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Abstract

Grammar binarization is the process and result of transforming a grammar to an
equivalent form whose rules contain at most two symbols in their right-hand side.
Binarization is used, explicitly or implicity, by a wide range of parsers for context-
free grammars and other grammatical formalisms. Non-trivial grammars can be
binarized in multiple ways, but in order to optimize the parser’s computational
cost, it is convenient to choose a binarization that is as small as possible. While
several authors have explored heuristics to obtain compact binarizations, none
of them guarantee that the resulting grammar has minimum size. However, to
our knowledge, no hardness results for this problem have been published. In this
article, we address this issue and prove that the problem of finding a minimum
binarization of a given context-free grammar is NP-hard, by reduction from vertex
cover. We also provide a lower bound on the approximability of this problem.
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1. Introduction

The process of grammar binarization, by which a grammar is transformed
into an equivalent binary form by splitting its larger rules into sets of binary
rules, is essential to perform efficient natural language parsing with context-
free grammars (CFGs) and other grammatical formalisms.

The most widely known and discussed application of binarization is prob-
ably the preprocessing step for the CKY parsing algorithm for CFGs [1, 2],
which needs to use a binary grammar in order to achieve O(n3) time com-
plexity.1 However, most if not all the well-known CFG parsing algorithms
use binarization in one way or another: although algorithms such as the
Earley [5], Left-Corner [6], Graham-Harrison-Ruzzo [7] or Head-Corner [8]
parsers do not perform it explicitly as a preprocessing step, they binarize
rules implicitly using dotted items. In fact, some of these parsers (such as
the Left-Corner [6] and Head-Corner [8] parsers) can be seen as implemen-
tations of the same underlying parser with different binarization strategies.

Binarization is also used to achieve efficient parsing for more power-
ful grammatical formalisms, such as conjunctive grammars [9], synchronous
context-free grammars [10], linear context-free rewriting systems [11], cou-
pled context-free grammars [12] or regular tree grammars [13]. While in
this article we will only deal with CFGs, the hardness result presented in
this article is applicable to all these formalisms as they contain CFGs as
a particular case. Note that, in the case of synchronous CFGs and linear
context-free rewriting systems with bounded fan-out, this is arguably not
very useful because these formalisms do not guarantee that a binarization
of any size even exists for a given grammar [10, 14]. However, it can still
be applied to subclasses of these formalisms that do guarantee this property,
such as well-nested linear context-free rewriting systems [15] or binarizable
synchronous CFGs [10].

A CFG can be binarized in different ways, depending on which pairs of
symbols are chosen to be grouped to form binary rules. In particular, the
number of possible binarizations for a single (n + 1)-ary CFG production
rule is the nth Catalan number, Cn = 1

n+1

(
2n
n

)
[16]. This naturally raises the

1While CKY is traditionally described for grammars in Chomsky Normal Form [3],
which impose some extra conditions apart from being binary (e.g. disallowing rules with
a single nonterminal in the right-hand side), it is straightforward to define it in a more
general way that can work efficiently with any binary grammar [4].
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question of which binarization should be used to obtain the best parsing effi-
ciency. Since grammar size is an important factor in the efficiency of natural
language parsers [17], an obvious approach is to binarize in a way that tries
to collapse pairs of nonterminal symbols that are frequent in grammar rules,
so as to obtain a binary grammar as compact as possible [18]. Song et al. [16]
provide empirical evidence that using compact grammars greatly improves
the efficiency of a CKY parser with respect to naive binarization, and gain
further improvements by using corpus statistics to predict the amount of
useless items (items not leading to a complete parse) that will be generated
by different binarizations.

While several authors have recently tackled the problem of searching for
small binarizations for a given grammar [18, 16, 19]; no efficient algorithm
has been described that will solve the problem of finding the smallest size
binarization for a given CFG (the minimum binarization problem). Instead,
the mentioned papers use greedy algorithms to find a reasonably small bi-
narization, without guarantee of optimality. An experiment by DeNero et
al. [19] for transducer grammars showed this strategy to output a grammar
more than seven times smaller than naive right-branching binarization, but
still more than twice the size of the optimal grammar obtained using an in-
teger linear programming solver (which, reportedly, could only find optimal
solutions for very small grammars).

