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Abstract. A fundamental problem in network science is the normalization of the

topological or physical distance between vertices, that requires understanding the

range of variation of the unnormalized distances. Here we investigate the limits of

the variation of the physical distance in linear arrangements of the vertices of trees.

In particular, we investigate various problems on the sum of edge lengths in trees of

a fixed size: the minimum and the maximum value of the sum for specific trees, the

minimum and the maximum in classes of trees (bistar trees and caterpillar trees) and

finally the minimum and the maximum for any tree. We establish some foundations

for research on optimality scores for spatial networks in one dimension.

PACS numbers: 89.75.Hc Networks and genealogical trees

89.75.Da Systems obeying scaling laws

89.75.Fb Structures and organization in complex systems
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Figure 1. Different linear arrangements of the same syntactic dependency tree. Here

edge labels indicate the distance between the linked words (in words). (a) Original

linear arrangement with Dt = 10 as it appears in https://universaldependencies.

org/introduction.html. (b) Minimum linear arrangement, i.e. Dt = Dt
min = 8.

Dt
min = 8 is obtained from Table 3 noting that t is a caterpillar with n

〈
k2
〉

= 26 and

q = 6. (c) Maximum linear arrangement, i.e. Dt = Dt
max = 26. Dt

max was computed

as the maximum of Dt over the 7! linear arrangements.

1. Introduction

A fundamental problem in network science is the normalization of the distance between

vertices [1, 2, 3, 4, 5]. The problem is actually two-fold depending on whether the focus

is on topological distance, i.e. the distance between vertices in terms of number of edges

[1, 4, 5] or physical distance, i.e. the distance between vertices in some metric space,

that may not be Euclidean [2, 3].

Concerning topological distance, namely distance on a network, the simplest

measure of topological distance is the average path length or characteristic path length,

which can be defined on an undirected network g of n vertices as [6],

〈l〉g =
1(
n
2

)∑
i<j

lij,

where lij is the minimum distance in edges between vertices i and j in g.

https://universaldependencies.org/introduction.html
https://universaldependencies.org/introduction.html
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When a graph g is embedded in some space (by assigning to each vertex a position

in that space), the length of a link is the physical distance between the two vertices it

connects and Dg represents the sum of the lengths of all links of g [3]. Dg can be defined

as

Dg =
∑
i<j

aijdij,

where aij indicates if vertices i and j are connected (aij = 1 if they are connected;

aij = 0 otherwise) and dij is the physical distance between vertices i and j in g. When

vertices i and j are linked, dij is the edge length. In a network of m edges, the average

edge length [2]

〈d〉g =
1

m
Dg,

is the counterpart of 〈l〉g in physical space. However, notice that 〈l〉g is an average over

all pairs of vertices, no matter if they are connected or not. In contrast, 〈d〉g and Dg

are restricted to pairs of linked vertices.

Traditionally, Dg has been defined on a Euclidean two-dimensional space [3]. Here

we focus on the problem of the range of variation of the physical distance Dg in one

physical dimension when the network structure (namely the adjacency matrix A = {aij}
that defines g) remains constant. We consider a particular embedding in one dimension:

linear arrangements of vertices whereby the position of a vertex is its position in a

sequential ordering of the vertices. A prototypical example that motivates our research

is the syntactic dependency network of a sentence, where vertices are words, edges

indicate syntactic dependencies and the order of the words in the sentence defines a

linear arrangement: the 1st word of the sentence takes position 1, the second word of

the sentence takes position 2 and so on (figure 1) [7]. There the distance between two

vertices is usually defined as the absolute value of the difference between vertex positions:

then consecutive words are at distance 1, words separated by a word are at distance 2

and so on [2]. In the example (figure 1 (a)), Dg = 10. The primary goal of this article

is to establish some mathematical foundations for research on the range of variation of

physical distance when g is a fixed tree and physical distances are determined by the

linear arrangement of its vertices as in figure 1, where different linear arrangements of

the same g are shown. In particular, we aim to make a contribution on this physical

distance that parallels the current understanding of the variation of topological distance

[5] while establishing mathematical foundations for research on optimality scores on this

physical distance. For these reasons, we review next the state of research on the range

of variation on topological distances and their normalization.

In a connected network, 〈l〉g varies between its value in a complete graph, a graph

with as many edges as possible, and a linear tree, a tree with maximum degree two

(figure 2 (a)), i.e. [4]

〈l〉complete ≤ 〈l〉 ≤ 〈l〉linear ,
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(a) (b)

(c) (d)

Figure 2. Different trees with n = 6 vertices and maximum degree k1. (a) Linear

tree (k1 = 2). (b) Star tree (k1 = n− 1 = 5). (c) Quasistar tree (k1 = n− 2 = 4). (d)

Balanced bistar tree (k1 = dn/2e = 3), that is formed by two star trees of 3 vertices

joined by their respective hubs.

where

〈l〉complete = 1

〈l〉linear =
n+ 1

3
.

In trees, connected networks minimizing the number of edges, one has [4]

〈l〉star ≤ 〈l〉g ≤ 〈l〉linear , (1)

where

〈l〉star = 2(n− 1)/n

corresponds to a star tree, a tree with a hub of maximum degree, namely n− 1 (figure

2 (b)). In [4], the ratio

λg =
〈l〉g

〈l〉linear
,

was used as a normalized measure of topological distance cost (λ ≤ 1). Recently, two

normalizations of 〈l〉 have been investigated [5]

λg′ =
〈l〉g

〈l〉gUS

λg′′ =
〈l〉g − 〈l〉gUS
〈l〉gUL − 〈l〉

g
US

,

where 〈l〉gUS and 〈l〉gUL are the minimum (Ultra Short) and the maximum (Ultra Long)

value of 〈l〉 of a network with same number of vertices and edges. In a tree, 〈l〉gUS = 〈l〉star

and 〈l〉gUL = 〈l〉linear.
A limitation of 〈l〉 is that lij = ∞ for vertices in different connected components

and then 〈l〉 is not finite in disconnected graphs, regardless of how closely connected

vertices are within each component [6]. For this reason, an alternative is the so-called

network efficiency [1], an average of 1/lij that can be defined as

Eg =
1(
n
2

)∑
i<j

1

lij
.
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1/Eg is a harmonic mean and E is an average that is already normalized, since

Eempty ≤ Eg ≤ Ecomplete.

Eempty = 0 and Ecomplete = 1 correspond to an empty network (a network with no

edges) and a complete graph, respectively. Eg is a normalized measure of optimality of

a network with respect to topological distance.

As for the situation of research on physical distance, Dg has been compared against

Dg
MST , the value of D of a minimum spanning tree of the original graph, namely a tree

t defined on a subset of the edges of the original graphs such that Dt is minimum [3].

As Dg
MST ≤ Dg, a normalized measure of physical distance cost is [3]

Cg =
Dg

Dg
MST

,

namely a measure the degree of optimality of a network from the perspective of the

topological distance. In that setup, the optimization problem involved in the calculation

of Dg
MST consists in keeping the number of vertices constant while allowing the network

structure to vary. In contrast, we are interested in the variation of Dg when the network

structure remains constant, i.e. the limits of the variation of D over the n! linear

arrangements.

Given a network g, the calculation of Dg
min, the minimum value of Dg over all linear

arrangements is known as the minimum linear arrangement problem [8], whereas the

calculation of the maximum , i.e. Dg
max, is known as the maximum linear arrangement

problem [9]. In both problems, the network structure is fixed, as in the different linear

arrangements in figure 1. Both problems are computationally hard [8, 9]. In a tree t,

the minimum linear arrangement problem simplifies and can be computed in polynomial

time [10, 11, 12] but still formulae for Dt
min and Dt

max are only available for specific trees

[13, 12, 14].

A linear arrangement is planar if there are no edge crossings [15]. Many real spatial

networks arranged in two dimensions are planar or quasi planar [3]. In one dimension,

the concept of a planar linear arrangement has applications in areas like circuit layout

[16] or dependency syntax [17]. In planar linear arrangements, the problem of the

minimum Dt simplifies further: Dt
min,P , the minimum value of D over the all the planar

(P ) linear arrangements of a tree t, can be computed in linear time [18, 19]. The first

algorithm to calculate Dt
min,P is due to Iordanskii [18], 16 years before Hochberg &

Stallmann’s [19].

Dt
min andDt

max and their limits of variation are relevant for research on the efficiency

of language, where various optimality scores have been considered [2, 20, 21]. The first

optimality score for Dt that was defined is [2, 20]

Γt =
Dt

Dt
min

. (2)

Γt is the analog of the physical distance cost Cg for research on Dg where g is a fixed

tree t and Dt varies depending only on the linear arrangement. Another score that has
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Table 1. The statistical properties of the tree of figure 1 and its linear arrangements.

The tree has n = 7 vertices, n
〈
k2
〉

= 26, Drla = 48/3 (equation 4) and Vt
rla = 148/15

(equation 33). ∆t, Γt and Dt
z are calculated applying equations 1, 2 and 3.

(a) (b) (c)

Dt 10 8 20

∆t 2 0 10

Γt 5
4 1 2

Dt
z −3

√
15
37 −4

√
15
37 2

√
15
37

been considered is [21]

∆t = Dt −Dt
min.

These limits are also relevant for a recently introduced z-scored value of D, i.e. [22]

Dt
z =

D −Drla

(Vt
rla)

1/2
, (3)

where Drla and Vt
rla are, respectively, the expectation and the variance of Dt in a

uniformly random linear arrangement (r.l.a.). Drla depends only on n, as [23]

Erla[Dt] =
1

3
(n2 − 1). (4)

Table 1 shows the value of the different dependency length scores for the linear

arrangements of the tree in figure 1.

