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ABSTRACT
This work addresses the use of computational linguistic anal-
ysis techniques for conceptual graphs learning from unstruc-
tured texts. A technique including both content mining and
interpretation, as well as clustering and data cleaning, is
introduced. Our proposal exploits sentence structure in or-
der to generate concept hypothese, rank them according to
plausibility and select the most credible ones. It enables
the knowledge acquisition task to be performed without su-
pervision, minimizing the possibility of failing to retrieve
information contained in the document, in order to extract
non-taxonomic relations.

Categories and Subject Descriptors
I.2.6 [Learning]: Knowledge acquisition; I.2.7 [Natural
Language Processing]: Language parsing and understand-
ing

General Terms
Management

Keywords
Classification,Clustering, Knowledge synthesis and visual-
ization, Text Mining

1. INTRODUCTION
Even though research on the conceptual querying con-

cept [10] dates from the early days of information retrieval
(ir) research, it is surprising that, nowadays, most of prac-
tical ir systems are still based on the classic bag of words
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proposal. In effect, given that text retrieval [11] is a natu-
ral language processing (nlp) task, the most sensible thing
would be to incorporate some of the user’s knowledge and
reasoning capabilities in order to improve precision in query
processing.

Retrieval at the conceptual level should contribute to over-
coming these limitations, leading us to more complex ir ap-
proaches. However, we should first consider an automated
tool for identifying concepts from raw text, which implies
having efficient techniques available for dealing with both
the inherent ambiguity and flexibility of the natural lan-
guage.

With things as they are, the automatic construction of
practical structures from text has become an active research
topic; and the reduction of both the time and effort in their
development process, a tremendous need. Also, given that
most of human knowledge is available in textual format,
the consideration of natural language processing (nlp) tech-
niques to extract the latent semantics from texts seems to
be an adequate starting point to cope with the problem.

To deal with the exploitation of the linguistic structure in
a text without requiring predefined knowledge of the specific
domain analyzed, most authors consider a combination of
robust parsing, allowing semantic relations to emerge from
the text, and some kind of statistical and/or heuristic strate-
gies in order to select the most relevant of these. On the
robust parsing side, it is often argued that complex text
processing is impractical on real corpus [7]. So, a popular
technique is association rule learning, applied to retrieving
term associations satisfying a minimum level of support and
confidence through linguistic patterns. Formally based on
a deterministic finite automaton architecture, it is the sim-
plest and computationally most efficient strategy, which al-
lows it to deal with very large text collections. However,
it first results in excessively general parsers, which can lead
to a failure to identify less commonly found grammatical
structures.Moreover, its deterministic condition can mean
that the system discards useful interpretations, when all the
available information should be translated and considered
later in a specific filtering-out task, once complementary
data is available and ambiguities could effectively be solved.

Concerning the statistical/heuristic task, these methods
are often applied as a complement of the parsing one with
a semantic clustering purpose. The goal is to simplify the
initial set of semantic links proposed by the parse, elimi-
nating ambiguous interpretations as far as possible. Given
that these techniques are based on a distributional analy-
sis intended to be applied on large corpora, time and space
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P (denticulées:adj)local(0) =
#deriv-node(denticulées:adj)

#deriv-cluster
(1)

P (denticulées:adj)global(n+1) =
Σn

i=1P (denticulées:adj)local(i)

#occ-denticulées
(2)

P (denticulées:adj)local(n+1) =
P (denticulées:adj)local(n)P (denticulées:adj)global(n+1)

ΣX P (denticulées:X)local(n)P (denticulées:X)global(n+1)
(3)

Table 1: Lexical categories for the word ”denticulées”

complexity become essential factors in their design. So, al-
though the final system should be able to compute the fre-
quency of n-grams of words for arbitrary values of n, most
authors choose to work with bigrams using association mea-
sures known from collocation discovery, such as χ2, point-
wise mutual information or log-likelihood-ratios. In addi-
tion to this primary limitation on the value for n, these
formula may also provide different or even inappropriate es-
timations. In effect, mutual information tends to overesti-
mate low-frequency data while log-likelihood-ratios and χ2

assume we are dealing with normal distributions, which is
not realistic when working on texts, in which rare phenom-
ena are common.

An alternative consists of considering a statistical model
allowing an a priori unlimited number of states defining the
probabilistic dependency. Here the classic reference is the
hidden Markov model (hmm) that does not seem to give com-
plete satisfaction to our requirements either. So, although
hmms can apply on arbitrary n-grams, the value of n is fixed.
This firstly implies that we are assuming stationary time1

and limited history2 hypothesis which, for example, would
not enable us to deal with long distance semantic dependen-
cies nor recursive structures. Although we could get round
this problem by considering a sufficiently high value for n,
this would involve prohibitive time and space performances.

