑛∗)𝑆 +
𝑛∗∑︁

𝑛=𝑛𝑚𝑖𝑛

𝑛𝑇 (𝑛) = (𝑛𝑚𝑎𝑥 − 𝑛∗)𝑆
𝑛∗∑︁

𝑛=𝑛𝑚𝑖𝑛

𝑛𝑛−1.

Applying the parameters above, one obtains

(1) 𝑈 ≈ 1.6 · 1010
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2.4 The Random Baseline

Although the random baseline

(2) ⟨𝑑⟩𝑟𝑙𝑎 = (𝑛 + 1)/3

follows from Jaynes’ maximum entropy principle in the absence of any constraint (Kesavan, 2009), it may

be objected that our baseline is too unconstrained from a linguistic perspective. In previous research,

random baselines that assume projectivity or consistent branching, whereby languages tend to grow

parse trees either to the right (as in English) or to the left (as in Japanese), have been considered (Futrell

et al., 2015; Gildea and Temperley, 2010; Liu, 2008). However, it has been argued that these linguistic

constraints could be a reflection of memory limitations (Christiansen and Chater, 1999; Ferrer-i-Cancho

and Gómez-Rodríguez, 2016b). Therefore, incorporating these linguistic constraints into the baseline for

evaluating dependency distances would not provide an adequate test of the cognitive independence as-

sumption because they could mask the effect of dependency distance minimization (DDm). Consistently,

the planarity assumptions reduces the statistical power of a test of DDm (Ferrer-i-Cancho and Gómez-

Rodríguez, 2021). In addition, these additional constraints compromise the parsimony of a general

theory of language for neglecting the predictive power of DDm (Ferrer-i-Cancho and Gómez-Rodríguez,

2016b).

A priori, ⟨𝑑⟩𝐴𝑆 could be below the random baseline as it occurs typically in human languages (Ferrer-

i-Cancho, 2004; Ferrer-i-Cancho and Liu, 2014) but it could also be above. As for the latter situation,

empirical research in short sentences has shown that there are languages where dependency lengths

are larger than expected by chance (Ferrer-i-Cancho and Gómez-Rodríguez, 2021). In addition, there

exist syntactic dependency structures where ⟨𝑑⟩ > ⟨𝑑⟩𝑟𝑙𝑎 from a network theoretical standpoint. For

instance, among planar syntactic structures, the maximum average dependency distance is ⟨𝑑⟩𝑚𝑎𝑥 = 𝑛/2

(Ferrer-i-Cancho, 2013).

⟨𝑑⟩𝐴𝑆 never exceeds ⟨𝑑⟩𝑟𝑙𝑎 and it deviates from ⟨𝑑⟩𝑟𝑙𝑎 when 𝑛 = 3 for projective trees, 𝑛 = 4 for planar

trees and 𝑀𝐻4 and 𝑛 = 5 for 1𝐸𝐶, 𝑀𝐻5 and𝑊𝐺1. For the class of all syntactic dependency structures

(Figure 1 D), we find that ⟨𝑑⟩𝐴𝑆 matches Eq. 2 as expected from previous research (Esteban et al., 2016).

2.5 The Classes of Dependency Structures

Planar trees: A dependency tree is said to be planar (or noncrossing) if its dependency arcs do not

cross when drawn above the words. Planar trees have been used in syntactic parsing algorithms (Gómez-

Rodríguez and Nivre, 2010), and their generalization to noncrossing graphs has been widely studied both

for its formal properties (Yli-Jyrä and Gómez-Rodríguez, 2017) and for parsing (Kuhlmann and Jonsson,

2015).
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A

1 2 3 4 5

B

1 2 3 4 5

C

1 2 3 4 5

Figure 3: Planarity and projectivity. A. A tree that is planar (dependencies do not cross) but not projective (the root node, 3,

is covered by the dependency in red). B. A tree that is planar and projective. C. A tree that is not planar (the dependencies in

red cross), and thus not projective.

Projective trees: A dependency tree is said to be projective if it is planar and its root is not covered

by any dependency (Figure 3). Projectivity facilitates the design of simple and efficient parsers (Nivre,

2003, 2004), whereas extending them to support non-projective trees increases their computational cost

(Covington, 2001; Nivre, 2009). For this reason, and because treebanks of some languages (like English

or Japanese) have traditionally had few or no non-projective analyses, many practical implementations

of parsers assume projectivity (Chen and Manning, 2014; Dyer et al., 2015).

