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In order to achieve deep natural language understanding, syntactic constituent parsing is a vital step,
highly demanded by many artificial intelligence systems to process both text and speech. One of the most
recent proposals is the use of standard sequence-to-sequence models to perform constituent parsing as a
machine translation task, instead of applying task-specific parsers. While they show a competitive per-
formance, these text-to-parse transducers are still lagging behind classic techniques in terms of accuracy,
coverage and speed. To close the gap, we here extend the framework of sequence-to-sequence models for
constituent parsing, not only by providing a more powerful neural architecture for improving their per-
formance, but also by enlarging their coverage to handle the most complex syntactic phenomena: discon-
tinuous structures. To that end, we design several novel linearizations that can fully produce
discontinuities and, for the first time, we test a sequence-to-sequence model on the main discontinuous
benchmarks, obtaining competitive results on par with task-specific discontinuous constituent parsers
and achieving state-of-the-art scores on the (discontinuous) English Penn Treebank.
� 2022 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND

license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Syntactic parsing is a fundamental problem for Natural Lan-
guage Processing in its pursuit towards deep understanding and
computer-friendly representation of human linguistic input. Par-
sers are in charge of efficiently and accurately providing syntactic
information so that it can be used for downstream artificial intelli-
gence applications such as machine translation [82,78,83], opinion
mining [81], relation and event extraction [48], question answering
[6], summarization [4], sentiment classification [3], sentence clas-
sification [83] or semantic role labeling and named entity recogni-
tion [53], among others.

One of the widely-used formalisms for representing the gram-
matical structure of a given sentence in human languages is con-
stituent trees. These structures decompose the sentence into
constituents (also called phrases) and establish hierarchical rela-
tions between them and the sentence’s words, resulting in a tree
structure. While regular (or continuous) constituent trees (as the
one depicted in Fig. 1(a)) are enough for representing a wide range
of syntactic structures, it is necessary to use discontinuous con-
stituent trees to fully describe all linguistic phenomena present
in human languages [29]. Although producing the latter is consid-
ered an especially challenging problem in constituent parsing [11],
they are necessary for adequately representing some syntactic
phenomena that occur in almost the 20% of the sentences from
the most widely-used syntactically-annotated corpus of English,
the Penn Treebank [45] such as cross-serial dependencies, disloca-
tions, long-distance extractions and some wh-movements [17],
which require constituents with discontinuous spans and result
in phrase structure trees with crossing branches. For instance, it
can be seen in Fig. 1(b) that the span of the constituent VP (com-
posed of the words Allerdings, in, bestimmten, Vierteln, aus, Brunnen
and verteilt) is a discontinuous string, since it is interrupted by the
words wird and Wasser from constituent S. Unlike the constinuous
constituent tree in Fig. 1(a)), this phenomenon generates a discon-
tinuous phrase structure tree with two crossing branches.

In the last three decades, different techniques have been pro-
posed for performing continuous and discontinuous constituent
parsing. One of the most recent approaches, introduced by Vinyals,
Kaiser, Koo, Petrov, Sutskever [74], consists in using generic
sequence-to-sequence models to directly translate text into phrase
structure trees, mimicking a machine translation task where these
models had previously achieved considerable success [64]. This
made it possible to perform continuous constituent parsing, which
until that moment required specific parsing algorithms, using a
task-independent model (without any further adaptation) that,
given an input sequence of words, predicts a sequence of tokens
that represent a linearization of a parse tree.
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Fig. 1. Continuous (a) and discontinuous (b) constituent trees taken from PTB train and NEGRA dev splits, respectively.
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However, while recent efforts on sequence-to-sequence con-
stituent parsing provided promising results, this trend did not
reach state-of-the-art results as it did on other natural language
processing tasks such as machine translation [40,75] or speech
recognition [46,76]. In fact, they lagged behind classic parsers
based on explicit tree-structured algorithms and supported by a
more extensive research background. The gap between task-
specific constituent parsers and sequence-to-sequence models
cannot be only quantified in terms of accuracy and speed [21],
but also in coverage: to the best of our knowledge, the latter
have not been applied to discontinuous constituent parsing to
date. While we can find numerous studies where transition-
based algorithms [9,8] and chart-based methods [60,11] were
successfully designed for producing discontinuous structures,
there has been no attempt to address the discontinuous con-
stituent parsing task with a sequence-to-sequence neural
architecture.

In order to improve the coverage of sequence-to-sequence con-
stituent parsers, it is necessary to design novel linearization tech-
niques capable of fully encoding discontinuous constituent trees
into a sequence of tokens. Taking as starting point previous
sequence-to-sequence approaches for continuous constituent
parsing [21], we develop several linearization strategies inspired
on how transition-based parsers handle discontinuities. Then, we
implement a powerful neural architecture based on the cutting-
edge sequence-to-sequence model proposed by Fernandez Astu-
dillo, Ballesteros, Naseem, Blodgett and Florian [18] for graph pars-
ing. The resulting system is not only the first sequence-to-
sequence model for discontinuous constituent parsing, but also
an accurate approach that delivers a high performance on the main
benchmarks.

Therefore, our main contributions are:

� The implementation of a novel sequence-to-sequence constituent
parser, building on the work developed by Fernández-González
and Gómez-Rodríguez [21] and Fernandez Astudillo et al. [18].
While the former defines linearizations for continuous parsing
that outperform those previously proposed, the latter intro-
duces a deterministic attention technique over a powerful
Transformer sequence-to-sequence architecture [50] that sig-
nificantly increases prediction accuracy. The resulting system
outperforms all existing sequence-to-sequence models and is
on par with state-of-the-art task-specific constituent parsers.

� Novel linearizations to model discontinuous structures. We design
different strategies to linearize discontinuous constituent trees
and test them with the proposed neural architecture, becoming
the first sequence-to-sequence model that, not only can pro-
duce discontinuous representations, but achieves a competitive
performance on the main discontinuous benchmarks: the dis-
continuous version of the English Penn Treebank (DPTB) [17],
and the German NEGRA [58] and TIGER [5] treebanks.

The remainder of this article is organized as follows: Section 2
firstly presents previous research work that contributed to model
and improve constituent parsing as a sequence-to-sequence prob-
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lem and, secondly, introduces task-specific constituent parsers
proposed so far for dealing with discontinuous trees. Section 3
explains how the parsing problem can be cast as a sequence pre-
diction task and other relevant concepts. In Section 4, we detail
our approach: we present the novel linearizations developed for
generating discontinuities and describe the proposed neural archi-
tecture. In Section 5, we extensively evaluate our sequence-to-
sequence model on continuous and discontinuous treebanks and
include a thorough analysis of their performance. Lastly, Section 6
contains a final discussion.

2. Related work

2.1. Constituent parsing as a sequence-to-sequence task

Since Vinyals, Kaiser, Koo, Petrov, Sutskever [74] presented the
first sequence-to-sequence model for constituent parsing, several
variants have been proposed seeking improvements in its perfor-
mance. These efforts have mainly focused on improving either
the proposed attentional sequence-to-sequence neural network
[2], or the linearization technique necessary for casting constituent
parsing as a sequence prediction problem, or both.

With respect to the original architecture by [2] based on recur-
rent neural networks, several attempts have modified the original
design by introducing deterministic attention strategies
[34,42,37,39,21]. These aim to improve the probabilistic attention
mechanism (implemented in sequence-to-sequence models to
select relevant context) for two purposes: (1) to obtain accuracy
gains by deterministically focusing on those input tokens that are
crucial for the parsing task and (2) to speed up the decoding pro-
cess by avoiding the need to go over the whole input sequence
when the attentional probabilities are computed. Lastly, Vaswani
et al. [68] propose a novel sequence-to-sequence architecture
based on Transformers, which manages to improve both accuracy
and speed.