In this context, our contribution can be summarized as a
proposal whose aim is to produce practical understandable
results by allowing the unsupervised integration of back-
ground knowledge from complex document representations,
promoting the use of conceptual graphs (cgs) produced au-
tomatically from text, exploiting the linguistic information
available in the corpus and a sophisticated grammatical for-
malism, extracting the latent semantics. More in detail,
we introduce a text mining strategy where primary knowl-
edge acquisition is performed through a robust parser work-
ing on a tree-adjoining grammar (tag) generated from a
source meta-grammar (mg) [5]. Working on such a mildly
context-sensitive formalism we significantly increase descrip-
tive power in relation to context-free grammars (cfgs), while
time and space bounds are polynomial. On the other hand,
the acquisition knowledge process is not considered as deter-
ministic, but allows us to deal with different interpretations
simultaneously, integrating all viable alternatives in the final
knowledge representation, in such a way that documents are
represented by a structure of terms enriched by relations.

For clustering purposes, we adapt an iterative algorithm
inspired by an error-mining strategy [9] developed to locate
and diagnose parse and lexical errors in nlp applications.

1probabilistic dependencies value does not change with time.
2probabilistic dependencies are limited to n states.

This technique enables the retrieval from a large corpora of
missing, incorrect or incomplete linguistic descriptions using
the frequency of n-grams of words for arbitrary values of n.

2. THE RUNNING CORPUS
We introduce our proposal from a botanic corpus describ-

ing West African flora. We concentrate on the work ”Flore
du Cameroun”, published between 1963 and 2001, which is
composed of about 40 volumes in French, each volume run-
ning to about 300 pages, organized as a sequence of sections,
each one dedicated to one species and following a system-
atic structural schema. So, sections include a descriptive
part enumerating morphological aspects such as color, tex-
ture or form. This implies the presence of noun phrases,
adjectives and also adverbs to express frequency and inten-
sity, and named entities to denote dimensions.

The corpus3 describes concepts that are related both tax-
onomically, for example hypernymy or "is a" relations, and
non-taxonomically. The collection also possesses a vocabu-
lary that is shared by most text based on this matter and is
of sufficient size for our purposes.
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Figure 1: Parse dependencies

The present paper forms part of biotim [8], a research ini-
tiative on the integral management of botanic corpus includ-
ing conceptual acquisition and text mining tasks. Here, we
disregard initial phases, related to the transfer from textual
to electronic format [9] and also the capture of the logical
structure of the text.Our linguistic starting point will be a
grammar of large coverage for French and the tagged corpus.
4

3. THE PARSING FRAME
We choose to work with tags [6], a mildly context-sensitive

grammatical formalism that has given rise to a lot of inter-
est in the modeling of syntax in nlp. Basically, tags are

3provided by the French Institute of Research for Coopera-
tive Development.
4http://mgkit.gforge.inria.fr/
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Properties Lemmas

color verdâtre, violacé, noirâtre, violet, jaunâtre, orange, roux, rose

form obconique, oblancéolé, oblong, bifolié, crateriforme, punctiforme, périgone, concave, oblongöıde, ovöıde

size moyen, petit, double, épais, inégal, entier, longue

texture hispide, bifide, globuleux, coriace, velutineux, gélatineux, barbu

position antérieur, dessus, voisin, seul, latéral, transversal

others dur, bifide, frais, fréquent, jeune

Table 2: File of properties

somewhat similar to classic cfgs, but the elementary unit
of rewriting is the tree rather than the symbol, allowing ex-
tended domains of locality (edls) to be specified as compared
to those over which lexical constraints can be stated.

3.1 Mildly context-sensitive parsing
Any grammar formalism defines a domain of locality, that

is, a domain over which various dependencies, syntactic and
semantic, can be specified. This issue is related to the use of
constrained systems adequate for modeling various aspects
of language. In this context, the principle of edl means
that tags possess certain properties that make them more
powerful than cfgs in terms of generative capacity. So, it
allows constraints to be defined in more than one level of
the parsing tree as compared to context-free rules.

Altogether, these properties lead us to conjecture that
tags are powerful enough to model natural language while
remaining efficiently parseable, but in order to fully exploit
them we need an adequate operational framework. Our
choice is DyALog [4], a parsing environment for a variety of
grammatical formalisms, including tags, that returns total
or partial parses. Our aim is to avoid the elimination of any
parsing branch until we are sure it is not used for knowledge
acquisition. In the particular case of tags, the system im-
plements a parse scheme [1] verifying the vpp, which assures
the best time behavior.
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uw:adj
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Figure 2: Another example of parse dependencies

The introduction of a high degree of abstraction in the
design of the analyzer is achieved on the basis of the mg
concept [5], by involving elementary constraints re-grouped
in classes, these themselves inserted in a hierarchy of mul-
tiple heritage. This allows descriptions to be progressively
refined, which is of particular interest when we are describ-
ing complex linguistic behavior.

