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Abstract. A desirable property for any system dealing with unrestricted natural
language text is robustness, the ability to analyze any input regardless ofits gram-
maticality. In this paper we present a novel, general transformation technique to
automatically obtain robust, error-repair parsers from standard non-robust parsers.
The resulting error-repair parsing schema is guaranteed to be correct when our
method is applied to a correct parsing schema verifying certain conditionsthat
are weak enough to be fulfilled by a wide variety of parsers used in natural lan-
guage processing.

1 Introduction
In real-life domains, it is common to find natural language sentences that cannot be
parsed by grammar-driven parsers, due to insufficient coverage (the input is well-formed,
but the grammar cannot recognize it) or ill-formedness of the input (errors in the sen-
tence or errors caused by input methods). A standard parser will fail to return an analysis
in these cases. Arobust parseris one that can provide useful results for such extragram-
matical sentences.

The methods that have been proposed to achieve robustness inparsing fall mainly
into two broad categories: those that try to parse well-formed fragments of the input
when a parse for the complete sentence cannot be found (partial parsers, such as that
described in [6]) and those which try to assign a complete parse to the input sentence
by relaxing grammatical constraints, such aserror-repair parsers, which can find a
complete parse tree for sentences not covered by the grammarby supposing that un-
grammatical strings are corrupted versions of valid strings.

The problem of repairing and recovering from syntax errors during parsing has re-
ceived much attention in the past (see for example the list ofreferences provided in the
annotated bibliography of [5, section 18.2.7] ) and recent years (see for example [15,
17, 2, 7, 1, 11]). In this paper, we try to fill the gap between standard and error-repair
parsing by proposing a transformation for automatically obtaining error-repair parsers,
in the form oferror-repair parsing schemata, from standard parsers defined asparsing
schemata.3

⋆ Partially supported by Ministerio de Educación y Ciencia and FEDER (HUM2007-
66607-C04) and Xunta de Galicia (PGIDIT07SIN005206PR, INCITE08E1R104022ES, IN-
CITE08ENA305025ES, INCITE08PXIB302179PR and Rede Galega de Procesamento da
Linguaxe e Recuperación de Información)

3 Schematais the plural form of the singular nounschema.



2 Standard parsing schemata
Parsing schemata [13] provide a formal, simple and uniform way to describe, analyze
and compare different parsing algorithms. The notion of a parsing schema comes from
considering parsing as a deduction process which generatesintermediate results called
items. An initial set of items is obtaineddirectly from the input sentence, and the parsing
process consists of the application of inference rules (deduction steps) which produce
new items from existing ones. Each item contains a piece of information about the
sentence’s structure, and a successful parsing process will produce at least onefinal
itemcontaining a full parse tree for the sentence or guaranteeing its existence.

When working with a context-free grammar4 G = (N,Σ,P, S), items are sets of
trees from a set denotedTrees(G), defined as the set of finitely branching finite trees
in which children of a node have a left-to-right ordering, every node is labelled with a
symbol fromN ∪ Σ ∪ (Σ ×N) ∪ {ǫ}, and every nodeu satisfies one of the following
conditions:

• u is a leaf,

• u is labelledA, the children ofu are labelledX1, . . . ,Xn and there is a production
A → X1 . . . Xn ∈ P ,

• u is labelledA, u has one child labelledǫ and there is a productionA → ǫ ∈ P ,

• u is labelleda andu has a single child labelled(a, j) for somej.

The pairs(a, j) will be referred to asmarked terminals, and when we deal with a
string a1 . . . an, we will usually writeaj as an abbreviated notation for(aj , j) in the
remainder of this paper. The natural numberj is used to indicate the position of the
worda in the input.

Valid parses for a string are represented by items containing completemarked parse
treesfor that string. Given a grammarG, a marked parse tree for a stringa1 . . . an is any
treeτ ∈ Trees(G) such thatroot(τ) = S andyield(τ) = a1 . . . an, whereroot(τ)
refers to the root node ofτ and yield(τ) refers to the frontier nodes ofτ . An item
containing such a tree for some arbitrary string is called afinal item. An item containing
such a tree for a particular stringa1 . . . an is called acorrect final itemfor that string.

