
Generation of indexes for compiling efficient

parsers from formal specifications

Carlos Gómez-Rodŕıguez1, Miguel A. Alonso1, and Manuel Vilares2

1 Departamento de Computación, Universidade da Coruña
Facultad de Informtica, Campus de Elviña 5, 15071 La Coruña (Spain)

{cgomezr, alonso}@udc.es
2 Departamento de Informática, Universidade de Vigo

E.T.S. de Ingenieŕıa Informática, Campus As Lagoas, 32004 Orense (Spain)
vilares@uvigo.es

http://www.grupocole.org/

Abstract. Parsing schemata provide a formal, simple and uniform way
to describe, analyze and compare different parsing algorithms. The no-
tion of a parsing schema comes from considering parsing as a deduction
process which generates intermediate results called items. An initial set
of items is directly obtained from the input sentence, and the parsing pro-
cess consists of the application of inference rules (called deductive steps)
which produce new items from existing ones. Each item contains a piece
of information about the sentence’s structure, and a successful parsing
process will produce at least one final item containing a full parse tree
for the sentence or guaranteeing its existence. Their abstraction of low-
level details makes parsing schemata useful to define parsers in a simple
and straightforward way. Comparing parsers, or considering aspects such
as their correction and completeness or their computational complexity,
also becomes easier if we think in terms of schemata. However, when we
want to actually use a parser by running it on a computer, we need to
implement it in a programming language, so we have to abandon the
high level of abstraction and worry about implementation details that
were irrelevant at the schema level. In particular, we study in this article
how the source parsing schema should be analysed to decide what kind
of indexes need to be generated in order to obtain an efficient parser.

1 Introduction

Parsing schemata are explained in detail in [14, 11]. In this article, we will
give a brief insight into the concept by introducing a concrete example: a
parsing schema for Earley’s algorithm [3]. Given a context-free grammar G =
(N,Σ,P, S), where N denotes the set of nonterminal symbols, Σ the set of ter-
minal symbols, P the production rules and S the axiom of the grammar, and
a sentence of length n denoted by a1 a2 . . . an, the schema describing Earley’s
algorithm is as follows:1

1 From now on, we will follow the usual conventions by which nonterminal symbols
are represented by uppercase letters (A, B . . .), terminals by lowercase letters (a,

Item set:
{[A → α.β, i, j] | A → αβ ∈ P ∧ 0 ≤ i < j}

Initial items (hypotheses):
{[ai, i − 1, i] | 0 < i ≤ n}

Deductive steps:

Earley Initter:
[S → .α, 0, 0]

S → α ∈ P

Earley Scanner:
[A → α.aβ, i, j] [a, j, j + 1]

[A → αa.β, i, j + 1]

Earley Predictor:
[A → α.Bβ, i, j]

[B → .γ, j, j]
B → γ ∈ P

Earley Completer:
[A → α.Bβ, i, j] [B → γ., j, k]

[A → αB.β, i, k]

Final items:
{[S → γ., 0, n]}

Items in the Earley algorithm are of the form [A → α.β, i, j], where A → α.β

is a grammar rule with a special symbol (dot) added at some position in its
right-hand side, and i, j are integer numbers denoting positions in the input
string. The meaning of such an item can be interpreted as: “There exists a valid
parse tree with root A, such that the direct children of A are the symbols in the
string αβ, and the leaf nodes of the subtrees rooted at the symbols in α form
the substring ai+1 . . . aj of the input string”.

The algorithm will produce a valid parse for the input sentence if an item of
the form [S → γ., 0, n] is generated: according to the aforesaid interpretation,
this item guarantees the existence of a parse tree with root S whose leaves are
a1 . . . an, that is, a complete parse tree for the sentence.

A deductive step η1...ηm

ξ
Φ allows us to infer the item specified by its conse-

quent ξ from those in its antecedents η1 . . . ηm. Side conditions (Φ) specify the
valid values for the variables appearing in the antecedents and consequent, and
may refer to grammar rules as in this example or specify other constraints that
must be verified in order to infer the consequent.

