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Abstract. A desirable property for any system dealing with unrestricted natural
language text is robustness, the ability to analyze any input regardligsgEm-
maticality. In this paper we present a novel, general transformationitpeg to
automatically obtain robust, error-repair parsers from standardatmrst parsers.
The resulting error-repair parsing schema is guaranteed to be tcatiea our
method is applied to a correct parsing schema verifying certain conditias
are weak enough to be fulfilled by a wide variety of parsers used in hédnra
guage processing.

1 Introduction

In real-life domains, it is common to find natural languageteeces that cannot be
parsed by grammar-driven parsers, due to insufficient eoeefthe input is well-formed,
but the grammar cannot recognize it) or ill-formedness efitfput (errors in the sen-
tence or errors caused by input methods). A standard pail&ilto return an analysis
in these cases. Mbust parseiis one that can provide useful results for such extragram-
matical sentences.

The methods that have been proposed to achieve robustneassing fall mainly
into two broad categories: those that try to parse well-gdrfragments of the input
when a parse for the complete sentence cannot be foundajpaatisers, such as that
described in [6]) and those which try to assign a completegto the input sentence
by relaxing grammatical constraints, sucheasor-repair parsers which can find a
complete parse tree for sentences not covered by the grabyrarpposing that un-
grammatical strings are corrupted versions of valid s&ing

The problem of repairing and recovering from syntax erransrdy parsing has re-
ceived much attention in the past (see for example the lisgfefences provided in the
annotated bibliography of [5, section 18.2.7] ) and recesary (see for example [15,
17,2,7,1,11]). In this paper, we try to fill the gap betweeandtard and error-repair
parsing by proposing a transformation for automaticallfao®ing error-repair parsers,
in the form oferror-repair parsing schematdrom standard parsers definedpassing
schemat&
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66607-C04) and Xunta de Galicia (PGIDITO7SINO05206PR, INCIHEEIR104022ES, IN-
CITEOBENA305025ES, INCITEO8PXIB302179PR and Rede Galeg@bcesamento da
Linguaxe e Recuperacion de Informacion)

3 Schematas the plural form of the singular nowsthema



2 Standard parsing schemata

Parsing schemata [13] provide a formal, simple and unifoiay % describe, analyze
and compare different parsing algorithms. The notion ofraipg schema comes from
considering parsing as a deduction process which geneént¢esiediate results called
items An initial set of items is obtaineddirectly from the inpatdence, and the parsing
process consists of the application of inference rutiesl(ction stegswhich produce
new items from existing ones. Each item contains a piece fofrimation about the
sentence’s structure, and a successful parsing procespraduce at least onénal
itemcontaining a full parse tree for the sentence or guarargetsirexistence.

When working with a context-free grammai = (N, X, P, S), items are sets of
trees from a set denotéi-ees(G), defined as the set of finitely branching finite trees
in which children of a node have a left-to-right orderingegwvnode is labelled with a
symbol fromN U X U (X x IN) U {e}, and every node satisfies one of the following
conditions:

e u is aleaf,

e u is labelledA, the children ofu are labelledX,, .. ., X,, and there is a production
A—X,...X, € P,

e u is labelledA, u has one child labelledand there is a productiod — ¢ € P,
e u is labelleda andu has a single child labelle@, j) for somej.

The pairs(a, j) will be referred to asnarked terminalsand when we deal with a
stringa; ... a,, we will usually writegj as an abbreviated notation f6t;, j) in the
remainder of this paper. The natural numbes used to indicate the position of the
word a in the input.

Valid parses for a string are represented by items congtompletamarked parse
treesfor that string. Given a grammé#, a marked parse tree for a striag. . . a,, is any
treer € Trees(G) such thatroot(r) = S andyield(r) = q; ...a,, Whereroot(r)
refers to the root node of andyield(r) refers to the frontier nodes of. An item
containing such a tree for some arbitrary string is callédal item An item containing
such a tree for a particular string . . . a,, is called acorrect final itemfor that string.