Regarding the linearization strategy, Vinyals, Kaiser, Koo, Pet-
rov, Sutskever [74] opted for encoding the parse tree from top to
bottom by grouping constituents and words by means of brackets.
While the overwhelming majority of subsequent work assumed
this linearization, there are some exceptions that designed alterna-
tive representations. In particular, Ma et al. [42] and Liu and Zhang
[37] were the first in designing a linearization based on transition-
based actions as sequence tokens. The former used actions from
the bottom-up transition-based algorithm by Cross and Huang
[13] to encode constituent trees and proved that it underperforms
the original top-down linearization when they are tested under the
same conditions; and the latter based the linearization on the top-
down transition system of Dyer, Kuncoro, Ballesteros and Smith
[16] and showed that (combined with a specific deterministic
attention strategy) this yields some accuracy gains. However, a
follow-up study by Fernández-González and Gómez-Rodríguez
[21] contradicted this last conclusion: they demonstrated that
the original bracketed encoding can be represented as sequences
of actions from Dyer et al. [16]’s transition system and, under the
same neural network, this representation outperforms the
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top-down linearization defined by Liu and Zhang [37]. Addition-
ally, Fernández-González and Gómez-Rodríguez [21] proposed a
novel linearization method based on the in-order transition system
[38], notably outperforming all existing sequence-to-sequence
constituent parsers.

Finally, it is worth mentioning that there also exists a recent
trend of casting constituent parsing as sequence labeling [30,71].
While these might be considered a kind of sequence-to-sequence
methods (where the input and target sequences are constrained
to the same length, as each input word is assigned exactly one label
as output), they are not usually framed within sequence-to-
sequence constituent parsers since the neural architecture used
for sequence labeling is simpler than the setup designed by [2],
obtaining worse accuracy due to the lack of attention mechanisms1

and a larger label dictionary, but being significantly faster due to its
simplicity.

2.2. Discontinuous constituent parsing

Discontinuous structures were initially derived by complex and
computationally-expensive chart parsers based on Linear Context-
Free Rewriting Systems (LCFRS) [70] orMultiple Context Free Gramm-
mars (MCFGs) [57], which use the CYK algorithm for exact decod-
ing [17,12,28]. However, the computational complexity of these
approaches makes them impractical for long sentences, to the
point that all the mentioned parsers evaluate with a cap on sen-
tence length (typically, 40) due to the infeasibility of processing
longer sentences. For this reason, we can also find several varia-
tions of these original grammar-based parsers that attempt to
reduce their computational cost and make then runnable on long
sentences. For instance, [60,11] speed up decoding by not explicitly
defining a set of rules and using a span-based scoring algorithm
[61]. Additionally, Ruprecht and Mörbitz [52] present the first
suppertagging-based parser for LCFRS that notably reduces parsing
time.

Alternatively, bottom-up transition-based (or shift-reduce) par-
sers, originally restricted to continuous structures [54,85], were
extended to generate discontinuities. In particular, some of these
parsers incorporate new actions for changing the original token
order (allowing to treat discontinuous structures as continuous
ones) [43,44,59] or directly processing non-adjacent words [9];
and others opted for designing novel data structures to facilitate
building constituents on non-local items [8].

Finally, several efforts focused on reducing discontinuous con-
stituent parsing into a simpler task. For instance, discontinuous
phase-structure trees can be encoded as non-projective depen-
dency trees and, then, produced by a dependency parser [32,23];
or represented as a sequence of tags and derived by any tagger
[71]. Recently, Fernández-González and Gómez-Rodríguez [22]
also reduced discontinuous into continuous constituent parsing
by just accurately reordering input words.

Our work is framed within this last category and the closest
approach is the sequence labeling strategy introduced by Vilares
and Gómez-Rodríguez [71]. However, as mentioned above, they
do not use a sequence-to-sequence model to perform the tagging
and, since the target sequence shares the same length as the input
sentence, they just employ a regular tagger. This constraint
requires a complex encoding scheme that results in a remarkably
large output dictionary. In contrast, a sequence-to-sequence
approach can deal with longer target sequences and, therefore,
maintain a smaller dictionary size, outperforming a regular
sequence tagger by a wide margin.
1 Please note that recent sequence labeling approaches [72,71] also include
variants with attention mechanisms that, while notably increasing their accuracy,
significantly penalize their speed.
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3. Preliminaries

3.1. Continuous linearizations

In order to properly define the sequence prediction problem of
translating an input sentence of n words w ¼ w1; . . . ;wn into a con-
stituent tree C, the latter needs to be encoded (or linearized) as a
sequence of tokens y ¼ y1; . . . ; ym, with n < m in the particular case
of sequence-to-sequence constituent parsing.2 This conversion
must be invertible so that the original tree can be recovered from
the sequence of tokens. It is also worth mentioning that, unlike in
machine translation, this is an unbalanced sequence prediction task,
since target sequences are significantly longer than inputs.

A constituent tree C is composed of words w1; . . .wn as leaf
nodes and, above them, a number of hierarchically-organized con-
stituents. Each constituent (or phrase) can be represented as a
tuple ðX;YÞ where X is the non-terminal label and Y is the set of
word positions that constitute its yield or span. Moreover, we
define a constituent tree C as continuous if the span of every con-
stituent of C is a continuous substring (or, equivalently, a sequence
of consecutive word positions). The phase structure tree in Fig. 1(a)
is an example of a continuous structure. Conversely, if there are at
least one constituent of C with a yield composed of non-successive
word positions, it will be classified as discontinuous. The con-
stituent tree in Fig. 1(b) is discontinuous since the span of the con-
stituent (VP, {0, 2, 3, 4, 6, 7, 8}) is interrupted by words wird1 and
Wasser5 from constituent (S, {0, 1, 2, 3, 4, 5, 6, 7, 8}), resulting in a
yield with a sequence of non-consecutive word positions.

Initially, Vinyals, Kaiser, Koo, Petrov, Sutskever [74] introduced
a simple top-down bracketed encoding for linearizing continuous
constituent trees. This consists of defining phrase spans with open-
ing and closing brackets and parametrizing these brackets with
non-terminal labels to fully encode constituent information. Addi-
tionally, words were normalized by replacing them with a tag XX.
An example of this tree linearization is depicted in Fig. 2(a).

As an alternative, we can find linearizations that use transition-
based actions as output tokens (instead of brackets and XX-tags)
and represent a syntactic structure as a sequence of transitions
[42,37,21]. There exist different shift-reduce transition systems
(mainly focused on transition-based parsing) that can also be
applied to encode a constituent tree in different manners: from
top to bottom, based on an in-order traversal or following a
bottom-up strategy. The most successful shift-reduce lineariza-
tions are mainly based on two transition systems: the top-down
transition system [16] and the in-order shift-reduce algorithm
[38]. Additionally, in this research work, we will also apply and test
a linearization based on the bottom-up transition system defined
by [24]. Unlike classic bottom-up approaches [54,85], this transi-
tion system does not require to previously binarize the constituent
tree and, although it was not used to date as a linearization by any
previous work and it was already shown that shift-reduce bottom-
up linearizations are not the best option for sequence-to-sequence
constituent parsing [42], we will also include it for comparison
purposes.

Transition systems are state machines that traverse a sequence
of configurations by means of a set of transitions, until they reach a
terminal configuration from which the output tree can be recov-
ered. Thus, to understand how these specific transition systems
work, we need to formally define their parser configurations and
available transitions. The top-down algorithm has parser configura-
tions of the form c ¼ hR; Bi, where B is the buffer that initially con-
tains all the input words and R is a stack, which is empty in the
2 As mentioned before, [30] developed an encoding that, thanks to a large
dictionary, is able to linearize a sentence of n words into a sequence of n tokens.



Fig. 2. Bracketed and shift-reduce (SH-RE) tree linearizations for encoding the continuous constituent tree in Fig. 1(a). SH = SHIFT, NTX = NON-TERMINAL-X, RE = REDUCE, REX = REDUCE-

X, REk
X = REDUCE#K-X and FI = FINISH.