1.1 Compilation of parsing schemata

Parsing schemata are located at a higher abstraction level than algorithms. As
can be seen in the text above, a schema specifies the steps that must be executed

b . . .) and strings of symbols (both terminals and nonterminals) by Greek letters (α,
β . . .).

and the intermediate results that must be obtained in order to parse a given
string, but it makes no claim about the order in which to execute the steps
or the data structures to use for storing the results. To overcome this, we have
developed a compiler that given a parsing schema is able to obtain an executable
implementation of the corresponding parser [7, 6]. The input to the compiler is
a simple and declarative representation of a parsing schema, which is practically
equal to the formal notation that we used previously. For example, a valid schema
file describing the Earley parser would be:

@goal [S -> alpha . , 0 , length]

@step EarleyInitter
------------------------ S -> alpha
[S -> . alpha , 0 , 0]

@step EarleyScanner
[A -> alpha . a beta , i , j]
[a , j , j+1]

[A -> alpha a . beta , i , j+1]

@step EarleyCompleter
[A -> alpha . B beta , i , j]
[B -> gamma . , j , k]

[A -> alpha B . beta , i , k]

@step EarleyPredictor
[A -> alpha . B beta , i , j]
-------------------------- B -> gamma
[B -> . gamma , j , j]

1.2 Related work

Shieber et al. provide in [12] a Prolog implementation of a deductive parsing
engine which can also be used to implement parsing schemata. However, its
input notation is less declarative (since schemata have to be programmed in
Prolog) and it does not support automatic indexing, so the resulting parsers are
inefficient unless the user programs indexing code by hand, abandoning the high
abstraction level.

Another alternative for implementing parsing schemata, the Dyna lan-
guage [4], can be used to implement some kinds of dynamic programs; but it
has a more complex and less declarative notation than ours, which is specifically
designed for denoting schemata.

2 Automatic generation of indexes for parsing schemata

In this section, we study how the compiler analyses the source parsing schema
to decide what kind of indexes need to be generated in order to obtain an ef-
ficient parser. In particular, implementation of the following operations affects
the resulting parser’s computational complexity:

– Check if a given item exists in the item set.
– Search the item set for all items satisfying a certain specification: Once an

antecedent of a deductive step has been matched, a search for items matching
the rest of the antecedents is needed in order to make inferences using that
step.

In order to maintain the theoretical complexity of parsing schemata, we must
provide constant-time access to items. In this case, each single deduction takes

place in constant time, and the worst-case complexity is bounded by the maxi-
mum possible number of step executions: all complexity in the generated imple-
mentation is inherent to the schema.

In order to achieve this, we propose to generate two distinct kind of indexes
for each schema, corresponding to the operations mentioned before:

– Items are indexed in existence indexes, used to check whether an item ex-
ists in the item set, and search indexes, which allow us to search for items
conforming to a given specification.

– Deductive steps are indexed in deductive step indexes. These indexes are
used to restrict the set of “applicable deductive steps” for a given item,
discarding those known not to match it. Deductive step indexes usually have
no influence on computational complexity with respect to input string size,
but they do have an influence on complexity with respect to the size of the
grammar, since the number of step instances depends on grammar size when
grammar productions are used as side conditions.

2.1 A simple case

The generation of indexing code is not trivial, since the elements by which we
should index items in order to achieve efficiency vary among schemata. For
instance, if we are trying an Earley Completer step

[A → α.Bβ, i, j], [B → γ., j, k]

[A → αB.β, i, k]

on an item of the form [B → γ., j, k] which matches the second antecedent, we
will need to search for items of the form [A → α.Bβ, i, j], for any values of A,
α, β and i, in order to draw all the possible conclusions from the item and step.
Since the values of B and j are fixed, this search will be efficient and provide
constant-time access to items if we have them indexed by the symbol that follows
the dot and by the second string position (B and j). However, if we analyze the
other Earley steps in the same way, we will find that their indexing needs are
different, and different parsing schemata will obviously have different needs.

