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a b s t r a c t

Dependency and constituent trees are widely used by many artificial intelligence applications for
representing the syntactic structure of human languages. Typically, these structures are separately
produced by either dependency or constituent parsers. In this article, we propose a transition-
based approach that, by training a single model, can efficiently parse any input sentence with both
constituent and dependency trees, supporting both continuous/projective and discontinuous/non-
projective syntactic structures. To that end, we develop a Pointer Network architecture with two
separate task-specific decoders and a common encoder, and follow a multitask learning strategy to
jointly train them. The resulting quadratic system, not only becomes the first parser that can jointly
produce both unrestricted constituent and dependency trees from a single model, but also proves
that both syntactic formalisms can benefit from each other during training, achieving state-of-the-
art accuracies in several widely-used benchmarks such as the continuous English and Chinese Penn
Treebanks, as well as the discontinuous German NEGRA and TIGER datasets.

© 2021 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
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1. Introduction

Numerous artificial intelligence systems that demand natural
anguage processing of texts and speech are currently using syn-
actic formalisms for representing the grammatical structure of
entences. Among them, we can find those that recently use it
or machine translation [1–3], relation and event extraction [4],
pinion mining [5,6], question answering [7,8], sentence classi-
ication [3], sentiment classification [9], summarization [10] or
emantic role labeling and named entity recognition [11]. To
hat end, two widely-known formalisms are commonly used:
onstituent and dependency representations.
Constituent trees, which are commonly used in tasks where

span information is crucial, represent the syntax of a sentence by
means of constituents (also called phrases) that hierarchically and
from the bottom up group words and/or subtrees located in lower
levels. We can find two kinds of constituent trees: continuous
and discontinuous (described in Fig. 1(a) and (d), respectively).
The latter extends the former by allowing constituents with
discontinuous spans, which results in phrase-structure trees with
crossing branches. These are necessary for describing some wh-
movement, long-distance extractions, dislocations, cross-serial
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dependencies and other linguistic phenomena common in free
word order languages such as German [12].

On the other hand, in a dependency tree each word of the
sentence is attached to another by a directed link that describes
a dependency relation between that word and its parent (also
called head). This structure is known for representing informa-
tion closer to semantic relations and can be classified as pro-
jective or non-projective (depicted in Fig. 1(c) and (f), respec-
tively). Non-projective dependency trees allow crossing depen-
dencies, and can model the same linguistic phenomena described
by discontinuous constituent trees.

Since the information described in a constituent tree is not
fully encoded into a dependency tree and vice versa [13], typically
parsers are exclusively trained to produce either dependency or
constituent structures and, in some cases, restricted to the less
complex continuous/projective representations.

There are a few exceptions, i.e., approaches trained to gener-
ate both constituents and dependencies. For instance, the chart
parser of Zhou and Zhao [14] generates continuous and projective
structures with a single O(n5) model, and the sequence labeling
arser of Strzyz et al. [15] combines continuous constituents with
on-projective dependency structures.1 In both cases, which are
iscussed in more detail in Section 5, representations are shown
o benefit each other in terms of accuracy.

1 As explained in Section 5, parsers based on lexicalized grammars were also
rained on both structures in the pre-deep-learning era.
icle under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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Fig. 1. Constituent, augmented and regular dependency representations of continuous English and discontinuous German sentences. Head words of constituent trees
are marked in bold. Please note that regular and augmented dependency trees differ since, while head words are marked following a syntactic strategy in the
augmented variant, in regular dependency trees head words are indicated according to a semantic approach.
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However, to our knowledge, no such joint training approaches
ave been defined that support both non-projective dependency
rees and discontinuous constituents; and the most accurate and
east computationally complex models for these formalisms are
ingle-representation approaches: graph-based [16] and
ransition-based [17,18] models for non-projective dependencies,
nd transition-based parsers [19–21] for discontinuous phrase-
tructure trees.
In order to fill this gap, we propose a novel multitask

