
Information Fusion 91 (2023) 494–503

A
1
n

F

D
D
U
C

A

K
N
C
P
D
N
D

1

t
b
l
t
d

f
o
p
i
m
o
o

h
p
t
t
t

h
R

Contents lists available at ScienceDirect

Information Fusion

journal homepage: www.elsevier.com/locate/inffus

ull length article

ependency parsing with bottom-up Hierarchical Pointer Networks
aniel Fernández-González ∗, Carlos Gómez-Rodríguez
niversidade da Coruña, CITIC, FASTPARSE Lab, LyS Group, Depto. de Ciencias de la Computación y Tecnologías de la Información, Campus de Elviña, s/n, A
oruña, 15071, Spain

R T I C L E I N F O

eywords:
atural language processing
omputational linguistics
arsing
ependency parsing
eural network
eep learning

A B S T R A C T

Dependency parsing is a crucial step towards deep language understanding and, therefore, widely demanded by
numerous Natural Language Processing applications. In particular, left-to-right and top-down transition-based
algorithms that rely on Pointer Networks are among the most accurate approaches for performing dependency
parsing. Additionally, it has been observed for the top-down algorithm that Pointer Networks’ sequential
decoding can be improved by implementing a hierarchical variant, more adequate to model dependency
structures. Considering all this, we develop a bottom-up oriented Hierarchical Pointer Network for the left-
to-right parser and propose two novel transition-based alternatives: an approach that parses a sentence in
right-to-left order and a variant that does so from the outside in. We empirically test the proposed neural
architecture with the different algorithms on a wide variety of languages, outperforming the original approach
in practically all of them and setting new state-of-the-art results on the English and Chinese Penn Treebanks
for non-contextualized and BERT-based embeddings.
. Introduction

Dependency parsing consists in representing the grammatical struc-
ure of a given sentence by attaching each word to another (which will
e considered its head or parent), to finally gather all these directed
inks into a dependency tree as the one included in Fig. 1. Additionally,
hese directed links or dependencies are enhanced with labels that
escribe syntactic functions.

This syntactic information accurately provided by parsers in the
orm of dependency trees has proven highly useful for a huge variety
f Natural Language Processing (NLP) tasks. In particular, dependency
arsing has been recently used for machine translation [1], opin-
on mining [2,3], event extraction [4], question answering [5], senti-
ent analysis [6–8], coreference resolution [9], summarization [10]

r semantic role labeling and named entity recognition [11], among
thers.
Pointer Networks [12] have notably succeeded in implementing

ighly accurate versions of one of the most widely used dependency
arsing paradigms: transition-based dependency parsers. In particular,
wo different algorithms have been proposed: a top-down approach [13]
hat, at each step and starting from the root node, connects each word
o one of its children; and a left-to-right variant [14] that, starting

∗ Corresponding author.
E-mail addresses: d.fgonzalez@udc.es (D. Fernández-González), carlos.gomez@udc.es (C. Gómez-Rodríguez).
URLs: https://danifg.github.io (D. Fernández-González), http://www.grupolys.org/~cgomezr/ (C. Gómez-Rodríguez).

from the left, attaches each word of the sentence to its parent. Apart
from being twice as fast as the former, the latter outperforms the top-
down variant in terms of accuracy in practically all datasets tested so
far.

As transition-based algorithms [15], both perform the parsing pro-
cess as a sequential decoding where, at each step or parsing state, all
permissible actions (which do not violate the single-head or acyclic-
ity constraints) are evaluated and the highest-scoring one is greedily
applied, generating a new state. This sequential decoding differs from
the approach followed by their main competitors: graph-based algo-
rithms [16]. These previously score all possible arcs (or sets of arcs)
and then, during decoding, search for the highest-scoring valid de-
pendency tree. While recent graph-based models use a head-selection
strategy [17,18] similar to that followed by the left-to-right transition-
based parser [14], the training and decoding processes are completely
different: at each decoding step, only permissible arc transitions are
evaluated in the transition-based approach, and scores are computed
taking into account a sequence of previous decisions encoded through
the decoder. On the contrary, these simplified graph-based models
independently score all possible parents for each word and then, during
decoding, only the highest-scoring ones are kept regardless of the
parents chosen for the other words. Then, at the end of the process,
a maximum spanning tree algorithm is applied (if necessary) to output
vailable online 28 October 2022
566-2535/© 2022 The Authors. Published by Elsevier B.V. This is an open access art
c-nd/4.0/).

ttps://doi.org/10.1016/j.inffus.2022.10.023
eceived 29 July 2022; Received in revised form 13 October 2022; Accepted 20 O
icle under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-

ctober 2022

http://www.elsevier.com/locate/inffus
http://www.elsevier.com/locate/inffus
mailto:d.fgonzalez@udc.es
mailto:carlos.gomez@udc.es
https://danifg.github.io
http://www.grupolys.org/~cgomezr/
https://doi.org/10.1016/j.inffus.2022.10.023
https://doi.org/10.1016/j.inffus.2022.10.023
http://crossmark.crossref.org/dialog/?doi=10.1016/j.inffus.2022.10.023&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/


Information Fusion 91 (2023) 494–503D. Fernández-González and C. Gómez-Rodríguez
Fig. 1. Dependency tree for a given sentence.

a well-formed tree.1 This difference can be also seen empirically, as
the left-to-right transition-based parser achieves higher accuracies than
the approach by Dozat and Manning [18] in several widely-known
benchmarks.

While this sequential decoding (typically implemented by a recur-
rent neural network) seems to be beneficial for dependency parsing, it
might lead to accuracy losses due to error propagation: mistaken past
decisions will affect future actions, especially harming performance on
long-range dependencies and attachments created in final steps. This
limitation present in classic transition-based parsers also affects recent
algorithms based on Pointer Networks, as decoder states located at the
end of the sequence tend to forget relevant information from the past
and are more prone to suffer from error propagation.

In fact, Liu et al. [19] propose a hierarchical decoding for the top-
down algorithm [13] by having access, at each step, to information
about the focus word’s parent and siblings created in the past, intro-
ducing not only knowledge about distant decoder states relevant for
future decisions, but also an underlying tree structure to the decoding
process (more appropriate for modeling dependency graphs).

In this paper, we initially develop a general Hierarchical Pointer
Network architecture with a bottom-up structured decoding for the left-
to-right transition-based algorithm [14]. This will allow the decoder
to have access to information about partial structures created in the
past and will help to make better future decisions. Alternatively to this
algorithm, we design two novel bottom-up oriented transition systems
that can be easily implemented on the proposed neural model.

Finally, we empirically show that the presented architecture with
any transition-based algorithm provides improvements in accuracy on
ten different languages from Universal Dependencies [20] and obtains
state-of-the-art scores on the commonly-used English and Chinese Penn
Treebanks [21,22].

The remainder of this article is organized as follows: Section 2
introduces the baseline left-to-right parser by Fernández-González and
Gómez-Rodríguez [14] and briefly presents the top-down Hierarchical
Pointer Network by Liu et al. [19]. In Section 3, we describe in detail
the proposed bottom-up Hierarchical Pointer Network and how it is
adapted to the left-to-right algorithm. Section 4 presents new transition
systems and how they are implemented on the novel neural architec-
ture. In Section 5, we extensively evaluate the proposed neural model
with each parsing strategy on numerous datasets, as well as include
a thorough analysis of their performance. Lastly, Section 6 contains a
final discussion.

2. Preliminaries

2.1. Left-to-right transition system

Fernández-González and Gómez-Rodríguez [14] propose an efficient
left-to-right transition system that is defined by a focus word pointer 𝑖,
which is used to point to the word currently being processed 𝑤𝑖, and
a single Shift-Attach-𝑝 transition, which assigns a parent word 𝑤𝑝 (in

1 Additionally, while in transition-based parsers like [13] and [14], the
sequential decoding makes it possible to easily add high-order features
and projectivity constraints without increasing runtime complexity, these
enhancements in graph-based models lead to a performance penalty.
495
Fig. 2. Attachment order and leftmost (lm), rightmost (rm), last-attached left (la)
and right (ra) dependents that are available at each decoding step when parsing the
sentence in Fig. 1 with the three available transition-based algorithms. Note that words
𝑤𝑖 are represented by the positional index 𝑖.

position 𝑝) to 𝑤𝑖 (producing the dependency arc 𝑤𝑝 → 𝑤𝑖) and then
moves the pointer making it point to the next token 𝑤𝑖+1. Starting at
the beginning of a sentence (of length 𝑛), this algorithm sequentially
attaches each token 𝑤𝑖 to its parent in just 𝑛 steps.2 In Fig. 2(a), we
depict the sequential prediction of Shift-Attach-𝑝 transitions that pro-
duces all arcs in the dependency tree in Fig. 1 following a left-to-right
transition system.

In order to incrementally build a well-formed dependency tree
during decoding, only Shift-Attach-𝑝 transitions that do not generate
cycles in the already-built dependency graph are allowed. Additionally,
the left-to-right transition system can efficiently produce unrestricted
dependency graphs, including non-projective structures.3 However, the
projectivity constraint can optionally be enforced by discarding tran-
sitions that produce crossing dependencies, which can be useful in
treebanks with a negligible presence of non-projectivity [23].

2.2. Pointer networks for left-to-right dependency parsing

The left-to-right algorithm can be easily implemented by a Pointer
Network [12] to undertake non-projective dependency parsing. Pointer
Networks are one among the various recent neural models that seek to
improve performance on various Artificial Intelligence tasks [24,25].
These sequence-to-sequence neural networks are trained to output a
sequence of positions (discrete numbers) from an input sequence of
items. In our case, the output is the sequence 𝐩 = 𝑝1, 𝑝2,… , 𝑝𝑛 of
values necessary to parameterize the Shift-Attach-𝑝 transition and build
a dependency graph for the input sentence 𝐰 = 𝑤1,… , 𝑤𝑛. These
positions (or values of 𝑝 in the left-to-right transition system) are

2 The top-down transition system by Ma et al. [13] needs 2𝑛-1 steps to parse
a sentence of length 𝑛.

3 Non-projective dependency graphs are harder to produce since they are
able to represent more complex syntactic phenomena by allowing crossing
arcs.