For each input string, a parsing schema’s deduction stéps ak to infer a set
of items, calledvalid itemsfor that string. A parsing schema is said tosmundif all
valid final items it produces for any arbitrary string arereact for that string. A parsing
schema is said to lmmpletdf all correct final items are valid. A parsing schema which
is both sound and complete is said todmrect A correct parsing schema can be used
to obtain a working implementation of a parser by using dédeiparsing engines as
the ones described in [12, 4] to obtain all valid final items.

3 Error-repair parsing schemata

The parsing schemata formalism introduced in the previeua does not suffice to
define error-repair parsers that can show a robust behawitle presence of errors. In

4 Although in this paper we will focus on context-free grammars, both stahahd error-repair
parsing schemata can be defined analogously for other grammaticeiliEms.

5 An example of a correct parsing schema is the Earley parsing schdrich,defines the parser
described by [3]. A full definition and proof of correctness for thisesma can be found at [14].



these parsers, we should obtain items containing “apprabd@mparses” if an exact parse
for the sentence does not exist. Approximate parses nedstmembers df'rees(G),
since they may correspond to ungrammatical sentenceshéyishould besimilar to

a member off'rees(G). Formalizing the notion of “similarity” as a distance fuiuet,
we can obtain a definition of items allowing approximate pait® be generated.

3.1 Defining error-repair parsing schemata
Given a context-free gramma* = (N, X, P, S), we shall denote b{'rees’'(G) the
set of finitely branching finite trees in which children of adeohave a left-to-right
ordering and every node is labelled with a symbol fradhu X' U (X' x IN) U {e}. Note
thatTrees(G) C Trees' (G).

Letd : Trees'(G) x Trees'(G) — IN U {oo} be a function verifying the usual
distance axioms (strict positiveness, symmetry and tlaimgquality).

We shall denote by'rees. (G) the set{t € Trees'(G) | 3t € Trees(G) : d(t,t') <
e}, i.e., Trees.(G) is the set of trees that have distarcer less to some valid tree in
the grammar. Note that, by the strict positiveness axiBrees(G) = Trees(G).

Definition 1. (approximate trees)
We define the set aipproximate tree$or a grammarG and a tree distance function
d as ApTrees(G) = {(t,e) € (Trees'(G) x N)|t € Trees.(G)}. Therefore, an
approximate tree is the pair formed by a tree and its distamseme tree ifTrees(G).

O

This concept of approximate trees allows us to preciselynddfie problems that
we want to solve with error-repair parsers. Given a gram@aa distance function
d and a sentence, ...a,, the approximate recognition problernis to determine the
minimal e € IN such that there exists an approximate {iee) € ApTrees(G) where
t is a marked parse tree for the sentence. We will call such aroajmate tree an
approximate marked parse tréer a; .. . a,.

Similarly, theapproximate parsingroblem consists of finding the minimale IN
such that there exists an approximate marked parseétrepc ApTrees(G) for the
sentence, and finding all approximate marked parse tre¢sd@entence.

Definition 2. (approximate item set)
Given a grammaé' and a distance functio#, we define arapproximate item seds a
setZ’ such that
7' C (UZ ) u {03)
where eaclT; is a partition of the sef(¢,e) € ApTrees(G)|e =i}. O

Each element of an approximate item set is a set of approgitnegs, and will be
called anapproximate itemNote that the concept is defined in such a way that each
approximate item contains approximate trees with a singlieevof the distance. This
concrete value of is what we will callparsing distancef an item, or dist(¢):

Definition 3. (parsing distance of an item)

LetZ’ C ((U;2, II;) U {0}) be an approximate item set as defined above .and’.
Theparsing distanc@ssociated to the nonempty approximate itedist(.), is defined
by the (trivially unique) valué € IN | . € I1;. In the case of the empty approximate item
0, we will say thatdist(()) = cc. O



Definition 4. (error-repair parsing schema)