Fig. 3. Transitions of the top-down transition system (NT-X = NON-TERMINAL-X).

Fig. 4. Transitions of the in-order transition system (NT-X = NON-TERMINAL-X).
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initial configuration and will store constituents and unprocessed
words during the parsing process. Additionally, while top-down
terminal configurations are those with an empty buffer and a sin-
gle element on the stack, the in-order and bottom-up approaches
need a third component in their parser configurations for marking
whether a parser configuration is terminal or not. This is imple-
mented by a boolean variable f (which will be false in the initial
configuration) and their configurations will be of the form
c ¼ hR;B; f i.

Knowing the configurations, we can now define the transitions
for each parser. Firstly, the top-down algorithm provides three
transitions (defined in Fig. 3) that modify the stack and the buffer
to generate a valid constituent tree. Concretely:

� a SHIFT transition pushes words from the buffer to the stack,
� a NON-TERMINAL-X action adds a non-terminal node X on the stack,
� and a REDUCE transition pops items from the stack until a non-
terminal node is reached and groups all these items as a new
constituent on the top of the stack.

Secondly, the in-order algorithm (described in Fig. 4) uses prac-
tically the same actions as the top-down variant, but they are
applied in a different order and some of them have a different
behavior:

� a SHIFT transition is used to move words from the buffer to the
stack,

� a NON-TERMINAL-X transition is applied to push a non-terminal
node X into the stack, but, unlike in the top-down transition
system, it should only be used if the first child node of the
future constituent is on top of the stack,

� a REDUCE transition is available to pop all items from the stack
until the first non-terminal node is reached, which is also
popped together with the preceding item to build a new con-
stituent on top of the stack,

� and, finally, a FINISH transition is used to terminate the parsing
process.

Lastly, the non-binary bottom-up transition system provides
the following actions (described in Fig. 5):
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� a SHIFT transition that pushes words from the buffer to the stack,
� a REDUCE#K-X action parameterized with an integer k and the non-
terminal label X that pops k items from the stack and builds a
new constituent with all of them on the top of the stack,

� and, finally, a FINISH transition that marks the end of the process.

Given the described transition systems, a constituent tree C that
represents the syntactic information of the input sentence w can
be encoded into a sequence of shift-reduce actions y ¼ y1; . . . ; ym
by following a top-down, in-order or bottom-up transition system,
as exemplified by sequences (b), (d) and (f) in Fig. 2, respectively.
Depending on the shift-reduce strategy used, the resulting target
sequence may have a different length, since each transition system
utilizes a different number of transitions to build the same phrase
structure.

Additionally, Fernández-González and Gómez-Rodríguez [21]
noticed that, if REDUCE transitions are parameterized with the non-
terminal label (REDUCE-X), the bracketed [74] and shift-reduce top-
down [37] linearizations are equivalent and this enriched top-
down variant improves prediction accuracy (see an example in
Fig. 2(c)). Applying this idea to the in-order strategy, they also pro-



Fig. 5. Transitions of the non-binary bottom-up transition system.
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posed an enriched variant and proved that, while enlarging the
output dictionary size, it outperformed all existing tree lineariza-
tions tested on the framework designed by Liu and Zhang [37]
for sequence-to-sequence constituent parsing (Fig. 2(e) exempli-
fies this tree linearization).

In spite of using the same transition systems, the main reason
why sequence-to-sequence models are so far not obtaining compa-
rable results to task-specific transition-based parsers is the lack of
structural constraints explicitly provided by the stack and the buf-
fer, which can help the algorithm to handle and hierarchically
organize phrases and words during parsing. Sequence-to-
sequence constituent parsers are agnostic to any structural infor-
mation during decoding and exclusively translate an input sen-
tence into a sequence of tokens, which (after a post-processing
step) will be converted into a tree structure.

3.2. Sequence-to-sequence neural architecture

[74] propose to address constituent parsing using the atten-
tional sequence-to-sequence neural model defined by [2]. This
work introduces an attention mechanism to the original neural
architecture defined by [64] for solving sequence-to-sequence
problems and applies it to machine translation. The attention
mechanism allows the model to focus, at each time step, on the
most relevant information from the input in order to accurately
predict the output tokens. This is especially important for handling
long sequences, since the prediction accuracy deteriorates as the
length of the input sequence increases [7].

More in detail, [2] define an encoder-decoder neural architecture
where the encoder reads tokens from the input sequence (words in
constituent parsing and machine translation) represented as a
sequence of vectors x ¼ x1; . . . ; xn (where each xi can be obtained
from pre-trained word embeddings) and encodes them as a
sequence of encoder hidden states h ¼ h1; . . . ;hn. The encoder was
initially implemented as a recurrent neural network (RNN), in par-
ticular a bidirectional LSTM (BiLSTM) [31] that processes the input
in both directions.

Then, at each time step t, a decoder is used for predicting the
next output token yt from the current decoder hidden state st ,
which is generated by a function f fed with the context vector ct
and the previous decoder hidden state st�1:

st ¼ f ðst�1; ctÞ
Function f is usually implemented as a unidirectional LSTM [33] and
the context vector ct is computed at time step t as follows:

ct ¼
Xn

i¼1

atihi; ati ¼ expðbtiÞ
Xn

k¼1

expðbtkÞ
; bti ¼ gðst�1;hiÞ

where g is a scoring function (implemented as a feed-forward neu-
ral network jointly trained with the other components) that com-
putes scores between each input token xi (encoded as hi) and the
previous decoder hidden state st�1. Then, a probability distribution
over the whole input is computed using a softmax function, reflect-
ing in ct the weight of each input token in the prediction of the cur-
rent output token yt .

Especially in constituent parsing, it has been observed that by
using deterministic attention mechanisms the performance of the
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original sequence-to-sequence model increases [34,42,39,21]. The
most successful variant was developed by Liu and Zhang [37]
and is based on the top-down shift-reduce linearization. They pro-
pose to use two separate attention models and, therefore, calculate
two different context vectors instead of just ct . For this purpose,
the model splits the input into two variable-length segments
obtained by dividing the input sequence by index p, which in the
initial decoding step points to the first input token, and then is
incremented to point to the next word whenever a SHIFT transition
is predicted. Then, vector clt is computed over the left segment
w1; . . . ;wp and, crt , over the right segment wpþ1; . . . ;wn as follows:

clt ¼
Xp

i¼1

atihi; crt ¼
Xn

i¼pþ1

atihi

This approach led to notable accuracy gains [21]: on the one hand, it
intuitively models a stack (clt) and a buffer (crt ) over the input that
are modified when a SHIFT transition is applied. On the other hand,
it provides a deterministic alignment between input words and

SHIFT tokens that is crucial for choosing the most relevant context
information at each time step.

In the last few years, these RNN sequence-to-sequence models
were substituted by a Transformer architecture thanks to the
remarkable performance presented by Vaswani et al. [68]. The
authors not only prove that Transformers notably outperform
RNNs on machine translation, but they also apply this new archi-
tecture on constituent parsing, obtaining promising results. Both
the encoder and decoder are implemented with Transformers,
which provide a multi-head self-attention mechanism that is more
powerful than the attention techniques developed in RNN
approaches.

More in detail, this novel architecture starts by injecting a posi-
tional encoding to each input word representation xi necessary for
handling sequences, as, unlike RNNs, Transformers contain no
recurrence and do not have any built-in notion of sequential order.
After that, the encoder implemented by six Transformers generates
the sequence of encoder hidden states h ¼ h1; . . . ;hnfor the input
sequence. To do this, each Transformer implements a multi-head
self-attention layer that is composed of several parallel attention
heads, which will score the relevance of a specific word with
respect to the other words in the sentence. In particular, each head
computes attention vectors zi for each input word representation xi
as a weighted sum of linearly transformed input vectors:

zi ¼
Xn

j¼1

aijðxjWV Þ; aij ¼
expðbijÞ

Xn

k¼1

expðbikÞ
; bij ¼

ðxiWQ ÞðxjWKÞTffiffiffi
d

p

whereWQ ;WK andWV are parameter matrices unique per attention
head, d is the dimension of the resulting vector zi and bij is com-
puted by a compatibility function (implemented as an efficient
scaled dot product) that compares two input words. The multi-
head self-attention layer is followed by a feed-forward network
for finally generating encoder hidden states h. Unlike RNNs, this
process can be easily parallelized, speeding up Transformers
performance.