Therefore, in order to generate indexing code, we must take the distinct
features of each schema into account. In the case of search indexes, we must
analyze each deductive step just as we have analyzed the Completer step: we
must keep track of which variables are instantiated to a concrete value when a
search must be performed. This information is known at schema compilation time
and allows us to create indexes by the elements corresponding to instantiated
variables. For example, in the case of Completer, we would create the index
that we mentioned before (by the symbol directly after the dot and the second
string position) and another index by the symbol in the left side of productions
and the first string position. This second index is useful when we have an item
matching the first antecedent and we want to search for items matching the
second one, and is obtained by checking which variables are instantiated when
the first antecedent is matched.

The generation of existence indexes is similar to, but simpler than, that of
search indexes. The same principle of checking which variables will be instanti-
ated when the index is needed is valid in this case, but when an item is checked
for existence it is always fully known, so all its variables are instantiated.

Deductive step indexes are generated by taking into account those step vari-
ables which will take a value during instantiation, i.e. which variables appear on
side conditions. Since these variables will have a concrete value for each instance
of the step, they can be used to filter instances in which they take a value that
will not allow matching with a given item.

2.2 A general case

For a more general view of how the adequate indexes can be determined by a
static analysis of the schema prior to compilation, we can analyze the general
case where we have a deductive step of the form

[a, d, e, g], [b, d, f, g]

consequent
c e f g

where each lowercase letter represents the set of elements (be them grammar
symbols, string positions or other entities) appearing at particular positions in
the step, so that a stands for the set of elements appearing only in the first
antecedent item, e represents those appearing in the first antecedent and side
condition, g those appearing in both antecedents and side condition, and the
rest of the letters represent the other possible combinations as can be seen in
the step. We can easily see that any deductive step with two antecedent items
can be represented in this way (note that the element sets can be empty, and
that the ordering of elements inside items is irrelevant to this discussion).

In this case, the following indexes are generated:

– One deductive step index for each antecedent, using as keys the elements ap-
pearing both in the side condition and in that particular antecedent: there-
fore, two indexes are generated using the values (e, g) and (f, g). These in-
dexes are used to restrict the set of deductive step instances applicable to
items. As each instance corresponds to a particular instantiation of the side
conditions, in this case each step instance will have different values for c, e,
f and g. When the deductive engine asks for the set of steps applicable to a
given item [w, x, y, z], the deductive step handler will use the values of (y, z)
as keys in order to return only instances with matching values of (e, g) or
(f, g). Instances of the steps where these values do not match can be safely
discarded, as we know that our item will not match any of both antecedents.

– One search index for each antecedent, using as keys the elements appearing
in that antecedent which are also present in the side condition or in the
other antecedent. Therefore, a search index is generated by using (d, e, g)
as keys in order to recover items of the form [a, d, e, g] when d, e and g are
known and a can take any value; and another index using the keys (d, f, g)

is generated and used to recover items of the form [b, d, f, g] when d, f and g

are known. The first index allows us to efficiently search for items matching
the first antecedent when we have already found a match for the second,
while the second one can be used to search for items matching the second
antecedent when we have started our deduction by matching the first one.

– One existence index using as keys all the elements appearing in the conse-
quent, since all of them are instantiated to concrete values when the step
successfully generates a consequent item. This index is used to check whether
the generated item already exists in the item set before adding it.

As this index generation process must be applied to all deductive steps in
the schema, the number of indexes needed to guarantee constant-time access to
items increases linearly with the number of steps. However, in practice we do not
usually need to generate all of these indexes, since many of them are repeated or
redundant. For example, if we suppose that the sets e and f in our last example
contain the same number and type of elements, and elements are ordered in the
same way in both antecedents, the two search indexes generated would in fact
be the same, and our compiler would detect this fact and generate only one.
In practical cases, the items used by different steps of a parsing schema usually
have the same structure, so most indexes can be shared among several deductive
steps and the amount of indexes generated is small.