Let G be a context-free grammat,a distance function, and . ..a, € X* a string.
An error-repair instantiated parsing system a triple (Z’, H, D) such thatZ’ is an
approximate item set with distance functidh H is a set of hypotheses such that
{a;(a;)} € H for eacha;,1 < i < n, andD is a set of deduction steps such that
D C Psin(H UTI') x I'. An error-repair uninstantiated parsing systeis: a triple
(7', K, D) whereK is a function such thatZ’, K(a; . .. a,), D) is an error-repair in-
stantiated parsing system for eaeh. .. a, € X* (in practice, we will always define
this function asC(a; ...a,) = {{ai(g;)} |1 < i < n} U {e(e)}). Finally, anerror-
repair parsing schemtor a class of grammar%; and a distance functiahis a function
that assigns an error-repair uninstantiated parsingmsysteach grammar € CG. O

Definition 5. (final items)
The set offinal itemsfor a string of lengt in an approximate item set is defined by
F(T',n)={c€T|3(te) €:tisamarked parse tree for some string . . a,, €

>*h

The set ofcorrect final itemdor a stringa; ... a, in an approximate item set is
defined by

CF(T',a1...an) = {t € T|3(t,e) € ¢ :tisamarked parse tree foy ... a,}.

O

The concepts ofalid items soundnesscompletenesand correctnessare analo-
gous to the standard parsing schemata case. Note thapiheximate recognitioand
approximate parsingroblems defined earlier for any string and grammar can hedol
by obtaining the set of correct final items for that string el@ssociated distance is
minimal. These items can be deduced by any correct erra@ifrparsing schema, since
they are a subset of correct final items.

3.2 Adistance function for repairs based on the edit distane

Let us suppose a generic scenario where we would like torepairs according to
edit distance. The edit distance or Levenshtein distanckdBveen two strings is the
minimum number of insertions, deletions or substitutioha single terminal needed
to transform eother of the strings into the other one. Givetringa;, . . . a,, containing
errors, we would like our parsers to return an approximategidased on the exact parse
tree of one of the strings ih(G) whose Levenshtein distanced9. . . a,, is minimal.

A suitable distance functiod for this case is given by the number of tree trans-
formations that we need to transform one tree into anoth#érgitransformations that
we allow are inserting, deleting or changing the label ofkadrterminal nodes in the
frontier. Therefored(ty,t2) = e if ¢t can be obtained frornty by performinge trans-
formations on marked terminal nodestin andd(t;,t2) = oo otherwise.

4 An error-repair transformation

The error-repair parsing schemata formalism allows us fmele transformation to
map correct parsing schemata to correct error-repairqgssihemata that can success-
fully obtain approximate parses minimizing the Levenghtistance. This transforma-
tion has been formally defined, but for space reasons we tamclade here all the



definitions required for a rigorous, formal descriptioneféfore, we will instead pro-
vide an informal explanation of how the technique works, as#tetch of the proof that
correctness is preserved.

4.1 From standard parsers to error-repair parsers

Most standard, non-robust parsers work by using grammes tal build trees and link
them together to form larger trees, until a complete parsebsafound. Our trans-
formation will be based on generalising parser deductiepssto enable them to link
approximate trees and still obtain correct results, andngdsbme standard steps that
introduce error hypotheses into the item set, which will leg@ntly integrated into
parse trees by the generalized steps.

The particular strategy used by parsers to build and lingsti@viously varies be-
tween algorithms but, in spite of this, we can usually find kimals of deduction steps
in parsing schemata: those which introduce a new tree iet@dinse from scratch, and
those which link a set of trees to form a larger tree. We will tee formerpredictive
stepsand the latteyield union steps

Predictive steps can be identified because the yield of &@sin their consequent
item does not contain any marked terminal symbol, that By tienerate trees which
are not linked to the input string. Examples of predictivapstare the Earleypitter and
Predictor steps. Yield union steps can be identified because the seguwémarked
terminals in the yield of the trees of their consequent iterhi¢h we call themarked
yield of these item? is the concatenation of the marked yields of one or more if th
antecedenfs and the trees in the consequent item are formed by linkiegstin an-
tecedent items. Examples of yield union steps are E&@aypleterand Scannerand
all the steps in the CYK parsing schema.