Regarding the decoder, it is also implemented by six Transform-
ers, but each one has an additional component. Apart from a
masked multi-head self-attention mechanism that works practically
the same as the encoder (which is used to encode previously-
generated output tokens y ¼ y1; . . . ; yt�1 into a sequence
q ¼ q0; . . . ; qt�1 at time step t), it implements a posterior encoder-
decoder cross-attention layer that computes the compatibility
between each target token with each input word. More in detail,
this cross-attention module is also composed of several attention
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heads that, given the sequences of encoder and decoder hidden
states h and q, generate at each time step t an attention vector zt
as follows:

zt ¼
Xn

i¼1

atiðhiW
V
d Þ; ati ¼ expðbtiÞ

Xn

k¼1

expðbtkÞ
; bti ¼

ðqt�1W
Q
d ÞðhiW

K
d Þ

T

ffiffiffi
d

p

where WQ
d ;W

K
d and WV

d are parameter matrices, d is the dimension
of the resulting vector zt and bti computes the interaction between
the last predicted token encoding (qt�1, which represents target
token history) with each word from the input sequence (repre-
sented by its encoder hidden state hi). The attention vectors zt com-
puted by each head will be combined and used by posterior linear
and softmax layers to finally generate the output token yt . Please
see in Fig. 6 a sketch of the described neural architecture.

Recently, Fernandez Astudillo et al. [18] implemented the idea
introduced by Liu and Zhang [37] into this Transformer
sequence-to-sequence architecture for dependency and AMR
(Abstract Meaning Representation) parsing. To that end, they fol-
lowed the current trend of modifying Vaswani et al. [68]’s architec-
ture by implementing dedicated attention heads to focus on one or
several tokens from the input and, thus, encode local relevant
information [63,77]. In particular, instead of using an index p to
delimitate the stack and buffer, they propose to specialize two of
the attention heads (from the Transformer decoder’s cross-
attention layer): one for just attending input words that should
be into the stack according to the shift-reduce tokens applied so
far, and the other for exclusively considering words that are left
in the buffer. With these two dedicated heads for the decoding,
Fig. 6. Neural architecture for the Transformer sequence-to-sequence model
introduced by Vaswani et al. [68]. Please note that Layer Norm stands for the layer
normalization technique introduced by [1].
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they manage to substantially improve over the original setup by
Vaswani et al. [68] on these two graph parsing tasks. In this article,
we accordingly modify this recent sequence-to-sequence model for
handling constituent parsing and accurately produce continuous
and discontinuous phrase structure trees.
4. Discontinuous sequence-to-sequence parsing

4.1. Discontinuous linearizations

Since all transition systems (and, therefore, the resulting tree
linearizations) explained in Section 3.1 are restricted to continuous
structures, we need to extend them to handle discontinuities. For
that purpose, novel transition systems must be defined so that they
can be used for linearizing discontinuous structures and extending
the coverage of sequence-to-sequence models (currently con-
strained to continuous structures) to any kind of constituent trees.

Please note that, while it can be argued that there already exist
transition systems that can produce discontinuous constituent
trees [43,44,59,9], all of these follow a binary bottom-up strategy
that is not the most adequate for sequence-to-sequence con-
stituent parsing as shown by Ma et al. [42]. However, for complete-
ness of comparison, we also include in our experiments a
discontinuous extension of the non-binary bottom-up transition
system by [24], which was shown to be superior to the binary vari-
ants in continuous transition-based parsing.

Firstly, we define new discontinuous transition systems by add-
ing to the top-down [16], in-order [38] and the mentioned non-
binary bottom-up algorithms a SWAP transition. This action (initially
proposed for transition-based constituent parsing by [69])3 is used
to reorder the original sentence by moving the second word on top
of the stack back to the buffer (as detailed in Fig. 7(a)). Thanks to this
online reordering of the input during parsing, any discontinuous
structure can be created with the available continuous transitions.
This relies on the fact that any discontinuous constituent tree can
be transformed into a continuous variant by just changing the order
of tokens. For instance, the discontinuous tree in Fig. 1(b) can be con-
verted into a continuous one by moving the word wird1 before the
word Allerdings0, and the word Wasser5 after the word verteilt8. We
show in Fig. 8 how the in-order transition system extended with
the SWAP transition is able to handle the discontinuities of the tree
in Fig. 1(b) by means of buffer and stack structures.

The main drawback of adding the SWAP action to continuous
transition systems is that it tends to produce considerably long
transition sequences and, when used as a linearization technique
for discontinuous constituent trees, it will generate such long tar-
get sequences that it might harm accuracy of prediction. To
address this, we also develop two variants based on two transitions
already studied in shift-reduce parsing:

� a SWAP#K transition [43] (detailed in Fig. 7(b)), which is equiva-
lent to applying k SWAPs in a row, with SWAP#1 being equivalent
to applying a single SWAP action.

� a SHIFT#K action [44] (described in Fig. 7(c)), which moves the kth
word in the buffer to the stack, with SHIFT#0 being equivalent to
the regular SHIFT action. In Fig. 9, we present an example of how
the SHIFT#K transition works on the in-order transition system in
a shift-reduce parsing process with a buffer and a stack.

While adding the SWAP#K transition will have a minor impact in
shortening the resulting sequences, extending the original in-order
transition system with the SHIFT#K action will lead to a transition
3 The concept of a SWAP transition was initially introduced for non-projective
dependency parsing by [49] and then adapted by [69] to constituent parsing.



Fig. 7. Available transitions for reordering words from the input sentence.

Fig. 8. Transition sequence for partially producing the discontinuous tree in Fig. 1(b) using the in-order + SWAP transition system in transition-based constituent parsing.
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sequence with the same number of items as if the encoded tree
were continuous.

All these novel discontinuous transition systems can be used as
linearization techniques for casting discontinuous constituent
trees as sequences of tokens (which then can be used for training
a sequence-to-sequence model). For instance, in Figs. 10(a), (b)
and (c), we can see the resulting linearizations of a discontinuous
tree by the top-down, in-order and bottom-up algorithms
extended with the SWAP transition, respectively. Additionally,
Figs. 10(d) and (e) show the discontinuous variant of the in-order
linearization with the SWAP#K and SHIFT#K transitions, respectively.
Although an analysis in this regard is included in Section 5.3, it
can be noticed in this example how the presence of SWAP tokens
notably lengthens tree linearizations in comparison to the variant
with the SHIFT#K transition, which has the same number of tokens
as linearizing a continuous tree. While SWAP#K and SHIFT#K transi-
tions can also be applied to the top-down and bottom-up lineariza-
tion methods, we only test these variants on the best-performing
strategy, which is the one based on the in-order tree linearization
(as will be seen in Section 5).

We opted for not using the enriched variants proposed by
Fernández-González and Gómez-Rodríguez [21] (which parame-
trize REDUCE actions in the top-down and in-order transition sys-
tems) since, as we will see in Section 5, the accuracy of the
regular versions is on par with these enhanced variants on the pro-
posed neural architecture (while requiring a smaller output
dictionary).

Finally, please note that the proposed transition systems are
exclusively used for linearizing constituent trees and defining the
target sequence of tokens for our sequence-to-sequence model.
This contrasts with task-specific transition-based parsers, which
leverage data structures (two or more stacks) to explicitly build
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partial constituent trees at each step of the parsing process. In
addition, it is also worth mentioning that the presented discontin-
uous transition-based algorithms were never proposed before as
far as we know and, while they might certainly achieve a good per-
formance under a traditional shift-reduce parsing implementation,
this is out of the scope of this research work and we will exclu-
sively apply them as tree linearization strategies.