To the best of our knowledge, in spite of the absence of an efficient algo-
rithm to compute the optimal binarization for a given CFG; and even though
growing use of mildly context-sensitive formalisms such as synchronous context-
free grammars, linear context-free rewriting systems or range concatenation
grammars has led to a surge of interest in theoretical results about binariza-
tion in the last few years [11, 10, 15, 20]; no hardness results are known for
the minimum binarization problem.

In this article, we fill that gap in the literature by proving that the min-
imum binarization problem is NP-hard. We do so by reduction from the
vertex cover problem, inspired by the proof for the (related, but not equiv-
alent) smallest grammar problem by Charikar et al. [21]. We also provide
an inapproximability result, showing that it is NP-hard to approximate the
minimum binarization problem within any factor smaller than 2575/2574.

Related work. As already mentioned, the problem of finding a binarization as
small as possible for a given grammar has been considered in several recent
papers in the computational linguistics literature [18, 16, 19]; but we know

3



of no published hardness results for the minimum binarization problem.
On the other hand, the related problem of finding the minimum (not

necessarily binary) context-free grammar that defines a given single-string
language, which is relevant in data compression [22], is known to be NP-
hard. While this problem (called the “smallest grammar problem” [21]) is
not equivalent to the minimum binarization problem, they do have obvious
similarities, and the hardness proof for the minimum binarization problem in
Section 3 has been inspired by the proof for the smallest grammar problem
given by Charikar et al. [21].

In particular, the main differences between the two problems are the
following:

1. The smallest grammar problem is concerned with a language with a sin-
gle string (or, equivalently, it starts from a grammar with a single rule),
whereas the minimum binarization problem can have any context-free
grammar as input.

2. In relation to the previous point, the smallest grammar problem is not
limited to transformations that preserve the structure of parse trees: it
only requires so-called weak equivalence, i.e., that the input and output
grammars generate the same set of strings. On the other hand, as will
be explained in detail in Section 2, the minimum binarization prob-
lem requires that the output grammar be a factorization of the input
grammar, i.e., a transformation of the input obtained by splitting its
rules into smaller rules. This is so that the parse trees under the origi-
nal grammar can be recovered from parses obtained with the binarized
one, and the string and tree probabilities under the original grammar
carry over to the binarized one if a probabilistic model is used.

3. In the minimum binarization problem, size is minimized among binary
grammars only, while in the smallest grammar problem any context-free
grammar is allowed. Note that this difference is relevant because the
smallest binary CFG for a given string or language may be different
to (and larger than) the smallest unrestricted CFG for that string:
for example, we can generate the language {abc} with a non-binary
grammar of size 3 (the one with a single rule S → abc, with three
symbols on its right-hand side) but the smallest binary grammars for
that same language have size 4 (one of them would have the rules
S → Ac,A→ ab, for a total of four symbols in their right-hand sides).

While the first two differences would not prevent us from carrying over the
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core of the hardness proof from the smallest grammar problem to the mini-
mum binarization problem, the third one does, since the proof by Charikar et
al. [21] relies on the construction of a grammar whose optimized version has
non-binary rules. It is also not obvious how to attempt a proof by reduction
of the smallest grammar problem to the minimum binarization problem, since
we do not know whether the smallest binary grammar need always be a bina-
rization of the smallest grammar, and even supposing that this proposition
holds, we would still need to find a polynomial way of finding the optimal set
of pairs of nonterminals to collapse (or of pairs of binary rules to merge into
larger rules) to obtain the smallest grammar from the smallest binarization.

Thus, rather than attempting such a reduction, we will prove that the
minimum binarization problem is NP-hard by using a new proof by reduction
from vertex cover, inspired on the one in [21] (which was, in turn, inspired by
arguments given by Storer and Szymanski [23]) but using a different grammar
construction at its core to adapt it to our problem. As we will see, this new
grammar construction produces a somewhat simpler proof than the one for
the smallest grammar problem by Charikar et al. [21].

2. The Minimum Binarization Problem

In this section, we formally define the problem of finding the minimum-
size binarization of a CFG, introduced informally in Section 1. To do so, we
first introduce some preliminary concepts, starting with the definition of a
context-free grammar.