The remainder of the article is organized as follows. Section 2 details the

mathematical problems on Dt
min and Dt

max that are investigated in this article while

reviewing previous results. In short, these problems are Dt
min and Dt

max in specific trees

or classes of trees and the variation of Dt
min and Dt

max over all trees of the same size.

Section 3 investigates Dt
max. Section 4 investigates Dt

min. Applying findings from the

preceding sections, Section 5 investigates the limits of the variation of the optimality

scores ∆t and Γt while Section 6 investigates those of Dt
z. Finally, Section 7 reviews all

our findings and suggests future research problems.

2. Research problems and review

Given the potential to obtain simple formulae for trees and the interest of trees in

language research [7, 25], here we are interested in three kinds of problems over trees of

n vertices.

2.1. Dt
min and Dt

max in specific trees

We investigate Dt
min and Dt

max in specific kinds of trees (distinct unlabelled trees) that

are selected for their theoretical interest. Linear trees and star trees are relevant to
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Table 2. The distribution of vertex degrees on a tree t of n vertices, for specific

trees. k1 is the maximum vertex degree, and
〈
k2
〉
, the second moment of degree about

zero.
〈
k2
〉

for linear and star trees is borrowed from [14].
〈
k2
〉

for quasistar trees is

borrowed from [24] and that of balanced bistar trees is derived from equation 9 with

k1 = dn/2e.

t k1
〈
k2
〉

linear 2 4− 6
n

balanced bistar
⌈
n
2

⌉
2
n (dn/2e(dn/2e − n)− 1) + n+ 1

quasistar n− 2 n− 3− 6
n

star n− 1 n− 1

understand the variation of topological distance as we have seen above (equation 1) [4]

and also to understand the limits of the variation of Dt
min [13, 26]. Trivially [12, 14, 26],

Dlinear
min = n− 1.

Iordanskii found that [13],

Dstar
min =

⌊
1

4
n2

⌋
,

which was rediscovered later in equivalent forms [14, 26], e.g.

Dstar
min =

1

4
(n2 − n mod 2).

Bistar trees (bistar) consist of two stars joined by the hub and include star trees as an

extreme case when one of the stars has only one vertex (figures 2 (b-d)) [27, 28]. Here

we are interested in two distinct representatives: quasistar trees (quasi), where one of

the original stars has only two vertices (figure 2 (c)) and balanced bistar trees (b-bistar),

where the two original stars have the same size or differ in one vertex (figure 2 (d)).

Quasistar trees are important for the theory of edge crossings in linear arrangements

[24, 29]. In this article, we will unveil that balanced bistar trees maximize Dt
max over

trees of n vertices. We will also obtain formulae for Dquasi
min and Db−bistar

min .

It has been shown that [14]

Dstar
max =

(
n

2

)
.

Dlinear
max is unknown but Dt

max,P , the maximum value of D over the all the planar (P )

linear arrangements of a tree t, has been investigated. It has been shown that [14]

Dstar
max = Dlinear

max,P =

(
n

2

)
.

Notice that edge crossings are impossible in a star tree [14] and hence Dstar
max = Dstar

max,P .

Here we will calculate Dlinear
max as well as Dquasi

max and Db−bistar
max .
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2.2. Dt
min and Dt

max in classes of trees

We investigate Dt
min and Dt

max in classes of trees (comprising more than one distinct

unlabelled tree but not all distinct labelled trees). Two classes are selected for their

theoretical interest: bistar trees (for the reasons explained above) and caterpillar trees

(cat). Caterpillar trees is the class of trees such that when all the leaves are removed

a linear tree is left [30]. Caterpillar trees are relevant for being a generalization of

linear trees and bistar trees of enough simplicity that simple formulae for Dt
min can be

obtained [31]. For each relevant class, we aim to express Dt
min and Dt

max as a function

of n and additional parameters of the networks extracted from vertex degrees: e.g., k1,

the largest degree, or 〈k2〉, the second moment of degree about zero.

2.3. The variation of Dt
min and Dt

max over all trees of the same size.

We investigate the variation of Dt
min and Dt

max over all distinct unlabelled trees of n

vertices. The problem is motivated by research on Dt as a function of n [2, 32, 33, 34].

It is well-known that any tree t of n vertices satisfies [26]

Dlinear
min ≤ Dt

min ≤ Dstar
min ≤ Drla. (5)

The part Dt
min ≤ Dstar

min is due to Iordanskii [13] although rediscovered later [26].

Asymptotically (n→∞), one also has that [18],

Dt
min,P ≤

3

2
Dt
min.

An inequality equivalent to equation 5 for Dt
max is not forthcoming but it has been

shown that any tree t of n vertices satisfies [14]

Dt
max,P ≤ Dlinear

max,P = Dstar
max.

Here we will show that any tree t of n vertices also satisfies

Drla ≤ Dstar
max ≤ Dt

max ≤ Db−bistar
max . (6)

The hubiness of a tree is defined by 〈k2〉, the second moment of degree about zero

[14, 35] (Table 2). 〈k2〉 and k1, the maximum vertex degree are closely related for

sufficiently large k1. Table 3 summarizes all the existing results and the new results

that are presented in this article for the problems defined in Sections 2.1 and 2.2.

3. The maximum value of D

Here we investigate Dt
max in linear trees and bistar trees as well as the limits of the

variation of Dt
max over all trees of n vertices.
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Figure 3. The scaling of the limits of the variation of Dt as a function of n, the

number of vertices of the tree t, for different trees: linear trees (black), balanced bistar

trees (blue), quasistar trees (orange) and star trees (green). (a) Dt
min. (b) Dt

max.
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Table 3. Dt
min and Dt

max, the minimum and the maximum value of D, the sum

of edge lengths of a tree t for different classes of trees. Classes are sorted from more

general to more concrete. Classes formed by a single tree are sorted increasingly by

their hubiness (Table 2). n is the number of vertices of the tree and k1 is the largest

degree, q is the number of vertices of odd degree, q′ = k1 mod 2 + (n− k1) mod 2 and

φ = ((n + 2)2 mod 8). For Dt
min we provide at least two formulae: one based on the

floor or ceil function and the other based on mod (the exception are linear trees due

to the simplicity of their formula). Formulae without a reference attached are new to

our knowledge.

t Dt
min Dt

max

caterpillar n− 1 +
∑n

i=1

⌊
1
4 (ki − 1)2

⌋
[31]∑n

i=1

⌊
1
4 (ki + 1)2

⌋
− (n− 1)

1
4

(
n
〈
k2
〉

+ q
)

bistar
⌊
1
4 (k1 + 1)2

⌋
+
⌊
1
4 (n− k1 + 1)2

⌋
− 1 k1(n− k1) + n

2 (n− 3) + 1
1
2k1(k1 − n) + 1

4 [n(n+ 2) + q′]− 1

linear n− 1 [12]
⌊
n2

2

⌋
− 1

1
2 (n2 − n mod 2)− 1

balanced bistar
⌊
1
8 (n+ 2)2

⌋
− 1 1

4

(
3(n− 1)2 + 1− n mod 2

)
1
8 (n2 + 4n− 4− φ)

quasistar
⌊
1
4 (n− 1)2

⌋
+ 1 1

2 (n+ 3)(n− 2)
1
4 [n(n− 2) + n mod 2] + 1

star
⌊
1
4n

2
⌋

[13]
(
n
2

)
[14]

1
4 (n2 − n mod 2) [26]

3.1. Linear trees

A linear tree is a tree whose vertices are linked as a chain, i.e., a tree with arcs of the

form {v1, v2}, {v2, v3}, . . . , {vn−1, vn}. The maximum value of Dlinear over the n! linear

arrangements is (Appendix A)

Dlinear
max =

1

2
(n2 − n mod 2)− 1

=

⌊
n2

2

⌋
− 1. (7)

3.2. Bistar trees

Hereafter we assume that a vertex is labelled with its position in the degree sequence,

namely the non-increasing sequence of vertex degrees. Then ki is the degree of the

vertex with the i-th largest degree. A bistar tree is a generalization of trees of high
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theoretical interest: star trees [13, 26] and quasistar trees [24, 29]. If k1 = n− 1 (hence

k2 = 1) then we have a star tree. If k1 = n− 2 (hence k2 = 2) then we have a quasistar

tree (figures 2 (b-d)). Since a bistar tree consists of two joined stars, one may think

that a bistar tree has three parameters, n, k1 and k2. However, n and k1 suffice, as we

will see next.

A bistar tree with n ≥ 2 vertices satisfies the following properties:

(i) It has at most two internal vertices, more precisely 2− δk1,1− δk2,1 internal vertices,

where δ is the Kronecker delta function. δk2,1 = 1 when the tree is a star.

(ii) It has n− 2 + δk1,1 + δk2,1 leaves.

(iii) Then ki = 1 for 3− δk1,1 − δk2,1 ≤ i ≤ n.

(iv) k2 = n− k1 (8)

because the sum of vertex degrees must satisfy

k1 + k2 + n− 2 = 2(n− 1)

by the handshaking lemma.

(v) 〈
k2
〉

=
1

n
(k21 + (n− k1)2 + n− 2)

=
2

n
(k1(k1 − n)− 1) + n+ 1 (9)

(vi) k1 ≥
⌈n

2

⌉
. (10)

Combining equation 8 with the condition k1 ≥ k2, one obtains

k1 ≥
n

2
,

which knowing that k1 is an integer gives equation 10.