3.2 Parse dependencies
The parse is resumed in a graph of syntactic dependencies,

as is shown in Fig. 1 for the sentence ”feuilles à limbe tein-

tées de rose” ("rose-tinted laminar leaves"). Here, ar-
rows represent binary dependencies between nodes through
some syntactic construction. The parse labels each node,
represented by an ellipse, with the tag of the correspond-
ing lexical form, including its lemma. Rectangular shapes
represent clusters, that is, structures referring to a position
in the input string and all the possible nodes assigned by
the parse at that position. So, we introduce ambiguities
from both lexical and syntactic points of view. The former
corresponds to clusters containing different nodes and are
indicated by dotted dependencies, while syntactic ones cor-
respond to different dependencies marked by broken dotted
lines and relating to the same node.
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Figure 3: Computing lexical categories

This structure constitutes the starting point for detect-
ing related knowledge and composes an initial graph of gov-
ernor/ governed dependencies, reflecting the corresponding
syntactic relationship between the nodes involved. Formally,
the head of a syntagm governs its modifiers, as is shown in
Fig. 2 by broken lines going from the governor node to the
governed one, and labeled by functors. We shall later trans-
form these dependencies into semantic ones.

3.2.1 Lexical ambiguities
Formally, the morpho-syntactic phase consists of a pipeline

named Sxpipe [8] that concatenates a number of different
tasks such as chunking, entity recognition and tagging.

ORG  FRU  COL   ...    OTH

P(denticulées) local(0)

0.125 0.125  0.125    ...     0.125

ORG  FRU  COL   ...    OTH

P(nervures) local(0)

0.125 0.125  0.125    ...     0.125

ORG  FRU  COL   ...    OTH

P(feuilles) local(0)

0.7  0.04   0.04     ...    0.04

ORG:ORGAN FRU:FRUIT COL:COLOR OTH:OTHERABBREVIATIONS:

Figure 4: List of semantic weights

Tagging is often a non-deterministic and even incomplete
task, especially when dealing with an encyclopedic corpus
with a high degree of unknown words, that is, words whose
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Word Position Class Word Position Class Word Position Class

teinte [2] color couleur [2] color tache [2] color
teinté [2] color texture [2] texture position [2] position
taille [1,2] size diamètre [1] size épaisseur [1] size
longueur [1] size hauteur [1] size largeur [1] size
altitude [2] size atteindre [2] size dépassant [2] size
atteindre [1] organ/fruit forme [2] form bord [1] organ/fruit

Table 3: File of linguistic markers

lemma is not included in the lexicon of the tagger and whose
corresponding tag can only be suggested through the parser
from the grammar considered. This is shown in Fig. 2, where
”denticulées” ("dentate") is labeled as an unknown word
(uw) with three possible associated lexical categories: verb
(v), adjective (adj) and common noun (nc). In order to
avoid discarding useful interpretations, we should translate
these ambiguities, which we cannot solve at a lexical level,
to the syntactic phase.

This is the case of the sentence ”feuilles à limbe teintées de
rose”, that we could interpret as "rose’s tinted laminar

leaves", as "rose-tinted laminar leaves" or as "tinted
laminar rose leaves". In the first case, ”rose” would be a
noun related to ”feuilles”("leaves"), while in the other ones
it would be an adjective related to ”teintées ("tinted"), as
is shown in Fig. 1.

3.2.2 Syntactic ambiguities
Parsing in nlp is an incomplete task and, therefore, a

source of ambiguities because it usually deals with shal-
low/partial strategies providing a lightweight analysis fo-
cused on identifying dependencies between nodes that are
more or less close together in the text, such as noun sen-
tences, as in ”feuilles à nervures denticulées”, that we could
locally translate in two ways: "leaves with dentate veins"

or, alternatively, "dentate leaves with veins". It here
becomes impossible to establish if ”denticulées”("dentate")
relates to ”feuilles” ("leaves") or to ”nervures” ("veins"),
as shown in Fig. 2.

In terms of dependencies, the ambiguities, that are caused
by local non-determinism, can be translated into a governor
node having more than one governed node. As a conse-
quence, to solve these ambiguities involves applying a simple
syntactic constraint, namely, that a governed node should
have only one governor. So, for example, in the sentence of
Fig. 2, ”denticulées” ("dentate") is governed by ”feuilles”
("leaves"), but also by ”nervures”("veins") and, in conse-
quence, we should give priority to one of these dependencies.

teintées     rose

de
1 2

Figure 5: An example of a marked structure

No other topological restrictions are considered and, in
consequence, a governor node can have more than one gov-
erned one; as in the second interpretation of Fig. 2 ("den-

tate leaves with veins"), where ”feuilles” ("leaves") is
the governor for ”nervures”("veins") and ”denticulées”("den-
tate"). Also, one node could be governor and governed at
the same time, as in the first interpretation of Fig. 2 where

”nervures”("veins") is the governor of ”denticulées”("den-
tate"), but is also governed by ”feuilles” ("leaves").