Definition 1. A context-free grammar (CFG) is a tuple G = (N,Σ, P, S),
such that:

• Σ is a finite alphabet of terminal symbols,

• N is a finite set of nonterminal symbols such that Σ ∩N = ∅,

• S ∈ N is the start symbol of the grammar, and

• P is a finite set of production rules of the form A→ α, where A ∈ N
is a non-terminal symbol, and α ∈ (N ∪ Σ)? is a string over terminal
and nonterminal symbols. We say that A is the left-hand side of the
rule A→ α, and that α is its right-hand side.

5



Note that, following standard notational conventions in the literature [24],
we will use lowercase letters a, b, c . . . to denote terminal symbols, uppercase
letters A,B,C . . . for nonterminal symbols, uppercase letters X, Y, Z . . . for
symbols in N ∪ Σ, and lowercase Greek letters (α, β, γ, . . .) for strings over
terminal and nonterminal symbols. The letter ε will be used to denote the
empty string.

Given a CFG G = (N,Σ, P, S), we define the derivation relation ⇒⊆
(N ∪ Σ)? × (N ∪ Σ)? as follows: we say that a string αAβ derives a string
αγβ (αAβ ⇒ αγβ) if, and only if, there is a rule A → γ ∈ P . The string
language generated by the grammar G, written L(G), is given by L(G) =
{α ∈ Σ? | S ⇒? α}, where ⇒? is the reflexive-transitive closure of the
derivation relation. Two grammars are said to be weakly equivalent if they
generate the same string language.

However, a context-free grammar is not only used to define a string lan-
guage, but also to associate a set of hierarchical structures (called parse trees)
to each string in the language. A finite ordered tree is a parse tree over the
grammar G = (N,Σ, P, S) if it satisfies the following conditions:

• The root node is labelled S,

• Leaf nodes have a label in Σ ∪ {ε},

• Non-leaf nodes have a label in N ,

• If a non-leaf node labelled A has children X1, . . . , Xn (Xi ∈ N∪Σ∪{ε}),
then A→ X1 . . . Xn ∈ P .

The tree language generated by the grammar G, written LT (G), is the
set of all parse trees over G. The yield of a parse tree τ , written yield(τ),
is the string that is obtained by concatenating the labels of all its leaf nodes
in left-to-right order, and we then say that τ is a parse tree for the string
yield(τ). It is easy to check that

L(G) = {yield(τ) | τ ∈ LT (G)}

i.e., the string language of a grammar is the set of yields of its tree language
(or equivalently, the set of strings that have a parse tree over G).

In this paper, we are interested in obtaining grammars that are binary,
i.e., have at most two symbols in each of their rules’ right-hand side:
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Definition 2. A CFG G = (N,Σ, P, S) is said to be binary if |α| ≤ 2 for
all A→ α ∈ P .

The goal of grammar binarization, as described in Section 1, is to trans-
form a non-binary CFG G into an equivalent CFG G′ that is binary. Since
in natural language parsing we are not only interested in knowing whether
sentences belong to the string language L(G) or not, but also on obtaining
their parse trees (and, in probabilistic parsing, their associated probabilities);
the notion that G and G′ must be equivalent not only means that they must
generate the same string language (weak equivalence), but also that the set
of parse trees generated by the original grammar G can be obtained from
the set of parse trees generated by the binarized grammar G′ by means of a
homomorphism. In the CFG literature, this corresponds to the notion that
G is covered by G′ [25, 26].

This requirement means that, when searching for binarizations, we are
limited to grammars that are obtained from G by applying factorization [20],
i.e., by splitting production rules into sets of smaller rules, each containing
a smaller number of variables than the original rule:

Definition 3. Let Π = A→ X1 . . . Xn be a context-free rule. The Xi . . . Xj-
reduction of Π, written ρXi...Xj

(Π), is a set formed by the following two rules:

ρ1
Xi...Xj

(Π) = A→ X1 . . . Xi−1[Xi . . . Xj]Xj+1 . . . Xn

ρ2
Xi...Xj

(Π) = [Xi . . . Xj]→ Xi . . . Xj

where [Xi . . . Xj] is a fresh nonterminal symbol.