For each input string, a parsing schema’s deduction steps allow us to infer a set
of items, calledvalid itemsfor that string. A parsing schema is said to besoundif all
valid final items it produces for any arbitrary string are correct for that string. A parsing
schema is said to becompleteif all correct final items are valid. A parsing schema which
is both sound and complete is said to becorrect. A correct parsing schema can be used
to obtain a working implementation of a parser by using deductive parsing engines as
the ones described in [12, 4] to obtain all valid final items.5

3 Error-repair parsing schemata
The parsing schemata formalism introduced in the previous section does not suffice to
define error-repair parsers that can show a robust behaviourin the presence of errors. In

4 Although in this paper we will focus on context-free grammars, both standard and error-repair
parsing schemata can be defined analogously for other grammatical formalisms.

5 An example of a correct parsing schema is the Earley parsing schema,which defines the parser
described by [3]. A full definition and proof of correctness for this schema can be found at [14].



these parsers, we should obtain items containing “approximate parses” if an exact parse
for the sentence does not exist. Approximate parses need notbe members ofTrees(G),
since they may correspond to ungrammatical sentences, but they should besimilar to
a member ofTrees(G). Formalizing the notion of “similarity” as a distance function,
we can obtain a definition of items allowing approximate parses to be generated.

3.1 Defining error-repair parsing schemata
Given a context-free grammarG = (N,Σ,P, S), we shall denote byTrees′(G) the
set of finitely branching finite trees in which children of a node have a left-to-right
ordering and every node is labelled with a symbol fromN ∪Σ ∪ (Σ ×N)∪ {ǫ}. Note
thatTrees(G) ⊂ Trees′(G).

Let d : Trees′(G) × Trees′(G) → N ∪ {∞} be a function verifying the usual
distance axioms (strict positiveness, symmetry and triangle inequality).

We shall denote byTreese(G) the set{t ∈ Trees′(G) | ∃t′ ∈ Trees(G) : d(t, t′) ≤
e}, i.e.,Treese(G) is the set of trees that have distancee or less to some valid tree in
the grammar. Note that, by the strict positiveness axiom,Trees0(G) = Trees(G).

Definition 1. (approximate trees)
We define the set ofapproximate treesfor a grammarG and a tree distance function
d asApTrees(G) = {(t, e) ∈ (Trees′(G) × N) | t ∈ Treese(G)}. Therefore, an
approximate tree is the pair formed by a tree and its distanceto some tree inTrees(G).

This concept of approximate trees allows us to precisely define the problems that
we want to solve with error-repair parsers. Given a grammarG, a distance function
d and a sentencea1 . . . an, the approximate recognition problemis to determine the
minimal e ∈ N such that there exists an approximate tree(t, e) ∈ ApTrees(G) where
t is a marked parse tree for the sentence. We will call such an approximate tree an
approximate marked parse treefor a1 . . . an.

Similarly, theapproximate parsingproblem consists of finding the minimale ∈ N

such that there exists an approximate marked parse tree(t, e) ∈ ApTrees(G) for the
sentence, and finding all approximate marked parse trees forthe sentence.

Definition 2. (approximate item set)
Given a grammarG and a distance functiond, we define anapproximate item setas a
setI ′ such that

I ′ ⊆ ((
⋃∞

i=0 Πi) ∪ {∅})
where eachΠi is a partition of the set{(t, e) ∈ ApTrees(G) | e = i}.

Each element of an approximate item set is a set of approximate trees, and will be
called anapproximate item. Note that the concept is defined in such a way that each
approximate item contains approximate trees with a single value of the distancee. This
concrete value ofe is what we will callparsing distanceof an itemι, or dist(ι):

Definition 3. (parsing distance of an item)
Let I ′ ⊆ ((

⋃∞
i=0 Πi) ∪ {∅}) be an approximate item set as defined above, andι ∈ I ′.

Theparsing distanceassociated to the nonempty approximate itemι, dist(ι), is defined
by the (trivially unique) valuei ∈ N | ι ∈ Πi. In the case of the empty approximate item
∅, we will say thatdist(∅) = ∞.