Given that ambiguous sentences require a greater use of
increasing constraints to solve them, the idea behind the
strategy we consider applying consists in identifying the con-
cept that best matches the area and analyzing it, as well as
its relationships with the context. This implies exploring
mining techniques for discovering hidden knowledge.

4. KNOWLEDGE ACQUISITION
Once these primary syntactic dependencies have been es-

tablished, probably including a number of lexical and syntac-
tic ambiguities, our goal is to effectively extract the mean-
ing of the corpus. This firstly implies initializing the set of
classes to be considered and the dependencies between them.
Later, the process will continue by compiling additional in-
formation and ranking these dependencies in order to detect
those that are less plausible. Given that we are assuming
our corpus is large enough, we should be able to recover this
information by exploring it progressively in depth. That is,
to solve the problem we only need the information we are
looking for, which leads us to consider an iterative learning
process in order to attain our goal.

We can illustrate this on our running corpus. So, the lex-
ical ambiguity described in Fig. 1 should usually be decided
in favor of the first alternative ("rose’s tinted laminar

leaves"), because most of us have the intuitive certainty
that plants with rose colored leaves do not exist. How-
ever, this is not the case here since the rose is not a botanic
species of the west Africa flora and the corpus never talks
about this plant. In fact, the correct alternative is the sec-
ond one ("rose-tinted laminar leaves"), where the word
("tinted") indicates that what goes after is a color.

However, the process we are going to describe does not
necessarily imply the determination of the conceptual graph.
In effect, even assuming that we are working on a large cor-
pus, we cannot be sure that a given dependency can be
useless on the basis of its low weight on the graph. Per-
haps the problem simply consists of the fact that some as-
pect of the knowledge domain is not yet fully developed in
the corpus. This is a realistic hypothesis in dealing, for ex-
ample, with our running botanic document collection. So,
although the third alternative in Fig. 1 ("tinted laminar

rose leaves") is highly improbable, we should not elimi-
nate it, but simply consider this interpretation having a low
probability since we cannot discard that in the future a new
variety will be unequivocally described as having rose leaves.

In this sense, our approach is inspired by an error-mining
proposal originally designed to identify missing and erro-
neous information in parsing systems [9], combining two
complementary iterative processes. For a given iteration,
the first one computes, for each governor/governed pair in a

28



P (feuilles:uc, [à-1], nervures:uc)local(0) =

Pc(feuilles:uc)local Pc(nervures:uc)local
Pdep ini(feuilles:uc, [à-1], nervures:uc)

ΣX,Y,ZPc(Z:X)local Pc(nervures:Y)local
(4)

P (feuilles:uc, [à-1], nervures:uc)global(n+1) =
Σn

i=1P (feuilles:uc, [à-1], nervures:uc)local(i)

#deplocal(n)

(5)

P (feuilles:uc, [à-1], nervures:uc)local(n+1) =

P (feuilles:uc, [à-1], nervures:uc)local(n)

P (feuilles:uc, [à-1], nervures:uc)global(n+1)

ΣX,Y,Z,T P (Z:X, T,nervures:Y)local(n)

P (Z:X, T,nervures:Y)global(n+1)

(6)

Table 4: Extraction of dependencies for ”feuilles à nervures denticulées”

sentence, the probability of the corresponding dependency.
The second process computes, from the former, the most
probable semantic class to be assigned to terms involved in
the dependency. So, in each iteration we look for both se-
mantic and syntactic disambiguation, each benefiting from
the other. A fixed point assures the convergence [9].

4.1 Starting the process
The first step consists in estimating, from the graph of

syntactic dependencies, how a set of initial values for classes
and instances can be established through the set of nodes in
order to begin the iterative learning process.

Taking as our reference a list of identifiers provided by the
programmer for naming the classes we are going to consider,
our goal is to extract from the corpus a minimal set of nodes
associated to each one. For example, in our running botanic
corpus, entities could be distinguished in this list as organ

or fruit, but also as properties of the type color, form,
size, texture or position. The programmer attaches to
each class a sequence of initial lemmas whose some values
can be seen in Tables 2.

In future, no distinction will be considered between the
terms weight, probability and preference, assuming they re-
fer to the same statistical concept. At this point, a weight
is assigned to nodes in clusters relating them with each lex-
ical category initially associated by the parse. In order to
solve ambiguities at this level, we compute them as shown
in Table 1, taking as our example the word ”denticulées”:

(1). To begin with, we compute the initial local probability
for each tagged lemma of a node in a cluster, which is
a simple ratio between the number of parses involv-
ing this node (#deriv-node) and the total number
of these involving the cluster (#deriv-cluster). In
our example, the number of parses involving the node
”denticulées”, whose tag is an adjective (uw:adj), is
(3), as shown with the label (N2) of the dependency
(N2(3)). There are seven parses involving the corre-
sponding cluster ((N2(3), N2(3), N2(1)).