However, non-projective parsing is needed to deal with sentences exhibiting non-projective phenomena

such as extraposition, scrambling or topicalization. Non-projectivity is particularly common in flexible

word order languages, but generally present in a wide range of languages. However, non-projectivity

in natural languages tends to be mild in the sense that the actually occurring non-projective trees are

very close to projective trees, as they have much fewer crossing dependencies than would be expected by

chance (Ferrer-i-Cancho et al., 2018).

For this reason, there has been research interest in finding a restriction that would be a better fit for

the phenomena observed in human languages. From a linguistic standpoint, the goal is to describe the

syntax of human language better than with the overly restrictive projective trees or the arguably excessive

permissiveness of admitting any tree without restriction, disregarding the observed scarcity of crossing

dependencies. From an engineering standpoint, the goal is to strike a balance between the efficiency

provided by more restrictive parsers with a smaller search space and the coverage of the non-projective

phenomena that can be found in attested sentences. In this line, various sets of dependency structures that

have been proposed are supersets of projective trees allowing only a limited degree of non-projectivity.

These sets are called mildly non-projective classes of dependency trees (Kuhlmann and Nivre, 2006).

Here, we focus on three of the best known such sets, which have interesting formal properties and/or have

been shown to be practical for parsing due to providing a good efficiency-coverage trade-off. We briefly

outline them here, and refer the reader to Gómez-Rodríguez, 2016 for detailed definitions and coverage
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A

1 2 3 4 5 6

B

1 2 3 4 5 6

C

1 2 3 4 5 6

Figure 4: Well-nestedness and gap degree. A. An ill-nested tree (the yields of node 3—circled—and node 4–squared—form

an interleaving pattern). B. A tree with gap degree 2 (the yield of node 2, squared, has two discontinuities, at nodes 3 and 5).

C. A tree that is well-nested and has gap degree 1, and thus is in𝑊𝐺1.

statistics of these and other mildly non-projective classes of trees.

Well-nested trees with Gap degree 1 (𝑊𝐺1): A dependency tree is well-nested (Bodirsky et al., 2005) if

it does not contain two nodes with disjoint, interleaving yields. Given two disjoint yields 𝑎1 . . . 𝑎𝑝 and

𝑏1 . . . 𝑏𝑞, they are said to interleave if there exist 𝑖, 𝑗 , 𝑘, 𝑙 such that 𝑎𝑖 < 𝑏 𝑗 < 𝑎𝑘 < 𝑏𝑙. On the other

hand, the gap degree of a tree is the maximum number of discontinuities present in the yield of a node,

i.e., a dependency tree has gap degree 1 if every yield is either a contiguous substring, or the union of two

contiguous substrings of the input sentence. Figure 4 provides graphical examples of these properties.

𝑊𝐺1 trees have drawn interest mainly from the formal standpoint, for their connections to constituency

grammar (Kuhlmann, 2010), but they also have been investigated in dependency parsing (Corro et al.,

2016; Gómez-Rodríguez et al., 2011; Gómez-Rodríguez et al., 2009).

Multi-Headed with at most 𝑘 heads per item (𝑀𝐻𝑘): Given 𝑘 ≥ 3, the set of 𝑀𝐻𝑘 trees contains the

trees that can be parsed by an algorithm called 𝑀𝐻𝑘 (Gómez-Rodríguez et al., 2011). 𝑘 is a parameter of

the class, such that for 𝑘 = 3 the class coincides with projective trees, but for 𝑘 > 3 it covers increasingly

larger sets of non-projective structures (but the parser becomes slower). A recent neural implementation

of the𝑀𝐻4 parser has obtained competitive accuracy on UD (Gómez-Rodríguez et al., 2018). For 𝑘 > 4,

the 𝑀𝐻𝑘 sets have been shown to be Pareto optimal (among known mildly non-projective classes) in

terms of balance between efficiency and practical coverage (Gómez-Rodríguez, 2016). In this paper, we

will consider the 𝑀𝐻4 and 𝑀𝐻5 sets.