If all the steps in a parsing schema are predictive stepsetat wnion steps, we will
call it a prediction-completion parsing schemilost of the parsing schemata which
can be found in the literature for widely-used parsers aediption-completion parsing
schemata, which allows us to generalize their steps to ditlalam approximate item
set in an uniform way. First of all, we must define this appmeaie item set. In order to
do this, we take into account that each item in the item setpgdiction-completion
parsing schemata can be represented by a triplét j), wherep is some entity from
a setE (the form of the elements i is not relevant for the transformation), ang
are the leftmost and rightmost limits of the marked yieldtheftrees in the item. More
formally, there exists a surjectivepresentation function: £ x N x N — Z, such that
yield,(t) = a;, ... a; for everyt € r(p, i, j)®. We will denote the item(p, i, j) by
[p, %, j], which is the notation commonly used to represent itemsdtitdrature. Taking

% In the sequel, we will use the notatigpield,, (t) to refer to the marked yield of a tregand
yieldm (¢) to refer to the common marked yield of the trees in an itemvhich we will call
marked yield of the item.

7 Actually, predictive steps can also be seen as yield union steps whereatkechyield of the
consequent item is the concatenation of the marked yietdmibf their antecedents. From this
perspective it is not necessary to define predictive steps, but tleegbhas been introduced
for clarity.

8 Formally speaking, the necessary condition for the existence of suepresentation func-
tion is that the trees in each item all have the same marked yield, of theyfiefiah,, (t) =



this into account, we can define an approximate iteniZ4ets the set of approximate
items of the form[p, i, j, ], where an approximate trée x) € ApTrees(G) belongs

to [p, i, j, ] iff yieldn(t) = a;4,...a; and there exists a tre€ in an item of the
form [p,i’, j'] such thatd(t, ') = °. With this approximate item set defined, we can
generalize the steps in the following way:

e Sets of predictive steps taking as antecedents items abtingp, , i1, j1], [p2, i2, jo],
... |pasia, ja) @nd producing as consequent an item of the fhrmi.., i.] are gener-
alized to sets of steps taking antecedémsi, j1, 1], [p2, i2, j2, 2], - - - [Pa, tas Ja, Ta)
and producing a consequdpt, i., i., 0]. This means that we let the distances asso-
ciated to antecedents take any value, and we always gemeraequents with as
associated distance (since items generated by predittipe are not linked in any
way to the input, they need not consider error hypotheses).

e Sets of yield union steps taking as antecedents items obth€p., i, i1], [p2, i1, i2],

o pysiy—1,dy ], 1 K UL D5, k2 L) - [P, ke, Le] @nd producing as consequent
an item of the formjp,, i, ,] are generalized to sets of steps taking antecedents
[p17 iOa ila .171]7 [p27 ila i?? 1‘2]7 e [plja iy—17 iy7 .ﬁy}, [plla k17 ll7 xll]v [pIQ, k27 l27 .’17/2] cee

(D), ka, la, )] and producing as consequent an item of the frmio, iy, 21 +z2+
...+ x,]. This means that we let the distances associated to antdsddke any
value, and the distance associated to the consequent igrthefd¢he distances as-
sociated to the items used for building it. Therefore, wepmopagating and adding
the errors coming from all the trees used to build the conseijuee.