In our example, we have considered only two antecedents for the sake of
simplicity, but the technique is general and can be applied to deductive steps
with an arbitrary number of antecedents.

3 Experimental results

We have used our technique to generate implementations of three popular parsing
algorithms for context-free grammars: CYK [8, 15], Earley and Left-Corner [9].
The three algorithms have been tested with sentences from three different natu-
ral language grammars: the English grammar from the Susanne corpus [10], the
Alvey grammar [2] (which is also an English-language grammar) and the Del-
tra grammar [13], which generates a fragment of Dutch. The Alvey and Deltra
grammars were converted to plain context-free grammars by removing their ar-
guments and feature structures. The test sentences were randomly generated.2

Performance results for all these algorithms and grammars are shown in Ta-
ble 1.3 The success of the index generation technique proposed in this article
is shown by the fact that the empirical computational complexity of the three

2 Note that, as we are interested in measuring and comparing the performance of the
parsers, not the coverage of the grammars; randomly-generated sentences are a good
input in this case: by generating several sentences of a given length, parsing them
and averaging the resulting runtimes, we get a good idea of the performance of the
parsers for sentences of that length.

3 Tests performed on a laptop with an Intel 1500 MHz Pentium M processor, 512 MB
RAM, Sun Java Hotspot virtual machine (version 1.4.2 01-b06) and Windows XP.

Table 1. Performance measurements for generated parsers.

Grammar String Time Elapsed (s) Items Generated
length CYK Earley LC CYK Earley LC

Susanne 2 0.000 1.450 0.030 28 14,670 330
4 0.004 1.488 0.060 59 20,945 617
8 0.018 4.127 0.453 341 51,536 2,962
16 0.050 13.162 0.615 1,439 137,128 7,641
32 0.072 17.913 0.927 1,938 217,467 9,628
64 0.172 35.026 2.304 4,513 394,862 23,393
128 0.557 95.397 4.679 17,164 892,941 52,803

Alvey 2 0.000 0.042 0.002 61 1,660 273
4 0.002 0.112 0.016 251 3,063 455
8 0.010 0.363 0.052 915 7,983 1,636
16 0.098 1.502 0.420 4,766 18,639 6,233
32 0.789 9.690 3.998 33,335 66,716 39,099
64 5.025 44.174 21.773 133,884 233,766 170,588
128 28.533 146.562 75.819 531,536 596,108 495,966

Deltra 2 0.000 0.084 0.158 1,290 1,847 1,161
4 0.012 0.208 0.359 2,783 3,957 2,566
8 0.052 0.583 0.839 6,645 9,137 6,072
16 0.204 2.498 2.572 20,791 28,369 22,354
32 0.718 6.834 6.095 57,689 68,890 55,658
64 2.838 31.958 29.853 207,745 282,393 261,649
128 14.532 157.172 143.730 878,964 1,154,710 1,110,629

parsers is below their theoretical worst-case complexity of O(n3). Similar results
have been obtained for highly ambiguous artificial grammars such as the one
used in [1].

4 Conclusions

Parsing algorithms can be defined in a simple, formal and uniform way by means
of Parsing Schemata, and there exists a compilation technique which allows
us to automatically transform a parsing schema into an implementation of the
algorithm it describes. In this article we have shown how adapted indexing code
can be automatically generated for parsing schemata, so that the generated
parsers keep the theoretical computational complexity of the parsing algorithms.

Although all the cases we have seen so far correspond to context-free parsing,
our technique is not limited to working with context-free grammars, since parsing
schemata can be used to represent parsers for other grammar formalisms as
well. All grammars in the Chomsky hierarchy can be handled in the same way
as context-free grammars. For example, we have generated implementations for
some of the most popular parsers for Tree Adjoining Grammars [5, 6].