Information Fusion 91 (2023) 494–503D. Fernández-González and C. Gómez-Rodríguez

i
s
N

d
i
s

t
m
d
i

𝐱

𝐡

D
h
g
i
f
c

𝐬

I
h
r
c
i

w
o
𝐡
b
d

𝐯

a

u

selected by an attention mechanism [26] over the input sentence. This
avoids having to keep a fixed output dictionary size, which will vary
for each input sentence with respect to its length.

More specifically, the encoder–decoder architecture of the original
left-to-right parser [14] is designed as follows:

Encoder Given an input sentence 𝐰 = 𝑤1,… , 𝑤𝑛, each word 𝑤𝑖 is
nitially represented as 𝑥𝑖: i.e., a concatenation of character-level repre-
entations (𝐞𝑐𝑖 ) (extracted by max-pooling-based Convolutional Neural
etworks [27]), POS tag embeddings (𝐞𝑝𝑖 ) and word embeddings (𝐞𝑤𝑖 ):

𝐱𝑖 = 𝐞𝑐𝑖 ⊕ 𝐞𝑤𝑖 ⊕ 𝐞𝑝𝑖
Then, each vector representation 𝐱𝑖 is passed through a BiLSTM
(Bidirectional Long Short-Term Memory) to generate the encoder hidden
state 𝐡𝑖.

𝐡𝑖 = 𝐡𝑙𝑖 ⊕ 𝐡𝑟𝑖 = 𝐁𝐢𝐋𝐒𝐓𝐌(𝐱𝑖)

where 𝐡𝑙𝑖 and 𝐡𝑟𝑖 are the outputs of a leftward and a rightward uni-
irectional LSTM (Long Short-Term Memory), respectively. This results
n the sequence 𝐡0 …𝐡𝑛 that encodes the input sentence (where 𝐡0 is a
pecial representation for the artificial ROOT node).

We also report accuracies with our encoder enhanced with contex-
ualized word embeddings extracted from the widely-used language
odel BERT [28]. In those cases, BERT-based word embeddings are
irectly concatenated to the basic word representation 𝐱𝑖 before passing
t through the BiLSTM:
′
𝑖 = 𝐱𝑖 ⊕ 𝐞𝐵𝐸𝑅𝑇

𝑖

𝑖 = 𝐁𝐢𝐋𝐒𝐓𝐌(𝐱′𝑖 )

ecoder The sequential decoding that models the transition-based be-
avior is implemented by a unidirectional LSTM, which is in charge of
enerating a new decoder hidden state 𝐬𝑡 at each time step 𝑡. As input
t receives the encoder hidden state 𝐡𝑖 (representation of the current
ocus word 𝑤𝑖) and, as a standard recurrent neural network, it is also
onditioned by the previous decoder state 𝐬𝑡−1:

𝑡 = 𝐋𝐒𝐓𝐌(𝐡𝑖) = 𝑓 (𝐬𝑡−1,𝐡𝑖)

n the original work, authors added to 𝐡𝑖 the previous and next encoder
idden states as extra features; however, in a followup paper, they
emoved those additions since the bidirectional LSTM is already en-
oding such information and, therefore, they do not lead to significant
mprovements [23].

The resulting decoder state 𝐬𝑡 (which represents the current focus
ord plus the past decisions made so far) is used for computing scores
f all possible words 𝑤𝑗 from the input sentence (encoded as vectors
𝑗 with 𝑗 ∈ [0, 𝑛] and 𝑗 ≠ 𝑖) as parent of 𝑤𝑖. These scores are obtained
y a biaffine scoring function [18] to finally compute the attention
istribution in a vector 𝐚𝑡:

𝑡𝑗 = 𝐬𝐜𝐨𝐫𝐞(𝐬𝑡,𝐡𝑗 ) = 𝑓1(𝐬𝑡)𝑇𝐖𝑓2(𝐡𝑗 ) + 𝐔𝑇 𝑓1(𝐬𝑡) + 𝐕𝑇 𝑓2(𝐡𝑗 ) + 𝐛;

𝐚𝑡 = 𝐬𝐨𝐟𝐭𝐦𝐚𝐱(𝐯𝑡)

where 𝐖, 𝐔 and 𝐕 are the weights and, as observed by Dozat and
Manning [18], 𝑓1(⋅) and 𝑓2(⋅) are multilayer perceptrons (MLP) for
reducing dimensionality and avoiding model overfitting.

Then, the attention vector 𝐚𝑡 is employed for implementing a pointer
over the input sentence, selecting, at each step 𝑡, the highest-scoring po-
sition (where the parent word 𝑤𝑝 is located) and, therefore, providing a
value 𝑝 necessary to apply a Shift-Attach-𝑝 transition and build the arc
𝑤𝑝 → 𝑤𝑖. Finally, as proposed by [13], a multi-class classifier (based
on the approach developed by Dozat and Manning [18]) is separately
trained to predict the arc label of each dependency created by the
pointer.

Since the decoder performs 𝑛 attachments to process an input sen-
tence with length 𝑛 and, additionally, attention is computed at each step
over the whole sentence, the time complexity of the parsing process is

2

496

𝑂(𝑛 ). n
2.3. Top-down Hierarchical Pointer Networks

Liu et al. [19] introduced Hierarchical Pointer Networks for the
top-down transition-based algorithm developed by Ma et al. [13]. The
top-down transition system consists of two actions and a stack: one
transition for connecting the word on top of the stack to one of its
children and push it into the stack, and another action for popping the
current focus word on top. Liu et al. [19] design a structured decoding
for the original Pointer Network, where not only the immediately-
previous decoder state 𝐬𝑡−1 of the LSTM is considered for choosing the
next action to be applied on the current word on top, but also decoder
hidden states generated when the current focus word’s parent and last
sibling were assigned following the top-down transition system. More
graphically, in Fig. 1, when, for instance, the current focus word to
be processed is John, decoder hidden states of its parent play and last-
assigned sibling together4 are taken into consideration when choosing
John’s children. With this strategy, the authors manage to introduce
an explicit structural inductive bias into the original linear decoder,
allowing a more adequate modeling for the generation of dependency
graphs. Liu et al. [19] also empirically show that their top-down
Hierarchical Pointer Networks are beneficial for the accuracy of arcs
created in final steps, which is especially crucial on long sentences.

3. Bottom-up Hierarchical Pointer Networks

Based on the research work by Liu et al. [19], we propose a
Hierarchical Pointer Network for the left-to-right transition-based al-
gorithm [14] and other related parsing strategies where dependents
of the focus word may already have been attached (as we will design
more such algorithms later). In particular, instead of parent or sibling
information, we design a bottom-up structured tree decoding by con-
sidering decoder hidden states of the focus word’s relevant dependents.
More concretely, to alleviate the gradual loss of relevant information
during sequential decoding, we propose to consider decoder hidden
states of the leftmost and rightmost dependents already attached to
the current focus word, as well as the most recently attached left and
right dependents. Note that not all this information is available in
all strategies, e.g., the left-to-right algorithm has no access to right
dependencies of the focus word.

All this will not only provide valuable knowledge about words
processed in the past (especially those attached by long-range depen-
dencies), but will also keep an underlying tree structure that will help
the decoder to make good decisions throughout the parsing process. For
instance, when the sentence from Fig. 1 is parsed following a purely
bottom-up strategy5 and the current focus word play must be attached
to its parent, it would be helpful to have access to information about
its leftmost and rightmost dependents (John and together, respectively),
as well as the most recently attached right dependent (tennis).

3.1. Structured tree decoder

To implement this novel bottom-up Hierarchical Pointer Network
variant, we keep the same encoder as the original approach [14], but
use a bottom-up hierarchical decoder instead.

More in detail, at each step 𝑡 with current focus word 𝑤𝑖, the
generated decoder hidden state 𝐬𝑡 is directly conditioned, apart from
by the previous decoder state 𝐬𝑡−1 and the encoder hidden state 𝐡𝑖, by
the decoder states of the already-attached leftmost (𝐬𝑙𝑚(𝑡)) and rightmost

4 Assuming that in the top-down transition system, right children are
ttached first in an inside-out order.

5 Please note that the left-to-right transition system is not purely bottom-
p since, when a word is attached to its parent, not all of its children have
ecessarily been assigned yet.



Information Fusion 91 (2023) 494–503D. Fernández-González and C. Gómez-Rodríguez

𝐠

n
t
i
s
a
l
w
o

(𝐬𝑟𝑚(𝑡)) dependents of 𝑤𝑖, as well as the decoder states of the left (𝐬𝑙𝑎(𝑡))
and right (𝐬𝑟𝑎(𝑡)) last-attached dependents:6

𝐬𝑡 = 𝑓 (𝐬𝑙𝑚(𝑡), 𝐬𝑟𝑚(𝑡), 𝐬𝑙𝑎(𝑡), 𝐬𝑟𝑎(𝑡), 𝐬𝑡−1,𝐡𝑖)

where 𝑓 (⋅) is a fusion function that combines all components into a
single decoder state.

Following Liu et al. [19], we do not directly feed these six compo-
nents to the decoder, but utilize a gating mechanism to allow our model
to adequately extract the most useful information at each decoding
step. In particular, we implement two different gating functions:

𝐠𝑡 = 𝐬𝐢𝐠𝐦𝐨𝐢𝐝(𝐖𝑔𝑝𝐬𝑡−1+𝐖𝑔𝑙𝑚𝐬𝑙𝑚(𝑡)+𝐖𝑔𝑟𝑚𝐬𝑟𝑚(𝑡)+𝐖𝑔𝑙𝑎𝐬𝑙𝑎(𝑡)+𝐖𝑔𝑟𝑎𝐬𝑟𝑎(𝑡)+𝐛𝑔)

(Gate1)

𝑡 = 𝐬𝐢𝐠𝐦𝐨𝐢𝐝(𝐖𝑔𝑙𝑚(𝐬𝑡−1 ⊙ 𝐬𝑙𝑚(𝑡)) +𝐖𝑔𝑟𝑚(𝐬𝑡−1 ⊙ 𝐬𝑟𝑚(𝑡)) (Gate2)
+ 𝐖𝑔𝑙𝑎(𝐬𝑡−1 ⊙ 𝐬𝑙𝑎(𝑡)) +𝐖𝑔𝑟𝑎(𝐬𝑡−1 ⊙ 𝐬𝑟𝑎(𝑡)) + 𝐛𝑔)

where 𝐖𝑔𝑝, 𝐖𝑔𝑙𝑚, 𝐖𝑔𝑟𝑚, 𝐖𝑔𝑙𝑎, 𝐖𝑔𝑟𝑎 and 𝐛𝑔 are gating weights. While
all decoder states are equally weighted in Gate1, the element-wise
product used in Gate2 has the effect of similarity comparison among
the previous decoder state 𝐬𝑡−1 and the other components.