Now we know how to adapt deduction steps in standard parsingnsata to ade-
quately handle distances between trees, but this is nogénowbtain a correct error-
repair parsing schema: the generalized steps will be ablekt@pproximate trees and
propagate the errors associated to each of them, but thepatitletect any errors in
the string by themselves. In order to do this, we must add sieps to the schema to
introduce error hypotheses, i.e., elementary approxitne¢s representing the presence
of an error in the input. This can be done in a way totally iretegent from the starting
parser, by adding always the sasreor hypothesis stepsvhich are the following:

. . o layi, i+ 1] . o ed,4]
1. SubstitutionHyp : Bt be X 2. DeletionHyp : B 1] be X
. ayd, i+ 1] laydyi+ 1]
3. InsertionHyp : it i 4. CorrectHyp : farii T1.0]
[5707?‘761] [(a|5)_wi7j7 61]
5. InsCombinerl : _Wale), 5k ea] 6. InsCombiner2 : M
[(ale),0,k, e1 + e2] [(ale), i, k, e1 + ez2]
[P, 3, ], €]

7. Distancelncreaser : peE

p, 2,1, e+ 1]

a;y,---a;. In practice, this condition should always hold in well-formed prediction-
completion parsing schemata.

° Note thatZ’ verifies the definition of an approximate item set if, and onlyl{t.1, t2) = oo
for everyt: € [p1,i1,71],t2 € [p2,i2,J2] such thatpl # p2. That is, items associated to
different entities should be at infinite distance. This is the case for knownsgds (such as
the Earley, CYK or Left-Corner item sets) and our distance function.



The first three steps generate the basic error hypoth@séstitution Hyp pro-
duces trees of the for— a, ,, for each symbok; in the input string (input sym-
bol) and eachh € X' (expected symbol), which correspond to the hypothesisttiat
symbola;,; that we find in the input string is the product of a substitatésror, and
should appear dsinstead in order for the string to be grammatical. Thdetion Hyp
step generates deletion hypothesis trees of the forme, corresponding to assuming
that the symbob, which should be thé+ 1th symbol in the input, has been deleted. Fi-
nally, theInsertion Hyp infers trees of the form — a, , , for each symbot;,; in the
input string, corresponding to the hypothesis that thetisgmbola;, is the product
of an insertion error, and therefore should not be takenantmunt in the parse.

The CorrectHyp step corresponds to the “no error” hypothesis, producinge t
representing the fact that there is no error in a given inpot®l a; ;.

The twoCombiner steps produce trees of the form(e(a; )az(a,)) andas (a;€(as)).
If the first symbol in the input is the product of an insertioroe, the corresponding hy-
pothesis is combined with the hypothesis immediately tagfist. Insertion hypotheses
corresponding to symbols other than the first one are cordiiméhe hypothesis im-
mediately to their left.

The necessity of these two combiner steps comes from théhfaicstandard pars-
ing schemata are not prepared to handle trees rootedaat generated by thHaser-
tionHypstep. The combiner steps allow trees rootedtatbe attached to neighbouring
trees rooted at a terminal. In this way, the steps obtainamh fyeneralising those in
the standard schema can handle insertion hypotheses. &natlte is not using com-
biner steps, and instead imposing extra constraints onctiensata to be transformed
so that they can handle trees rooted.afny prediction-completion parsing schema
can be adapted to met these extra constraints, but thisadieptakes the conversion
somewhat more complex.

Finally, the DistanceIncreaser step is useless from a practical standpoint, but we
have to include it in our error-repair parser if we wish to igudee its completeness.
The reason is that completeness requires the parser to &eoadptnerate every possi-
ble correct final item, not just those with minimal assodaléstance. In practice, only
minimal final items are needed to solve the approximate pgsnd recognition prob-
lems. As this step is never necessary to generate a miniem] it can be omitted in
practical implementations of parsers.

4.2 The transformation

Putting it all together, we can define tleeror-repair transformationof a prediction-
completion parsing systefias the error-repair parsing systéa{S) obtained by ap-
plying the following changes to it:

1. Add the Substitution Hyp, DeletionHyp, InsertionHyp,
InsCombinerl, InsCombiner2, CorrectHyp and Distancelncreaser steps,
as defined above, to the schema.