(2). We re-introduce the local probabilities into the whole
corpus in order to re-compute the weight of all tagged
lemmas, after which we then globally estimate the most
probable ones. Normalization is given by the number
of occurrences of the lemma (#occ-denticulées), pos-
sible on different nodes.

(3). The local value in the new iteration should take into
account both the global preferences and the local in-
jection of these in the cluster, reinforcing the local

probability. Normalization is given by local and global
weights for the lemma, involving all possible tags (X)
associated to the cluster considered.

We illustrate in Fig. 3 this calculus for our example in
three columns, one for each step introduced. An element
in these columns is a property list of tag weights including
all tagging alternatives for the corresponding lexical form.
More in detail the left-most column is the estimation of the
initial local probabilities. The center one refers to the com-
putation for the global probability, and the right-most col-
umn represents the re-injection of this in the next iteration.
As we can see, in the case of ”feuilles” the initial probabil-
ity is the same as the result obtained after the first iteration
because, in this sentence, ”feuilles”has only one possible tag.

The system then associates to local occurrences of each
node in the graph of governor/governed dependencies a prop-
erty list of semantic weights reflecting the probability of the
governor word being an instance of a class and the gov-
erned word to be an instance of another class, as shown in
Fig. 4. Positions in one of these lists refer to probabilities
for class assignment, whose sum must be equal to one, and
their computation relates to the detection of particular syn-
tactic and/or lexical patterns involving nodes with lemmas
liable to be one of those instances. When this last condition
is satisfied, we assign a fixed weight5 to the corresponding
entry in the property list and we equitably distribute pref-
erences between the rest of classes in that list. For example,
in the case of the word ”feuilles”, that fixed value is put in
the first position of the list of semantic weights because it is
considered to be an organ.

With regard to the pattern recognition, we should take
into account the particular characteristics of each document
collection. So, in the case of our running corpus, we can
assume we are dealing with a descriptive text whose kernel is
composed of definitions and, therefore, dependencies related
to syntactic patterns should revolve around parse structures
involving nouns and/or adjectives.

On the lexical side, we take advantage of linguistic mark-
ers in order to set semantic knowledge in a context. These
relations involve more explicit physical information, such as
”en forme de X” ("in form of X") or ”de couleur X” ("of

color X"). So, they presumably provide the most reliable
information on both classes and dependencies, concentrat-
ing the vocabulary around them. We accordingly refer to
the nodes and dependencies so located as pivot nodes and
strong dependencies. The result serves to acquire simple

5in our case, this weight is 0’7.
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P (feuilles:uc:org, [à-1], nervures:uc:org)local(0) =

P (feuilles:uc, [à-1], nervures:uc)local(0)
P (feuilles:uc:org)local(0)
P (nervures:uc:org)local(0)

ΣX,Y P (feuilles:uc:X)local(0) P (nervures:uc:Y)local(0)
(7)

P (feuilles:uc:org, [à-1], X)global(n+1) =
ΣX P (feuilles:uc:org,[à-1],X)local(n)

#deplocal(n)(feuilles)
(8.1)

P (Y, [à-1], nervures:uc:org)global(n+1) =
ΣY P (Y,[à-1],nervures:uc:org)local(n)

#deplocal(n)(nervures)
(8.2)

P (feuilles:uc:org, [à-1], nervures:uc:org)global(n+1) = P (feuilles:uc:org, [à-1], X)global(n+1)

P (Y, [à-1], nervures:uc:org)global(n+1)
(8.3)

(8)

P (feuilles:uc:org, [à-1], nervures:uc:org)local(n+1) =

P (feuilles:uc:org, [à-1], nervures:uc:org)local(n)

P (feuilles:uc:org, [à-1], nervures:uc:org)global(n+1)

ΣX,Y P (feuilles:uc:X, [à-1], nervures:uc:Y)local(n)

P (feuilles:uc:X, [à-1], nervures:uc:Y)global(n+1)

(9)

Table 5: Extraction of classes for ”feuilles à nervures denticulées”

concepts such as the value of the properties referred, or to
detect enumerations that can propagate some of these val-
ues. Formally, as is shown in Table 3, we consider triples
to represent markers, where the first element is the lemma
playing the role of linguistic marker and the second indicates
the position on the syntagm for the lemma marked by the
first one. The last element is the class that will be considered
as being the most probable for that marked structure.