Definition 4. (error-repair parsing schema)
Let G be a context-free grammar,d a distance function, anda1 . . . an ∈ Σ∗ a string.
An error-repair instantiated parsing systemis a triple (I ′,H,D) such thatI ′ is an
approximate item set with distance functiond, H is a set of hypotheses such that
{ai(ai)} ∈ H for eachai, 1 ≤ i ≤ n, andD is a set of deduction steps such that
D ⊆ Pfin(H ∪ I ′) × I ′. An error-repair uninstantiated parsing systemis a triple
(I ′,K,D) whereK is a function such that(I ′,K(a1 . . . an),D) is an error-repair in-
stantiated parsing system for eacha1 . . . an ∈ Σ∗ (in practice, we will always define
this function asK(a1 . . . an) = {{ai(ai)} | 1 ≤ i ≤ n} ∪ {ǫ(ǫ)}). Finally, anerror-
repair parsing schemafor a class of grammarsCG and a distance functiond is a function
that assigns an error-repair uninstantiated parsing system to each grammarG ∈ CG.

Definition 5. (final items)
The set offinal itemsfor a string of lengthn in an approximate item set is defined by

F(I ′, n) = {ι ∈ I | ∃(t, e) ∈ ι : t is a marked parse tree for some stringa1 . . . an ∈
Σ⋆}.

The set ofcorrect final itemsfor a stringa1 . . . an in an approximate item set is
defined by

CF(I ′, a1 . . . an) = {ι ∈ I | ∃(t, e) ∈ ι : t is a marked parse tree fora1 . . . an}.

The concepts ofvalid items, soundness, completenessandcorrectnessare analo-
gous to the standard parsing schemata case. Note that theapproximate recognitionand
approximate parsingproblems defined earlier for any string and grammar can be solved
by obtaining the set of correct final items for that string whose associated distance is
minimal. These items can be deduced by any correct error-repair parsing schema, since
they are a subset of correct final items.

3.2 A distance function for repairs based on the edit distance

Let us suppose a generic scenario where we would like to repair errors according to
edit distance. The edit distance or Levenshtein distance [8] between two strings is the
minimum number of insertions, deletions or substitutions of a single terminal needed
to transform eother of the strings into the other one. Given astringa1 . . . an containing
errors, we would like our parsers to return an approximate parse based on the exact parse
tree of one of the strings inL(G) whose Levenshtein distance toa1 . . . an is minimal.

A suitable distance functiond for this case is given by the number of tree trans-
formations that we need to transform one tree into another, if the transformations that
we allow are inserting, deleting or changing the label of marked terminal nodes in the
frontier. Therefore,d(t1, t2) = e if t2 can be obtained fromt1 by performinge trans-
formations on marked terminal nodes int1, andd(t1, t2) = ∞ otherwise.

4 An error-repair transformation
The error-repair parsing schemata formalism allows us to define a transformation to
map correct parsing schemata to correct error-repair parsing schemata that can success-
fully obtain approximate parses minimizing the Levenshtein distance. This transforma-
tion has been formally defined, but for space reasons we cannot include here all the



definitions required for a rigorous, formal description. Therefore, we will instead pro-
vide an informal explanation of how the technique works, anda sketch of the proof that
correctness is preserved.

4.1 From standard parsers to error-repair parsers
Most standard, non-robust parsers work by using grammar rules to build trees and link
them together to form larger trees, until a complete parse can be found. Our trans-
formation will be based on generalising parser deduction steps to enable them to link
approximate trees and still obtain correct results, and adding some standard steps that
introduce error hypotheses into the item set, which will be élegantly integrated into
parse trees by the generalized steps.

The particular strategy used by parsers to build and link trees obviously varies be-
tween algorithms but, in spite of this, we can usually find twokinds of deduction steps
in parsing schemata: those which introduce a new tree into the parse from scratch, and
those which link a set of trees to form a larger tree. We will call the formerpredictive
stepsand the latteryield union steps.