Our definition of a star tree with two parameters, n and k1, is equivalent to other two-

parameter definitions. [27] defines a bistar with two parameters n1 and n2. The bistar

is formed by taking a graph with a single edge and two vertices and adding n1 edges

at one end of the edge and n2 edges at the other end. Ours is then n = 2 + n1 + n2

and k1 = max(n1, n2) + 1. [28] defines a bistar with two parameters n′1 and n′2. The

bistar is formed by adding an edge between the hubs of two stars of n′1 and n′2 vertices

respectively [28]. Ours is then n = n′1 + n′2 and k1 = max(n′1, n
′
2). The term bistar tree

has also been used to refer to a tree with only one inner edge or a tree of diameter three,

where the diameter is the length of the longest shortest path in edges [36]. This is not

exactly our definition of bistar because it excludes star trees and implies n ≥ 4. In our

definition, a bistar tree has at most one inner edge and diameter at most 3 and is then

valid for n < 4.

We introduce a bistar tree of great theoretical importance to calculate the maximum

of Dt
max over all trees of same size: the balanced bistar tree (figure A2). That tree is a

bistar tree with

k1 =
⌈n

2

⌉
. (11)
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The latter implies that k2 =
⌊
n
2

⌋
thanks to equation 8. The term balanced comes from

the fact a balanced bistar tree is a bistar tree where the difference k1− k2 is minimized.

Thanks to equation 8, one has that

k1 − k2 = 2k1 − n.

The fact that k1 ≥ k2, gives that the difference is minimized when k1 satisfies equation

11.

In a bistar tree t, the maximum value of Dt over all n! linear arrangements is

(Appendix B)

Dbistar
max = k1(n− k1) +

n

2
(n− 3) + 1.

Table 3 summarizes Dt
max for specific bistar trees: balanced bistar trees, quasistar trees

and star trees (the formulae are derived in Appendix B).

3.3. The maximum Dt
max

In a graph g of n vertices and m edges, an obvious upper bound of Dt
max is [22]

Dg
upper,naive = m(n− 1),

where n− 1 is the maximum length of an edge. A priori, n− d edges of length d can be

formed. Taking m lengths as long as possible, the analog of Petit’s edge method (EM)

for the maximum linear arrangement problem [37], gave another upper bound of Dt
max

[22] that is

Dg
upper,EM = (m− F (d∗))(d∗ − 1)

+
1

6
(n− d∗)(n2 + (n+ 3)d∗ − 2d2∗ − 1),

where

F (d0) =
1

2
(n− d0)(n− d0 + 1)

d∗ =

⌈
n+

1

2
− 1

2

√
8m+ 1

⌉
.

Figure 4 shows that, when m = n− 1 as in a tree, the naive upper bound, i.e. (n− 1)2,

beats the edge method upper bound for sufficiently large n. This is likely to be due

to the tree constraint (acyclicity and connectedness). Interestingly, the naive upper

bound is close to the true maximum of Dt
max, that is achieved by a maximum linear

arrangement of a balanced bistar tree as we will show next.

Theorem 1 (Maximum Dt
max). For any tree t of n vertices,

Dt
max ≤ Db−bistar

max =
1

4

(
3(n− 1)2 + 1− n mod 2

)
.

Proof. Let τ be the set of all unlabelled trees of n vertices. Let υ be the set of labelled

trees of n vertices, i.e., the set of trees of n vertices where each vertex has been assigned

a unique number in {1, 2, . . . , n} that indicates its position in the linear arrangement.
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Given an unlabelled tree t ∈ τ , choosing a linear arrangement for it (by assigning a linear

order to its vertices) results into one of the trees in υ. Thus, maximizing the value of

Dt across the n! possible linear arrangements of each unlabelled tree in τ reduces to

maximizing the value of D in υ.‡
Let ϕ1 be the set of directed rooted trees obtained by rooting each tree in υ at its

vertex 1, the 1st vertex in the linear arrangement, and directing all edges to point away

from the root. Trivially, this mapping between ϕ1 and υ is bijective (as said orientation

is unique) and it preserves the sum of edge lengths. Therefore, if we find a directed tree

with maximum sum of arc lengths in ϕ1, its underlying undirected tree will have the

maximum sum of edge lengths in υ.

We will show that the directed tree with arcs n → 2, n → 3, . . . , n → bn
2
c, 1 →

bn
2
c + 1, . . . , 1 → n − 1, 1 → n, whose underlying undirected tree is a balanced bistar

tree as in figure A2, maximizes the sum of arc lengths in ϕ1. To see this, we use the

property of directed trees that every vertex has exactly one incoming arc, except for the

root which has none. Thus, for any tree of ϕ1, we can write its arcs as A2, A3, . . . , An
such that Ai is the arc going into vertex i. Now, if we consider each arc individually, we

can say that

• The length of the arc Ai, for 2 ≤ i ≤ bn
2
c, is at most n − i, as n is the farthest

possible vertex from vertex i. That is, the arc n → i is the longest possible arc to

vertex i.

• The length of the arc Ai, for bn
2
c < i ≤ n, is at most i − 1, as 1 is the farthest

possible vertex from vertex i. That is, the arc 1 → i is the longest possible arc to

vertex i.

The directed tree mentioned above has exactly the longest arcs going into each

vertex i, for 2 ≤ i ≤ n. Thus, it maximizes the sum of arc lengths in ϕ1, as it maximizes

each individual length A2, . . . , An. Therefore, the underlying balanced bistar tree has

the maximum sum of edge lengths in υ, proving the theorem. Note: the ordering of the

vertices implied by such directed tree corresponds to an extreme linear arrangement as

described above.

The problem of maximizing Dt
max is equivalent to finding the maximum spanning

tree on a complete graph where the weight of every edge is the distance between the

vertices that form it in the linear arrangement (Appendix D). The argument provides

an alternative way to demonstrate Theorem 1.

‡ Note that the mapping from linear arrangements to trees in υ is not bijective (different linear

arrangements can result into the same labelled tree, e.g. all the linear arrangements of a star tree

where the central vertex’s position is kept constant) but this is not relevant for this proof, as it does

not affect D.
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Figure 4. Db−bistar
max , the true maximum of Dt

max, as a function of n (black). The

predictions of the naive upper bound (orange) and the edge method upper bound (red)

are also shown.

3.4. Lower bounds of Dt
max

A star tree yields the minimum value of Dt
max, namely Dt

max ≥ Dstar
max (Appendix C).

In turn, by definition of average and maximum, Drla ≤ Dt
max, and particularizing

this for a star tree, Drla ≤ Dstar
max. Putting these results together, we have that

Drla ≤ Dstar
max ≤ Dt

max.

Figure 3 (b) shows the growth of Dt
max for different trees.

4. The minimum value of D

Dt
min is the minimum value of D over the all the linear arrangements of a tree t. Dt

min

can be calculated with rather complex algorithms for any tree t [12, 10, 11]. Algorithms

to calculate Dt
min satisfying a certain constraint are also available but less known. See

[18, 19] for planarity (no edge crossings) and [38, 32] for projectivity, a particular case

of planarity. Here we are interested in compact formulae for Dt
min for certain classes of

trees or general lower bounds.
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In his pioneering research, Iordanskii, in addition to showing that Dt
min ≤ Dstar

min

[13], also showed that the maximum value of Dt
min over all trees of n vertices with

maximum degree k1 such that k1 ≥ 3 satisfies the following inequalities [39]

k1 − 7
3

12 log2 k1
n log2 n

(
1−

log2
3
2

log2 n

)
< max

t
Dt
min <

k1 + 4

4 log2(k1 − 1)
n log2 n.

The asymptotic order in n of the expression for the lower and upper bound is

k1n log2 n

log2 k1
(12)

with a constant factor

c1 =

{
1
54
≈ 0.0185 for k1 ≥ 3

1
12
≈ 0.0833 for k1 →∞

for the lower bound and a constant factor

c2 =

{
7
12

log2 3 ≈ 0.9244 for k1 ≥ 3

0.25 for k1 →∞

for the upper bound.

[37] reviews various techniques to obtain lower bounds of Dt. In a network with

m edges, the edge method consists of picking the m shortest edges noting that there

can be at most n − d edges of length d, for 1 ≤ d ≤ n − 1. In a tree, this methods

trivially gives Dmin ≥ Dlinear
min = n − 1. The next theorem presents a lower bound of

Dt
min that depends exclusively on the degree sequence and that is obtained with the

degree method. A similar application of the degree method can be found in [14].

Theorem 2. For any tree t of n vertices,

Dt
min ≥ Dt

0 =
1

4

(
n

2

〈
k2
〉

+ 2(n− 1) +
1

2
q

)
where

q =
n∑
i=1

(ki mod 2)

is the number of vertices of odd degree.

Proof. Let Dt
i be the sum of the length of the edges attached to the i-th vertex of t.

The degree method is based on a star tree decomposition of D in a network, whereby

[37]

Dt =
1

2

n∑
i=1

Dt
i . (13)

Dt
i,min is a lower bound of Dt

i defined as [37]

Dt
i,min = 2

ki/2∑
j=1

j =
1

2

(
k2i
2

+ ki

)
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if ki is even, and

Dt
i,min =

1

2
(ki + 1) + 2

(ki−1)/2∑
j=1

j =
1

2

(
k2i
2

+ ki +
1

2

)
if ki is odd. Combining both results, one obtains

Dt
i,min =

1

2

(
k2i
2

+ ki +
1

2
(ki mod 2)

)
.