This is illustrated that in Fig. 5 for the syntagm ”teintées
de rose“ ("rose-tinted"), taken from the sentence ”feuilles
à limbe teintées de rose“ ("rose-tinted laminar leaves"),
where the presence of the marker ”teinté” ("tinted") indi-
cates that the lemma ”rose” ("rose") can be embedded in
the class color, as indicated in Table 3. As is shown in Fig. 5,
the number 2 represents the position of the lemma once se-
mantic dependencies have been extracted, as can be seen
in Fig. 1, following a given syntactic pattern. Thus, ”tein-
tées” is considered to be in the first position, while ”rose”
is placed in the second one and both are related through a
dependency labeled by the preposition ”de”.

Once the initial process has finished, all the property lists
of semantic weights associated to nodes in the graph of syn-
tactic dependencies have been initialized, and the first as-
sumptions on semantic dependencies between classes can be
made by extending the corresponding syntactic dependen-
cies involving nodes into these classes. The system is ready
to begin with the iterative learning task, which we shall il-
lustrate on the syntactic dependency labeled [à_1] relating
”feuilles” ("leaves") and ”nervures” ("veins") in Fig. 2.

4.2 Ranking of dependencies
In dealing with the ranking of dependencies, the sequence

of steps to be applied by the learning process is shown in
Table 4. Our aim is to associate to a probability each de-
pendency in the graph of syntactic dependencies, denoted
by P(word1:c1,[label],word2:c2); with word1 being the gov-
ernor node, c1 the lexical category of the word1, label the
tag of the dependency, word2 the governed node and c2 the
lexical category of the word2. More formally, we have that:

(4). We compute the local probability of the dependency
in each sentence. To start the process, first tag as-
sumptions (Pc) are provided by the error-mining algo-

rithm [9], whose process was described in Fig. 3. We
also take into account the initial probability for the de-
pendency considered (Pdep ini), a simple ratio on all

possible dependencies involving the nodes concerned.
Normalization is given by the choice for the possible
lexical categories, denoted by X and Y, involving each
of the clusters considered as governor, expressed by Z.

(5). We re-introduce the local probabilities into the whole
corpus in order to re-compute the weights of all pos-
sible dependencies, after which we then globally esti-
mate the most probable ones. Normalization is given
by the number of dependencies connecting the nodes
considered (#dep).

(6). The local value in the new iteration should take into
account both the global preferences and the local in-
jection of them in the sentences, reinforcing the local
probabilities. Normalization is given by previous lo-
cal and global weights for the dependency, whose label
is represented by T, involving all possible lexical cate-
gories, denoted by X and Y, associated to each of the
clusters considered as governor, represented by Z.

4.3 Semantic class assignment
Concerning this, the sequence of steps is shown in Table 5,

illustrating the computation of the probability that ”feuilles”
("leaves") and ”nervures” ("veins") are both organs, tak-
ing again the dependency labeled [à_1] in Fig. 2:

(7). In each sentence, we compute the local probability of
this dependency if ”feuilles”("leaves") and ”nervures”
("veins") are both organs (org). We start from the
local weight computed in Table 4, and the initial pref-
erences of the nodes involved in relation to class as-
signment as in Fig. 4. Normalization is given by the
probabilities for the possible classes involving each one
of the nodes considered represented by X and Y.

(8). We then calculate this preference at global level, by
re-introducing it into the whole corpus in order to re-
compute the weights of all the possible classes in the
sentence. In order to obtain it, we first compute the
probability in the whole corpus (8.1 and 8.2) for each
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0.0156 0.0156 0.0156 0.01560.0156...

0.0156 0.0156 0.0156 0.01560.0156...

0.0156 0.0156 0.0156 0.01560.0156...

0.0875 0.0875 0.0875 0.0050.005...

0.0875 0.0875 0.0875 0.0050.005...

0.0875 0.0875 0.0875 0.0050.005...

0.028 0.027 0.035 0.00470.0047...

0.022 0.025 0.029 0.00370.0039...

0.021 0.028 0.031 0.00430.0043...

0.0512 0.0601 0.0758 0.00410.0041...

0.059 0.0672 0.0798 0.00380.0038...

0.1091 0.0932 0.0689 0.00410.0041...

0.019 0.018 0.028 0.01120.0112...

0.014 0.015 0.029 0.00410.0043...

0.018 0.019 0.021 0.01010.0105...

0.0875 0.0875 0.0875 0.0050.005...

0.0571 0.0678 0.0812 0.00410.0041...

0.089 0.085 0.085 0.0040.004...

0.0868 0.0871 0.0873 0.00370.0037...

0.087 0.0872 0.0874 0.00370.0037...

0.0869 0.0873 0.0877 0.00350.0035...