Predictive steps can be identified because the yield of the trees in their consequent
item does not contain any marked terminal symbol, that is, they generate trees which
are not linked to the input string. Examples of predictive steps are the EarleyInitter and
Predictor steps. Yield union steps can be identified because the sequence of marked
terminals in the yield of the trees of their consequent item (which we call themarked
yield of these items6) is the concatenation of the marked yields of one or more of their
antecedents7, and the trees in the consequent item are formed by linking trees in an-
tecedent items. Examples of yield union steps are EarleyCompleterandScanner, and
all the steps in the CYK parsing schema.

If all the steps in a parsing schema are predictive steps or yield union steps, we will
call it a prediction-completion parsing schema. Most of the parsing schemata which
can be found in the literature for widely-used parsers are prediction-completion parsing
schemata, which allows us to generalize their steps to deal with an approximate item
set in an uniform way. First of all, we must define this approximate item set. In order to
do this, we take into account that each item in the item set of aprediction-completion
parsing schemata can be represented by a triplet(p, i, j), wherep is some entity from
a setE (the form of the elements inE is not relevant for the transformation), andi, j

are the leftmost and rightmost limits of the marked yields ofthe trees in the item. More
formally, there exists a surjectiverepresentation functionr : E×N×N → I, such that
yieldm(t) = ai+1 . . . aj for everyt ∈ r(p, i, j)8. We will denote the itemr(p, i, j) by
[p, i, j], which is the notation commonly used to represent items in the literature. Taking

6 In the sequel, we will use the notationyieldm(t) to refer to the marked yield of a treet, and
yieldm(ι) to refer to the common marked yield of the trees in an itemι, which we will call
marked yield of the item.

7 Actually, predictive steps can also be seen as yield union steps where the marked yield of the
consequent item is the concatenation of the marked yield ofzeroof their antecedents. From this
perspective it is not necessary to define predictive steps, but the concept has been introduced
for clarity.

8 Formally speaking, the necessary condition for the existence of such a representation func-
tion is that the trees in each item all have the same marked yield, of the formyieldm(t) =



this into account, we can define an approximate item setI ′ as the set of approximate
items of the form[p, i, j, x], where an approximate tree(t, x) ∈ ApTrees(G) belongs
to [p, i, j, x] iff yieldm(t) = ai+1 . . . aj and there exists a treet′ in an item of the
form [p, i′, j′] such thatd(t, t′) = x9. With this approximate item set defined, we can
generalize the steps in the following way:

• Sets of predictive steps taking as antecedents items of the form[p1, i1, j1], [p2, i2, j2],
. . . [pa, ia, ja] and producing as consequent an item of the form[pc, ic, ic] are gener-
alized to sets of steps taking antecedents[p1, i1, j1, x1], [p2, i2, j2, x2], . . . [pa, ia, ja, xa]
and producing a consequent[pc, ic, ic, 0]. This means that we let the distances asso-
ciated to antecedents take any value, and we always generateconsequents with0 as
associated distance (since items generated by predictive steps are not linked in any
way to the input, they need not consider error hypotheses).

• Sets of yield union steps taking as antecedents items of the form[p1, i0, i1], [p2, i1, i2],
. . . [py, iy−1, iy], [p′1, k1, l1], [p

′
2, k2, l2] . . . [p

′
a, ka, la] and producing as consequent

an item of the form[pc, i0, iy] are generalized to sets of steps taking antecedents
[p1, i0, i1, x1], [p2, i1, i2, x2], . . . [py, iy−1, iy, xy], [p′1, k1, l1, x

′
1], [p′2, k2, l2, x

′
2] . . .

[p′a, ka, la, x′
a] and producing as consequent an item of the form[pc, i0, iy, x1+x2+

. . . + xy]. This means that we let the distances associated to antecedents take any
value, and the distance associated to the consequent is the sum of the distances as-
sociated to the items used for building it. Therefore, we arepropagating and adding
the errors coming from all the trees used to build the consequent tree.