These gating functions are then used to define the fusion function
𝑓 as follows:

𝐡′𝑡 = 𝑡𝑎𝑛ℎ(𝐖𝑝𝐬𝑡−1 +𝐖𝑙𝑚𝐬𝑙𝑚(𝑡) +𝐖𝑟𝑚𝐬𝑟𝑚(𝑡) +𝐖𝑙𝑎𝐬𝑙𝑎(𝑡) +𝐖𝑟𝑎𝐬𝑟𝑎(𝑡));

𝐡′′𝑡 = 𝐠𝑡 ⊙ 𝐡′𝑡;

𝐬𝑡 = 𝐋𝐒𝐓𝐌(𝐡′′𝑡 ,𝐡𝑖)

where 𝐖𝑙𝑚, 𝐖𝑟𝑚, 𝐖𝑙𝑎 and 𝐖𝑟𝑎 are the weights for combining the five
different decoder states into one intermediate hidden state 𝐡′𝑡. After
that, the gating mechanism 𝐠𝑡 is applied to control the information flow
and generate the hidden state 𝐡′′𝑡 , which will be fed into the decoder
together with the encoder hidden state 𝐡𝑖.

As shown in Section 2.2, the resulting decoder state 𝐬𝑡 is then used
for computing the attention vector 𝐚𝑡 that will work as a pointer over
the input sentence.

3.2. Model specifics for the left-to-right transition system

While the left-to-right transition system can be directly imple-
mented on the described Hierarchical Pointer Network, it cannot use
its full potential. This transition-based approach does not follow a fully
bottom-up strategy during the left-to-right decoding7 and, therefore,
right dependents are not available when they are needed. In the
example, when the word play is under processing, only the leftmost
dependent John is available since no right dependents have been
created yet and, when the words tennis and together are finally attached,
they are no longer needed since the word play will have already been
processed. This led us to simplify the definition of the gating-based
fusion function 𝑓 for the left-to-right transition system by removing
decoder states of right dependents:

𝐬𝑡 = 𝑓 (𝐬𝑙𝑚(𝑡), 𝐬𝑙𝑎(𝑡), 𝐬𝑡−1,𝐡𝑖) (l-adapted)

Since, in some languages, it might be the case that words have either
only one left dependent (𝐬𝑙𝑚(𝑡) and 𝐬𝑙𝑎(𝑡) being the same) or the left last-
attached dependent was created in the previous time step (𝐬𝑡−1 and 𝐬𝑙𝑎(𝑡)

6 Note that 𝐬𝑙𝑚(𝑡) and 𝐬𝑟𝑚(𝑡) might have the same values as 𝐬𝑙𝑎(𝑡) and 𝐬𝑟𝑎(𝑡),
respectively, when just one left or right dependent were assigned for the
current focus word.

7 Left dependents are added bottom-up and right dependents top-down.
497

t

being the same), we also experiment with a simpler variant of 𝑓 that
just considers decoder states 𝐬𝑡−1 and 𝐬𝑙𝑚(𝑡):

𝐬𝑡 = 𝑓 (𝐬𝑙𝑚(𝑡), 𝐬𝑡−1,𝐡𝑖) (l-simple)

Finally, it is worth mentioning that the hierarchical decoder does
not penalize the quadratic runtime complexity of the left-to-right parser
and, as the original work [14], it is trained by minimizing the total log
loss (cross entropy) for choosing the correct sequence of Shift-Attach-𝑝
transitions to build a gold dependency tree for the input sentence 𝐰
(i.e. predicting the correct sequence of indices 𝑝, with each decision
(𝑝𝑡) being conditioned by previous ones (𝑝<𝑡)):

(𝜃) = −
𝑇
∑

𝑡=1
𝑙𝑜𝑔𝑃𝜃(𝑝𝑡|𝑝<𝑡,𝐰)

By optimizing the sum of their objectives, we simultaneously train the
pointer and the labeler.

4. Alternative transition-based algorithms

Apart from the existing left-to-right algorithm, other transition sys-
tems can be implemented on the proposed bottom-up Hierarchical
Pointer Network. In particular, we develop two alternative approaches
to sequentially parse a sentence by attaching each word to its parent.

Right-to-left While a left-to-right hierarchical decoding might be more
adequate for modeling left-branching languages where long-range de-
pendencies tend to be leftward arcs (such as Turkish and Korean), for
right-branching languages with a high predominance of long rightward
arcs (such as Arabic and Hebrew), a right-to-left transition system could
be a perfect fit.8 This parses a sentence starting from the last word 𝑤𝑛
and it provides a Shift-Attach-𝑝 transition that, at each step, assigns a
parent to the current focus word 𝑤𝑖 and moves 𝑖 to point to word 𝑤𝑖−1.
In Fig. 2(b), we describe the order in which arcs are created with the
right-to-left transition system to generate the dependency tree in Fig. 1
and the available dependents at each decoding step. Symmetrically to
the left-to-right algorithm, we adjust the fusion function 𝑓 to process
only decoder states of right dependents:

𝐬𝑡 = 𝑓 (𝐬𝑟𝑚(𝑡), 𝐬𝑟𝑎(𝑡), 𝐬𝑡−1,𝐡𝑖) (r-adapted)

Additionally, following the same reasoning as for the left-to-right al-
gorithm, we also implement a simplified alternative that removes 𝐬𝑟𝑎(𝑡)
from the equation:

𝐬𝑡 = 𝑓 (𝐬𝑟𝑚(𝑡), 𝐬𝑡−1,𝐡𝑖) (r-simple)

Outside-in In order to fully use the proposed neural architecture and,
therefore, have access to left and right dependents during the de-
coding process, we design an outside-in transition system: it parses a
sentence starting from the leftmost word (𝑤1) and continuing with the
rightmost word (𝑤𝑛) towards the middle of the sentence, alternating
words from the left and the right. To that end, a canonical order
𝑤1, 𝑤𝑛, 𝑤2, 𝑤𝑛−1,… , 𝑤

⌊

𝑛+1
2 ⌋

is determined at the beginning. At each
decoding step the Shift-Attach-𝑝 transition, apart from attaching 𝑤𝑖 to
its parent, moves 𝑖 according to that order. In Fig. 2(c), we can see
an example of how this outside-in algorithm works and how left and

8 Please note that, following common usage in the parsing literature,
aming conventions in this paper use the terms ‘‘left’’ and ‘‘right’’ to refer to
emporal order (under the convention that a word is to the ‘‘left’’ of another
f it comes first), not to spatial order when the words are written in a given
cript. This means that in languages with a right-to-left writing system, such
s Arabic and Hebrew, the original left-to-right parser will begin reading each
ine of text from the right (i.e., the beginning), and the right-to-left algorithm
ill begin from the left (i.e., the end). Similarly, the graphical representation
f what we call a ‘‘leftward arc’’ would be an arrow pointing to the right in

hose languages.



Information Fusion 91 (2023) 494–503D. Fernández-González and C. Gómez-Rodríguez
Fig. 3. Neural architecture for the Hierarchical Pointer Network and decoding steps necessary to produce the dependency tree in Fig. 1 with the outside-in transition system. Note
that some dependent influences, such as the one generated by arc 1 → 3 in decoder state 𝐬𝟓, will not be used as the word in position 1 was already processed.
Table 1
Details of the treebanks used in our experiments. Family = Afro-Asiatic (AA), Indo-
European (IE), Koreanic (KO), Language isolate (LI), Sino-Tibetan (ST), Turkic (TU) or
Uralic (UR). Order = dominant word order according to WALS [29]. Size = number
of training sentences. %long = percentage of long arcs (length > 4) in the dev split.
%left = percentage of long arcs that are leftward.

Language Treebank Family Order Size %long %left

Arabic PADT AA VSO 6.1k 16.62 10.30
Basque BDT LI SOV 5.4k 20.17 44.46
Chinese GSD ST SVO 4.0k 25.31 59.44
English EWT IE SVO 12.5k 16.43 25.49
Finnish TDT UR SVO 12.2k 17.45 26.83
Hebrew HTB AA SVO 5.2k 17.82 20.60
Italian ISDT IE SVO 13.1k 16.20 22.69
Korean GSD KO SOV 4.4k 14.76 78.40
Swedish Talbanken IE SVO 4.3k 19.22 29.51
Turkish IMST TU SOV 3.7k 14.84 70.69

right dependents are available during the decoding process. Since this
strategy allows us to use decoder states of left and right dependents,
the fusion function 𝑓 can be fully used. For the same reasons as stated
for the other transition systems, we also propose a simplification that
discards last-attached dependents as follows:

𝐬𝑡 = 𝑓 (𝐬𝑙𝑚(𝑡), 𝐬𝑟𝑚(𝑡), 𝐬𝑡−1,𝐡𝑖) (simple)

Note that both alternative transition systems are guaranteed to parse
a sentence of length 𝑛 in just 𝑛 steps, keeping the same runtime com-
plexity as the left-to-right algorithm, and are likewise trained, except
for the order in which transitions (values of 𝑝) are predicted.

Fig. 3 depicts the proposed Hierarchical Pointer Network and
presents the decoding procedure for producing the dependency tree
described in Fig. 1 with the outside-in transition system. In this sketch,
it can be graphically seen how decoder hidden states of dependents
influence the decoding process.

Finally, it is worth mentioning that it is not possible to design a
purely bottom-up transition system on the Pointer Network framework
using 𝑛 transitions (one per word) as, regardless of the order in which
words are considered, it is not possible to guarantee that dependents
498
are always processed before heads (e.g., the first node considered will
not necessarily be a leaf).