2. For every predictive step in the schema (steps produginigeen with an empty
yield), change the step to its generalization obtained (attice) by setting the
distance associated to each antecedent Heno an unbound variable;, and set
the distance for the consequent item to zero. For exammds dinley step



. [A — a.BB,1, j]
FEarleyPredictor : ———— X B -~y € P
[B — 7,3, ]
produces the step
. [A — a.BpB,i,j, €]

TransformedFEarleyPredictor : ——————— B -y € P

[B — ,4,3,0] :

3. For every yield union step in the schema (steps using itgthsyield limits (ig, 1),

(i1,12), ..., (ia—1,1q) to produce an item with yiel¢i; . ..1,):

— If the step requires an hypothesis i, i + 1], then change all appearances of
the indexi 4 1 to a new unbound index°.

— Set the distance for each antecedent itémwith yield (i1, ;) to an un-
bound variabley, and set the distance for the consequerttges +. .. +e,.

— Set the distance for the rest of antecedent items, if theamysto unbound
variablesd;.

For example, the Earley step
[A — «.Bg,1, 7] [B — ~.,7,k]

FEarleyCompleter : (A= aBA ik

produces the step
[A—>Oé.Bﬁ,i7j,€1} [B_>’Y'7j7ka62]
[A — aB.B,i,k,e1 + €3]

TransformedEarleyCompleter :

The Earley step
[A — a.aB, i, j] la,j,j +1]

FEarleyScanner : —
[A— aaf,ij+1]

produces the step:
|:A - O[.aﬁ,i,],el] [a7j7 k7 62]
[A — aa.B,i,k,e1 + e2]

TransformedFEarleyScanner :

4.3 Correctness of the obtained parsers

The robust transformation function we have just describagsprediction-completion
parsing systems to error-repair parsing systems. Howewverder for this transforma-
tion to be useful, we need it to guarantee that the generabedst parsers will be correct
under certain conditions. This is done by the following tlvedrems:

Letd : Trees'(G) x Trees’'(G) — N be a distance function, and Bt (Z, K, D)
be a prediction-completion parsing system.

Theorem 1. If (Z,K, D) is sound, every deduction stepin a predictive step set
D,; C D has anonempty consequent, and for every deductionistegyield union step
set D; C D with antecedent$pi,io, i1], [p2, i1,%2]s - - [Pm, tm—1,%m), [P1, 41, k1],
[p5, 42, k2l - - - [Ph, Jn, kn] @nd consequenp,, io, i.,] there exists a functioy :
Trees'(G)™ — Trees'(G)™ (tree combination function) such that:

10 Steps including hypotheses as antecedents are not strictly yield uniorastepsing to the
formal definition of yield union step that we have omitted due to lack of sgdoeever, these
steps can always be easily transformed to yield union steps by applyingathsformation.
Note that this change does not alter any of the significant properties ofitfieal (standard)
parsing schema, since iterfas ¢, j] with j # ¢ + 1 can never appear in the deduction process.



A

— If (t1,...,ty) is a tuple of trees iMrees(G) such that,, € [pw,iw—_1,iw)(1
w < m), thenC’d(tl, - ,tm) € [pc,io,im].

— If (t1,...,t,) is a tuple of trees iMrees(G) such that,, € [puw,iw_1,iw](1 <
w < m),and(t;,...,t,)is atuple of contiguous yield trees such thét,, t,,) =
ew(l <i<m),thend(Cy(ty,...,tm), Ca(ty,... 1)) = X" ey, andCqy(ty, ..., t),)
is a contiguous yield tree withield,, (Cq(t}, ..., t.,)) =
yield,, (t))yield, (ty) . . . yield, (t),).

ThenR(Z, K, D) is sound.
Theorem 2. If (Z, K, D) is complete, theR(Z, K, D) is complete.