Now we know how to adapt deduction steps in standard parsing schemata to ade-
quately handle distances between trees, but this is not enough to obtain a correct error-
repair parsing schema: the generalized steps will be able tolink approximate trees and
propagate the errors associated to each of them, but they will not detect any errors in
the string by themselves. In order to do this, we must add somesteps to the schema to
introduce error hypotheses, i.e., elementary approximatetrees representing the presence
of an error in the input. This can be done in a way totally independent from the starting
parser, by adding always the sameerror hypothesis steps, which are the following:

1. SubstitutionHyp :
[a, i, i + 1]

[b, i, i + 1, 1]
b ∈ Σ 2. DeletionHyp :

[ǫ, i, i]

[b, i, i, 1]
b ∈ Σ

3. InsertionHyp :
[a, i, i + 1]

[ǫ, i, i + 1, 1]
4. CorrectHyp :

[a, i, i + 1]

[a, i, i + 1, 0]

5. InsCombiner1 :

[ǫ, 0, j, e1]
[(a|ǫ), j, k, e2]

[(a|ǫ), 0, k, e1 + e2]
6. InsCombiner2 :

[(a|ǫ), i, j, e1]
[ǫ, j, k, e2]

[(a|ǫ), i, k, e1 + e2]

7. DistanceIncreaser :
[p, i, j, e]

[p, i, i, e + 1]
p ∈ E

ai+1 . . . aj . In practice, this condition should always hold in well-formed prediction-
completion parsing schemata.

9 Note thatI′ verifies the definition of an approximate item set if, and only if,d(t1, t2) = ∞

for everyt1 ∈ [p1, i1, j1], t2 ∈ [p2, i2, j2] such thatp1 6= p2. That is, items associated to
different entities should be at infinite distance. This is the case for known item sets (such as
the Earley, CYK or Left-Corner item sets) and our distance function.



The first three steps generate the basic error hypotheses:SubstitutionHyp pro-
duces trees of the formb → ai+1 for each symbolai+1 in the input string (input sym-
bol) and eachb ∈ Σ (expected symbol), which correspond to the hypothesis thatthe
symbolai+1 that we find in the input string is the product of a substitution error, and
should appear asb instead in order for the string to be grammatical. TheDeletionHyp

step generates deletion hypothesis trees of the formb → ǫ, corresponding to assuming
that the symbolb, which should be thei+1th symbol in the input, has been deleted. Fi-
nally, theInsertionHyp infers trees of the formǫ → ai+1 for each symbolai+1 in the
input string, corresponding to the hypothesis that the input symbolai+1 is the product
of an insertion error, and therefore should not be taken intoaccount in the parse.

TheCorrectHyp step corresponds to the “no error” hypothesis, producing a tree
representing the fact that there is no error in a given input symbolai+1.

The twoCombiner steps produce trees of the forma2(ǫ(a1)a2(a2)) anda1(a1ǫ(a2)).
If the first symbol in the input is the product of an insertion error, the corresponding hy-
pothesis is combined with the hypothesis immediately to itsright. Insertion hypotheses
corresponding to symbols other than the first one are combined to the hypothesis im-
mediately to their left.

The necessity of these two combiner steps comes from the factthat standard pars-
ing schemata are not prepared to handle trees rooted atǫ, as generated by theInser-
tionHypstep. The combiner steps allow trees rooted atǫ to be attached to neighbouring
trees rooted at a terminal. In this way, the steps obtained from generalising those in
the standard schema can handle insertion hypotheses. An alternative is not using com-
biner steps, and instead imposing extra constraints on the schemata to be transformed
so that they can handle trees rooted atǫ. Any prediction-completion parsing schema
can be adapted to met these extra constraints, but this adaptation makes the conversion
somewhat more complex.

Finally, theDistanceIncreaser step is useless from a practical standpoint, but we
have to include it in our error-repair parser if we wish to guarantee its completeness.
The reason is that completeness requires the parser to be able to generate every possi-
ble correct final item, not just those with minimal associated distance. In practice, only
minimal final items are needed to solve the approximate parsing and recognition prob-
lems. As this step is never necessary to generate a minimal item, it can be omitted in
practical implementations of parsers.

4.2 The transformation

Putting it all together, we can define theerror-repair transformationof a prediction-
completion parsing systemS as the error-repair parsing systemR(S) obtained by ap-
plying the following changes to it:

1. Add the SubstitutionHyp, DeletionHyp, InsertionHyp,
InsCombiner1, InsCombiner2, CorrectHyp andDistanceIncreaser steps,
as defined above, to the schema.