Acknowledgements

The work reported in this article has been supported in part by Min-
isterio de Educación y Ciencia (MEC) and FEDER (TIN2004-07246-C03-
01, TIN2004-07246-C03-02), Xunta de Galicia (PGIDIT05PXIC30501PN,
PGIDIT05PXIC10501PN, Rede Galega de Procesamento da Linguaxe e Recu-
peración de Información) and Programa de Becas FPU of MEC.

References

1. M. A. Alonso, D. Cabrero and M. Vilares. Construction of Efficient Generalized
LR Parsers. Lecture Notes in Computer Science, 1436:7–24, 1998.

2. J.A. Carroll. Practical unification-based parsing of natural language. TR no. 314,
University of Cambridge, Computer Laboratory, England. PhD Thesis., 1993.

3. J. Earley. An efficient context-free parsing algorithm. Communications of the
ACM, 13(2):94–102, 1970.

4. J. Eisner, E. Goldlust, and N. A. Smith. Dyna: A declarative language for imple-
menting dynamic programs. In Proceedings of ACL 2004 (Companion Volume),
pages 218–221, Barcelona, July 2004.

5. C. Gómez-Rodŕıguez, M.A. Alonso, and M. Vilares. On theoretical and practical
complexity of TAG parsers. In P. Monachesi, G. Penn, G. Satta and S. Wintner
(eds.), FG 2006: The 11th conference on Formal Grammar. Malaga, Spain, July 29-
30, 2006, chapter 5, pp. 61-75, Center for the Study of Language and Information,
Stanford, 2006.

6. C. Gómez-Rodŕıguez, M.A. Alonso, and M. Vilares. Generating XTAG parsers
from algebraic specifications. In Proceedings of the 8th International Workshop on
Tree Adjoining Grammar and Related Formalisms. Sydney, July 2006, pp. 103-108,
Association for Computational Linguistics, East Stroudsburg, PA, 2006.

7. C. Gómez-Rodŕıguez, J. Vilares, and M.A. Alonso. Automatic Generation of Nat-
ural Language Parsers from Declarative Specifications. In L. Penserini, P. Peppas
and A. Perini (eds.), STAIRS 2006 - Proceedings of the Third Starting AI Re-
searchers’ Symposium, Riva del Garda, Italy, August 2006, vol. 142 of Frontiers in
Artificial Intelligence and Applications, pp. 259-260, IOS Press, Amsterdam, 2006.

8. T. Kasami. An efficient recognition and syntax algorithm for context-free lan-
guages. Scientific Report AFCRL-65-758, Air Force Cambridge Research Lab.,
Bedford, Massachussetts, 1965.

9. D. J. Rosenkrantz and P. M. Lewis II. Deterministic Left Corner parsing. In
Conference Record of 1970 Eleventh Annual Meeting on Switching and Automata
Theory, pages 139–152, Santa Monica, CA, USA, October 1970. IEEE.

10. G. Sampson. The Susanne corpus, Release 3, 1994.
11. Karl-Michael Schneider. Algebraic Construction of Parsing Schemata. Mensch &

Buch Verlag, Berlin, Germany, 2000.
12. S. M. Shieber, Y. Schabes, and F. C. N. Pereira. Principles and implementation

of deductive parsing. Journal of Logic Programming, 24(1–2):3–36, 1995.
13. J. J. Schoorl and S. Belder. Computational linguistics at Delft: A status report,

Report WTM/TT 90–09, 1990.
14. K. Sikkel. Parsing Schemata — A Framework for Specification and Analysis of

Parsing Algorithms. Springer-Verlag, Berlin/Heidelberg/New York, 1997.
15. D. H. Younger. Recognition and parsing of context-free languages in time n3.

Information and Control, 10(2):189–208, 1967.