5. Experiments

5.1. Data

We conduct experiments on a wide variety of languages from Uni-
versal Dependencies v2.6 [20]. Following [30], we choose ten tree-
banks from different language families, with different morphological
complexity and with different predominances of long-range dependen-
cies. These are detailed in Table 1.

Additionally, we evaluate the proposed neural architecture on two
widely-known benchmarks: the English Penn Treebank (PTB) [21]
version with Stanford Dependencies [31] and, following [23], without
any PoS tags9; and the dependency conversion [32] of the Chinese Penn
Treebank 5.1 (CTB) [22] with gold POS tags.

Since random initializations are performed, we report the average
Labeled and Unlabeled Attachment Scores (LAS and UAS) over 3 rep-
etitions for each experiment; and, during evaluation, we just exclude
punctuation on PTB and CTB following standard practice.

5.2. Settings

We use the code of the original parser by Fernández-González
and Gómez-Rodríguez [14] (with the modifications proposed for the
single-task parser in [23]) and implement the bottom-up Hierarchical
Pointer Network plus the two novel transition systems, allowing a
homogeneous comparison against the baseline. Similarly to [19], we ex-
periment with the two available gate mechanisms in combination with
the proposed transition systems and fusion function implementations.
All models were executed on an Intel(R) Core(TM) i7-8700K CPU @
3.70 GHz with two 12 GB GeForce GTX 1080 Ti GPUs.

9 It has been shown that using predicted PoS tags does not lead to accuracy
gains in parsers built on Pointer Networks [13].



Information Fusion 91 (2023) 494–503D. Fernández-González and C. Gómez-Rodríguez

i
s
P
f

e
W
t
i
s
o
f
i

v
f
s

5

b
w
a
t
p
b
t
a
i
l
a
R
f
o
c
o
m

Table 2
Hyper-parameter selection.
Adam optimizer

Batch size 32
𝛽1 0.9
𝛽2 0.9
Initial learning rate 0.001
Gradient clipping 5.0
Decay rate 0.75

Architecture

BiLSTM size 512
BiLSTM number of layers 3
LSTM size 512
LSTM number of layers 1
LSTM layers dropout 0.33
CNN window size 3
CNN number of filters 50
MLP activation function ELU
MLP number of layers 1
Arc MLP size 512
Label MLP size 128
UNK replacement probability 0.5
Character embedding dimension 100
POS tag embedding dimension 100
Word embedding dimension 100
Embeddings dropout 0.33
English BERT embedding dimension 1024
Chinese BERT embedding dimension 768

While character and PoS tag embeddings are randomly initial-
zed, we use pre-trained embeddings for initializing word vectors:
tructured-skipgram embeddings [33] for English and Chinese, and
olyglot embeddings [34] for other languages. All embeddings are
ine-tuned during training.

For PTB and CTB, we additionally concatenate contextualized word
mbeddings obtained from the pre-trained language model BERT [28].
e follow the greener and less resource-consuming approach under-

aken by [23] and directly feed BERT fixed weights as described
n Section 2.2, without any fine-tuning to our specific task. More
pecifically, we extract a combination of weights from layers 17–20
f BERTLARGE for PTB and weights from the 11th layer of BERTBASE
or CTB, averaging BERT-based embeddings when a word is tokenized
nto more than one subword.

Finally, we use beam size 10 for PTB and CTB, and 1 for Uni-
ersal Dependencies treebanks; we employ the Adam optimizer [35]
or parameter optimization and further details about hyper-parameter
election are reported in Table 2.

.3. Results

Table 3 reports LAS on dev splits of Universal Dependencies tree-
anks obtained by the proposed bottom-up Hierarchical Pointer Net-
orks with different transition systems and parser configurations (gate
nd fusion function) and choose the best configuration on average
o be evaluated on test splits. As shown in the reported results, the
roposed architecture with the three algorithms improves over the
aseline parser in practically all datasets, obtaining higher gains on
hose languages with a larger amount of long arcs (such as Basque
nd Chinese). We can also observe that the simplified fusion functions
mprove over the adapted and full versions on average, meaning that
ong-distance dependents are more valuable than last-assigned ones
nd, in some cases, the usage of the latter harms parsing accuracy.
egarding the novel transition systems, the right-to-left parser outper-

orms other algorithms on languages with a significant predominance
f long rightward arcs (such as Arabic), and the outside-in algorithm
learly underperforms the other transition systems on average in spite
f having access to left and right relevant dependents, which probably
499

eans that a sequential human-like strategy is more suitable for parsing
natural languages, or that the outside-in order is too complex to learn
effectively. Finally, Gate1 obtains higher accuracy in general.

We also compare the proposed approach with the three imple-
mented transition systems against the most recent dependency parsers
on PTB and CTB. In order to choose the best parser configuration for
the Penn Treebanks, we use scores on PTB development splits reported
in Table 4. Since Gate1 outperforms Gate2 in general (as shown for
Universal Dependencies treebanks in Table 3), we simply use Gate1 in
all experiments and vary the fusion function implementation. Lastly,
for BERT augmentations, we directly use simplified fusion functions,
significantly reducing training time. As we can see in Table 5, the
left-to-right approach achieves the highest accuracy obtained so far on
PTB and CTB test splits with neither contextualized word embeddings
nor extra constituent information. Regarding BERT augmentations, all
transition systems not only outperform the baseline [23], but also the
right-to-left model achieves the best LAS to date among approaches
that use (or fine-tune) BERT (even improving over those enhanced with
constituent information on PTB). These results provide some evidence
that our proposed neural architecture has access to some structural in-
formation not learnt by the pre-trained language model BERT. Finally,
all these improvements in accuracy provided by the proposed neural
architecture come without harming the 𝑂(𝑛2) runtime complexity of
the original left-to-right transition-based parser, overcoming, therefore,
their main competitors that have a higher 𝑂(𝑛3) runtime complexity:
the second-order graph-based parsers by Zhang et al. [40] and Wang
and Tu [41].

Finally, while the runtime complexity of the proposed transition-
based parsers is quadratic as that of the original sequential approach,
the leverage of structural information during decoding comes at a cost
in practice. In particular, the left-to-right, right-to-left and outside-
in algorithms implemented on the Hierarchical Pointer Network re-
spectively deliver 9.62 sent./s., 9.82 sent./s. and 8.81 sent./s. during
decoding time on the test split of the PTB. This means that the original
22.57-sentences-per-second speed of the sequential Pointer Network is
approximately halved. Although the current version of our neural ar-
chitecture is less efficient than the baseline, it is worth mentioning that
it was not optimized for speed and, therefore, further enhancements in
handling structural information would improve final decoding speed.

5.4. Dependent information availability

To further understand the availability of dependent information
for each transition system and its impact on parsing performance,
we report in Table 6 the number of dependents per sentence that
are accessible for each transition system on Universal Dependencies
treebanks. While, at a first glance, we might think that the outside-
in algorithm is the strategy that leverages dependent information the
most since it receives both left and right dependents, it seems that,
overall and according to gold trees, the left-to-right parser is the
strategy that has access to a larger amount of (in this case, left)
dependents, and the right-to-left approach is the one that uses more
long-range (right) dependents (typically present in right-branching lan-
guages, where rightward dependency arcs tend to be longer). This
might explain the good results of the right-to-left approach on Uni-
versal Dependencies datasets on average (since the majority of tested
languages have a higher percentage of long rightward arcs and long-
range dependents are considered more valuable for reducing error
propagation) and the fact that the l-adapted fusion function has a better
performance on the left-to-right parser (since this function gathers
information about closer dependents and this algorithm has access to a
notable amount of dependent information). Finally, we can also observe
that, as expected, the right-to-left algorithm is more adequate to model
languages with a high predominance of rightward arcs such as Hebrew
and especially Arabic, where it has access to a notable amount of right
dependents not seen by the other transition systems throughout the

parsing process.



Information Fusion 91 (2023) 494–503D. Fernández-González and C. Gómez-Rodríguez

l
t
g

Table 3
LAS comparison of the original left-to-right parser with sequential decoding against the three available transition systems on Hierarchical Pointer Networks combined with different
fusion functions implementations and gating mechanisms on ten treebanks from Universal Dependencies. Only best models on average on dev splits are evaluated on test sets.
In Appendix, we report the standard deviations over 3 runs on test splits. We use ISO 639-1 codes to represent languages.

tran. 𝑓 gate ar en eu fi he it ko sv tr zh Avg.

dev

L2R – – 83.82 90.29 83.80 88.46 89.11 92.52 83.29 86.78 64.75 82.54 84.54

L2R l-adapted Gate1 84.15 90.51 84.67 88.97 89.27 92.63 83.81 87.41 65.35 83.62 85.04
l-adapted Gate2 84.05 90.44 84.53 88.95 89.22 92.60 83.79 87.32 65.24 83.48 84.96
l-simple Gate1 84.06 90.49 84.84 88.90 89.30 92.59 83.84 87.44 65.40 83.65 85.05
l-simple Gate2 84.05 90.29 84.77 88.89 89.20 92.62 83.86 87.43 65.12 83.57 84.98

R2L r-adapted Gate1 84.21 90.41 84.83 88.95 89.21 92.47 83.66 87.28 65.25 83.50 84.98
r-adapted Gate2 84.20 90.26 84.93 88.81 89.21 92.52 83.68 87.14 65.09 83.53 84.94
r-simple Gate1 84.28 90.52 84.75 88.86 89.28 92.56 83.71 87.41 65.33 83.69 85.04
r-simple Gate2 84.26 90.46 84.88 88.85 89.20 92.40 83.69 87.26 65.36 83.52 84.99

O-I full Gate1 84.07 90.43 84.59 88.74 89.28 92.51 83.46 86.91 65.14 83.54 84.87
full Gate2 84.00 90.33 84.42 88.80 89.09 92.38 83.45 86.96 65.07 83.47 84.80
simple Gate1 84.13 90.48 84.54 88.77 89.36 92.55 83.56 87.06 65.12 83.49 84.91
simple Gate2 84.04 90.35 84.53 88.77 89.10 92.33 83.53 87.07 65.14 83.28 84.81

test

L2R – – 84.20 89.32 84.53 88.45 87.75 92.46 86.01 88.92 66.12 83.68 85.14
L2R l-simple Gate1 84.45 89.43 85.24 89.00 88.23 92.50 86.21 89.16 66.63 84.99 85.58
R2L r-simple Gate1 84.51 89.43 85.46 88.77 88.26 92.62 86.16 89.17 67.05 84.75 85.62
O-I simple Gate1 84.31 89.33 85.33 88.88 88.27 92.54 86.14 88.99 66.60 84.43 85.48
m
t
t
s
u
o

Table 4
Accuracy performance on PTB dev splits. We mark in bold the chosen
configurations.

tran. 𝑓 UAS LAS

L2R l-adapted 96.03 94.15
l-simple 96.01 94.15

R2L r-adapted 96.00 94.14
r-simple 96.04 94.16

O-I full 95.96 94.10
simple 96.00 94.14

5.5. Error analysis

We study the mitigation of error propagation by the proposed neural
architecture and characterize errors relative to sentence length and
word position10 for a concatenation of all ten Universal Dependencies
datasets11 and for the PTB with BERT-based embeddings.