This means that an Xi . . . Xj-reduction of Π splits the original produc-
tion Π into two new productions, ρ1

Xi...Xj
(Π) and ρ2

Xi...Xj
(Π), by collapsing

a sequence of symbols in the rule’s right-hand side into a fresh nontermi-
nal [Xi . . . Xj]. The length of the right-hand side of each of the productions
resulting from a reduction is always strictly smaller than the length of the
right-hand side of the original rule. It is important to note that if one of
the nonterminals Xi . . . Xj was in turn a fresh nonterminal symbol created
by another reduction, we will remove inner brackets, e.g., the nonterminal
created by an A[BC]-reduction will be written as [ABC], and is the same
symbol as the nonterminal created by a [AB]C-reduction.
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Example 1. The AB-reduction of the context-free rule S → ABC is the set
containing the following two rules:

ρ1
AB(S → ABC) = S → [AB]C,

ρ2
AB(S → ABC) = [AB]→ AB.

If instead of an AB-reduction we apply a BC-reduction, we will obtain the
following rules instead:

ρ1
BC(S → ABC) = S → A[BC],

ρ2
BC(S → ABC) = [BC]→ BC.

In this case, both reductions split the rule S → ABC, which has three symbols
in its right-hand side, into two binary rules.

Note that a reduction transformation can easily be undone, obtaining
the original production rule, and that it can trivially be adapted so that it
preserves parse tree probabilities in probabilistic extensions of context-free
grammars [16].

Now that we have defined the concept of reduction for a context-free rule,
we can extend it to grammars:

Definition 4. Let G = (N,Σ, P, S) be a CFG. We say that a CFG G′ =
(N ′,Σ, P ′, S) is a direct reduction of G (written G B G′) if there exists a
production rule Π = A→ X1 . . . Xn ∈ P and symbols Xi . . . Xj such that:

• N ′ = N ∪ {[Xi . . . Xj]},

• P ′ = (P \ {Π}) ∪ ρXi...Xj
(Π),

i.e., if G′ is obtained from G by reducing one of its rules.

We can now define a binarization of G as a binary grammar obtained by
applying zero or more reductions to G:

Definition 5. Let G = (N,Σ, P, S) be a CFG. We say that a CFG G′ is
a binarization of G if G′ is binary and G B? G′, where B? is the reflexive-
transitive closure of the direct reduction relation. We will write Bin(G) for
the set of all binarizations of G.
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A minimum binarization of a CFG will be a binarization that minimizes
grammar size. We define the size of a CFG G, denoted by |G|, as the total
number of symbols in all of its right-hand sides:

|G| =
∑

A→α∈P

|α|

.
With this, we are ready to define the minimum binarization(s) of G:

Definition 6. Let G = (N,Σ, P, S) be a CFG. The set of minimum bina-
rizations of G, written mb(G), is

mb(G) = argmin
G′∈Bin(G)

|G′|

Example 2. Let G = (N,Σ, P, S) be a grammar such that

P = {S → abC,

C → abD,

D → d}.

This grammar generates the string language {ababd}, and its tree language
contains a single tree S(abC(abD(d))).

By applying a bC-reduction to S → abC and a bD-reduction to C → abD,
we obtain a binarization G′1 with the following rules:

P ′1 = {S → a[bC],

C → a[bD],

D → d,

[bC]→ bC,

[bD]→ bD},

which has size 9. If instead of these reductions we apply an ab-reduction to
both S → abC and C → abD, we obtain a binarization G′2 of size 7:

P ′2 = {S → [ab]C,

C → [ab]D,

D → d,

[ab]→ ab}.
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In this toy example, it is easy to check that G′2 is the smallest possible bina-
rization of G, and thus the unique member of mb(G).

Note that it is possible to obtain a smaller binary grammar that generates
the same string language by removing the production D → d and using the
terminal symbol d directly in the rule C → [ab]D, thus changing it to C →
[ab]d. However, the resulting grammar (of length 6) is not a binarization, as
it cannot be obtained by applying reduction operations and, as a consequence,
it is not structurally equivalent to the grammar G (we cannot recover the
parse trees with respect to G from parse trees obtained with this grammar,
since it no longer contains any rule reflecting the fact that a word d is a
daughter of D – in contrast, any binarization, such as G′2, contains all the
information necessary to reconstruct the parse trees of G).