1-Endpoint-Crossing trees (1𝐸𝐶): A dependency tree has the property of being 1-Endpoint-Crossing

if, given a dependency, all other dependencies crossing it are incident to a common node (Pitler et al.,

2013). This property is illustrated in Figure 5. 1EC trees were the first mildly non-projective class of

dependency trees to have a practical exact-inference parser (Pitler, 2014), which was reimplemented with

a neural architecture in (Gómez-Rodríguez et al., 2018). They are also in the Pareto frontier with respect

to coverage and efficiency, according to Gómez-Rodríguez, 2016.
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A

1 2 3 4 5 6

B

1 2 3 4 5 6

Figure 5: 1-Endpoint-Crossing property. A. A 1-Endpoint-Crossing tree (given any dependency, dependencies crossing it

are incident to a common node—for example, here the dependencies crossing the one marked in red are incident to node 4).

B. A tree that is not 1-Endpoint-Crossing. The dependency arc in red has two crossing dependencies which are not incident to

any common node.

3 Results

3.1 Short Dependency Distances in Attested Structures Revisited

Assuming that all the linear arrangements are equally likely, ⟨𝑑⟩, the average of dependency distances in

a sentence of 𝑛 words, is expected to be (Ferrer-i-Cancho, 2004)

(3) ⟨𝑑⟩𝑟𝑙𝑎 = (𝑛 + 1)/3.

Figure 6 A shows that ⟨𝑑⟩𝑅𝑆 , the average dependency distance in attested syntactic dependency structures

(RS), is below the random baseline defined by ⟨𝑑⟩𝑟𝑙𝑎 (see Methods for a justification of this baseline).

This is in line with previous statistical analyses (Ferrer-i-Cancho, 2004; Futrell et al., 2015; Liu, 2008;

Park and Levy, 2009) (see Liu et al., 2017; Temperley and Gildea, 2018 for a broader review of previous

work) and the expected influence of performance constraints on attested trees.

The fact that ⟨𝑑⟩𝑅𝑆 is below 4 has been interpreted as a sign that dependency lengths are constrained

by working memory limitations (Liu, 2008). For this reason, we test whether memory effects have

permeated the classes of grammar by determining if ⟨𝑑⟩𝐴𝑆 , the average dependency distance in a

collection of artificial syntactic dependency structures (AS) from a certain class, is also below ⟨𝑑⟩𝑟𝑙𝑎
(Eq. 3). The purpose of Figure 6 A is merely to provide the reader with a baseline derived from attested

dependency structures in natural language as a backdrop for the main contribution of the article, which

is based on artificial syntactic dependency structures.

3.2 Short Dependency Distances in Artificial Structures

For a given 𝑛, we generate an ensemble of artificial syntactic dependency structures by exhaustive

sampling for 𝑛 ≤ 𝑛∗ = 10 and random sampling for 𝑛 > 𝑛∗ (Methods). These artificial syntactic

dependency trees are only constrained by the definition of the different classes. They are thus free
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Figure 6: The average dependency length (in words), ⟨𝑑⟩, as a function of 𝑛, the sentence length (in words). For reference, the

baseline defined by a random linear arrangement of the words of the sentence, ⟨𝑑⟩𝑟𝑙𝑎 (Eq. 3) is also shown (dashed line). A.

Attested syntactic dependency trees (RS) following three different annotation criteria: UD, Prague and Stanford dependencies.

B. Artificial syntactic dependency structures (AS) belonging to different classes of grammars. Due to undersampling, only

points represented by at least 30 structures are shown for 𝑛 > 𝑛∗.
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from any memory constraint other than the ones the different classes of grammars may, perhaps, impose

indirectly. Still, these artificial syntactic structures have dependency lengths that are below the chance

level (Figure 6 B), indicating that memory constraints are hidden in the definition of these classes.

Interestingly ⟨𝑑⟩𝐴𝑆 is below chance for sufficiently large 𝑛 in all classes of grammars although ⟨𝑑⟩𝐴𝑆
could be above ⟨𝑑⟩𝑟𝑙𝑎 (Eq. 3) in principle (see Methods). In general, the largest reduction of ⟨𝑑⟩𝐴𝑆 with

respect to the random baseline is achieved by the projective class, followed by the planar class.