In particular, Figs. 4(a) and (b) show the accuracy relative to sen-
tence lengths of the three transition systems plus the baseline parser on
Universal Dependencies treebanks and PTB, respectively. On Universal
Dependencies datasets, we see accuracy gains regardless of sentence
length; however, while the improvements tend to be higher as sen-
tences are longer, these narrow when the length is larger than 40
(especially affecting the left-to-right and outside-in variants). On PTB,
the novel approaches not only outperform the baseline on long sen-
tences (as expected), but also surprisingly on the shortest ones. We also
note that, while the right-to-left parser obtains the highest performance
on the longest sentences (better dealing with error-propagation), the
outside-in algorithm is suffering a drop on sentences with length greater
than 40 on Universal Dependencies treebanks, and on those with length
between 31 and 40 on PTB (possibly because the information about left

10 Errors relative to dependency length (as described in [44]) are no
onger an effective method to measure the impact of error propagation in
ransition systems designed for Pointer Networks (except for the top-down al-
orithm [13]), since these require a single Shift-Attach-𝑝 transition to directly

build any arc (regardless of its length), not involving several decoder states
and, therefore, not directly reflecting the presence of error propagation.

11 In order to prevent data sparsity, we randomly select a number of
500

sentences that approximately gather 10,000 tokens per treebank.
Table 5
Performance comparison of dependency parsers on PTB and CTB. The second block
gathers approaches that are enhanced with constituent information, and the last block
includes the performance of the top-down transition-based model with Hierarchical
Pointer Networks, since only scores with gold PoS tags are reported. ∗ denotes those

odels that fine-tune BERT and those parsers marked with † report scores based on
he best single run on the development set, instead of reporting the average score on
he test set over several runs, i.e., instead of averaging to mitigate the effect of random
eeds in reported accuracy, they use model selection to choose the most promising seed
sing the dev set (following this method, our best model Hier.Ptr.Net L2R w/o BERT
btains UAS 96.19 LAS 94.61 on PTB).
Parser PTB CTB

UAS LAS UAS LAS

Zhang et al. [17] 94.10 91.90 87.84 86.15
Ma and Hovy [36] 94.88 92.96 89.05 87.74
Dozat and Manning [18] 95.74 94.08 89.30 88.23
Li et al. [37] 94.11 92.08 88.78 86.23
Ma et al. [13] 95.87 94.19 90.59 89.29
Ji et al. [38]† 95.97 94.31 – –
Fernández-González and Gómez-Rodríguez [14] 96.04 94.43 – –
Li et al. [39] 95.83 94.54 90.47 89.44
Fernández-González and Gómez-Rodríguez [23] 96.06 94.50 90.61 89.51
Zhang et al. [40]† 96.14 94.49 – –
Wang and Tu [41] 95.98 94.34 90.81 89.57
Hier. Ptr. Net. L2R 96.18 94.59 90.76 89.67
Hier. Ptr. Net. R2L 96.14 94.53 90.72 89.62
Hier. Ptr. Net. O-I 96.07 94.48 90.64 89.50

+BERT

Li et al. [39] 96.44 94.63 90.89 89.73
Li et al. [39]∗ 96.57 95.05 – –
Mohammadshahi and Henderson [42]∗ 96.66 95.01 92.86 91.11
Wang and Tu [41]∗ 96.91 95.34 92.55 91.38
Fernández-González and Gómez-Rodríguez [23] 96.91 95.35 92.58 91.42
Hier. Ptr. Net. L2R 97.05 95.47 92.70 91.50
Hier. Ptr. Net. R2L 97.01 95.48 92.75 91.62
Hier. Ptr. Net. O-I 96.95 95.36 92.65 91.47

Zhou and Zhao [43] 96.09 94.68 – –
Fernández-González and Gómez-Rodríguez [23] 96.25 94.64 90.79 89.69

+BERT

Zhou and Zhao [43]∗ 97.00 95.43 91.21 89.15
Fernández-González and Gómez-Rodríguez [23] 96.97 95.46 92.78 91.65

Liu et al. [19] 96.09 95.03 – –

and right dependents is exclusively used by this transition system and

it tends to be available at final steps – as shown in Fig. 2(c) –, where



Information Fusion 91 (2023) 494–503D. Fernández-González and C. Gómez-Rodríguez
Fig. 4. Parsing performance of the original left-to-right parser and the proposed variants implemented on Hierarchical Pointer Networks relative to sentence length and word
position.
Table 6
Number of dependents and long-range dependents per sentence that are available
when processing gold trees in Universal Dependencies dev splits with each proposed
transition system. Note that the number of long-range dependents (with arc lengths
> 4) per sentence is notably low since short sentences are also considered for the
computation.
Language Left2Right Right2Left Outside-in

all long all long all long

Arabic 10.07 1.20 22.20 8.00 14.59 3.75
Basque 6.65 2.29 5.75 2.17 7.10 2.81
Chinese 16.34 6.17 7.99 3.83 12.60 5.34
English 7.02 1.66 4.54 2.54 6.10 2.33
Finnish 7.06 1.69 5.36 2.70 6.61 2.45
Hebrew 10.80 1.69 11.77 5.47 11.69 3.95
Italian 11.15 1.74 8.97 4.88 10.64 3.73
Korean 6.94 2.45 4.64 0.79 5.77 1.61
Swedish 10.63 2.70 7.81 4.18 9.61 3.71
Turkish 5.71 1.85 3.46 0.74 5.07 1.27

it might be difficult to manage when sentences are substantially long
and the amount of information is likely to be considerably large).

The reduction of error propagation can be seen more clearly in
Figs. 4(c) and (d), where we report the LAS relative to word positions
within the sentence. In comparison to the sequential variant, the left-
to-right transition system with structured decoding obtains the highest
gains in accuracy on attachments made on words at final positions of
the sentence (the most affected by error propagation). We can also
501
Table 7
Standard deviations over 3 runs on test splits for scores reported in Table 5.

Parser PTB CTB

UAS LAS UAS LAS

Hier. Ptr. Net. L2R ±0.02 ±0.03 ±0.05 ±0.06
Hier. Ptr. Net. R2L ±0.04 ±0.03 ±0.06 ±0.08
Hier. Ptr. Net. O-I ±0.03 ±0.05 ±0.04 ±0.06

+BERT

Hier. Ptr. Net. L2R ±0.01 ±0.02 ±0.04 ±0.05
Hier. Ptr. Net. R2L ±0.03 ±0.02 ±0.06 ±0.05
Hier. Ptr. Net. O-I ±0.02 ±0.02 ±0.03 ±0.04

observe how the right-to-left and outside-in approaches significantly
outperform the left-to-right algorithm on words located near the end
of the sentence, since these transition systems attach those words in
initial steps of the parsing process. Lastly, there is a significant drop
in accuracy by the outside-in model in words at middle positions on
PTB (from 21 to 30) and, less significant, on Universal Dependencies
datasets (from 31 to 40). This is probably due to the fact that arcs
in those positions are created in final steps following the outside-in
strategy (thus being the most affected by error-propagation); and, apart
from the tight Y axis scale in the plot of Fig. 4(d), the significant drop in
PTB can be explained by the fact that the amount of words in absolute
positions from 21 to 30 (not necessarily being at the middle of their
respective sentences) is substantially higher than in other languages.



Information Fusion 91 (2023) 494–503D. Fernández-González and C. Gómez-Rodríguez
Table 8
Standard deviations over 3 runs on test splits for scores reported in Table 3.
tran. 𝑓 gate ar en eu fi he it ko sv tr zh

L2R – – ±0.06 ±0.01 ±0.05 ±0.06 ±0.14 ±0.04 ±0.06 ±0.03 ±0.13 ±0.04
L2R l-simp. Gate1 ±0.02 ±0.04 ±0.06 ±0.02 ±0.08 ±0.02 ±0.04 ±0.04 ±0.08 ±0.04
R2L r-simp. Gate1 ±0.06 ±0.04 ±0.02 ±0.06 ±0.12 ±0.02 ±0.06 ±0.05 ±0.11 ±0.08
O-I simple Gate1 ±0.02 ±0.08 ±0.05 ±0.04 ±0.06 ±0.07 ±0.09 ±0.02 ±0.12 ±0.08
-

6. Conclusions

We manage to introduce structural knowledge to the sequential
decoding of the left-to-right dependency parser with Pointer Networks
developed by Fernández-González and Gómez-Rodríguez [14]. The
resulting neural architecture, named Bottom-up Hierarchical Pointer
Network, is able to leverage relevant information about the focus
word’s dependents at each decoding step, instead of just receiving the
previous decoder hidden state as input. This information is especially
useful when it comes from long-range dependents attached in the past,
notably helping the decoder to take better decisions in current and
future steps. Additionally, we implement two novel transition systems
that can be added to the proposed neural architecture: an algorithm
that parses a sentence in right-to-left order and a transition system that
processes it from the outside in.