The minimum binarization problem consists on finding one member of
mb(G) given a grammar G. We are now ready to prove that this problem is
NP-hard.2

3. Hardness

We will now prove the main result of this article: that the minimum
binarization problem is NP-hard.

To do so, we show how the well-known minimum vertex cover problem
[28] can be reduced to the minimum binarization problem.

Given an undirected graph G = (V,E), a vertex cover for G is a subset
V ′ ⊆ V such that, for each edge (u, v) ∈ E, at least one of the nodes u, v
is in V ′. The minimum vertex cover problem is the optimization problem of
finding a vertex cover of G with minimum cardinality, and it is known to be
NP-hard [28].

Note that, for simplicity, we will assume that all the graphs we are working
with are undirected. This is not relevant for the validity of the proof, which

2Note that the problem of finding the smallest binary grammar that is weakly equiv-
alent to a given CFG G (i.e., the smallest binary grammar that generates L(G), without
necessarily being a binarization of G) is known to be undecidable. This can be seen by
considering that an algorithm that solved this problem could be used to solve the CFG
universality problem, which is undecidable [27]. In contrast, the minimum binarization
problem is trivially decidable, as the number of possible binarizations for a given grammar
is finite.
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also stands if directed graphs (and the associated variant of the vertex cover
problem) are used instead.

Let G = (V,E) be a graph. To reduce the minimum vertex cover problem
to the minimum binarization problem, we define a context-free grammar
G(G) = ({S},Σ(G), P (G), S)), where S is a nonterminal that we use as the
start symbol of G(G); the terminal alphabet Σ(G) is defined as follows:

Σ(G) = V ∪ {xiv | v ∈ V, i ∈ {1, 2, 3, 4}} ∪ {$},

meaning that each graph node v ∈ V acts as a terminal symbol, and we also
define four additional symbols x1

v, . . . , x
4
v per graph node, and an additional

padder symbol $; and the set of productions P (G) is defined as follows:

P (G) = P1(G) ∪ P2(G),

with

P1(G) = {S → v$x1
v | v ∈ V }

∪{S → v$x2
v | v ∈ V }

∪{S → x3
v$v | v ∈ V }

∪{S → x4
v$v | v ∈ V },

and
P2(G) = {S → $u$v$ | (u, v) ∈ E}.

Note that the set of productions P (G) contains |E| + 4|V | production
rules: four productions per graph node, plus one additional production per
edge.

The following two examples illustrate the vertex cover problem for a par-
ticular example graph Ge, and show the associated grammar G(Ge) obtained
from it:

Example 3. Consider the graph Ge = (Ve, Ee) with Ve = {a, b, c, d, e} and
Ee = {(a, b), (a, c), (b, d), (c, d), (d, e)}, depicted in Figure 1. The set {b, c, e}
is a vertex cover of Ge with cardinality 3. The set {a, d}, of cardinality 2, is
the minimum vertex cover of Ge. Note that a graph may have more than one
minimum vertex cover (for example, if we removed the edge (d, e) from Ge,
then both {a, d} and {b, c} would be minimum vertex covers).
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a
b

c

d e

Figure 1: The graph Ge in Example 3, whose minimum vertex cover is the set of vertices
{a, d}.

Example 4. The grammar G(Ge) corresponding to the graph Ge of Example
3 has a terminal alphabet

Σ(Ge) = {a, b, c, d, e} ∪ {x1
a, . . . , x

4
a, . . . , x

1
e, . . . , x

4
e} ∪ {$},

and its productions are given by

P1(Ge) = {S → a$x1
a, . . . , S → e$x1

e,

S → a$x2
a, . . . , S → e$x2

e,

S → x3
a$a, . . . , S → x3

e$e,

S → x4
a$a, . . . , S → x4

e$e},

P2(Ge) = {S → $a$b$, S → $a$c$, S → $b$d$,

S → $c$d$, S → $d$e$}.

We now define a mapping from binarizations of the grammar G(G) to sets
of vertices of the graph G as follows:

Definition 7. Let G′ = (N ′,Σ′, P ′, S ′) ∈ Bin(G(G)) be a binarization of
G(G). Its corresponding vertex set, written M(G′), is

M(G′) = {v ∈ V | X ⇒? $v$ for some X ∈ N ′}.