Note that the condition about the existence of tree comiaindtinctions in theorem
1 is usually straightforward to verify. A yield union stept smrmally combines two
partial parse trees iff'rees(G) in some way, producing a new partial parse tree in
Trees(G) covering a larger portion of the input string. In practides existence of a
tree combination function just means that we can also coeibithe same way trees
that are not inl'rees(G), and that the obtained tree’s minimal distance to a tree in
Trees(G) is the sum of those of the original trees. For example, in #mee of the
Earley Completer step, it is easy to see the function that maps a pair of treéseof
form A(a(...)B3) andB(7(...)) to the combined tred (a(...)B(v(...))3) obtained by
adding the children oB in the second tree as children Bfin the first tree is a valid
combination function.

4.4 Proving Correctness

For space reasons, we cannot show the full proofs for ther¢henthat ensure that
our error-repair transformation preserves correctndsss,Twe will just provide a brief
outline on how the proofs are done.

Proof of Theorem 1 (Preservation of the soundness)NVe define a correct item in
an error-repair parsing system for a particular steng. . a,, as an approximate item
[p, 1, j, €] containing an approximate trée ¢) such that is a tree withyield,, (t) =
Qi - Q5 and we prove that the robust transformation of a given setfemm sound
(all valid final items are correct) by proving the strongeiei that all valid items are
correct. To prove this, we show that if the antecedents ofdacteon step are correct,
then the consequent is also correct. If we élithe set of deduction stepsT(S), this
is proven by writingD’ as an union of step sets, and proving it separately for eagh st
set. In the particular case of the stepscoming from yield union step sefS; in the
original schema, the combination function is used to okadiree allowing us to prove
that the consequent is correct. In the rest of the casedréeiss obtained directly.

Proof of Theorem 2 (Preservation of the completenessThe proof for this theorem
uses the fact that any final item in the approximate item sicated toR(S) can be

written as[p, i, j, e] (formally, there is a surjectiverror-repair representation function
r’ such that any approximate item in the set can be writteri(@asi, j, ¢); we use this

function to formally define the approximate item set asdedidoR(S)). Therefore,

proving completeness is equivalent to proving that everyeot final item of the form
[p, 1, j, €] is valid. This is proven by induction on the distance



The base case of this inductiéa= 0) is proven by mapping items with distan@e
to items from the item sef corresponding to the original non-error-repair parsed, an
using the fact that this original parser is complete.

For the induction step, we suppose that the propositionsHolda distance value,
and prove it fore 4 1. In order to do this, we take an arbitrary correct final itenthwi
associated distaneg-1 and prove that it is valid. This is done by taking an approxana
tree(t, e+1) from this item and using it to build an approximate t(€ed) whose yield
only differs fromyield(t) in a single substitution, insertion or deletion operatiBar
each of the three operations, we build an instantiated qgusjstem where the item
containing(¢’, e) is correct. By the induction hypothesis, this item is alshidvia that
system, so each case of the induction step is reduced tongrolvat validity of the
item containing(t’, ¢) in the constructed system implies the validity(éfe + 1) in the
original system. This is proven by building suitable majggibetween the items of both
systems so that deductions are preserved and the itematesbig(¢’, ¢) is mapped to
the one associated {0, ¢+ 1). These mappings are different for each case (substitution,
insertion, deletion) of the proof.

4.5 Simplifying the resulting parsers

The error-repair parsers obtained by using our transfoomatre guaranteed to be cor-
rect if the original standard parsers meet some simple tondj but the extra steps
added by the transformation can make the semantics of tlagneltparsers somewhat
hard to understand. Moreover, tSebstitution Hyp and Deletion Hyp steps would
negatively affect performance if implemented directly idesluctive engine.

However, once we have the error-repair transformation oéraqy, we can apply
some standard simplifications to it in order to obtain a seanphore efficient one which
will generate the same items except for the error hypothddest is, we can bypass
items of the form[p, 4, j, e]. In order to do this, we remove the steps that generate this
kind of items and, for each step requirifig ¢, j, ¢] as an antecedent, we change this
requirement to the set of hypotheses of the fdbm', ;'] needed to generate such an
item from the error hypothesis steps.