We extensively test Bottom-up Hierarchical Pointer Networks on
the English and Chinese Penn Treebanks as well as a wide range of
languages from different families, with different degrees of morpho-
logical complexity and with different predominances of long-range
dependencies. In our experiments, we prove that they lead to significant
accuracy gains regardless of the fusion function implementation or
gating mechanism; and show that the left-to-right approach achieves
the highest accuracy obtained so far on the English and Chinese Penn
Treebanks (without contextualized word embeddings) and the right-to-
left model achieves the best LAS to date when BERT-based embeddings
are available. Apart from the improvements in accuracy, the proposed
neural architecture does not penalize the quadratic runtime complexity
of the original left-to-right parser. Finally, we additionally undertake
a thorough error analysis and provide evidence that error propagation
(considered the main cause of accuracy loss in transition-based parsing)
is mitigated with the presented structured decoding.

CRediT authorship contribution statement

Daniel Fernández-González: Conceptualization, Methodology, Soft
ware, Validation, Formal analysis, Investigation, Data curation, Writ-
ing – original draft, Writing - review & editing, Visualization. Car-
los Gómez-Rodríguez: Conceptualization, Validation, Formal analy-
sis, Writing – review & editing, Supervision, Project administration,
Funding acquisition.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to
influence the work reported in this paper.

Data availability

Source code available at https://github.com/danifg/BottomUp-Hie
rarchical-PtrNet.
502
Acknowledgments

We acknowledge the European Research Council (ERC), which
has funded this research under the European Union’s Horizon 2020
research and innovation programme (FASTPARSE, grant agreement
No 714150) and the Horizon Europe research and innovation pro-
gramme (SALSA, grant agreement No 101100615), ERDF/MICINN-AEI
(SCANNER-UDC, PID2020-113230RB-C21), Xunta de Galicia (ED431C
2020/11), and Centro de Investigación de Galicia ‘‘CITIC’’, funded by
Xunta de Galicia and the European Union (ERDF - Galicia 2014–2020
Program), by grant ED431G 2019/01. Funding for open access charge:
Universidade da Coruña/CISUG.

Appendix. Standard deviations

See Tables 7 and 8

References

[1] M. Zhang, Z. Li, G. Fu, M. Zhang, Dependency-based syntax-aware word
representations, Artif. Intell. 292 (2021) 103427, http://dx.doi.org/10.1016/
j.artint.2020.103427, URL https://www.sciencedirect.com/science/article/pii/
S0004370220301764.

[2] S. Sun, C. Luo, J. Chen, A review of natural language processing techniques
for opinion mining systems, Inf. Fusion 36 (2017) 10–25, http://dx.doi.org/10.
1016/j.inffus.2016.10.004, URL https://www.sciencedirect.com/science/article/
pii/S1566253516301117.

[3] B. Zhang, Y. Zhang, R. Wang, Z. Li, M. Zhang, Syntax-aware opinion role
labeling with dependency graph convolutional networks, in: Proceedings of
the 58th Annual Meeting of the Association for Computational Linguistics,
Association for Computational Linguistics, 2020a, pp. 3249–3258, http://dx.
doi.org/10.18653/v1/2020.acl-main.297, Online, URL https://www.aclweb.org/
anthology/2020.acl-main.297.

[4] D.Q. Nguyen, K. Verspoor, From pos tagging to dependency parsing for biomed-
ical event extraction, BMC Bioinform. 20 (2019) 72, http://dx.doi.org/10.1186/
s12859-019-2604-0.

[5] Q. Cao, X. Liang, B. Li, L. Lin, Interpretable visual question answering by
reasoning on dependency trees, IEEE Trans. Pattern Anal. Mach. Intell. 43 (2021)
887–901, http://dx.doi.org/10.1109/tpami.2019.2943456.

[6] J. Bai, Y. Wang, Y. Chen, Y. Yang, J. Bai, J. Yu, Y. Tong, Syntax-BERT:
improving pre-trained transformers with syntax trees, in: Proceedings of the
16th Conference of the European Chapter of the Association for Computational
Linguistics: Main Volume, Association for Computational Linguistics, 2021, pp.
3011–3020, Online, https://www.aclweb.org/anthology/2021.eacl-main.262.

[7] J. Barnes, R. Kurtz, S. Oepen, L. Øvrelid, E. Velldal, Structured sentiment analysis
as dependency graph parsing, in: Proceedings of the 59th Annual Meeting
of the Association for Computational Linguistics and the 11th International
Joint Conference on Natural Language Processing (Volume 1: Long Papers),
Association for Computational Linguistics, 2021, pp. 3387–3402, http://dx.doi.
org/10.18653/v1/2021.acl-long.263, Online, https://aclanthology.org/2021.acl-
long.263.

[8] E. Cambria, R. Mao, S. Han, Q. Liu, Sentic parser: a graph-based approach to
concept extraction for sentiment analysis, in: Proceedings of ICDM Workshops,
2022, URL https://sentic.net/sentic-parser.pdf.

[9] R. Sukthanker, S. Poria, E. Cambria, R. Thirunavukarasu, Anaphora and corefer-
ence resolution: a review, Inf. Fusion 59 (2020) 139–162, http://dx.doi.org/10.
1016/j.inffus.2020.01.010, URL https://www.sciencedirect.com/science/article/
pii/S1566253519303677.

[10] V. Balachandran, A. Pagnoni, J.Y. Lee, D. Rajagopal, J. Carbonell, Y. Tsvetkov,
StructSum: summarization via structured representations, in: Proceedings of the
16th Conference of the European Chapter of the Association for Computational
Linguistics: Main Volume, Association for Computational Linguistics, 2021, pp.
2575–2585, Online, https://www.aclweb.org/anthology/2021.eacl-main.220.

[11] D. Sachan, Y. Zhang, P. Qi, W.L. Hamilton, Do syntax trees help pre-trained
transformers extract information?, in: Proceedings of the 16th Conference of the
European Chapter of the Association for Computational Linguistics: Main Volume,
Association for Computational Linguistics, 2021, pp. 2647–2661, Online, URL
https://www.aclweb.org/anthology/2021.eacl-main.228.

https://github.com/danifg/BottomUp-Hierarchical-PtrNet
https://github.com/danifg/BottomUp-Hierarchical-PtrNet
https://github.com/danifg/BottomUp-Hierarchical-PtrNet
https://github.com/danifg/BottomUp-Hierarchical-PtrNet
https://github.com/danifg/BottomUp-Hierarchical-PtrNet
https://github.com/danifg/BottomUp-Hierarchical-PtrNet
https://github.com/danifg/BottomUp-Hierarchical-PtrNet
https://github.com/danifg/BottomUp-Hierarchical-PtrNet
https://github.com/danifg/BottomUp-Hierarchical-PtrNet
https://github.com/danifg/BottomUp-Hierarchical-PtrNet
https://github.com/danifg/BottomUp-Hierarchical-PtrNet
https://github.com/danifg/BottomUp-Hierarchical-PtrNet
https://github.com/danifg/BottomUp-Hierarchical-PtrNet
https://github.com/danifg/BottomUp-Hierarchical-PtrNet
https://github.com/danifg/BottomUp-Hierarchical-PtrNet
https://github.com/danifg/BottomUp-Hierarchical-PtrNet
https://github.com/danifg/BottomUp-Hierarchical-PtrNet
https://github.com/danifg/BottomUp-Hierarchical-PtrNet
https://github.com/danifg/BottomUp-Hierarchical-PtrNet
https://github.com/danifg/BottomUp-Hierarchical-PtrNet
https://github.com/danifg/BottomUp-Hierarchical-PtrNet
https://github.com/danifg/BottomUp-Hierarchical-PtrNet
https://github.com/danifg/BottomUp-Hierarchical-PtrNet
https://github.com/danifg/BottomUp-Hierarchical-PtrNet
https://github.com/danifg/BottomUp-Hierarchical-PtrNet
https://github.com/danifg/BottomUp-Hierarchical-PtrNet
https://github.com/danifg/BottomUp-Hierarchical-PtrNet
https://github.com/danifg/BottomUp-Hierarchical-PtrNet
https://github.com/danifg/BottomUp-Hierarchical-PtrNet
https://github.com/danifg/BottomUp-Hierarchical-PtrNet
https://github.com/danifg/BottomUp-Hierarchical-PtrNet
https://github.com/danifg/BottomUp-Hierarchical-PtrNet
https://github.com/danifg/BottomUp-Hierarchical-PtrNet
https://github.com/danifg/BottomUp-Hierarchical-PtrNet
https://github.com/danifg/BottomUp-Hierarchical-PtrNet
https://github.com/danifg/BottomUp-Hierarchical-PtrNet
https://github.com/danifg/BottomUp-Hierarchical-PtrNet
https://github.com/danifg/BottomUp-Hierarchical-PtrNet
https://github.com/danifg/BottomUp-Hierarchical-PtrNet
https://github.com/danifg/BottomUp-Hierarchical-PtrNet
https://github.com/danifg/BottomUp-Hierarchical-PtrNet
https://github.com/danifg/BottomUp-Hierarchical-PtrNet
https://github.com/danifg/BottomUp-Hierarchical-PtrNet
https://github.com/danifg/BottomUp-Hierarchical-PtrNet
https://github.com/danifg/BottomUp-Hierarchical-PtrNet
https://github.com/danifg/BottomUp-Hierarchical-PtrNet
https://github.com/danifg/BottomUp-Hierarchical-PtrNet
https://github.com/danifg/BottomUp-Hierarchical-PtrNet
https://github.com/danifg/BottomUp-Hierarchical-PtrNet
https://github.com/danifg/BottomUp-Hierarchical-PtrNet
https://github.com/danifg/BottomUp-Hierarchical-PtrNet
https://github.com/danifg/BottomUp-Hierarchical-PtrNet
https://github.com/danifg/BottomUp-Hierarchical-PtrNet
https://github.com/danifg/BottomUp-Hierarchical-PtrNet
http://dx.doi.org/10.1016/j.artint.2020.103427
http://dx.doi.org/10.1016/j.artint.2020.103427
http://dx.doi.org/10.1016/j.artint.2020.103427
https://www.sciencedirect.com/science/article/pii/S0004370220301764
https://www.sciencedirect.com/science/article/pii/S0004370220301764
https://www.sciencedirect.com/science/article/pii/S0004370220301764
http://dx.doi.org/10.1016/j.inffus.2016.10.004
http://dx.doi.org/10.1016/j.inffus.2016.10.004
http://dx.doi.org/10.1016/j.inffus.2016.10.004
https://www.sciencedirect.com/science/article/pii/S1566253516301117
https://www.sciencedirect.com/science/article/pii/S1566253516301117
https://www.sciencedirect.com/science/article/pii/S1566253516301117
http://dx.doi.org/10.18653/v1/2020.acl-main.297
http://dx.doi.org/10.18653/v1/2020.acl-main.297
http://dx.doi.org/10.18653/v1/2020.acl-main.297
https://www.aclweb.org/anthology/2020.acl-main.297
https://www.aclweb.org/anthology/2020.acl-main.297
https://www.aclweb.org/anthology/2020.acl-main.297
http://dx.doi.org/10.1186/s12859-019-2604-0
http://dx.doi.org/10.1186/s12859-019-2604-0
http://dx.doi.org/10.1186/s12859-019-2604-0
http://dx.doi.org/10.1109/tpami.2019.2943456
https://www.aclweb.org/anthology/2021.eacl-main.262
http://dx.doi.org/10.18653/v1/2021.acl-long.263
http://dx.doi.org/10.18653/v1/2021.acl-long.263
http://dx.doi.org/10.18653/v1/2021.acl-long.263
https://aclanthology.org/2021.acl-long.263
https://aclanthology.org/2021.acl-long.263
https://aclanthology.org/2021.acl-long.263
https://sentic.net/sentic-parser.pdf
http://dx.doi.org/10.1016/j.inffus.2020.01.010
http://dx.doi.org/10.1016/j.inffus.2020.01.010
http://dx.doi.org/10.1016/j.inffus.2020.01.010
https://www.sciencedirect.com/science/article/pii/S1566253519303677
https://www.sciencedirect.com/science/article/pii/S1566253519303677
https://www.sciencedirect.com/science/article/pii/S1566253519303677
https://www.aclweb.org/anthology/2021.eacl-main.220
https://www.aclweb.org/anthology/2021.eacl-main.228