This means that we associate with each binarization G′ the vertex set
M(G′) that contains all vertices v of G such that there is some nonterminal
symbol that expands to $v$ in G′.

To obtain the desired reduction, we will now show that the vertex set for
a minimum binarization of G(G) provides us with a minimum vertex cover
of the graph G:

12



Lemma 1. Let G = (V,E) be a graph, and G′ = (N ′,Σ′, P ′, S ′) ∈ mb(G(G))
be a minimum binarization of its associated grammar G(G). Then, the cor-
responding vertex set of G′, M(G′), is a minimum vertex cover of G.

Proof. We start by observing the following property of minimum binariza-
tions of G(G): any such binarization G′ = (N ′,Σ′, P ′, S ′) ∈ mb(G(G)) con-
tains the productions [v$]→ v$ and [$v]→ $v for each v ∈ V .

To see why this holds, consider the productions in P1(G). Each of these
productions has three symbols in its right-hand side, so in order to transform
it into a binary production we need to apply a single reduction operation.

In particular, given a vertex v ∈ V , for the production in P1(G) of the
form S → v$x1

v we have two choices: we can apply either a v$-reduction or
a $x1

v-reduction; and for the production of the form S → v$x2
v we can apply

either a v$-reduction or a $x2
v-reduction. It is easy to see that applying a

v$-reduction to both productions will always produce a smaller binarization
than the other combinations, since the two ternary productions are reduced
to three binary productions

[v$]→ v$, S → [v$]x1
v, S → [v$]x2

v

for a total size of 6, while any other combination of reductions will produce
a larger set of binary productions due to having to write two different binary
productions for each of the original productions, rather than sharing the non-
terminal [v$] between both in order to share the production [v$] → v$. It
is important to note that, while we are reasoning only on a subset of the
grammar, this locally optimal decision is also globally optimal: since by con-
struction the substrings $x1

v and $x2
v do not appear in any other productions

in the grammar G(G), the productions and nonterminals produced by choos-
ing a $x1

v-reduction or a $x2
v-reduction cannot be shared or reused to binarize

other grammar rules, so choosing such reductions can never be beneficial.
By applying symmetric reasoning to the productions of the form S →

x3
v$v and S → x4

v$v in P1(G), we show that a minimum binarization must
always apply a $v-reduction and thus contain the productions

[$v]→ $v, S → x3
v[$v], S → x4

v[$v].

This establishes the property that any minimum binarization of G(G) con-
tains the productions [v$]→ v$ and [$v]→ $v for each v ∈ V .

Knowing this, we can now turn our attention to the productions in P2(G).
For each edge (u, v) in G, we have a production of the form Πuv = S → $u$v$,
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with five symbols in the right-hand side. By the above property, we know that
any minimum binarization of G(G) must necessarily contain the productions

[$u]→ $u, [u$]→ u$, [$v]→ $v, [v$]→ v$

which we can take advantage of when binarizing the production. Taking this
into account, there are two locally optimal ways of binarizing Πuv:

1. Applying a [$u]$-reduction (or, equivalently, a $[u$]-reduction – but
we asume the former without loss of generality) after [$u]- and [v$]-
reductions, which uses (and therefore, needs to add to the binarization)
the productions

Πu
1 = [$u$]→ [$u]$,

Πu
2(u, v) = S → [$u$][v$]

in addition to the productions with [$u] and [v$] in the left-hand side,
which already had to be present by the property proved above.

2. Applying a [$v]$-reduction (or, equivalently, a $[v$]-reduction – but
we asume the former without loss of generality) after [$u]- and [$v]-
reductions, which uses the productions

Πv
1 = [$v$]→ [$v]$,

Πv
2(u, v) = S → [$u][$v$]

in addition to the already-present productions for [$v] and [$u].