4.2. Neural architecture

Based on the approach proposed by [18] for dependency and
AMR parsing, we present a Transformer sequence-to-sequence
architecture for unrestricted constituent parsing. Unlike the origi-
nal work by Vaswani et al. [68] (where all heads of each Trans-
former decoder’s cross-attention layer attend to the whole
input), one specialized head is exclusively applied over input
words that should be into the stack according to the current time
step t (following a shift-reduce parsing process), and another ded-
icated head will focus only on those words that are still left in the
buffer in t. In that way, while not explicitly using data structures to
process the input sentence (as done by regular transition-based
parsers), some structural information is deterministically induced
to the sequence-to-sequence model, with the purpose of substan-
tially increasing parsing performance as shown on other syntactic
formalisms by Fernandez Astudillo et al. [18].

The implementation proposed by Fernandez Astudillo et al. [18]
was exclusively focused on dependency and AMR parsing, where
the buffer and the stack of a purely transition-based dependency
parser can only contain words that belong to partial graph struc-
tures. In contrast, transition-based constituent parsers process tree
structures and, in addition to nodes corresponding to words, they
also have to push non-terminal nodes into the stack. These are nec-



Fig. 9. Transition sequence for partially building the discontinuous tree in Fig. 1(b) using the in-order + SHIFT#K transition system in transition-based constituent parsing.

Fig. 10. Novel shift-reduce linearizations for encoding the discontinuous constituent tree in Fig. 1(b). SH = SHIFT, SHk = SHIFT#K, SW = SWAP, SWk = SWAP#K, NTX = NON-TERMINAL-X, RE
= REDUCE, REk

X = REDUCE#K-X and FI = FINISH.
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essary for naming constituents and are especially required for the
top-down and in-order transition systems (which make use of the

NON-TERMINAL-X transition for that purpose). In addition, REDUCE

actions in transition-based constituent parsing build partial sub-
trees, affecting several words of the input sequence (while REDUCE

transitions in dependency parsing only affect one single word).
Therefore, all these specifics must be taken into consideration for
representing the behavior of the data structures in constituent
parsing.

More in detail, to implement these dedicated stack and buffer
heads of the Transformer decoder’s cross-attention mechanism,
two masks mstack and mbuffer over the input are defined. Addition-
ally, they must be updated at each time step t based on the output
token predicted in time step t � 1 and accordingly to a shift-reduce
constituent parsing standpoint:
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� If a SHIFT transition was the previous output token, mbuffer will
mask out the first masked word and this will be included in
mstack. The prediction of a SHIFT#K token will have a similar behav-
ior, but affecting the word in the kth position of mbuffer .

� Generating a SWAP token in the previous step will modify mstack

by masking out the second-to-last word, and mbuffer by adding
this word. This modification will be applied k times if a SWAP#K

action was the previous output token.
� The NON-TERMINAL-X token will have no effect into either mstack

or mbuffer , since heads can only attend to input words and
non-terminal node X is not a token from the input
sequence.

� Predicting a REDUCE token (including REDUCE-X and REDUCE#K-X) will
mask out all words from mstack that form the resulting con-
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stituent, except the first token that will be kept inmstack as a rep-
resentation of the reduced constituent.

In Fig. 11, we graphically depict how these masks change each
time a shift-reduce token is predicted and how they model the
content of the stack and buffer during the decoding process.

Given the mask mstack
t (implemented as a vector of �1 or 0 val-

ues) at time step t, the equation proposed by Vaswani et al. [68]
(and introduced in Section 3.2) is modified for computing the
attention head zstackt that exclusively attends words in the stack fol-
lowing a shift-reduce point of view:

zstackt ¼
Xn

i¼1

atiðhiW
V
d Þ; ati ¼ expðbtiÞ

Xn

k¼1

expðbtkÞ
;

bti ¼
ðqt�1W

Q
d ÞðhiW

K
d Þ

T

ffiffiffi
d

p þmstack
ti

The same computation is done for, given mask mbuffer
t , obtaining

zbuffert that attends to input tokens still in the buffer at time step t
according to a transition-based parsing process:

zbuffert ¼
Xn

i¼1

atiðhiW
V
d Þ; ati ¼ expðbtiÞ

Xn

k¼1

expðbtkÞ
;

bti ¼
ðqt�1W

Q
d ÞðhiW

K
d Þ

T

ffiffiffi
d

p þmbuffer
ti

All shift-reduce linearizations described in Sections 3.1 and 4.1 can
be learnt by this neural architecture without further modifications.
Additionally, new shift-reduce linearizations can be included by just
adapting the modifications to stack and buffer masks if new transi-
tions are incorporated.

We also want to point out the importance of inducing some
structural information with the proposed deterministic attention
technique especially in discontinuous parsing, since the lack of
explicit structures (crucial for handling the word reordering with
the SWAP action) may penalize parsing performance.

Finally, we adopt the same encoder and first component of the
decoder (named asmasked multi-head self-attention) from [68], just
applying the mentioned modifications to two of the heads from the
encoder-decoder cross-attention multihead attention module.
4 https://github.com/pytorch/fairseq.
5 https://nlp.cs.nyu.edu/evalb/.
6 https://github.com/andreasvc/disco-dop.
5. Experiments

5.1. Setup

Data For properly testing our approach, we include both contin-
uous and discontinuous constituent treebanks. Concretely, the
continuous English Penn Treebank (PTB) [45] and its discontinuous
version (DPTB) [17] with standard splits defined as follows: Sec-
tions 2 to 21 for training, 22 for development and 23 for testing.
We also include in the evaluation German treebanks with a higher
degree of discontinuity: NEGRA [58] and TIGER [5] with
commonly-used splits defined by Dubey and Keller [15] and Sed-
dah, Tsarfaty, Kübler, Candito, Choi, Farkas, Foster, Goenaga, Goje-
nola Galletebeitia, Goldberg, Green, Habash, Kuhlmann, Maier,
Nivre, Przepiórkowski, Roth, Seeker, Versley, Vincze,Woliński,Wró
blewska and Villemonte de la Clergerie [56], respectively. In all
cases, we discard Part-of-Speech (PoS) tag information and the
number of samples per treebank split are detailed in Table 1.

Implementation Following [18], the proposed neural architec-
ture was developed based on the neural model by Ott, Edunov,
Grangier and Auli [51]. The latter implements the Transformer
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model [68] in Pytorch on the fairseq-py toolkit4 and applies it
for sequence-to-sequence machine translation. Since constituent
parsing can be cast as a sequence-to-sequence task, their model
can be easily adapted to our specific problem with minor modifica-
tions. In fact, we do not undertake further parameter optimization to
our specific task and directly use hyper-parameters reported by Fer-
nandez Astudillo et al. [18] for cross-entropy training with label
smoothing and with the learning rate increasing linearly for 4,000
warm-up updates to 5e�4 and then being decayed proportionally
to the inverse square root of the number of steps. These hyperpa-
rameters are summarized in Table 2 and we refer the reader to
[51] for further implementation details. Finally, we use average
weights of the three best checkpoints on the development splits as
final models, and beam 10 for decoding.

Pre-trained Embeddings For initializingword embeddings, we use
fixedweights extracted from the RoBERTa-large [41] and GottBERT-
base [55] pre-trained language models for English and German,
respectively. We apply average weights from wordpieces when
required and do not fine-tune word embeddings during training.

Evaluation We follow standard practice for evaluation and
report F-scores with the EVALB script5 for the continuous PTB (dis-
carding punctuation), and DISCODOP6 [12] for discontinuous tree-
banks (ignoring punctuation and root symbols). The latter also
delivers a Discontinuous F-score (DF1) measured only on discontin-
uous constituents. For each experiment, we report the average score
and standard deviation over three executions with different seeds.