Inserting the last result into equation 13, one obtains

Dt
min ≥

1

2

n∑
i=1

Di,min

=
1

4

n∑
i=1

(
k2i
2

+ ki +
1

2
(ki mod 2)

)
=

1

4

(
n

2

〈
k2
〉

+ 2(n− 1) +
1

2
q

)
= Dt

0.

In a linear tree, 〈k2〉 = 4 − 6/n [14] and q = 2 give D0 = n − 1, matching Dlinear
min .

In contrast, for a star tree, 〈k2〉 = n− 1 [14] and q = n− 1 + (n− 1) mod 2 give

D0 =
1

8

(
n2 + 4n− 5 + (n− 1) mod 2

)
(14)

while Dstar
min = 1

4
(n2−n mod 2) [13]. Asymptotically, D0 deviates from the true minimum,

Dstar
min, by a factor of 1/2.

4.1. Caterpillar trees

The following theorem is a formalization of the arguments of [31] that presents a lower

bound of Dt
min that has no deviation if the tree is a caterpillar (cat), including then the

particular cases of star trees and linear trees discussed above.

Theorem 3 (Horton [31]). For any tree t of n vertices,

Dt
min ≥ Dcat

min (15)

where Dcat
min is the value of Dt

min of a caterpillar tree with the same degree sequence as

t. We have

Dcat
min = n− 1 +

n∑
i=1

ai, (16)

where

ai =

⌊
ki
2

⌋⌈
ki − 2

2

⌉
=

⌊
(ki − 1)2

4

⌋
(17)
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and ki is the degree of the i-th vertex.

Proof. In trees, the bipartite crossing number is [40]

bcr = Dmin − n+ 1−
n∑
i=1

ai. (18)

bcr ≥ 0 by definition and bcr = 0 if and only if the tree is a caterpillar tree [41].

Therefore, equation 18 becomes equation 15 with equality if and only if the tree is a

caterpillar. A longer proof where ai is expressed as in equation 17 is found in [31].

The following theorem introduces useful algebraic expressions for caterpillar trees,

alternating floor with modulo operations.

Theorem 4.

Dcat
min = n− 1 +

n∑
i=1

⌊
1

4
(ki − 1)2

⌋
(19)

=
n∑
i=1

⌊
1

4
(ki + 1)2

⌋
− (n− 1) (20)

=
1

4

(
n
〈
k2
〉

+ q
)
. (21)

Proof. Equation 19 is due to [31]. Theorem 3 on a star tree (k1 = n− 1 and ki = 1 for

2 ≤ i ≤ n) gives⌊
n− 1

2

⌋⌈
n− 1

2
− 1

⌉
= Dmin

star − (n− 1)

The formulae for Dmin
star in Table 3 then give⌊

n− 1

2

⌋⌈
n− 1

2
− 1

⌉
=
n2 − n mod 2

4
− (n− 1)

=

⌊
1

4
n2

⌋
− (n− 1).

The change of variable ki = n− 1 gives

ai =
(ki + 1)2 − (ki + 1) mod 2

4
− ki

=

⌊
1

4
(ki + 1)2

⌋
− ki.

Plugging these results into equation 16, one obtains

Dcat
min = n− 1 +

n∑
i=1

ai

= n− 1 +
n∑
i=1

(⌊
1

4
(ki + 1)2

⌋
− ki

)
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= n− 1 +
n∑
i=1

⌊
1

4
(ki + 1)2

⌋
−

n∑
i=1

ki

=
n∑
i=1

⌊
1

4
(ki + 1)2

⌋
− (n− 1)

and also

Dcat
min = n− 1 +

n∑
i=1

ai

= n− 1 +
1

4

n∑
i=1

[
k2i + 2ki + 1− (ki + 1) mod 2

]
−

n∑
i=1

ki

=
1

4

n∑
i=1

[
k2i + ki mod 2

]
+

1

2

n∑
i=1

ki − (n− 1)

=
1

4

(
n
〈
k2
〉

+ q
)
.

It is easy to see that Dcat
min is a tighter lower bound of Dt

min than Dt
0. Thanks to

equations 14 and 21, the condition Dcat
min ≥ Dt

0 is equivalent to〈
k2
〉
≥ 4

(
1− 1

n

)
− q

n
.

Furthermore, this condition will be always satisfied provided that n ≥ 2 because it holds

even when 〈k2〉 takes its minimum value, namely [14]〈
k2
〉linear

= 4− 6

2
.

The substitution by 〈k2〉linear in the condition above gives q ≥ 2, which is trivially true

for any tree such that n ≥ 2 as any tree with such a number of vertices has at least two

leaves.

4.2. Bistar trees

The following corollary presents formulae of Dt
min for bistar trees and three instances:

stars, quasistars and balanced star trees.

Corollary 1. In any bistar tree, where k1 is the largest degree,

Dbistar
min =

⌊
1

4
(k1 + 1)2

⌋
+

⌊
1

4
(n− k1 + 1)2

⌋
− 1 (22)

=
1

2
k1(k1 − n) +

1

4
[n(n+ 2) + q′]− 1, (23)

where

q′ = k1 mod 2 + (n− k1) mod 2.
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In addition,

Db−bistar
min =

⌊
1

8
(n+ 2)2

⌋
− 1 (24)

=
1

8
(n2 + 4n− 4− φ), (25)

with

φ = ((n+ 2)2 mod 8),

and also

Dquasi
min =

⌊
1

4
(n− 1)2

⌋
+ 1

=
1

4
[n(n− 2) + n mod 2] + 1, (26)

Dstar
min =

⌊
1

4
n2

⌋
=

1

4
(n2 − n mod 2). (27)

Proof. As a bistar tree is a caterpillar tree, the application of equation 20 (Theorem 4)

with k2 = n− k1 and ki = 1 for i ≥ 3, gives equation 22. Besides, the application of 21

(Theorem 4) with 〈k2〉 for a bistar tree (equation 9) produces equation 23 after some

mechanical work.

As a balanced bistar tree is a bistar tree with k1 = dn/2e, equation 22 gives⌊
1

4

(⌈n
2

⌉
+ 1
)2⌋

+

⌊
1

4

(⌊n
2

⌋
+ 1
)2⌋
− 1

immediately. However, a much simpler modular formula will be obtained from equation

23. In this respect, notice that

k1 =
1

2
(n+ n mod 2),

and also that 0 ≤ q′ ≤ 2, in particular, q′ = 1 if n is odd and

q′ = 2
(n

2
mod 2

)
if n is even. Then equation 23 produces

Db−bistar
min =

{
1
8
(n2 + 4n− 8 + 4(n/2 mod 2)) n is even

1
8
(n2 + 4n− 5) n is odd.

or

Db−bistar
min =


1
8
(n2 + 4n− 8) n mod 4 = 0

1
8
(n2 + 4n− 4) n mod 4 = 2

1
8
(n2 + 4n− 5) otherwise.

in expanded form. From this point, equation 25 follows immediately. Noting that

Db−bistar
min =

1

8
[(n+ 2)2 − 8− (n+ 2)2 mod 8]
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Figure 5. The scaling of Dt
min and Dt

max as a function of n, the number of vertices

of the tree t, for different trees sorted increasingly by their hubiness (Table 2). (a)

linear trees (black). (b) balanced bistar trees (blue). (c) quasistar trees (orange) and

(d) star trees (green).

and applying the definition of modulus, i.e.

(n+ 2)2 mod 8 = (n+ 2)2 − 8

⌊
(n+ 2)2

8

⌋
,

one finally obtains 24.

A quasistar tree is a bistar tree where k1 = n − 2, which transforms equations 22

and 23 into equation 26 after some algebraic work. Similarly, a star tree is a bistar tree

where k1 = n− 1, which transforms equations 22 and 23 into equation 27. Equation 27

has been derived through other means [26].
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Figure 3 (a) shows the growth of Dt
min for different trees. Figure 5 compares the

growth of Dt
max against Dt

min for each tree.

5. The maxima of optimality scores

Here we aim to investigate a couple of optimality scores: ∆t = Dt − Dt
min [21] and

Γt = Dt/Dt
min [2, 20]. By definition of Dt

min, ∆t ≥ ∆t
min = 0 and Γt ≥ Γtmin = 1.

For a specific tree t of n vertices, the maximum value of ∆t over all possible linear

arrangements is

∆t
max = Dt

max −Dt
min.

Similarly,

Γtmax =
Dt
max

Dt
min

.

Indeed, ∆t
max is the vertical distance separating Dt

min and Dt
max for a given n in Figure

5.

Table 3 allows one to obtain formulae of ∆t
max or Γtmax for specific trees. Figure 6

shows the growth of ∆t
max and Γtmax for specific trees. The star tree is actually a baseline

because we will show that it minimizes ∆t
max and Γtmax. In star trees, quasistar trees

and balanced bistar trees, Γtmax converges to a constant (figure 6 (b)) because both Dt
min

and Dt
max are quadratic functions of n (Table 3). In balanced bistar trees, the leading

coefficients are 1/8 and 3/4, respectively, which gives

lim
n→∞

Γb−bistarmax = 6.

By similar arguments,

lim
n→∞

Γstarmax = lim
n→∞

Γquasimax = 2.

These limiting values are consistent with figure 6 (b).

Here we aim to apply the results in the preceding sections to investigate an

important question for research on these scores as a function of n [2, 21]: what are

the minimum and the maximum value that ∆t
max or Γtmax can attain over all trees of n

vertices?