It is worth noting that a reduction of ⟨𝑑⟩𝐴𝑆 with respect to our random baseline has been observed for

the projective class in past work, but with some important caveats: Liu, 2008 did not control for sentence

length as in Figure 6 B; and whereas Park and Levy, 2009 did implement this control and considered

another class of marginal interest (2-component structures) in addition to projective trees, their use of

attested dependency trees instead of artificial control trees suggests that memory limitations might have

influenced the results.

4 Discussion

The reduction of ⟨𝑑⟩ with respect to the random baseline in artificial trees from a wide range of state-of-

the art classes is consistent with the hypothesis that the scarcity of crossing dependencies is a side-effect

of pressure to reduce the distance between syntactically related words (Gómez-Rodríguez and Ferrer-i-

Cancho, 2017). The smaller reduction of dependency distances with respect to the random baseline in

artificial dependency structures can be explained by the fact that the curves in Figure 6 B derive from

uniform sampling of the space of all possible trees. In contrast, real speakers may not only choose

linear arrangements that reduce dependency distance, but also sample the space of possible structures

with a bias towards structures that facilitate that such reduction or that satisfy other cognitive constraints

(Ferrer-i-Cancho and Gómez-Rodríguez, 2021).

Our findings complete our understanding of the relationship between projectivity or mildly non-

projectivity and dependency distance minimization. It has been shown that such minimization leads

to a number of edge crossings that is practically zero (Ferrer-i-Cancho, 2006), and to not covering the

root, one of the conditions for projectivity, in addition to planarity (Ferrer-i-Cancho, 2008). Here, we

have demonstrated a complementary effect, i.e., that dependency distance reduces below chance when

edge crossings are minimized (planarity) or projectivity is imposed. Whereas a recent study of similar

classes of grammars suggested that crossing dependencies are constrained by either grammar or cognitive

pressures rather than occurring naturally at some rate (Yadav et al., 2019), our findings strongly demon-

strate that it is not grammar but rather non-linguistic cognitive constraints, that limit the occurrence of

crossing dependencies in languages. Since we released the first version of this article in August 2019,

https://arxiv.org/abs/1908.06629, other researchers have confirmed that dependency distance minimiza-
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tion contributes significantly to the emergence of formal constraints on crossing dependencies (Yadav

et al., 2021, 2022). Yadav et al., 2021 have also confirmed the findings of previous research indicat-

ing that the effect of dependency distances alone leads to overestimate the actual number of crossing

dependencies (Gómez-Rodríguez and Ferrer-i-Cancho, 2017); a critical point is that Gómez-Rodríguez

and Ferrer-i-Cancho (2017) use a normalized score leading to the conclusion that such overestimation

implies a small relative error.

We sampled about 16 billion syntactic dependency structures, that differed in length and syntactic

complexity, to determine whether linguistic grammars are free of non-linguistic cognitive constraints, as

is typically assumed. Strikingly, while previous work on natural languages has shown that dependency

lengths are considerably belowwhat would be expected by a random baseline withoutmemory constraints

(Ferrer-i-Cancho, 2004; Ferrer-i-Cancho and Liu, 2014; Liu, 2008; Park and Levy, 2009), we still observe

a drop in dependency lengths for randomly generated, mildly non-projective structures that supposedly

abstract away from cognitive limitations. Our interpretation of these results is that memory constraints,

in the form of dependency distance minimization, have become inherent to formal linguistic grammars.

We have demonstrated that distinct formal classes of mild non-projectivity manifest the sort of burden of

dependency distances for memory and cognition that is observed in psychological experiments (Liu et al.,

2017, Section 2) and that has been observed to become more marked in case of cognitive impairment

(Aronsson et al., 2021) or second language learning (Ouyang and Jiang, 2018; Yuan et al., 2021).

It may be objected that our argument that memory limitations have permeated grammars is based

on artificially generated syntactic structures instead of real ones. However, it is all but impossible

to study real dependency structures without possible contamination from linguistic or non-linguistic

cognitive constraints other than the formal mild non-projectivity classes. For that reason, here and in

previous research (Ferrer-i-Cancho, 2014), we have focused on artificially generated syntactic structures.