2. For every predictive step in the schema (steps producing an item with an empty
yield), change the step to its generalization obtained (in practice) by setting the
distance associated to each antecedent itemAi to an unbound variableei, and set
the distance for the consequent item to zero. For example, the Earley step



EarleyPredictor :
[A → α.Bβ, i, j]

[B → .γ, j, j]
B → γ ∈ P

produces the step

TransformedEarleyPredictor :
[A → α.Bβ, i, j, e]

[B → .γ, j, j, 0]
B → γ ∈ P

.
3. For every yield union step in the schema (steps using itemswith yield limits (i0, i1),

(i1, i2), . . ., (ia−1, ia) to produce an item with yield(i1 . . . ia):

– If the step requires an hypothesis[a, i, i + 1], then change all appearances of
the indexi + 1 to a new unbound indexj10.

– Set the distance for each antecedent itemAk with yield (ik−1, ik) to an un-
bound variableek, and set the distance for the consequent toe1 +e2 + . . .+ea.

– Set the distance for the rest of antecedent items, if there isany, to unbound
variablesdj .

For example, the Earley step

EarleyCompleter :
[A → α.Bβ, i, j] [B → γ., j, k]

[A → αB.β, i, k]

produces the step

TransformedEarleyCompleter :
[A → α.Bβ, i, j, e1] [B → γ., j, k, e2]

[A → αB.β, i, k, e1 + e2]

The Earley step

EarleyScanner :
[A → α.aβ, i, j] [a, j, j + 1]

[A → αa.β, i, j + 1]

produces the step:

TransformedEarleyScanner :
[A → α.aβ, i, j, e1] [a, j, k, e2]

[A → αa.β, i, k, e1 + e2]

4.3 Correctness of the obtained parsers

The robust transformation function we have just described maps prediction-completion
parsing systems to error-repair parsing systems. However,in order for this transforma-
tion to be useful, we need it to guarantee that the generated robust parsers will be correct
under certain conditions. This is done by the following two theorems:

Let d : Trees′(G)×Trees′(G) → N be a distance function, and letS = (I,K,D)
be a prediction-completion parsing system.

Theorem 1. If (I,K,D) is sound, every deduction stepd in a predictive step set
Di ⊆ D has a nonempty consequent, and for every deduction stepd in a yield union step
set Di ⊆ D with antecedents[p1, i0, i1], [p2, i1, i2], . . . , [pm, im−1, im], [p′1, j1, k1],
[p′2, j2, k2], . . . , [p

′
n, jn, kn] and consequent[pc, i0, im] there exists a functionCd :

Trees′(G)n → Trees′(G)n (tree combination function) such that:

10 Steps including hypotheses as antecedents are not strictly yield union stepsaccording to the
formal definition of yield union step that we have omitted due to lack of space. However, these
steps can always be easily transformed to yield union steps by applying thistransformation.
Note that this change does not alter any of the significant properties of theoriginal (standard)
parsing schema, since items[a, i, j] with j 6= i + 1 can never appear in the deduction process.



– If (t1, . . . , tm) is a tuple of trees inTrees(G) such thattw ∈ [pw, iw−1, iw](1 ≤
w ≤ m), thenCd(t1, . . . , tm) ∈ [pc, i0, im].

– If (t1, . . . , tm) is a tuple of trees inTrees(G) such thattw ∈ [pw, iw−1, iw](1 ≤
w ≤ m), and(t′1, . . . , t

′
m) is a tuple of contiguous yield trees such thatd(t′w, tw) =

ew(1 ≤ i ≤ m) , thend(Cd(t1, . . . , tm), Cd(t
′
1, . . . , t

′
m)) = Σm

w=1ew, andCd(t
′
1, . . . , t

′
m)

is a contiguous yield tree withyieldm(Cd(t
′
1, . . . , t

′
m)) =

yieldm(t′1)yieldm(t′2) . . . yieldm(t′m).

ThenR(I,K,D) is sound.

Theorem 2. If (I,K,D) is complete, thenR(I,K,D) is complete.