These two alternatives add 4 symbols to the size of the binarization, and it is
easy to check case by case that any combination of reductions not falling into
these two cases (e.g. those that use nonterminals of the form [u$v] or [$u$v])
create more rules and always produce binarizations that are not minimal,
since a smaller one can always be found by using the above two choices of
reductions. Therefore, any minimum binarization will contain either Πu

1 and
Πu

2(u, v), or Πv
1 and Πv

2(u, v), for each edge (u, v) of G.
Putting this together with the previous observations about the produc-

tions in P1(G), we know that any minimum binarization G′ of G(G) contains
the following productions:

1. |V | productions of the form [v$]→ v$, one for each v ∈ V .

2. |V | productions of the form [$v]→ $v, one for each v ∈ V .
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3. 4|V | productions of the form S → [v$]x1
v, S → [v$]x2

v,
S → x3

v[$v], S → x4
v[$v], four for each v ∈ V .

4. |E| productions of the forms Πu
2(u, v) = S → [$u$][v$] and Πv

2(u, v) =
S → [$u][$v$]; since for each edge (u, v) ∈ E, we have either Πu

2(u, v)
or Πv

2(u, v), but not both.
5. |M(G′)| productions of the form Πv

1. The reason that the number of
productions of this form is |M(G′)| is that, by definition, the subset of
vertices v ∈ V such that there is a production of the form Πv

1 in G′ is
exactly M(G′), the corresponding vertex set of G′ (see Definition 7).

We will call any binarization of G(G) that consists of productions of this
form a sensible binarization of G(G). Note that, with the results that we
have shown up to this point, we know that every minimum binarization of
G(G) is sensible, but a sensible binarization of G(G) need not be minimum.
In particular, the size of a sensible binarization G′, which is 2(6|V | + |E| +
|M(G′)|), depends on the number of productions of the fifth form that it
contains (|M(G′)|), and therefore the set of minimum binarizations is the
set of sensible binarizations that minimize |M(G′)|.

We can now show that, given a sensible binarization G′ of G(G), the set
M(G′) is a vertex cover of the graph G, since for each edge (u, v) in G, either
the production rule Πu

2(u, v) is in the binarization implying that Πu
1 is in the

binarization too (and then u ∈ M(G′)) or Πv
2(u, v) is in the binarization,

together with Πv
1 (and then v ∈ M(G′)). Conversely, it is also easy to show

that every vertex cover of G corresponds to at least one sensible binarization:
such a binarization can be obtained by including a production Πv

1 for each
element v in the vertex cover, and choosing between the production Πu

2(u, v)
and Πv

2(u, v) for each edge (u, v) according to which of the nodes u, v belongs
to the vertex cover (if both nodes are in the vertex cover, any of these two
productions can be chosen indistinctly).

This means that the mapping from sensible binarizations G′ to vertex
covers M(G′) is surjective. Therefore, minimum binarizations, which are
the sensible binarizations that minimize |M(G′)|, correspond to those where
|M(G′)| is a minimum vertex cover of G, which proves Lemma 1. Note that
the number of productions in each minimum binarization of G(G) is then
6|V | + |E| plus the size of the minimum vertex covers of G; and the size
of minimum binarizations of G(G) is twice that amount, since each of their
productions has exactly two symbols on its right-hand side.

Once we have established this lemma, the rest of the hardness proof is triv-
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ial: to solve an instance of the vertex cover problem for a graph G = (V,E),
we build its associated grammar G(G), we obtain a minimum binarization of
it, and then we recover its corresponding vertex set by checking which termi-
nals of the form [$v$] are in the binarization3. This vertex set is a minimum
vertex cover. Since all these operations are polynomial-time, this reduces the
vertex cover problem to the minimum binarization problem, and therefore
proves our main result, that the latter is NP-hard:

Theorem 1. The minimum binarization problem is NP-hard.

This theorem can be extended to show that the problem remains NP-hard
even for grammars with a constant number of terminal symbols. To do so,
note that we can reduce the minimum binarization problem for a grammar
G = (N,Σ, P, S) to the same problem for a grammar with a single terminal
symbol x, Gx = (N ∪ Σ, {x}, P ∪ PΣ, S), where

PΣ = {a→ x | a ∈ Σ}.