Iteration n+1

First Iteration Reinjection iteration n+1

local(0)

local(0)

local(0)

P(feuille:nc,1_à,nervure:nc) local(0)

local(0)

local(0)

local(0)

ORG,ORG  ORG,FRU   ORG,COL         ...          OTH,POS  OTH,OTH

ORG,ORG  ORG,FRU   ORG,COL         ...          OTH,POS  OTH,OTH

ORG,ORG  ORG,FRU   ORG,COL         ...          OTH,POS  OTH,OTH

ORG,ORG  ORG,FRU   ORG,COL         ...          OTH,POS  OTH,OTH

ORG,ORG  ORG,FRU   ORG,COL         ...          OTH,POS  OTH,OTH

ORG,ORG  ORG,FRU   ORG,COL         ...          OTH,POS  OTH,OTH

ORG,ORG  ORG,FRU   ORG,COL         ...          OTH,POS  OTH,OTH

ABBREVIATIONS: ORG: Organ      FRU: Fruit    COL: Color     POS: Position     OTH:others

P(nervure:nc,1_,denticulée:v)

P(nervure:nc,1_,denticulée:adj)

P(neervure:nc,1_,denticulée:nc)

P(feuille:nc,1_,denticulée:v)

P(feuille:nc,1_,denticulée:adj)

P(feuille:nc,1_,denticulée:nc)

ORG,ORG   ORG,FRU    ORG,COL         ...            OTH,POS  OTH,OTH

global(1)

ORG,ORG   ORG,FRU    ORG,COL         ...            OTH,POS  OTH,OTH

P(nervure:nc,1_,denticulée:adj) global(1)

ORG,ORG   ORG,FRU    ORG,COL         ...            OTH,POS  OTH,OTH

global(1)

P(nervure:nc,1_,denticulée:v)

P(feuille:nc,1_à,nervure:nc) global(1)

ORG,ORG   ORG,FRU    ORG,COL         ...            OTH,POS  OTH,OTH

P(feuille:nc,1_,denticulée:v)

ORG,ORG   ORG,FRU    ORG,COL         ...            OTH,POS  OTH,OT

global(1)

ORG,ORG   ORG,FRU    ORG,COL         ...            OTH,POS  OTH,OTH

P(feuille:nc,1_,denticulée:adj) global(1)

ORG,ORG   ORG,FRU    ORG,COL         ...            OTH,POS  OTH,OTH

global(1)

ORG,ORG   ORG,FRU    ORG,COL         ...            OTH,POS  OTH,OTH

P(nervure:nc,1_,denticulée:v) local(1)

ORG,ORG   ORG,FRU    ORG,COL         ...            OTH,POS  OTH,OTH

P(nervure:nc,1_,denticulée:adj) local(1)

ORG,ORG   ORG,FRU    ORG,COL         ...            OTH,POS  OTH,OTH

P(neervure:nc,1_,denticulée:nc) local(1)

P(feuille:nc,1_,denticulée:nc)

P(neervure:nc,1_,denticulée:nc)

P(feuille:nc,1_à,nervure:nc) local(1)

ORG,ORG   ORG,FRU    ORG,COL         ...            OTH,POS  OTH,OTH

P(feuille:nc,1_,denticulée:v)

ORG,ORG   ORG,FRU    ORG,COL         ...            OTH,POS  OTH,OT

local(1)

ORG,ORG   ORG,FRU    ORG,COL         ...            OTH,POS  OTH,OTH

P(feuille:nc,1_,denticulée:adj) local(1)

ORG,ORG   ORG,FRU    ORG,COL         ...            OTH,POS  OTH,OTH

P(feuille:nc,1_,denticulée:nc) local(1)

Global probabilitiesInitial local probabilities Local probabilities

Figure 6: Computing semantic categories

node and semantic class, disregarding the right and left
context, represented by X and Y. The final probability
(8.3) is a combination of the two previous ones.

(9). After each iteration, we re-inject the previous global
weight to obtain a new local one, by reinforcing the
local probabilities. Normalization is done by the addi-
tion of the preferences corresponding to the nodes and
classes involved in the dependency, for all the possible
semantic classes considered.

We illustrate in Fig. 6 this calculus for our example in
three columns, one for each step. An element in these columns
is a property list of semantic weights. More in detail, the first
column is the estimation of the initial local probabilities. So,
the word ”feuilles” (nc), related to the word ”nervures” (nc)
through a dependency labeled as [1_à], has a property list
where the first entry refers to the probability that ”feuilles”
and ”nervures“ could be an organ. The second column refers
to the computation for the global probability, and the last
represents the re-injection of this in the next iteration.