5.1. The minima of ∆t
max and Γtmax

The fact that Dt
max ≥ Dstar

max (Theorem 6) and Dt
min ≤ Dstar

min [13, 26] gives

Dt
max −Dt

min ≥ Dstar
max −Dstar

min

∆t
max ≥ ∆star

max
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Figure 6. The scaling of the maximum value of the optimality scores as a function of

n, the number of vertices of the tree t, for different trees: linear trees (black), balanced

bistar trees (blue), quasistar trees (orange) and star trees (green). (a) ∆t
max. For

reference, the upper bound Db−bistar
max −Dlinear

min (dashed gray line) is also shown. (b)

∆t
max. For reference, the upper bound Db−bistar

max /Dlinear
min (dashed gray line) is also

shown.
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and also

Dt
max

Dt
min

≥ Dstar
max

Dstar
min

Γtmax ≥ Γstarmax.

5.2. The maxima of ∆t
max and Γtmax

The fact that Dt
max ≤ Db−bistar

max (Theorem 1) and Dt
min ≥ Dlinear

min [26] imply that

∆t
max ≤ Db−bistar

max −Dlinear
min (28)

and also

Γtmax ≤
Db−bistar
max

Dlinear
min

. (29)

However, these are unlikely to be tight upper bounds of ∆t
max and Γtmax because the two

kinds of trees involved in equation 28 and equation 29, star trees and balanced bistar

trees, are not the same, contrary to what happened for the minima of ∆t
max and Γtmax,

given exactly by a star tree in both cases.

We perform a computational analysis of the maxima of ∆t
max and Γtmax (the methods

are explained in Appendix E). One the one hand, such analysis indicates that (Table 4)

∆t
max ≤ ∆b−bistar

max (30)

for n ≤ 8, consistently with figure 6 (a), but

∆t
max ≤ ∆t∗

max (31)

for 9 ≤ n ≤ 11, where t∗ is some caterpillar tree that is neither a bistar nor a linear

tree. In addition, the bistar tree is not the only tree maximizing ∆t
max for 4 ≤ n ≤ 8

(Table 4). Notice that, for n = 3, a linear tree, a star tree and a balanced bistar tree

are actually the same tree (when n = 4, the linear tree and the balanced bistar tree are

the same tree). On the other hand, the analysis indicates that (Table 5)

Γtmax ≤ Γlinearmax (32)

for n ≤ 11, consistently with figure 6 (b). Interestingly, the linear tree is the only tree

maximizing Γtmax up to n = 11 (Table 5).

5.3. The relationship with ∆rla and Γrla

We define the expected value of ∆t and Γt in a random linear arrangement (rla) of a

given tree t as ∆t
rla and Γtrla respectively. Recall that Drla = Erla[D]. Given a tree t,

Dt
min and Drla are constant and then

∆t
rla = Erla[∆t]

= Erla[Dt −Dt
min]

= Drla −Dt
min
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Table 4. Maximum ∆t
max as a function of n and statistical properties of the trees

that reach it: the kind of tree, K2 = n
〈
k2
〉
, the sum of squared degrees, k1, the

maximum degree, n1, the number of leaves, Lt, the diameter in edges, 〈l〉t, the average

path length, and finally, Dt
min and Dt

max, the minimum and the maximum of Dt over

all n! linear arrangements. As for the kind of tree, quasi stands for quasistar tree,

b-bistar for balanced bistar and cat for caterpillar.

n ∆b−bistar
max Maximum Kind of tree K2 k1 n1 Lt 〈l〉t Dt

min Dt
max

∆t
max

3 1 1 linear star b-bistar 6 2 2 2 1.33 2 3

4 4 4 linear quasi b-bistar 10 2 2 3 1.67 3 7

5 7 7 linear 14 2 2 4 2 4 11

quasi b-bistar 16 3 3 3 1.8 5 12

6 12 12 linear 18 2 2 5 2.33 5 17

cat 20 3 3 4 2.07 6 18

b-bistar 22 3 4 3 1.93 7 19

7 18 18 cat 24 3 3 5 2.48 7 25

cat 24 3 3 5 2.38 7 25

cat 26 3 4 4 2.19 8 26

cat 28 4 4 4 2.1 8 26

b-bistar 30 4 5 3 2 9 27

8 26 26 cat 30 3 4 5 2.43 9 35

cat 30 3 4 5 2.64 9 35

cat 30 3 4 5 2.5 9 35

cat 34 4 5 4 2.21 10 36

b-bistar 38 4 6 3 2.07 11 37

9 34 35 cat 38 4 5 5 2.5 11 46

cat 38 4 5 5 2.56 11 46

cat 38 4 5 5 2.44 11 46

cat 38 4 5 5 2.72 11 46

cat 42 4 6 4 2.28 12 47

10 44 46 cat 46 4 6 5 2.47 13 59

cat 46 4 6 5 2.82 13 59

cat 46 4 6 5 2.56 13 59

11 55 57 cat 50 4 6 6 2.73 14 71

cat 50 4 6 6 2.87 14 71

cat 50 4 6 6 3.02 14 71

cat 52 4 7 5 2.58 15 72

cat 52 4 7 5 2.73 15 72

cat 52 4 7 5 2.84 15 72

cat 52 4 7 5 2.62 15 72

cat 56 5 7 5 2.55 16 73

cat 56 5 7 5 2.58 16 73

cat 56 5 7 5 2.87 16 73

cat 56 5 7 5 2.47 16 73
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Table 5. Maximum Γt
max as a function of n and statistical properties of the trees

that reach it. The format is based on that of Table 4. 〈l〉t = (n+ 1)/3 as expected for

a linear tree [4].

n Γlinear
max Maximum Kind of tree K2 k1 n1 Lt 〈l〉t Dt

min Dt
max

Γt
max

3 1.5 1.5 linear star b-bistar 6 2 2 2 1.33 2 3

4 2.33 2.33 linear quasi b-bistar 10 2 2 3 1.67 3 7

5 2.75 2.75 linear 14 2 2 4 2 4 11

6 3.4 3.4 linear 18 2 2 5 2.33 5 17

7 3.83 3.83 linear 22 2 2 6 2.67 6 23

8 4.43 4.43 linear 26 2 2 7 3 7 31

9 4.88 4.88 linear 30 2 2 8 3.33 8 39

10 5.44 5.44 linear 34 2 2 9 3.67 9 49

11 5.9 5.9 linear 38 2 2 10 4 10 59

Table 6. Vt
rla, the variance of Dt in uniformly random linear arrangements of a tree

t of n vertices for specific trees. Vlinear
rla and Vstar

rla are borrowed from [22]. Vb−bistar
rla

and Vquasi
rla are derived from 33 and the corresponding value of

〈
k2
〉

in table 2.

t Vt
rla

linear 1
90 (n− 2)(n+ 1)(4n− 7)

balanced bistar 1
180 (n+ 1)

[
2(n− 4)dn/2e(dn/2e − n) + n(n2 − n− 14) + 12

]
quasistar 1

180 (n+ 1)[n((n− 3)n+ 10)− 20]

star 1
180 (n+ 1)(n− 1)(n+ 2)(n− 2)

Γtrla = Erla[Γt]

= Erla
[
Dt

Dt
min

]
=

Drla

Dt
min

.

The fact that

Dt
min ≤ Drla ≤ Dt

max

gives

0 = ∆t
min ≤ ∆t

rla ≤ ∆t
max

1 = Γtmin ≤ Γtrla ≤ Γtmax.
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6. The minimum and the maximum z-score

For a specific tree t of n vertices, the minimum and the maximum values of Dt
z over all

possible linear arrangements are

Dt
z,min =

Dt
min −Drla

(Vt
rla)

1/2

Dt
z,max =

Dt
max −Drla

(Vt
rla)

1/2
.

Table 3 and [22]

Vt
rla =

n+ 1

45

[
(n− 1)2 +

(n
4
− 1
)
n
〈
k2
〉]

(33)

allow one to obtain formulae of Dt
z,min and Dt

z,max for specific trees. Table 6 summarizes

Vt
rla in these trees. Let us consider Dlinear

z,min as an example. The numerator of Dlinear
z,min is

(Table 3 and equation 4)

Dlinear
min −Drla = −1

3
(n− 1)(n− 2)

whereas the denominator is Vlinear
rla (Table 6). Then

Dlinear
z,min = −(n− 1)

[
10(n− 2)

(n+ 1)(4n− 7)

]−1/2
.

Figure 7 shows the evolution of Dt
z,min and Dt

z,max as n increases for specific trees.

In star trees, quasistar trees and balanced bistar trees, both Dt
min−Drla, D

t
max−Drla

and (Vt
rla)

1/2 are quadratic functions of n (Tables 3 and 6). In balanced bistar trees, the

leading coefficient of Dt
min−Drla is 1/8−1/3 = −5/24 and that of (Vt

rla)
1/2 is 1/(6

√
10),

giving

lim
n→∞

Db−bistar
z,min = −5

4

√
10.

In stars and quasistars, the leading coefficients are 1/4 − 1/3 = −1/12 and 1/(6
√

5).

Hence

lim
n→∞

Dstar
z,min = lim

n→∞
Dquasi
z,min = −

√
5

2
.

In balanced bistar trees, the leading coefficient of Dt
max−Drla is 3/4−1/3 = 5/12 while

that of (Vt
rla)

1/2 is 1/(6
√

10), giving

lim
n→∞

Db−bistar
z,max =

5

2

√
10.

In stars and quasistars, the leading coefficients are 1/2−1/3 = 1/6 and 1/(6
√

5). Hence

lim
n→∞

Dstar
z,max = lim

n→∞
Dquasi
z,max =

√
5.