The grammar Gx treats each terminal symbol in G as a nonterminal, and
then adds productions from each of those nonterminals to the single, fresh
terminal symbol x. As each of these productions already has only one symbol
in its right-hand side and cannot be split into smaller rules, they do not have
any effect in binarizations. Thus, if we have a minimum binarization for Gx,
removing these rules from it gives us a minimum binarization for G. This
yields the following result:

Corollary 1. The minimum binarization problem is NP-hard, even if the
problem is restricted to CFGs where the number of terminal symbols is bounded
by a constant k ≥ 1.

4. Inapproximability

As a side effect of our main result, an inapproximability bound for the
minimum binarization problem can be obtained by using known inapprox-
imability results for the minimum vertex cover problem on bounded-degree
graphs. We will now prove the following theorem:

3This uses the fact that minimum grammars must be sensible binarizations. If instead
we wish to use Lemma 1 directly, we can recover the vertex set by parsing every string of
the form $v$ with any polynomial-time parsing algorithm such as CKY.
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Theorem 2. For every ε > 0, it is NP-hard to approximate the minimum
binarization problem within a factor of 2575/2574− ε.

Proof. We prove this result using reduction from the vertex cover problem for
graphs G = (V,E) with maximum degree four and |E| ≥ |V |. The problem of
finding the minimum vertex cover of such a graph can be reduced to finding
a minimum binarization of the grammar G(G), as described in Section 3.
We have also determined in that section that the size of such a minimum
binarization is 2(6|V | + |E| + k), where k is the size of a minimum vertex
cover of G.

Since it has been shown by Berman and Karpinski [29] that it is NP-hard
to approximate the minimum vertex cover for this set of graphs below the
ratio 79/78, this means that it is also NP-hard to approximate the minimum
binarization of their corresponding grammars G(G) below a ratio of

6|V |+ |E|+ 79
78
k

6|V |+ |E|+ k
.

Since we are restricting ourselves to graphs of degree not greater than 4, we
know that |E| ≤ 2|V |. This also means that each vertex can appear in at
most four edges, so the size k of the minimum vertex cover must be at least
1
4
|E| ≥ 1

4
|V |. Therefore, we can obtain a lower bound for the approximation

ratio by setting |E| = 2|V | and k = 1
4
|V |:

8|V |+ 79
78

1
4
|V |

8|V |+ 1
4
|V |

=
2575

2574

This establishes that the minimum binarization problem is NP-hard to ap-
proximate within a factor of 2575/2574− ε for ε > 0, and thus Theorem 2 is
proved.

By comparison, we note that the smallest grammar problem is known to
be NP-hard to approximate within a factor of 8569/8568− ε [21].

5. Conclusion

We have shown that the problem of finding the minimum-size binarization
of a CFG is NP-hard, and that every efficient approximation algorithm for
this problem has an approximation ratio of at least 2575/2574 unless P =
NP .
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The presented hardness results not only hold for CFGs and the enriched
formalisms that use them as a backbone (such as probabilistic CFGs or uni-
fication grammars), but also for a wide range of wider-coverage formalisms
that are supersets of CFGs, like conjunctive grammars [9], binarizable syn-
chronous context-free grammars [10], well-nested linear context-free rewriting
systems [15], coupled context-free grammars [12] or regular tree grammars
[13].

To see why this is so, we note that for conjunctive grammars and regular
tree grammars the generalization is trivial, since the CFG G(G) for a given
graph G can be directly written as a conjunctive grammar or a regular tree
grammar without using the extra features of these formalisms, and the proof
still stands. For synchronous context-free grammars, we carry over the proof
with a grammar that duplicates G(G) in the source and target sides. In
the case of coupled context-free grammars or well-nested linear context-free
rewriting systems, we can again use G(G) directly, but it is not so trivial
that the result still holds because these formalisms allow for more flexibility
in binarizations (since they allow reductions to be applied to non-contiguous
symbols in a production rule). However, it can easily be checked that, in
the particular case of the grammars G(G) used in our proof, doing such
reductions is always a suboptimal decision and will never lead to a minimum
binarization, so the proof is still valid for these formalisms.

To our knowledge, these are the first published hardness results for the
minimum binarization problem, and they are relevant for the computational
linguistics and natural language processing community: grammar binariza-
tion is widely used both as a necessary requisite of some parsing algorithms
and to improve the efficiency of others, and the size of the binarized grammar
is known to heavily affect parsing accuracy.
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