Hardware Our approach was fully tested on an Intel(R) Core
(TM) i9-10920X CPU @ 3.50 GHz with a single 24 GB TESLA P40
GPU.

5.2. Results

Accuracy incontinuous parsing We first test all described lin-
earizations under the proposed neural network on the continuous
version of PTB. In Table 3, we report accuracies on dev and test
splits and compare them against state-of-the-art approaches,
including all existing sequence-to-sequence constituent parsers.
While our approach achieves competitive accuracies with any tree
linearization, we can observe that no substantial differences can be
found between top-down and in-order strategies, and between
enriched and regular variants (contrary to the observations by
Fernández-González and Gómez-Rodríguez [21] on RNN
sequence-to-sequence constituent parsing). Moreover, we confirm
that bottom-up linearizations underperform top-down and in-
order variants also under this architecture, as in the results by
Ma et al. [42], although the difference is smaller than in their case.

With respect to other sequence-to-sequence constituent par-
sers, our approach outperforms all existing models by a wide mar-
gin; and, in comparison with the best task-specific algorithms, top-
down and in-order tree linearizations are only surpassed by mod-
els that are enhanced with the pre-trained language model XLNet
[80], notably larger than BERT [14] and RoBERTa. In fact, our
approach is on par, for instance, with Yang and Deng [79] (a purely
transition-based parser) and Tian, Song, Xia and Zhang [67] (a
chart-based model) when BERTLarge is used instead.Accuracy indis-
continuous parsing We further evaluate the proposed sequence-
to-sequence model and novel tree linearizations on dev (Table 4)
and test (Table 5) splits from discontinuous treebanks, additionally
including in the latter table the best approaches to date for a com-
parison with the current state of the art. As observed on the contin-
uous benchmark, top-down and in-order transition systems
(augmented with the SWAP transition) achieve similar overall F-

https://github.com/pytorch/fairseq
https://nlp.cs.nyu.edu/evalb/
https://github.com/andreasvc/disco-dop


Fig. 11. Modifications on themstack andmbuffer masks for modelling the changes produced by some transitions (of the inorder + SWAP transition system) on the buffer and stack
structures during the parsing process described in Fig. 8.

Table 1
Number of samples per treebank split.

Treebank Training Dev Test

PTB/DPTB 39,832 1,700 2,416
NEGRA 18,602 1,000 1,000
TIGER 40,472 5,000 5,000

Table 2
Model hyper-parameters.

Architecture and optimizer hyper-parameters

Transformer Encoder layers 6
Transformer Encoder size 256
Transformer Decoder layers 6
Transformer Decoder size 256
Heads per self-attention layer 4
RoBERTa embedding dimension 1024
GottBERT embedding dimension 768
Dropout 0.3
Optimizer Adam [35]
Loss cross-entropy
b1 0.9
b2 0.98
Learning rate 5e�4

Learning rate scheduler Inverse square root
Warm-up initial learning rate 1e�7

Warm-up updates 4000
Minimum learning rate 1e�9

Label smoothing 0.01
Batch size 3584
Training epochs 80

7 Please note that Fernández-González and Gómez-Rodríguez [22] recently
obtained such high speeds in discontinuous constituent parsing due to the application
of faster continuous parsers after the original sentence was reordered by a pointer
network [73].
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scores on the English dataset; however, on German treebanks
(especially on NEGRA), the in-order tree linearization outperforms
the top-down strategy. Regarding the accuracy on discontinuities,
the top-down linearization obtains the best F-scores. Again, the
bottom-up technique underperforms its counterparts in all data-
sets by a wide margin.

With respect to the alternatives with SWAP#K and SHIFT#K tokens
for shortening output sequences, we notice that the latter provides
a poor performance and the former, while achieving a similar over-
all F-score to tree linearizations with the regular SWAP action, shows
a clear loss of accuracy on discontinuities.

Overall, our approach delivers competitive accuracies, outper-
forming recent task-specific discontinuous parsers (such as
Ruprecht and Mörbitz [52] in TIGER and DPTB) and excelling in
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DPTB (where we achieve the best F-score and Discontinuous F-
score to date). It can be also noticed that, the sequence tagging
strategy (enhanced with the attention mechanism provided by
fully fine-tuning the language model BERT) by Vilares and
Gómez-Rodríguez [71], also included in Table 3 as Vilares et al.
[72] for the continuous version, is clearly outperformed continuous
and discontinuous benchmarks by our sequence-to-sequence
model, which uses non-fine-tuned word embeddings.Parsing speed
We report in Table 6 the speeds provided by each linearization
technique during decoding on the test splits. This comparison
shows that the continuous and discontinuous bottom-up lineariza-
tions and the in-order variants with SWAP#K and SHIFT#K transitions
achieve the best speeds, with the latter being the fastest option
in discontinuous constituent parsing. This behaviour was expected
(and also empirically proved in the following section) since the tar-
get sequences generated by these linearizations are shorter than
those produced by the other methods, with the in-order lineariza-
tion with the SHIFT#K token generating the shortest output
sequences and being on par with the continuous in-order variant
in speed (both 29 sent./s.). Although we leverage contextualized
word embeddings in the proposed approach, any linearization of
our model is twice as fast as other sequence-to-sequence methods
in the continuous constituent benchmark, except for the model
that applies a deterministic attention technique to speed up decod-
ing [21]. This latter system (which is based on the in-order lin-
earization) is slightly faster than our more accurate variants (top-
down and in-order), but it is surpassed by our model with the
bottom-up linearization. Finally, while our implementation was
not optimized for speed and the reported results are just intended
for comparing the proposed linearization variants, we also include
other discontinuous constituent parsers in the comparison, show-
ing that our model is behind all of them7 and that there is still pend-
ing work in speeding up sequence-to-sequence models.
5.3. Analysis

It can be argued that a large output dictionary size harms per-
formance, at least, this is one of the reasons that might explain



Table 3
F-score comparison of state-of-the-art constituent parsers on the PTB test split. The
second block gathers exclusively sequence-to-sequence models. Parsers that use
extra dependency information are marked with + dependency, those that ensemble
several trained models with +ensemble, those that use a language model for reranking
predicted trees with +LM-rerank, those that use additional parsed data with +extra-
data, those that use deterministic attention for increasing parsing speed with
+deterministic-attention, those that use predicted PoS tags as additional input with
+PoS and, finally, those that use pre-trained language models BERTLarge [14] or XLNet
[80] for the encoder initialization are marked with +BERTLarge/+XLNet. We also include
performance on the PTB dev split for all the tested linearizations. We report the
average accuracy over 3 executions with different random seeds and standard
deviations are indicated with �.