Information Fusion 91 (2023) 494–503D. Fernández-González and C. Gómez-Rodríguez
[12] O. Vinyals, M. Fortunato, N. Jaitly, Pointer networks, in: C. Cortes, N.D.
Lawrence, D.D. Lee, M. Sugiyama, R. Garnett (Eds.), Advances in Neural
Information Processing Systems, Vol. 28, Curran Associates, Inc., 2015, pp.
2692–2700, URL http://papers.nips.cc/paper/5866-pointer-networks.pdf.

[13] X. Ma, Z. Hu, J. Liu, N. Peng, G. Neubig, E. Hovy, Stack-pointer networks
for dependency parsing, in: Proceedings of the 56th Annual Meeting of the
Association for Computational Linguistics (Volume 1: Long Papers), Association
for Computational Linguistics, Melbourne, Australia, 2018, pp. 1403–1414, http:
//dx.doi.org/10.18653/v1/P18-1130, URL https://www.aclweb.org/anthology/
P18-1130.

[14] D. Fernández-González, C. Gómez-Rodríguez, Left-to-right dependency parsing
with pointer networks, in: Proceedings of the 2019 Conference of the North
American Chapter of the Association for Computational Linguistics: Human
Language Technologies, Volume 1 (Long and Short Papers), Association for
Computational Linguistics, Minneapolis, Minnesota, 2019, pp. 710–716, http:
//dx.doi.org/10.18653/v1/N19-1076, URL https://www.aclweb.org/anthology/
N19-1076.

[15] J. Nivre, An efficient algorithm for projective dependency parsing, in: Proceed-
ings of the Eighth International Conference on Parsing Technologies, Nancy,
France, 2003, pp. 149–160, URL https://www.aclweb.org/anthology/W03-3017.

[16] R. McDonald, K. Crammer, F. Pereira, Online large-margin training of depen-
dency parsers, in: Proceedings of the 43rd Annual Meeting of the Association for
Computational Linguistics (ACL’05), Association for Computational Linguistics,
Ann Arbor, Michigan, 2005, pp. 91–98, http://dx.doi.org/10.3115/1219840.
1219852, URL https://www.aclweb.org/anthology/P05-1012.

[17] X. Zhang, J. Cheng, M. Lapata, Dependency parsing as head selection, in:
Proceedings of the 15th Conference of the European Chapter of the Association
for Computational Linguistics, EACL 2017, Valencia, Spain, April 3-7, 2017,
Volume 1: Long Papers, 2017, pp. 665–676, URL https://aclanthology.info/
papers/E17-1063/e17-1063.

[18] T. Dozat, C. Manning, Deep biaffine attention for neural dependency parsing, in:
ICLR, 2017, OpenReview.net.

[19] L. Liu, X. Lin, S. Joty, S. Han, L. Bing, Hierarchical pointer net parsing, in:
Proceedings of the 2019 Conference on Empirical Methods in Natural Language
Processing and the 9th International Joint Conference on Natural Language
Processing (EMNLP-IJCNLP), Association for Computational Linguistics, Hong
Kong, China, 2019, pp. 1007–1017, http://dx.doi.org/10.18653/v1/D19-1093,
URL https://www.aclweb.org/anthology/D19-1093.

[20] J. Nivre, M.-C. de Marneffe, F. Ginter, Y. Goldberg, J. Hajič, C.D. Manning, R.
McDonald, S. Petrov, S. Pyysalo, N. Silveira, R. Tsarfaty, D. Zeman, Universal
dependencies v1: A multilingual treebank collection, in: Proceedings of the Tenth
International Conference on Language Resources and Evaluation (LREC 2016),
European Language Resources Association (ELRA), Portorož, Slovenia, 2016, pp.
1659–1666, URL https://www.aclweb.org/anthology/L16-1262.

[21] M.P. Marcus, B. Santorini, M.A. Marcinkiewicz, Building a large annotated corpus
of English: The Penn Treebank, Comput. Linguist. 19 (1993) 313–330.

[22] N. Xue, F. Xia, F.d. Chiou, M. Palmer, The penn chinese treebank: phrase
structure annotation of a large corpus, Nat. Lang. Eng. 11 (2005) 207–238,
http://dx.doi.org/10.1017/S135132490400364X.

[23] D. Fernández-González, C. Gómez-Rodríguez, Multitask pointer network for
multi-representational parsing, Knowl.-Based Syst. 236 (2022) 107760, http://
dx.doi.org/10.1016/j.knosys.2021.107760, URL https://www.sciencedirect.com/
science/article/pii/S0950705121009849.

[24] S. Yang, T. Gao, J. Wang, B. Deng, B. Lansdell, B. Linares-Barranco, Ef-
ficient spike-driven learning with dendritic event-based processing, Front.
Neurosci. 15 (2021) http://dx.doi.org/10.3389/fnins.2021.601109, URL https:
//www.frontiersin.org/articles/10.3389/fnins.2021.601109.

[25] S. Yang, T. Gao, J. Wang, B. Deng, M.R. Azghadi, T. Lei, B. Linares-Barranco,
Sam: a unified self-adaptive multicompartmental spiking neuron model for
learning with working memory, Front. Neurosci. 16 (2022) http://dx.doi.org/
10.3389/fnins.2022.850945, URL https://www.frontiersin.org/articles/10.3389/
fnins.2022.850945.

[26] D. Bahdanau, K. Cho, Y. Bengio, Neural machine translation by jointly learning
to align and translate, 2014, CoRR abs/1409.0473.

[27] X. Ma, E. Hovy, End-to-end sequence labeling via bi-directional lstm-cnns-crf,
in: Proceedings of the 54th Annual Meeting of the Association for Com-
putational Linguistics, Association for Computational Linguistics., 2016, pp.
1064–1074, http://dx.doi.org/10.18653/v1/P16-1101, URL http://aclweb.org/
anthology/P16-1101.

[28] J. Devlin, M.-W. Chang, K. Lee, K. Toutanova, BERT: Pre-training of deep
bidirectional transformers for language understanding, in: Proceedings of the
2019 Conference of the North American Chapter of the Association for Compu-
tational Linguistics: Human Language Technologies, Volume 1 (Long and Short
Papers), Association for Computational Linguistics, Minneapolis, Minnesota,
2019, pp. 4171–4186, http://dx.doi.org/10.18653/v1/N19-1423, URL https://
www.aclweb.org/anthology/N19-1423.
503
[29] M. Haspelmath, M. Dryer, O. University, H. Bibiko, O.U. Press, M.P.I. für
Evolutionäre Anthropologie, J. Hagen, D. Gil, B. Comrie, C. Schmidt, The World
Atlas of Language Structures, Oxford linguistics, OUP Oxford, 2005, URL https:
//books.google.es/books?id=7rkSDAAAQBAJ.

[30] A. Kulmizev, M. de Lhoneux, J. Gontrum, E. Fano, J. Nivre, Deep contextualized
word embeddings in transition-based and graph-based dependency parsing -
a tale of two parsers revisited, in: Proceedings of the 2019 Conference on
Empirical Methods in Natural Language Processing and the 9th International
Joint Conference on Natural Language Processing (EMNLP-IJCNLP), Association
for Computational Linguistics, Hong Kong, China, 2019, pp. 2755–2768, http:
//dx.doi.org/10.18653/v1/D19-1277, URL https://www.aclweb.org/anthology/
D19-1277.

[31] M.-C. de Marneffe, C.D. Manning, The stanford typed dependencies represen-
tation, in: Coling 2008: Proceedings of the Workshop on Cross-Framework
and Cross-Domain Parser Evaluation, Coling 2008 Organizing Committee,
Manchester, UK, 2008, pp. 1–8, URL https://www.aclweb.org/anthology/W08-
1301.

[32] Y. Zhang, S. Clark, A tale of two parsers: Investigating and combining graph-
based and transition-based dependency parsing, in: Proceedings of the 2008
Conference on Empirical Methods in Natural Language Processing, Association
for Computational Linguistics, Honolulu, Hawaii, 2008, pp. 562–571, URL https:
//www.aclweb.org/anthology/D08-1059.