These limiting values are consistent with figure 7.
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Figure 7. The scaling of Dt
z,min and Dt

z,max as a function of n, the number of

vertices of the tree t, for different trees: linear trees (black), balanced bistar trees

(blue), quasistar trees (orange) and star trees (green). For reference, the upper bound

of Dt
z,max, i.e. (Db−bistar

max −Drla)/(Vlinear
rla )1/2 (dashed gray line) is also shown.
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Figure 8. A linear arrangement of a quasibistar tree that maximizes Dt
z,max for any

tree of 11 vertices.

6.1. The minima and the maxima of Dt
z,min

Equation 5 in combination with [22]

Vlinear
rla ≤ Vt

rla ≤ Vstar
rla (34)

yield that

Dlinear
z,min ≤ Dt

z,min ≤ Dstar
z,min. (35)

6.2. The minima and the maxima of Dt
z,max

Dstar
max ≤ Dt

max ≤ Db−bistar
max (Theorems 1 and 6) in combination with equation 34 yield

Dstar
z,min ≤ Dt

z,max ≤
Db−bistar
max −Drla

Vlinear
rla

. (36)

Again, the latter upper bound is unlikely to be a tight upper bound of Dt
z,max because

the two kinds of trees involved (a balanced bistar and a linear tree) are not the same.

Interestingly, figure 7 (b) shows that Dbistar
z,max ≤ Dlinear

z,max only for n < 82.

The computational analysis (Appendix E) in Table 7 indicates that

Dt
z,max ≤ Db−bistar

z,max (37)

for n ≤ 10, consistently with figure 7 (b). The balanced bistar tree is the only tree

maximizing Dt
z,max up to n = 10 (Table 7). Contrary to expectations, the trend is

broken for n = 11 because

Dt
z,max ≤ Dt∗

z,max

with t∗ being some caterpillar tree that is neither a bistar nor a linear tree. That tree

has only three internal vertices and is indeed a quasibistar tree (Fig. 8): it is a balanced

bistar tree of 10 vertices where one of the leaves has been connected to an extra vertex

(leading to the degree sequence k1 = k2 = 5, k3 = 2 and ki = 1 for 4 ≤ i ≤ 11).



The variation of the sum of edge lengths in linear arrangements of trees 30

Table 7. Maximum Dt
z,max as a function of n and statistical properties of the trees

that reach it. The format is based on that of Table 4.

n Db−bistar
z,max Maximum Kind of tree K2 k1 n1 Lt 〈l〉t Dt

min Dt
max

Dt
z,max

3 0.71 0.71 linear star b-bistar 6 2 2 2 1.33 2 3

4 2 2 linear quasi b-bistar 10 2 2 3 1.67 3 7

5 2.45 2.45 quasi b-bistar 16 3 3 3 1.8 5 12

6 3.1 3.1 b-bistar 22 3 4 3 1.93 7 19

7 3.41 3.41 b-bistar 30 4 5 3 2 9 27

8 3.84 3.84 b-bistar 38 4 6 3 2.07 11 37

9 4.06 4.06 b-bistar 48 5 7 3 2.11 14 48

10 4.37 4.37 b-bistar 58 5 8 3 2.16 17 61

11 4.54 4.56 cat 62 5 8 4 2.33 18 74

6.3. The relationship with Dz,rla

We define Dt
z,rla as the expected the value of Dt

z in a random linear arrangement (rla)

of a given tree t. As Dt
min, Drla and Vt

rla are constant given a tree t, one has

Dt
z,rla = Erla

[
Dt −Drla

(Vt
rla)

1/2

]
=

Erla[Dt]−Drla

(Vt
rla)

1/2

= 0.

The fact that

Dt
min ≤ Drla ≤ Dt

max

gives

Dt
z,min ≤ Dt

z,rla ≤ Dt
z,max.

7. Discussion

The main results of the preceding sections have been validated using a computational

procedure described in Appendix E.

We have investigated the limits of the variation of Dt, the sum of edge lengths

of trees of a given size n (Table 3). As for Dt
min, we have contributed with new

formulae for the class of caterpillar trees that depend only on n and the vertex degrees,

complementing the pioneering research in [31]. These formulae have allowed us to obtain

formulae for the subclass of bistar trees that depend only on n and k1, the maximum

degree, which in turn have allowed us to obtain new formulae that depend only on n

for specific trees: quasistar trees and balanced bistar trees. [31] obtained a lower bound

for Dt
min (Table 3) that gives actually the exact value of Dt

min when t is a caterpillar.

We have contributed with a much shorter proof of the argument and showing that the
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lower bound is actually a significant improvement with respect to previous attempts to

provide a lower bound of Dt
min based on vertex degrees [37, 14]. Therefore, although

Dt
min can be calculated in polynomial time employing existing algorithms [10, 11, 12],

Dt
min can be calculated in constant time for caterpillar given trees of size n, 〈k2〉 and q

(Table 3).

As for Dt
max, we have not found a simple enough formula for the class of caterpillar

trees but we have obtained one for the subclass of bistar trees as function of n and k1.

Thanks to this work we have obtained new formulae that depend only on n for specific

trees: quasistar trees and balanced bistar trees (Table 3). The new formula of Dt
max for

linear trees has been obtained employing an independent analysis. A unified derivation

of Dt
max for linear trees and bistar trees, as well as a general but simple formula of Dt

max

for caterpillar trees, should be the subject of future research. Finally, we delimited the

range of variation of Dt
max, obtaining the following chain of inequalities

Drla ≤ Dstar
max ≤ Dt

max ≤ Db−bistar
max . (38)

The importance of this chain is two-fold. First, it indicates that the problem of

maximizing Dg and that of minimizing Dg are not symmetric, because the corresponding

chain for the minimization problem does not involve balanced bistar trees (equation

5). Second, it links the problem of maximizing Dt without constraints (i.e. Dt
max)

with the problem of maximizing Dt under the planarity constraint (i.e. Dt
max,P ),

since Dt
max,P ≤ Dlinear

max,P = Dstar
max [14]. The finding indicates that any tree has a

linear arrangement reaching the maximum possible Dt for any tree under the planarity

constraint, namely Dt
max ≥ Dlinear

max,P = Dstar
max ([14] did not address the question of whether

Dt
max,P = Dlinear

max,P = Dstar
max for any other tree t). Real syntactic dependency trees are

almost planar in the sense that edge crossings are scarce [35] and the origin of such a

characteristic is being debated [42].

In this article, we have established some mathematical foundations for the analysis

and development of optimality scores based on Dt and explored some implications for

the limits of the variation of two scores: Γt and ∆t. We have obtained the following

chains of inequalities:

0 = ∆t
min ≤ ∆t

rla ≤ ∆star
max ≤ ∆t

max (39)

1 = Γtmin ≤ Γtrla ≤ Γstarmax ≤ Γtmax. (40)

We conjecture that Γtmax ≤ Γlinearmax and that the linear tree is the only maximum of

Γtmax (Table 5). A linear tree is the tree that minimizes the denominator of Γtmax. The

numerator is maximized by a balanced bistar tree but it is easy to show (just using the

formulae in Table 3) that Γtmax ≤ Γlinearmax for any tree t that is a bistar. Similarly, we

have obtained the following chains of inequalities for the z-score:

Dlinear
z,min ≤ Dt

z,min ≤ Dstar
z,min ≤ Dz,rla = 0 (41)

0 = Dz,rla ≤ Dstar
z,max ≤ Dt

z,max. (42)

The problem of the trees that maximize Γtmax, ∆t
max and Dt

z,max should receive

further investigation in two directions: characterizing the trees that maximize these
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scores (proving or refuting the conjectures above) or, at least, expanding the range of

n for which the true optima are known. We hope that our findings stimulate further

research on optimality scores in linear arrangements.
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Appendix A. A derivation of Dlinear
max

We apply a result by [43] to prove 7. Given a set An = {a1, a2, . . . , an}, where

a1 < a2 < . . . < an, [43] shows how to calculate a permutation α = α1α2 . . . αn such

that for certain functions f ,

Df (α) =
n−1∑
i=1

f(|αi − αi+1|)

is maximized. Dlinear
max is a particular case with An = {1, 2, . . . , n} and f the identity

function (id). An is the set of vertex labels when the vertices are labelled by a a

depth first search traversal from one leaf to the other leaf assigning consecutive numbers

between 1 and n.

Under these assumptions, for each permutation α of the form noted above, we can

construct a linear arrangement whose cost is Did(α). This is the arrangement where

the i-th vertex (the vertex labelled with i) is assigned the position αi in the linear

arrangement. Thus, the length of each arc of the form {i, i + 1} is |αi − αi+1|, and

the total sum of lengths is
∑n−1

i=1 |αi − αi+1|, which equals Did(α). This correspondence

between permutations and linear arrangements is trivially bijective, as one can go from

linear arrangements to permutations following the inverse process.

We restate Theorem 1 in [43] under our particular conditions as follows:

Theorem 5 (Chao and Liang, [43]). A permutation of {1, 2, ..., n} is maximum if it

maximizes

D(α) =
n−1∑
i=1

|αi − αi+1|.
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Figure A1. Maximum linear arrangements of linear trees with n vertices. Vertex

labels indicate the position of each vertex in the degree sequence. Edge labels indicate

edge lengths. (a) n = 8 and Dt = Dlinear
max = 31, generated by the permutation

α = 5, 3, 7, 1, 8, 2, 6, 4. (b) n = 9 and Dt = Dlinear
max = 39, generated by the permutation

α = 5, 6, 3, 8, 1, 9, 2, 7, 4.