Parser (no tags or predicted PoS tags) PTB

Liu and Zhang [38] 91.8
Stern, Fried and Klein [62] 92.56
Fernández-González and Gómez-Rodríguez [19] 92.0
Fried and Klein [26] 92.2
Gaddy, Stern and Klein [27] 92.08
Teng and Zhang [66] 92.4
Vilares et al. [72] + BERTLarge 93.5
Kitaev, Cao and Klein [36] + BERTLarge 95.59
Zhou and Zhao [84] + dependency + BERTLarge 95.84
Zhou and Zhao [84] + dependency + XLNet 96.33
Mrini, Dernoncourt, Tran, Bui, Chang and

Nakashole [47] + dependency + POS + XLNet
96.38

Yang and Deng [79] + BERTLarge 95.79
Yang and Deng [79] + XLNet 96.34
Tian et al. [67] + PoS + BERTLarge 95.86
Tian et al. [67] + PoS + XLNet 96.40
Fernández-González and Gómez-Rodríguez [25]

+ dependency + BERTLarge

95.23

(sequence-to-sequence models)
Vinyals et al. [74] 88.3
Vinyals et al. [74] + ensemble 90.5
Vinyals et al. [74] + ensemble + extra-data 92.8
Ma et al. [42] + ensemble 90.6
Kamigaito et al. [34] + ensemble 91.5
Liu et al. [39] + ensemble 92.3
Suzuki, Takase, Kamigaito, Morishita and Nagata

[65] + ensemble + LM-rerank
94.32

Liu and Zhang [37] 90.5
Fernández-González and Gómez-Rodríguez [21] 91.6
Fernández-González and Gómez-Rodríguez [21]

+ deterministic-attention
91.2

Vaswani et al. [68] 91.3
Vaswani et al. [68] + extra-data 92.7
This work: (dev) (test)

SH-RE top-down linearization 95.56�0.09 95.78�0.06
enriched SH-RE top-down/bracketed
linearization

95.63�0.07 95.70�0.10

SH-RE in-order linearization 95.46�0.03 95.84�0.02
enriched SH-RE in-order linearization 95.48�0.03 95.71�0.02
SH-RE bottom-up linearization 95.40�0.15 95.58�0.04

Table 4
F-score on TIGER, NEGRA and DPTB development splits. We report the average
accuracy over 3 executions with different random seeds and standard deviations are
indicated with �.

Tree linearization TIGER NEGRA DPTB

SH-RE top-down + SWAP 92.36�0.07 90.14�0.03 95.44�0.03
SH-RE bottom-up + SWAP 91.48�0.09 88.14�0.02 94.81�0.08
SH-RE in-order + SWAP 92.32�0.02 90.79�0.08 95.32�0.09
SH-RE in-order + SWAP#K 92.27�0.06 90.36�0.14 95.25�0.16
SH-RE in-order + SHIFT#K 91.11�0.04 88.81�0.16 94.76�0.12
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the difference in accuracy between our approach and sequence
labeling techniques, where the target vocabulary is significantly
larger to keep synchronicity between the length of the input and
output sequences. However, some studies, such as Fernández-Gon
zález and Gómez-Rodríguez [21], claim that, by properly augment-
ing (enriching) the vocabulary, accuracy gains can be obtained.
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In order to better understand why some tree linearizations are
underperforming others in terms of accuracy (more notable in dis-
continuous parsing), we report in Table 7 the target vocabulary size
and longest sequences for each tree linearization and treebank.
From this information, we can extract that:

� The two best-performing linearizations (regular top-down and
in-order methods) present the smallest output dictionaries both
in continuous and discontinuous datasets.

� Enriched variants in PTB almost duplicate output dictionary
sizes, but obtain scores on par with the regular versions (not
providing substantial accuracy gains as reported for RNN
sequence-to-sequence models [21]).

� The bottom-up strategy requires a larger vocabulary (due to the
parameterized REDUCE#K-X) that might penalize its performance.
Note that this would hold even on other bottom-up transition
systems that require a previous binarization, since this transfor-
mation enlarges the amount of non-terminal labels and, as a
consequence, the output vocabulary.

� Dealing with short target sequences does not lead to a better
performance, since the use of the token SHIFT#K generates the
shortest output sequences in discontinuous treebanks, but
underperforms practically all other methods.

� Finally, it can be also observed that, although target sequences
in discontinuous datasets are significantly longer than those in
PTB, the attention mechanism avoids deteriorating accuracy on
long sequences, achieving similar accuracies, for instance, on
PTB and DPTB.

Therefore, the correlation between vocabulary size and perfor-
mance can be observed, but the target sequence length seems to
have no impact in accuracy thanks to the attention mechanism,
which is the likely reason why SWAP#K and SHIFT#K seem to produce
no discernible advantage over the SWAP transition under our neural
architecture.

Moreover, we can clearly see in Table 7 a correlation between
target sequence length and decoding speed, regardless of dic-
tionary size. The higher speeds in continuous and discontinuous
constituent parsing are respectively delivered by the bottom-up
and the in-order + SHIFT#K linearizations (as shown in Table 6),
which clearly are the variants that produce the shortest target
sequences. Even the fact that the bottom-up alternative has the
largest dictionary among continuous linearizations seems to have
no effect in decoding speed. In addition, the continuous in-order
variant generates output sequences with the same length as those
provided by the in-order + SHIFT#K, obtaining the same speed during
decoding time. Finally, we can also observe that the top-down and
in-order linearizations (with and without the SWAP token augmen-
tation) are the slowest options since they generate the longest tar-
get sequences.

We also believe that the logic of each transition system and how
the output tokens encode the resulting constituent tree can affect
the text-to-parse translation. For instance, from a transition-
based standpoint, the use of the SHIFT#K action allows the model
to operate over the whole buffer by just predicting the SHIFT transi-
tion parameterized with the correct k value, covering a broader
context and losing the locality typically found in classic
transition-based algorithms (which exclusively modify the first
word in the buffer and/or the two words on top of the stack). In
sequence-to-sequence models, this means that the model has a
broader search space, not only due to dealing with a larger output
dictionary, but also due to having several options for the same pur-
pose: in this case, different SHIFT#K tokens can be used for represent-
ing each input word, instead of using a single SHIFT transition. This
might explain why the linearization with SHIFT#K underperforms the
other alternatives that behave like classic shift-reduce algorithms



Table 5
F-score and Discontinuous F-score (DF1) comparison of state-of-the-art discontinuous constituent parsers on TIGER, NEGRA and DPTB test splits. Parsers that use extra
dependency information are marked with + dep, and those that use pre-trained language models BERTbase , BERTLarge [14] or XLNet [80] for the encoder initialization are marked
with +BERTbase/+BERTLarge/+XLNet (we use +BERTX when the model size was not specified). We report the average accuracy over 3 executions with different random seeds and
standard deviations are indicated with �.

TIGER NEGRA DPTB

Parser(no tags or predicted PoS tags) F1 DF1 F1 DF1 F1 DF1

Coavoux and Cohen [8] 82.5 55.9 83.2 56.3 90.9 67.3
Coavoux, Crabbé and Cohen [10] 82.7 55.9 83.2 54.6 91.0 71.3
Stanojevic and Steedman [60] 83.4 53.5 83.6 50.7 90.5 67.1
CorroCorro2020SpanbasedDC + BERTX 90.0 62.1 91.6 66.1 94.8 68.9
Vilares and Gómez-Rodríguez [71] + BERTBase 84.6 51.1 83.9 45.6 91.9 50.8
Vilares and Gómez-Rodríguez [71] + BERTLarge – – – – 92.8 53.9
Fernández-González and Gómez-Rodríguez [20] 85.7 60.4 85.7 58.6 – –
Ruprecht and Mörbitz [52] + BERTBase 88.3 69.0 90.9 72.6 93.3 80.5
Fernández-González and Gómez-Rodríguez [22] + BERTBase 88.5 63.0 90.0 65.9 94.0 68.9
Fernández-González and Gómez-Rodríguez [22] + BERTLarge 90.5 68.1 92.0 67.9 94.7 72.9
Fernández-González and Gómez-Rodríguez [22] + XLNet – – – – 95.1 74.1
Fernández-González and Gómez-Rodríguez [25]+ dep + BERTBase 89.8 71.0 91.0 76.6 – –

This work: �0.05 �0.27 �0.09 �1.35 �0.06 �0.46
SH-RE top-down + SWAP linearization 88.28 67.95 88.59 67.43 95.37 83.85

�0.14 �0.61 �0.19 �0.65 �0.04 �0.49
SH-RE bottom-up + SWAP linearization 87.02 63.20 85.74 57.76 95.12 82.40

�0.04 �0.45 �0.02 �0.84 �0.06 �0.25
SH-RE in-order + SWAP linearization 88.53 67.76 89.08 67.06 95.47 83.80

�0.08 �0.49 �0.10 �0.76 �0.01 �0.38
SH-RE in-order + SWAP#K linearization 88.36 65.68 88.93 65.38 95.48 82.86

�0.12 �0.16 �0.13 �0.41 �0.09 �0.66
SH-RE in-order + SHIFT#K linearization 87.10 54.27 86.76 46.86 94.96 69.17

Table 6
Speed comparison (sentences/s) of our approach with different linearization techniques on TIGER, NEGRA, DPTB and continuous PTB test splits. We also add in the second block
those sequence-to-sequence models whose speed can be found in the literature, including the approach by Fernández-González and Gómez-Rodríguez [21] that speeds up parsing
decoding with deterministic attention (marked with + deterministic-attention). In addition, we present in the first block top-performing constituent parsers augmented with pre-
trained language models BERTbase , BERTLarge [14] or XLNet [80] (+BERTbase/+BERTLarge/+XLNet). Please note that the reported speeds from previous work were measured on different
hardware setups.