Note that the condition about the existence of tree combination functions in theorem
1 is usually straightforward to verify. A yield union step set normally combines two
partial parse trees inTrees(G) in some way, producing a new partial parse tree in
Trees(G) covering a larger portion of the input string. In practice, the existence of a
tree combination function just means that we can also combine in the same way trees
that are not inTrees(G), and that the obtained tree’s minimal distance to a tree in
Trees(G) is the sum of those of the original trees. For example, in the case of the
EarleyCompleter step, it is easy to see the function that maps a pair of trees ofthe
form A(α(...)Bβ) andB(γ(...)) to the combined treeA(α(...)B(γ(...))β) obtained by
adding the children ofB in the second tree as children ofB in the first tree is a valid
combination function.

4.4 Proving Correctness

For space reasons, we cannot show the full proofs for the theorems that ensure that
our error-repair transformation preserves correctness. Thus, we will just provide a brief
outline on how the proofs are done.

Proof of Theorem 1 (Preservation of the soundness)We define a correct item in
an error-repair parsing system for a particular stringa1 . . . an as an approximate item
[p, i, j, e] containing an approximate tree(t, e) such thatt is a tree withyieldm(t) =
ai+1 . . . aj ; and we prove that the robust transformation of a given schema S is sound
(all valid final items are correct) by proving the stronger claim that all valid items are
correct. To prove this, we show that if the antecedents of a deduction step are correct,
then the consequent is also correct. If we callD′ the set of deduction steps inR(S), this
is proven by writingD′ as an union of step sets, and proving it separately for each step
set. In the particular case of the stepsD′

i coming from yield union step setsDi in the
original schema, the combination function is used to obtaina tree allowing us to prove
that the consequent is correct. In the rest of the cases, thistree is obtained directly.

Proof of Theorem 2 (Preservation of the completeness)The proof for this theorem
uses the fact that any final item in the approximate item set associated toR(S) can be
written as[p, i, j, e] (formally, there is a surjectiveerror-repair representation function
r′ such that any approximate item in the set can be written asr′(p, i, j, e); we use this
function to formally define the approximate item set associated toR(S)). Therefore,
proving completeness is equivalent to proving that every correct final item of the form
[p, i, j, e] is valid. This is proven by induction on the distancee.



The base case of this induction(e = 0) is proven by mapping items with distance0
to items from the item setI corresponding to the original non-error-repair parser, and
using the fact that this original parser is complete.

For the induction step, we suppose that the proposition holds for a distance valuee,
and prove it fore + 1. In order to do this, we take an arbitrary correct final item with
associated distancee+1 and prove that it is valid. This is done by taking an approximate
tree(t, e+1) from this item and using it to build an approximate tree(t′, d) whose yield
only differs fromyield(t) in a single substitution, insertion or deletion operation.For
each of the three operations, we build an instantiated parsing system where the item
containing(t′, e) is correct. By the induction hypothesis, this item is also valid in that
system, so each case of the induction step is reduced to proving that validity of the
item containing(t′, e) in the constructed system implies the validity of(t, e + 1) in the
original system. This is proven by building suitable mappings between the items of both
systems so that deductions are preserved and the item associated to(t′, e) is mapped to
the one associated to(t, e+1). These mappings are different for each case (substitution,
insertion, deletion) of the proof.

4.5 Simplifying the resulting parsers

The error-repair parsers obtained by using our transformation are guaranteed to be cor-
rect if the original standard parsers meet some simple conditions, but the extra steps
added by the transformation can make the semantics of the obtained parsers somewhat
hard to understand. Moreover, theSubstitutionHyp andDeletionHyp steps would
negatively affect performance if implemented directly in adeductive engine.

However, once we have the error-repair transformation of a parser, we can apply
some standard simplifications to it in order to obtain a simpler, more efficient one which
will generate the same items except for the error hypotheses. That is, we can bypass
items of the form[p, i, j, e]. In order to do this, we remove the steps that generate this
kind of items and, for each step requiring[a, i, j, e] as an antecedent, we change this
requirement to the set of hypotheses of the form[b, i′, j′] needed to generate such an
item from the error hypothesis steps.