If n = 2c, then the maximum permutations with α1 > αn are those satisfying the

following three conditions:

(i) α1 = c+ 1, αn = c

(ii) α2α4 · · ·α2c−2 is a permutation of {1, 2, . . . , c− 1}
(iii) α3α5 · · ·α2c−1 is a permutation of {c+ 2, c+ 3, . . . , 2c}

If n = 2c + 1, then the maximum permutations with α1 > αn are those satisfying the

following three conditions:

(iv) α1 = c+ 1, αn = c

(v) α2α4 · · ·α2c is a permutation of {c+ 2, c+ 3, . . . , 2c+ 1}
(vi) α3α5 · · ·α2c−1 is a permutation of {1, 2, . . . , c− 1}

or the following three conditions:

(vii) α1 = c+ 2, αn = c+ 1

(viii) α2α4 · · ·α2c is a permutation of {1, 2, . . . , c}
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(ix) α3α5 · · ·α2c−1 is a permutation of {c+ 3, c+ 4, . . . , 2c+ 1}

The maximum permutations with α1 < αn are the reverse permutations of those specified

above.

Notice that according to conditions (i-iii) and (vii-ix) of the previous theorem, any

linear tree has maximum linear arrangements that are divided into two parts: a first

part with all the vertices with even labels and a second part with all the vertices with

odd labels. Based on that property, we describe a procedure that generates concrete

maximum linear arrangements such that they are easy to draw (figure A1) and allow

one to calculate Dlinear
max easily.

Let c be n/2 and β a function such that β(x) = 1 if x < c and β(x) = −1 if x > c.

When n is even, the procedure is

(i) Place the two leaves at the center of the linear arrangement (the vertex labelled

with n in position c and the one labelled with 1 in position c + 1). This satisfies

condition (i) of theorem 5.

(ii) One leaf is the current vertex in the odd part and the other is the current vertex

in the even part.

(iii) Repeat the following steps untill all vertices have been placed.

(a) Take the current vertex of the even part, say x, and place vertex x+β(c) in the

nearest free position in the odd part. This satisfies condition (iii) of theorem

5.

(b) Take the current vertex of the odd part, say y, and place vertex y+β(y) in the

nearest free position in the even part. This satisfies condition (ii) of theorem

5.

(c) x+ β(x) becomes the current vertex of the odd part.

(d) y + β(y) becomes the current vertex of the even part.

Figure A1 (a) shows the outcome of the procedure for n = 8, producing 2 arcs of length

2, 2 arcs of length 4, 2 arcs of length 6 and one arc of length 7. By adding each of the

lengths produced for a linear tree with even n, one obtains

Dlinear
max = n− 1 + 2× (n− 2) + 2× (n− 4) + . . .+ 2× 4 + 2× 2

= n− 1 + 2× [(n− 2) + (n− 4) + . . .+ 4 + 2]

= n− 1 + 2×
[
n− 2

2
× 2 + n− 2

2

]
= n− 1 +

n2 − 2n

2

=
n2 − 2

2
. (A.1)

When n is odd, the procedure is

(i) Generate a linear arrangement for n−1 vertices, i.e. α1α2...αn−1 with the procedure

above. That arrangement consists of an even part and odd part of (n−1)/2 vertices

each.
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(ii) Generate a linear arrangement for n vertices from that of n−1 vertices by inserting

vertex n in the central position with respect to the linear arrangement of n vertices,

namely position c+ 1 = (n+ 1)/2 while displacing all vertices in the odd part one

position to the right.

It is easy to see that the linear arrangement over n vertices will be such that αn = c+1 =

(n+ 1)/2 and α1 = c+ 2 as expected from condition (viii) of theorem 5 while there will

be (n− 1)/2 even vertices followed by (n+ 1)/2 odd vertices, thus satisfying conditions

(viii) and (ix) of theorem 5. Figure A1 (b) shows the outcome of the procedure for

n = 9. When n is odd (figure A1) and reasoning analogously, we can build a maximum

linear arrangement with a summation of lengths as the following

Dlinear
max = n− 1 + 2× (n− 2) + 2× (n− 4) + . . .+ 2× 3 + 1

= n− 1 + 2× [(n− 2) + (n− 4) + . . .+ 5 + 3] + 1

= n+ 2×
[
n− 3

2
× 3 + n− 2

2

]
= n+

n2 − 2n− 3

2

=
n2 − 3

2
. (A.2)

Finally, equations A.1 and A.2 can be unified as equation 7.

Appendix B. Dt
max in bistar trees

We define γ(i) as the set of adjacent vertices of i [44], also termed the set of 1st

neighbours or nearest neighbours of i [45]. We define an extreme linear arrangement of

a bistar tree as an ordering of the vertices following the one of the following templates:

1, γ(2) \ {1}, γ(1) \ {2}, 2

as in figure A2, or its symmetric, i.e.

2, γ(1) \ {2}, γ(2) \ {1}, 1

The following lemma indicates how to arrange a single vertex and its attached

vertices so as to maximize its sum of edge lengths.

Lemma 1. Suppose that Dg
i is the sum of the lengths of the edges attached to the i-th

vertex of a graph g of n vertices. Then Dg
i,max, the maximum value of Dg

i over the n!

linear arrangements of the whole graph is

Dg
i,max =

1

2
ki(2n− ki − 1) (B.1)

and is achieved when vertex i is placed at one of the ends of the linear arrangement and

its adjacent vertices at the other end.
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Figure A2. Extreme linear arrangements of balanced bistar trees of n vertices.

Vertex labels indicate the position of each vertex in the degree sequence. Edge

labels indicate edge lengths. (a) n = 8 and Dt = Db−bistar
max = 37. (b) n = 9 and

Dt = Db−bistar
max = 48.

Proof. When the i-th vertex is placed at one of the ends of the linear arrangement and

its adjacent vertices as far as possible (consecutively at the other end),

Dg
i =

ki∑
j=1

(n− j),

which gives equation B.1. If the i-th vertex is not placed at one of the ends but its

neighbours are still placed as far as possible, Dg
i cannot exceed Dg

i,max. A detailed

argument follows.

We define h as the position of vertex i in the linear arrangement (1 ≤ h ≤ n), k−i as

the number of neighbours of i placed before i and k+i as the number of neighbours of i

placed after i. In such a linear arrangement, the maximum value of Dg
i , i.e. Dg

i,max,k−i ,k
+
i

,

is achieved placing the k−i neighbours at the beginning of the linear arrangement and

the k+i neighbours at the end of the linear arrangement, producing

Dg

i,max,k−i ,k
+
i

=

k−i∑
j=1

(h− j) +

k+i∑
j=1

(n− j + 1− h).
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We will show that Dg

i,max,h,k−i ,k
+
i

≤ Dg
i,max = Dg

i,max,1,0,ki
= Dg

i,max,n,ki,0
, i.e.

k−i∑
j=1

(h− j) +

k+i∑
j=1

(n− j + 1− h) ≤
ki∑
j=1

(n− j),

that is equivalent to

ki−k+i∑
j=1

(h− j) + (1− h)k+i ≤
ki∑

j=k+i +1

(n− j).

Rearranging the terms and calculating certain summations the inequality becomes

0 ≤ (ki − k+i )(n− h) +

ki−k+i∑
j=1

j −
ki∑

j=k+i +1

j + (h− 1)k+i .

Calculating the remaining summations one obtains, after some routine calculations,

0 ≤ (ki − k+i )(n− h− k+i ) + (h− 1)k+i ,

which is trivially true because k+i ≤ ki, 1 ≤ h and k+i ≤ n− h by definition.

The previous lemma generalizes a previous result on Dstar
max, that is achieved when

the hub of the star is located at one of the ends of the linear arrangement [46] (figure

C2 (a)). In a star tree t, Dt is determined by the sum of edge lengths of the hub vertex.

The following lemma indicates that an extreme linear arrangement of a bistar is

actually a maximum linear arrangement.

Lemma 2. In a bistar tree t of n vertices and maximum degree k1, Dt
max is

Dbistar
max = k1(n− k1) +

n

2
(n− 3) + 1 (B.2)

and a extreme linear arrangement of t is actually a maximum linear arrangement.

Proof. A bistar tree can be seen as two star trees joined by a common edge. Then Dt

can be decomposed as

Dt = Dt
1 +Dt

2 − dt12, (B.3)

where Dt
i is the sum of the lengths of edges attached to the vertex with the i-th largest

degree and dt12 is the length of the edge joining the two vertices with the largest degrees.

To maximize Dt following equation B.3, one has to maximize Dt
1 and Dt

2. By lemma 1,

Dt
1 is maximized placing vertex 1 at one end and its neighbours at the other end. Since

Dt
2 also must be maximized then, by the same lemma, vertex 2 has to be placed at the

opposite end (otherwise Dt
1 < Dt

1,max or Dt
2 < Dt

2,max), which gives dt12 = n− 1. Such a

linear arrangement is an extreme linear arrangement of a bistar tree and equation B.3

gives

Dbistar
max = Dt

1,max +Dt
2,max − (n− 1)

=
1

2
k1(2n− k1 − 1) +

1

2
(n− k1)(n+ k1 − 1)− (n− 1).
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v ui

γ(v, 0) γ(v, 2) γ(v, 3) γ(v, 1)n− S3 nodes

n− S3 + 1

n− S3 + 2

n− S3 + 3

n− S3 + s3 − 1

n− S3 + s3

Figure C1. The edges between γ(v, 2) and γ(v, 3) when they are formed exclusively

with ui, the vertex of γ(v, 2) that is the closest to γ(v, 3).

Equation B.2 is recovered after some algebra.

Thanks to the preceding work, formulae of Dt
max for specific bistar trees follow

easily.

Corollary 2.