With this simplification, the error-repair transformatitor an Earley parser is as

follows:
TransformedFEarleylnitter : ——— S - a € P

[S — .,0,0,0]
[A— a.BB, 1,7, €]

TransformedFEarleyPredictor : —
[B = 7,34,4,0]

B—-~eP
[A - a'B/B’ i?j’ el] |:B - 7'7.7‘7 k? e2:|

TransformedFEarleyCompleter : -
[A — aB.3,i,k,e1 + €3]

[A — «.af, i, ], €]

GeneralSubstitution EarleyScanner : - -
[A— aa.B,i, ke +k—j]

k>j+1

[A - a'a/B7 i?j’ e]

General Deletion EarleyScanner : - - >J
[A — aa.B,ik,e+k—j+1]



[A — a.a8,0,0, €] [a,w—1,w]
General EarleyScanner] : O<w<k
[A— @a.3,0,k,e+k—1]

[A_>a‘a/87lﬂj7e] [a7]7j+1]

General EarleyScanner? : - -
[A — aa.B,ik,e+k—j—1]

k>j+1

where the steps named “scanner” are obtained from the ESleyner step after
applying the simplification in order to bypass items of therfdp, i, j, ¢].

Note that, if we choose the alternative transformation duegts not us€'ombiner
steps (see section 4.1), the obtained parser would be thdeseeibed in [9], which is
astep refinemen{13]) of the parsing schema described in this section.

5 Empirical results

In order to test the results of our transformation in pragtive have used the system
described in [4] to execute the error-repair version of thedy parser explained above.
We have executed the schema in two different modes: obtpalithe valid final items
with minimal distance global error repair); and restricting repair steps on errors to
regions surrounding the errors in order to obtain a singtava solution, as explained
in [16] (regional error repaip.

The grammar and sentences used for testing are from the DAXIFE3 system.
Particularly, we have used the same test sentences thatusedeby [10]. This test
set is suitable for error-repair parsing, since it comemfeoreal-life application and
it contains ungrammatical sentences. In particular, 2&hef38 sentences in the set
are ungrammatical. By running our error-repair parsersfimeethat the minimal edit
distance to a grammatical sentence is 1 for 24 of them (hese 24 sentences have a
possible repair with a single error), 2 for two of them, andBthe remaining two.

Minimal Distance  # Sentences  Avg. Length  Avg. Items (Global)  Avg. ltems @®adj  Improvement

0 70 11.04 37,558 37,558 0%

1 24 11.63 194,249 63,751 65.33%
2 2 18.50 739,705 574,534 22.33%
3 2 14.50 1,117,123 965,137 13.61%
>3 none n/a n/a n/a n/a

Table 1. Performance results for the global and regional error-repair parsers when parsing sentendes ADIS test set.
Each row corresponds to a value of the minimal parsing distance (or error count).

Table 1 shows the average number of items generated by aerpavith respect to
the minimal parsing distance of the inputs. As we can se@magparsing reduces item
generation by a factor of three in sentences with a singte.dm sentences with more
than one error the improvements are smaller. However, walghwte that parsing
time grows faster than the number of items generated, se tiedstive improvements
in items translate to larger relative improvements in meti Moreover, in practical
settings we can expect sentences with several errors teddrémjuent than sentences
with a single error, as in this case. Thus, regional errpeirgarsers are a good practical
alternative to global ones.



6 Conclusions and future work

We have presented a method to transform context-free grampansers (expressed as
parsing schemata) into error-repair parsers. Our tramsftion guarantees that the re-
sulting error-repair parsers are correct as long as thenafigarsers verify certain
conditions. It is easy to see that popular grammar parsefs asiC'Y K, Farley or
Le ft — Corner verify these conditions, so this method can be applied tatera wide
range of error-repair parsers. The transformation can péegpautomatically, and its
results are error-repair parsing schemata that can be textlby means of a deductive
engine. Therefore, a system as the one described in [4] cexidéeded to automatically
generate implementations of robust parsers from stangasing schemata.

The method is general enough to be applied to different gratmcal formalisms.
Currently, we are applying it to parsers for tree adjoiningngmars.
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