With this simplification, the error-repair transformationfor an Earley parser is as
follows:

TransformedEarleyInitter :
[S → .α, 0, 0, 0]

S → α ∈ P

TransformedEarleyPredictor :
[A → α.Bβ, i, j, e]

[B → .γ, j, j, 0]
B → γ ∈ P

TransformedEarleyCompleter :
[A → α.Bβ, i, j, e1] [B → γ., j, k, e2]

[A → αB.β, i, k, e1 + e2]

GeneralSubstitutionEarleyScanner :
[A → α.aβ, i, j, e]

[A → αa.β, i, k, e + k − j]
k ≥ j + 1

GeneralDeletionEarleyScanner :
[A → α.aβ, i, j, e]

[A → αa.β, i, k, e + k − j + 1]
k ≥ j



GeneralEarleyScanner1 :
[A → α.aβ, 0, 0, e] [a, w − 1, w]

[A → αa.β, 0, k, e + k − 1]
0 < w ≤ k

GeneralEarleyScanner2 :
[A → α.aβ, i, j, e] [a, j, j + 1]

[A → αa.β, i, k, e + k − j − 1]
k ≥ j + 1

where the steps named “scanner” are obtained from the EarleyScanner step after
applying the simplification in order to bypass items of the form [p, i, j, e].

Note that, if we choose the alternative transformation thatdoes not useCombiner

steps (see section 4.1), the obtained parser would be the onedescribed in [9], which is
astep refinement([13]) of the parsing schema described in this section.

5 Empirical results

In order to test the results of our transformation in practice, we have used the system
described in [4] to execute the error-repair version of the Earley parser explained above.
We have executed the schema in two different modes: obtaining all the valid final items
with minimal distance (global error repair); and restricting repair steps on errors to
regions surrounding the errors in order to obtain a single optimal solution, as explained
in [16] (regional error repair).

The grammar and sentences used for testing are from the DARPAATIS3 system.
Particularly, we have used the same test sentences that wereused by [10]. This test
set is suitable for error-repair parsing, since it comes from a real-life application and
it contains ungrammatical sentences. In particular, 28 of the 98 sentences in the set
are ungrammatical. By running our error-repair parsers, wefind that the minimal edit
distance to a grammatical sentence is 1 for 24 of them (i.e., these 24 sentences have a
possible repair with a single error), 2 for two of them, and 3 for the remaining two.

Minimal Distance # Sentences Avg. Length Avg. Items (Global) Avg. Items (Regional) Improvement

0 70 11.04 37,558 37,558 0%
1 24 11.63 194,249 63,751 65.33%
2 2 18.50 739,705 574,534 22.33%
3 2 14.50 1,117,123 965,137 13.61%

>3 none n/a n/a n/a n/a

Table 1.Performance results for the global and regional error-repair parsers when parsing sentences fromthe ATIS test set.
Each row corresponds to a value of the minimal parsing distance (or error count).

Table 1 shows the average number of items generated by our parsers with respect to
the minimal parsing distance of the inputs. As we can see, regional parsing reduces item
generation by a factor of three in sentences with a single error. In sentences with more
than one error the improvements are smaller. However, we should note that parsing
time grows faster than the number of items generated, so these relative improvements
in items translate to larger relative improvements in runtime. Moreover, in practical
settings we can expect sentences with several errors to be less frequent than sentences
with a single error, as in this case. Thus, regional error-repair parsers are a good practical
alternative to global ones.



6 Conclusions and future work
We have presented a method to transform context-free grammar parsers (expressed as
parsing schemata) into error-repair parsers. Our transformation guarantees that the re-
sulting error-repair parsers are correct as long as the original parsers verify certain
conditions. It is easy to see that popular grammar parsers such asCY K, Earley or
Left−Corner verify these conditions, so this method can be applied to create a wide
range of error-repair parsers. The transformation can be applied automatically, and its
results are error-repair parsing schemata that can be executed by means of a deductive
engine. Therefore, a system as the one described in [4] can beextended to automatically
generate implementations of robust parsers from standard parsing schemata.

The method is general enough to be applied to different grammatical formalisms.
Currently, we are applying it to parsers for tree adjoining grammars.
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