Db−bistar
max =

1

4

(
3(n− 1)2 + 1− n mod 2

)
(B.4)

Dquasi
max =

1

2
(n+ 3)(n− 2)

Dstar
max =

(
n

2

)
.

Proof. Db−bistar
max is obtained applying k1 = dn/2e to equation B.2 (Theorem 2). When

n is odd, k1 = (n+ 1)/2 and then equation B.2 gives

Db−bistar
max =

3

4
(n− 1)2.

When n is even, k1 = n/2, one obtains

Db−bistar
max =

1

4
(3(n− 1)2 + 1).

Therefore, for any n, Db−bistar
max follows equation B.4. Similarly, Dquasi

max is obtained with

k1 = n− 2 and Dstar
max is obtained with k1 = n− 1 after some mechanical work.

Appendix C. The minimum Dt
max

The following theorem states that for any tree with n vertices we can always find an

arrangement with total length at least n(n−1)
2

.

Theorem 6 (Minimum Dt
max). For any tree t of n vertices,

Dt
max ≥ Dstar

max =

(
n

2

)
.
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Proof. Let us consider a tree t of n vertices and define, γ(v, i), the set of vertices that

are at topological distance i from vertex v in t, with γ(v, 0) = {v}. Equivalently, γ(v, i)

is the set of i-th neighbours of v. γ(v, 1) is the set of vertices adjacent to v [44]. For

instance, in a star tree of n vertices where the hub is vertex 1 and v 6= 1 is some leaf,

γ(v, 1) = {1} and γ(v, 2) = {2, 3, ..., } \ {v}.
A linear arrangement that gives sum at least Dstar

max follows the template defined by

the sequence

γ(v, 0), γ(v, 2), γ(v, 4), · · · , γ(v, 3), γ(v, 1) (C.1)

This is not a proper arrangement because the γ(v, i) is a set and its elements are not

ordered. We can get a proper arrangement by ordering the vertices in every set γ(v, i)

in any arbitrary way.

Let si be |γ(v, i)| and Si =
∑i

j=0 sj. We define Vi as the set of vertices reached up

to topological distance i, i.e.

Vi = ∪ij=0γ(v, j).

Hence Si = |Vi|.
Let us use induction on the topological distance i.

Induction hypothesis. The sum of the lengths of the edges formed by vertices in Vi
is at least

Si−1∑
j=1

(n− j). (C.2)

Base case. For i = 0, Si = 1 and the sum of edge lengths must be zero trivially.

Induction step. Note that the number of vertices between γ(v, i) and γ(v, i + 1),

that is si+2 + si+3 + . . ., is n − Si+1 (figure C1). According to the template of linear

arrangement in equation C.1, the vertices in γ(v, i+ 1) are the farthest away from those

of γ(v, i) among vertices with topological distance i + 1 or more. Let B the sum of

lengths of the si+1 edges from γ(v, i) to γ(v, i+ 1). Suppose that these edges start from

ui, the vertex in γ(v, i) nearer to γ(v, i + 1) in the linear arrangement, which implies

the vertices in γ(v, i) \ {ui} must be leaves (figure C1). Then

B =

si+1∑
j′=1

(n− Si+1 + j′)

=

Si+1−1∑
j=Si+1−si+1

(n− j)

=

Si+1−1∑
j=Si

(n− j).

If edges from γ(v, i) to γ(v, i + 1) involved any vertex in γ(v, i) \ {ui}, then B would

increase. Thus, thanks to the induction hypothesis, the sum of the costs of the edges
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(a) (b)

Figure C2. Linear arrangements of trees of n vertices where n = 6 and

Dt =
(
n
2

)
= 15. (a) Linear arrangement of a star tree that is both a maximum linear

arrangement and a maximum planar linear arrangement (Dt = Dt
max,P = Dt

max). (b)

Linear arrangement of a linear tree that is a maximum planar linear arrangement but

not a maximum linear arrangement (Dt = Dt
max,P < Dt

max = 17; recall Table 3).

from the vertices in Vi+1 is at least

Si−1∑
j=1

(n− j) +B =

Si−1∑
j=1

(n− j) +

Si+1−1∑
j=Si

(n− j)

=

Si+1−1∑
j=1

(n− j)

as expected.

Let ζ(v) be the maximal topological distance to v in some tree, then Sζ(u) = n and

equation C.2 gives

Dt
max ≥

n−1∑
j=1

j =

(
n

2

)
.

The previous theorem indicates that Dt
max is at least its value for star trees (figure

C2). However, it is well-known that Dstar
max can also be achieved by a linear tree

arranged as in figure C2 [14]. That arrangement follows from applying the template

of arrangement in equation C.1 with one of the leaves as the initial vertex.

Appendix D. An alternative derivation of Dt
max ≤ Db−bistar

max

Suppose that vertices are labelled with positions in the linear arrangement. An edge

between vertices i and j is indicated by the unordered pair {i, j}. The problem of

obtaining a tree that maximizes Dt
max for any tree t of n vertices is equivalent to the

problem of finding the maximum spanning tree of a complete graph where the weight

of the edge {i, j} is |i − j|, as each possible spanning tree bijectively corresponds to a

linear arrangement of some tree of n vertices, and the sum of weights corresponds to

its value of D. We will show that a balanced bistar tree is the outcome of an algorithm

that is based on Prim’s algorithm to find the minimum spanning tree of a graph [47].

Prim’s original algorithm solves a minimization problem. The maximization problem

can be solved using the customary minimization version with edge weights defined as
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(a)

1 2 3 4 5 6 7 8

4
5

6

6
5

4

7

(b)

1 2 3 4 5 6 7 8 9

4
5

6
7

7
6

5

8

Figure D1. Linear arrangements of balanced bistar trees of n vertices that maximize

Dt. Vertex labels indicate the position of each vertex. Edge labels indicate edge

distances. (a) n = 8 and Dt = 37. (b) n = 9 and Dt = 48.

n − |i − j|. We use a variant of Prim’s algorithm to solve the maximization problem

that eases the proof:

(i) Initialize the tree t with vertex 1.

(ii) Find the edge linking one vertex in t and another vertex outside t such that the

weight is maximized. Add the edge (and the new vertex) to t.

(iii) Repeat step ii until t has n vertices.

In the context of our application, i.e. the maximization of D for any possible tree

t of n vertices, this variant of Prim’s algorithm becomes

(i) Initialize the tree t with vertex 1.

(ii) Set x to 2 and y to n.

(iii) Compare the length of the edges {1, y} and {x, n}. If the longest edge is {1, y},
add the edge (and vertex y) to t and decrement y. Otherwise, add {x, n} (and add

x) to t and increment x.

(iv) Repeat step iii until t has n vertices.

Notice that the vertices that do not belong to t are in the interval [x, y]. As for Step iii,

notice that the longest edge liking one vertex in t, namely one vertex in [1, n] \ [x, y],



The variation of the sum of edge lengths in linear arrangements of trees 42

Iteration Edge Length [x, y]

0 - - [2, n]

1 {1, n} n− 1 [2, n− 1]

2 {1, n− 1} n− 2 [2, n− 2]

3 {2, n} n− 2 [3, n− 2]

4 {1, n− 2} n− 3 [3, n− 3]

5 {3, n} n− 3 [4, n− 3]

... ... ... ...

Table D1. The edge added at every iteration, its length and [x, y], the interval of

vertex labels that do not belong to t after adding the edge.

and another vertex outside t, namely one vertex in [x, y], can only be {1, y} or {x, n}.
It is easy to see that the execution of this algorithm produces edges that correspond to

a balanced bistar tree (Table D1) that is arranged linearly as in figure D1.

Appendix E. Validation

The main results of the article, namely Table 3 and the chains of inequalities in equations

38, 39, 40, 41 and 42 have been validated using a brute force procedure up to n = 11

inspired by that of [26]. For a given n, the procedure calculates Dt
min and Dt

max for

every distinct unlabelled tree and consists in generating all the nn−2 labelled trees using

Prüfer codes as in [26] while updating a two-level table containing the current value of

Dt
min and Dt

min and a signature of the tree to speed up the tree isomorphism test [48].

The signature of a tree is defined as a vector containing the canonical names [48] of the

trees rooted at each of the Jordan centers [49] of the original free tree. A tree has 1 or

2 Jordan centers [49]. For each labelled tree whose underlying unlabelled tree is t,

(i) Dt is calculated interpreting vertex labels as vertex positions in the linear

arrangement.

(ii) The signature of t for the test of tree isomorphism is calculated.

(iii) t is searched in the collection of already visited unlabelled trees. The unlabelled

trees are accessed using a two-level look-up table: first, by their value of n 〈k2〉 and

second, by the degree spectrum. The frequency spectrum is a vector indicating

the number of vertices of that have a certain degree k. Then, the corresponding

unlabelled tree is found comparing all the stored trees with the same degree

spectrum against the target tree using their respective signatures.

(iv) If t is new, then both Dt
min and Dt

max are set to Dt temporarily.

(v) If t is not new, then Dt
min and Dt

max are updated based on Dt.

At the end of the exploration, one has the exact value of Dt
min and Dt

max for every tree

t. As a sanity check, we verify that the number of labelled trees in the look-up table
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is the one expected by OEI A00055, https://oeis.org/A000055. We also verify, for

every tree t, that

(i) Dt
min coincides with the value obtained by the corrected version of Shiloach’s

algorithm [11] as a sanity check.

(ii) Dt
min and Dt

max match the predictions in Table 3 and satisfy the inequalities in

38,39 and 40.

Equations 30, 31, 32 and 37 have been inferred using the procedure above.
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