Parser TIGER NEGRA DPTB PTB

Zhou and Zhao [84] + XLNet – – – 65
Mrini et al.[47] + XLNet – – – 59
Yang and Deng (2020) [79] + XLNet – – – 71
Vilares and Gómez-Rodríguez [71] + BERTBase 80 80 80 –
Vilares and Gómez-Rodríguez [71] + BERTLarge – – 34 –
Ruprecht and Mörbitz [52] + BERTBase 60 68 57 –
Fernández-González and Gómez-Rodríguez [22] + BERTBase 238 275 231 –
Fernández-González and Gómez-Rodríguez [22] + BERTLarge 207 216 193 –
Fernández-González and Gómez-Rodríguez [22] + XLNet – – 179 –

(sequence-to-sequence models)
Liu and Zhang [37] – – – 17
Fernández-González and Gómez-Rodríguez [21] – – – 17
Fernández-González and Gómez-Rodríguez [21] + deterministic-attention – – – 35
This work:

SH-RE top-down linearization – – – 29
SH-RE bottom-up linearization – – – 39
SH-RE in-order linearization – – – 29
SH-RE top-down + SWAP linearization 26 21 21 –
SH-RE bottom-up + SWAP linearization 29 27 26 –
SH-RE in-order + SWAP linearization 26 21 21 –
SH-RE in-order + SWAP#K linearization 30 29 24 –
SH-RE in-order + SHIFT#K linearization 47 50 29 –
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and have a single SHIFT token to read words from the input. More-
over, this same reasoning can be used for explaining how the avail-
ability of different SWAP#K tokens (instead of applying a single SWAP)
penalizes accuracy prediction and leads to a worse performance on
discontinuities. On the other hand, transition systems that mark
the beginning and the end of each constituent with NON-TERMINAL-X

and REDUCE tokens (as can be seen in sequences generated by the
top-down and in-order algorithms) tend to work better as tree lin-
earizations than the bottom-up strategy (which denotes the span
of each constituent with a single REDUCE#K-X at the end). This might
54
be the main explanation why bottom-up approaches are less ade-
quate for encoding phrase structure trees.

Additionally, to provide more evidence that can help us under-
stand the differences in performance between different lineariza-
tions, we undertake an error analysis relative to structural factors
and sentence lengths on a concatenation of the dev splits from
the three discontinuous treebanks. In particular, Fig. 12(a) shows
the F-score on span identification for different lengths, Fig. 12(b)
presents the performance on different sentence length cutoffs
and Fig. 12(c) plots the accuracy when assigning the most frequent



Table 7
Output dictionary size (Size) and length of the longest target sequence (Length) in TIGER, NEGRA, DPTB and continuous PTB training datasets for each proposed linearization
technique.

TIGER NEGRA DPTB PTB

Tree linearization Size Length Size Length Size Length Size Length

SH-RE top-down – – – – – – 29 367
enriched SH-RE top-down/bracketed – – – – – – 55 367
SH-RE in-order – – – – – – 30 368
enriched SH-RE in-order – – – – – – 56 368
SH-RE bottom-up – – – – – – 202 255
SH-RE top-down + SWAP 28 2067 30 2061 31 1497 – –
SH-RE bottom-up + SWAP 191 2039 205 2021 204 1444 – –
SH-RE in-order + SWAP 29 2068 31 2062 32 1498 – –
SH-RE in-order + SWAP#K 66 1150 63 1202 57 873 – –
SH-RE in-order + SHIFT#K 66 257 63 208 57 368 – –
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non-terminal labels (including the average span length in brackets)
by each proposed discontinuous tree linearization. From that infor-
mation, we can claim that:

� Error propagation, often observed in purely transition-based
parsers, can be also seen in Fig. 12(a) and (b) for sequence-to-
sequence models. As expected, sequential prediction can cause
earlier mistakes to affect future decisions, resulting in more
errors in the encoded constituent tree. Its impact can be seen
on long spans and long sentences, where the accuracy of all lin-
earizations decreases.

� While the in-order + SWAP linearization shows the best perfor-
mance on phrases with longer spans; using SWAP#K instead
harms accuracy, especially when the span length increases
(probably due to the fact that a larger amount of SWAP#K are
required for reordering a longer sequence of input words, and
more mistakes can be made during that process).
Fig. 12. Accuracy of discontinuous linearization method
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� The in-order variant with the SHIFT#K transition suffers notable
accuracy loses on producing longer constituents, probably
because it is more likely to make a mistake and predict the
wrong SHIFT#K token in constituents that cover more input words
(represented by SHIFT#K tokens in the tree linearization) and,
therefore, the impact of error propagation is higher. A similar
trend can be seen for the bottom-up strategy as, while

REDUCE#K-X tokens with a lower k value are more frequent and
easier to learn, wrong predictions are more likely on longer
constituents.

� Based on the performance on longer sentences, we can also note
that error propagation has a higher impact on bottom-up and
in-order + SHIFT#K linearizations than on the other alternatives.

� No significant differences in performance between the top-
down + SWAP and in-order + SWAP strategies can be found in
Fig. 12(a) and (b); however, in Fig. 12(c), we can see that the
top-down approach is substantially outperformed by the in-
order strategy on building constituents of type AP (Adjective
s relative to structural factors and sentence length.
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Phrase), even being slightly surpassed by the bottom-up strat-
egy on that task. While no frequent patterns were observed in
the data to explain that behaviour, a lower precision on this
kind of structures (i.e., tagging as AP constituents of a different
type) with respect to the other linearizations is the reason of
these differences in F-score.

� Finally, the bottom-up linearization method has important
drops in accuracy on the creation of constituents of type VP, S,
SBAR and, especially, CNP. While the low performance on con-
stituents VP, S and SBAR can be explained by the fact that they
have a high span length and this linearization is more prone to
suffer from error propagation; the poor accuracy on con-
stituents of type CNP (Coordinated Noun Phrases) is caused by
failing to correctly identify the boundaries of that kind of
phrases when long enumerations of Noun Phrases (separated
by commas) have to be processed. The variant with the SHIFT#K

transition also has a poor performance on large constituents
VP, S and SBAR; but surprisingly outperforms the in-
order + SWAP (one of the best-performing linearizations) on
building CNP constituents.

6. Conclusions

In this article, we present the first sequence-to-sequence con-
stituent parser that can produce discontinuous phrase structure
trees. To achieve that, we define novel transition systems for lin-
earizing discontinuous structures and present a more powerful
neural architecture to implement a state-of-the-art sequence-to-
sequence model. The resulting system not only accurately pro-
duces discontinuous constituent trees, but also achieves the best
accuracy to date among sequence-to-sequence constituent parsers
on the main benchmarks, and advances the state of the art in accu-
racy on DPTB.

Finally, it is worth mentioning that, to the best of our knowl-
edge, neither of the novel transition systems defined in this work
have been studied in a purely transition-based framework and,
since the in-order algorithm [38] achieves the best accuracy to date
for a transition-based parser on continuous treebanks, the variant
enhanced with the SWAP action might outperform current state-
of-the-art models on discontinuous benchmarks.
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