5. EXPERIMENTAL RESULTS
We now describe some preliminary tests on our proposal.

A major drawback here, derived of the range of the cor-
pus and the novelty and unusual of its content, is the dif-
ficulty to develop a systematic work of validation for these
results, that must be done by a group of experts on west
Africa flora. So, the urgency to estimate the viability of the
proposal, takes us to consider a representative sampling we
consider it is sufficient to provide guiding and reliable data
on efficiency. We formally justify this on the uniformity of
both the syntactic structure commented as well as the lexi-
cal distribution, that we show in Fig. 7. In this way, we have
randomly chosen a collection of samples, each one composed
by 100 sentences taken from our running corpus. In order to
facilitate understanding, we focus on three of these samples,
whose behavior summarizes the results obtained in all the
collection.

Relating to the data compiled, when measuring the qual-
ity of an automatically created conceptual structure, the
typical measures are Recall (10), Precision (11) and F-measure (12).
Intuitively, Recall shows how much of the existing knowledge
is extracted, and it is computed by

Recall =
#correctly selected entities

#domain entities
(10)
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Figure 7: Word distribution in the corpus

while Precision specifies to which extent the knowledge is
extracted correctly, and it is given by

Precision =
#correctly selected entities

#total selected entities
(11)

Related to the F-measure, it provides the weighted har-
monic mean of precision and recall, summarizing the global
performance of the selection process. It is computed as fol-
lows

F-measure =
2 * Precision * Recall

Precision + Recall
(12)

We concentrate our attention on this last measure. What-
ever is the case, these tests are performed in function of the
number of iteration passes, once fixed two thresholds:

• The probability (% success) that a node be embedded
in a class at a given moment of the process, in order
to evaluate the effect of lexical non-determinism. We
consider two values for testing: 20% and 90%. The
former refers to a testing frame highly tolerant to this
phenomena, on the contrary of the second case.

• The probability (prob) of a dependency when it refers
to nodes shared between parses, which allows us to
estimate the capability to discriminate between differ-
ent interpretations, illustrating the impact of syntactic
ambiguities on the learning task. We consider as values
for this threshold 0’2 and 1. The former value groups
dependencies on which the learning process should to
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continue. The second one refers to dependencies fully
identified by the algorithm, that is, considered as de-
terministic and, therefore, there is no reason to con-
tinue the learning process on them.

Between all the possible combinations for this set of thresh-
olds, we focus on two extreme cases, as shown in Fig. 8. The
first one illustrates a maximum level of non-determinism on
both lexical and syntactic points of view. The second one
compiles results for low lexical and syntactic ambiguity. Re-
lating to the samples of sentences considered, which are di-
vided in two groups, we baptize them as Sample 1, Sample 2

and Sample 3 in these figures for each case.
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Figure 8: Maximum and minimum non-determinism

A simple analysis puts into evidence a similar qualita-
tive behavior in the evolution of the knowledge acquisition
task, with a high speed of learning that allows the process
to become stabilized after only five iterations. Just as was
hoped, the increasing value for the precision indexes strongly
impacts the F-measure for a deterministic context as that
considered in Fig. 8, for the first three samples. So, the num-
ber of detected instances of classes in this case results to be
much poor in comparison with the more flexible context rep-
resented in the second three samples. In effect, intuitively,
more confidence is the information relative to dependencies
and node identification, and more strict are the constraints
on the knowledge acquisition process. A similar reasoning
can be applied in relation to the speed observing in the learn-
ing process, directly associated to the tangent of each graph,
which is more steep in the second three samples.

6. CONCLUSIONS
The increasing amount of information in textual format

currently available on-line is changing the way of building
knowledge-based systems. On the one hand, it is incon-
ceivable to capture it manually and, on the other, it is not
possible to directly consider automatic management facili-
ties, which has created a growing need for effective concept
learning strategies. Without this kind of tools, access to rel-
evant information runs the risk of become a frustrating and
inefficient task. Our claim is that it is possible to consider
the unsupervised generation of practical conceptual graphs
from an unstructured corpus of sufficient size.

Our proposal attempts to reconcile quantitative and qual-
itative aspects on both knowledge acquisition and cluster-
ing phases. We seek to dynamically compile local, and

also global, context information during the learning process.
In contrast to previous works that entrust lightweight de-
terministic parsers with the primary knowledge acquisition
task, assuming that high redundancy over a large corpus
will enable mis-interpretation phenomena to be overcome;
we consider an efficient non-deterministic analyzer that nips
the problem in the bud. Once the corpus has been parsed
and we can be sure that, sooner or later, any relevant infor-
mation in the corpus will have been analyzed, do we consider
filtering out useless semantic links. At this stage, we have
also proved that a statistical measure based on the frequency
of word sequences of arbitrary length can be used in practice
to deal with semantic clustering even on very large corpora.

As a whole, preliminary experimental results seem to cor-
roborate a promising approach as an unsupervised alterna-
tive to classic ones, but also as a possible response to solving
under-specification and uncertainty problems in dealing with
knowledge acquisition on unexplored domains, which could
be a significant advantage for redeploying the system when
no external resources are yet available.
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