[33] W. Ling, C. Dyer, A.W. Black, I. Trancoso, Two/too simple adaptations of
Word2Vec for syntax problems, in: Proceedings of the 2015 Conference of
the North American Chapter of the Association for Computational Linguistics,
Association for Computational Linguistics, Denver, Colorado, 2015, pp. 1299–
1304, http://dx.doi.org/10.3115/v1/N15-1142, URL https://www.aclweb.org/
anthology/N15-1142.

[34] R. Al-Rfou’, B. Perozzi, S. Skiena, Polyglot: Distributed word representations for
multilingual NLP, in: Proceedings of the Seventeenth Conference on Compu-
tational Natural Language Learning, Association for Computational Linguistics,
Sofia, Bulgaria, 2013, pp. 183–192, URL https://www.aclweb.org/anthology/
W13-3520.

[35] D.P. Kingma, J. Ba, Adam: a method for stochastic optimization, 2014, URL
http://arxiv.org/abs/1412.6980. published as a conference paper at the 3rd
International Conference for Learning Representations, San Diego.

[36] X. Ma, E. Hovy, Neural probabilistic model for non-projective mst parsing, in:
Proceedings of the Eighth International Joint Conference on Natural Language
Processing (Volume 1: Long Papers), Asian Federation of Natural Language
Processing, 2017, pp. 59–69, URL http://aclweb.org/anthology/I17-1007.

[37] Z. Li, J. Cai, S. He, H. Zhao, Seq2seq dependency parsing, in: Proceedings of
the 27th International Conference on Computational Linguistics, Association for
Computational Linguistics, Santa Fe, New Mexico, USA, 2018, pp. 3203–3214,
URL https://www.aclweb.org/anthology/C18-1271.

[38] T. Ji, Y. Wu, M. Lan, Graph-based dependency parsing with graph neural
networks, in: Proceedings of the 57th Annual Meeting of the Association for Com-
putational Linguistics, Association for Computational Linguistics, Florence, Italy,
2019, pp. 2475–2485, http://dx.doi.org/10.18653/v1/P19-1237, URL https://
www.aclweb.org/anthology/P19-1237.

[39] Z. Li, H. Zhao, K. Parnow, Global greedy dependency parsing, in: the
Thirty-Fourth AAAI Conference on Artificial Intelligence (AAAI-2020), 2020.

[40] Y. Zhang, Z. Li, M. Zhang, Efficient second-order TreeCRF for neural dependency
parsing, in: Proceedings of the 58th Annual Meeting of the Association for
Computational Linguistics, Association for Computational Linguistics, 2020b,
pp. 3295–3305, http://dx.doi.org/10.18653/v1/2020.acl-main.302, Online, URL
https://www.aclweb.org/anthology/2020.acl-main.302.

[41] X. Wang, K. Tu, Second-order neural dependency parsing with message passing
and end-to-end training, 2020, arXiv:2010.05003.

[42] A. Mohammadshahi, J. Henderson, Recursive non-autoregressive graph-to-graph
transformer for dependency parsing with iterative refinement, 2020, arXiv:2003.
13118.

[43] J. Zhou, H. Zhao, Head-driven phrase structure grammar parsing on penn
treebank, in: Proceedings of the 57th Annual Meeting of the Association for Com-
putational Linguistics, Association for Computational Linguistics, Florence, Italy,
2019, pp. 2396–2408, http://dx.doi.org/10.18653/v1/P19-1230, URL https://
www.aclweb.org/anthology/P19-1230.

[44] R. McDonald, J. Nivre, Characterizing the errors of data-driven dependency
parsing models, in: Proceedings of the 2007 Joint Conference on Empirical
Methods in Natural Language Processing and Computational Natural Language
Learning (EMNLP-CONLL), Association for Computational Linguistics, Prague,
Czech Republic, 2007, pp. 122–131, URL https://www.aclweb.org/anthology/
D07-1013.

http://papers.nips.cc/paper/5866-pointer-networks.pdf
http://dx.doi.org/10.18653/v1/P18-1130
http://dx.doi.org/10.18653/v1/P18-1130
http://dx.doi.org/10.18653/v1/P18-1130
https://www.aclweb.org/anthology/P18-1130
https://www.aclweb.org/anthology/P18-1130
https://www.aclweb.org/anthology/P18-1130
http://dx.doi.org/10.18653/v1/N19-1076
http://dx.doi.org/10.18653/v1/N19-1076
http://dx.doi.org/10.18653/v1/N19-1076
https://www.aclweb.org/anthology/N19-1076
https://www.aclweb.org/anthology/N19-1076
https://www.aclweb.org/anthology/N19-1076
https://www.aclweb.org/anthology/W03-3017
http://dx.doi.org/10.3115/1219840.1219852
http://dx.doi.org/10.3115/1219840.1219852
http://dx.doi.org/10.3115/1219840.1219852
https://www.aclweb.org/anthology/P05-1012
https://aclanthology.info/papers/E17-1063/e17-1063
https://aclanthology.info/papers/E17-1063/e17-1063
https://aclanthology.info/papers/E17-1063/e17-1063
http://refhub.elsevier.com/S1566-2535(22)00199-3/sb18
http://refhub.elsevier.com/S1566-2535(22)00199-3/sb18
http://refhub.elsevier.com/S1566-2535(22)00199-3/sb18
http://dx.doi.org/10.18653/v1/D19-1093
https://www.aclweb.org/anthology/D19-1093
https://www.aclweb.org/anthology/L16-1262
http://refhub.elsevier.com/S1566-2535(22)00199-3/sb21
http://refhub.elsevier.com/S1566-2535(22)00199-3/sb21
http://refhub.elsevier.com/S1566-2535(22)00199-3/sb21
http://dx.doi.org/10.1017/S135132490400364X
http://dx.doi.org/10.1016/j.knosys.2021.107760
http://dx.doi.org/10.1016/j.knosys.2021.107760
http://dx.doi.org/10.1016/j.knosys.2021.107760
https://www.sciencedirect.com/science/article/pii/S0950705121009849
https://www.sciencedirect.com/science/article/pii/S0950705121009849
https://www.sciencedirect.com/science/article/pii/S0950705121009849
http://dx.doi.org/10.3389/fnins.2021.601109
https://www.frontiersin.org/articles/10.3389/fnins.2021.601109
https://www.frontiersin.org/articles/10.3389/fnins.2021.601109
https://www.frontiersin.org/articles/10.3389/fnins.2021.601109
http://dx.doi.org/10.3389/fnins.2022.850945
http://dx.doi.org/10.3389/fnins.2022.850945
http://dx.doi.org/10.3389/fnins.2022.850945
https://www.frontiersin.org/articles/10.3389/fnins.2022.850945
https://www.frontiersin.org/articles/10.3389/fnins.2022.850945
https://www.frontiersin.org/articles/10.3389/fnins.2022.850945
http://refhub.elsevier.com/S1566-2535(22)00199-3/sb26
http://refhub.elsevier.com/S1566-2535(22)00199-3/sb26
http://refhub.elsevier.com/S1566-2535(22)00199-3/sb26
http://dx.doi.org/10.18653/v1/P16-1101
http://aclweb.org/anthology/P16-1101
http://aclweb.org/anthology/P16-1101
http://aclweb.org/anthology/P16-1101
http://dx.doi.org/10.18653/v1/N19-1423
https://www.aclweb.org/anthology/N19-1423
https://www.aclweb.org/anthology/N19-1423
https://www.aclweb.org/anthology/N19-1423
https://books.google.es/books?id=7rkSDAAAQBAJ
https://books.google.es/books?id=7rkSDAAAQBAJ
https://books.google.es/books?id=7rkSDAAAQBAJ
http://dx.doi.org/10.18653/v1/D19-1277
http://dx.doi.org/10.18653/v1/D19-1277
http://dx.doi.org/10.18653/v1/D19-1277
https://www.aclweb.org/anthology/D19-1277
https://www.aclweb.org/anthology/D19-1277
https://www.aclweb.org/anthology/D19-1277
https://www.aclweb.org/anthology/W08-1301
https://www.aclweb.org/anthology/W08-1301
https://www.aclweb.org/anthology/W08-1301
https://www.aclweb.org/anthology/D08-1059
https://www.aclweb.org/anthology/D08-1059
https://www.aclweb.org/anthology/D08-1059
http://dx.doi.org/10.3115/v1/N15-1142
https://www.aclweb.org/anthology/N15-1142
https://www.aclweb.org/anthology/N15-1142
https://www.aclweb.org/anthology/N15-1142
https://www.aclweb.org/anthology/W13-3520
https://www.aclweb.org/anthology/W13-3520
https://www.aclweb.org/anthology/W13-3520
http://arxiv.org/abs/1412.6980
http://aclweb.org/anthology/I17-1007
https://www.aclweb.org/anthology/C18-1271
http://dx.doi.org/10.18653/v1/P19-1237
https://www.aclweb.org/anthology/P19-1237
https://www.aclweb.org/anthology/P19-1237
https://www.aclweb.org/anthology/P19-1237
http://dx.doi.org/10.18653/v1/2020.acl-main.302
https://www.aclweb.org/anthology/2020.acl-main.302
http://arxiv.org/abs/2010.05003
http://arxiv.org/abs/2003.13118
http://arxiv.org/abs/2003.13118
http://arxiv.org/abs/2003.13118
http://dx.doi.org/10.18653/v1/P19-1230
https://www.aclweb.org/anthology/P19-1230
https://www.aclweb.org/anthology/P19-1230
https://www.aclweb.org/anthology/P19-1230
https://www.aclweb.org/anthology/D07-1013
https://www.aclweb.org/anthology/D07-1013
https://www.aclweb.org/anthology/D07-1013

	Dependency parsing with bottom-up Hierarchical Pointer Networks
	Introduction
	Preliminaries
	Left-to-Right Transition System
	Pointer Networks for Left-to-Right Dependency Parsing
	Top-down Hierarchical Pointer Networks

	Bottom-up Hierarchical Pointer Networks
	Structured Tree Decoder
	Model Specifics for the Left-to-Right Transition System

	Alternative Transition-based Algorithms
	Experiments
	Data
	Settings
	Results
	Dependent Information Availability
	Error Analysis

	Conclusions
	CRediT authorship contribution statement
	Declaration of Competing Interest
	Data availability
	Acknowledgments
	Appendix. Standard deviations
	References