Notice this research is part of a larger research program were we have already used real syntactic

dependency structures, but minimizing assumptions to argue that the scarcity of crossing dependencies

can be explained to a large extent by dependency distance minimization (Gómez-Rodríguez and Ferrer-

i-Cancho, 2017). Nonetheless, further research is needed with real syntactic dependency structures and

the current study is a key, necessary step in this direction.

It may also be objected that our conclusions are limited by the sample of classes that we have considered

and that we cannot exclude the possibility that, in the future, researchers might adopt a new class of

mildly non-projective structures whose dependency distances cannot be distinguished from the random

baseline. However, we believe that this is very unlikely for the following reasons: (1) our current sample

of classes is representative of the state of the art (Gómez-Rodríguez, 2016), and spans classes that
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originated with different goals and motivations (from purely theoretical to parsing efficiency), with all

sharing the drop in dependency lengths, (2) while one could conceivably engineer a class to have lengths

in line with the baseline while still having high coverage of linguistic phenomena, this would mean

forwarding more responsibility for dependency distance reduction to other parts of the linguistic theory

in order to warrant that dependency distances are reduced to a realistic degree (Figure 6) and hence would

preclude a parsimonious approach to language, and (3) given the positive correlation between crossings

and dependency lengths (Alemany-Puig, 2019; Ferrer-i-Cancho and Gómez-Rodríguez, 2016a), such a

class would be likely to have many dependency crossings, so it would be, at the least, questionable to

call it mildly non-projective.

Beyond upending longheld assumptions about the nature of human linguistic productivity, our findings

also have key implications for debates on how children learn language, how language evolved, and how

computers might best master language. Whereas a common assumption in the acquisition literature

is that children come to the task of language learning with built-in linguistic constraints on what they

learn (Gold, 1967; Pinker, 2003), our results suggest that language-specific constraints may not be

needed and instead be replaced by general cognitive constraints (Tomasello, 2005). The strong effects

of memory on dependency distance minimization provide further support for the notion that language

evolved through processes of cultural evolution shaped by the human brain (Christiansen and Chater,

2008), rather than the biological evolution of language-specific constraints (Pinker, 2003). Finally, our

results raise the intriguing possibility that if we want to develop computer systems that target human

linguistic ability in the context of human-computer interaction, we may paradoxically need to constraint

the power of such systems to be in line with human cognitive limitations, rather than giving them

the super-human computational capacity of AlphaGo. Memory limitations in the form of dependency

minimization have already been applied to machine learning methods, but imposing planarity as if

planarity and memory limitations were unrelated constraints (Eisner and Smith, 2010; Smith and Eisner,

2006, for instance). This suggests that considering planarity and other formal constraints as the effect of

dependency minimization could boost machine learning methods

Our study was conducted using the framework of dependency grammar, but because of the close

relationship between this framework and other ways of characterizing the human unbounded capacity to

produce different sentences (Chomsky, 1965; Miller, 2000), such as categorial grammar (Morrill, 2010),

phrase structure grammar (Gaifman, 1965; Kahane and Mazziotta, 2015), and minimalist grammar

(Osborne et al., 2011), our results suggest that any parsimonious grammatical framework will incorporate

memory constraints. Notice that, as a result of our study, we cannot refute the cognitive independence

assumption. Our point is that the independence assumption leads to a less parsimonious theory of

syntax. We are simply invoking Occam’s razor so that formal constraints and the cognitive burden of
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dependency distances are not treated as separate entities. Moreover, given that dependency grammars

constitute a special case of a graph that is embedded in one dimension, the physics toolbox associated

with statistical mechanics and network theory may be applied to provide further insight into the nature

of human linguistic productivity (Barthélemy, 2018; Gómez-Rodríguez and Ferrer-i-Cancho, 2017).

However, these future explorations notwithstanding, our current findings show that memory limitations

have permeated current linguistic conceptions of grammar, suggesting that it may not be possible to

adequately capture our unbounded capacity for language, at least in the context of a parsimonious

theory compatible with the idea of mild non-projectivity, without incorporating non-linguistic cognitive

constraints into the grammar formalism.
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