ransition-based parser that can efficiently generate unrestricted
onstituent and dependency structures (i.e., discontinuous con-
tituents and non-projective dependencies, although it can also
e restricted to continuous/projective structures if desired) from
single trained model. We design an encoder–decoder neural
rchitecture that is jointly trained across the syntactic informa-
ion represented in the two formalisms by following a multi-
ask learning strategy [22]. Inspired by Fernández-González and
ómez-Rodríguez [21], we model constituent trees as augmented
ependency structures [23] and use two separate task-specific
ecoders to produce both regular and augmented dependency
rees. Each decoder implements a Pointer Network [24] and a
ulti-class classifier [16] to incrementally produce labeled de-
endencies from left to right, as proposed by Fernández-González
nd Gómez-Rodríguez [18]. Finally, the decoding runtime (O(n2))
nd the required memory space of our multi-representational
pproach remains the same as the single-task dependency parser
y Fernández-González and Gómez-Rodríguez [18], since a single
odel is trained and the multitask learning strategy has no

mpact on decoding time, allowing both decoders to be run in
arallel.
We test our multi-representational neural model2 on the

ontinuous English and Chinese Penn Treebanks [25,26] and on
he discontinuous NEGRA [27] and TIGER [28] datasets. In all
enchmarks, our approach outperforms single-task parsers [18,
1], which proves that learning across regular dependency trees
nd constituent information (encoded in dependency structures)
eads to gains in accuracy in both tasks, obtaining competitive
esults in all cases and surpassing the current state of the art in
everal datasets.

2 Source code available at https://github.com/danifg/MultiPointer.
 R
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The remainder of this article is organized as follows: Section 2
introduces the constituent-to-dependency encoding technique
developed by Fernández-González and Martins [23]. In Section 3,
we describe in detail the proposed multitask Pointer Network
architecture. In Section 4, we extensively evaluate the proposed
neural model on continuous/projective and discontinuous/non-
projective treebanks, as well as include a thorough analysis of
their performance. Section 5 presents other research works that
study the joint training of neural models across different syntactic
formalisms. Lastly, Section 6 contains a final discussion.

2. Constituent trees as dependency structures

Since our multitask approach is based on the dependency
parser by Fernández-González and Gómez-Rodríguez [18], con-
stituent trees must be represented as dependencies in order to
be processed. This was recently explored for neural discontinuous
constituent parsing in [21] by using the encoding by Fernández-
González and Martins [23]. In this work, we extend it to con-
tinuous phrase-structure datasets, where the non-negligible fre-
quency of unary nodes requires additional processing.

2.1. Preliminaries

Let w1, w2, . . . , wn be a sentence and wi the word at position
i. A constituent tree is defined by constituents (as internal nodes)
hierarchically organized over these n words (as leaf nodes). Each
phrase (or constituent) is defined as a tuple (X, S, wh) that in-
cludes a non-terminal symbol X , the set of words wi included in
its span (S); and, wh, the word in S that acts as head and that
can be marked by using a language-specific handwritten set of
rules. For example, the head word of constituents S and VP in
Fig. 1(a) is the word is. Furthermore, we say that a constituent
tree is continuous if there are no constituents whose yield S is
a discontinuous substring of the sentence. If this does not hold,
the tree is classified as discontinuous, and then there is at least
one constituent with one or more gaps in its span. For instance,
the word muß interrupts the span of constituent (VP, {Darüber,
achgedacht}, nachgedacht) in Fig. 1(d), resulting in a phrase
tructure with crossing branches. Finally, constituents with ex-
ctly one child are known as unary constituents (for instance,

OOT, NP, ADVP and ADJP in Fig. 1(a)).

https://github.com/danifg/MultiPointer


D. Fernández-González and C. Gómez-Rodríguez Knowledge-Based Systems 236 (2022) 107760

r
a
w

Unlike constituent structures, dependency trees do not require
extra internal nodes and are exclusively composed of the words
wi of the sentence (plus an artificial root node) and binary di-
ected links to connect them. Each dependency link is represented
s (wh, wd, l), where wh is the head word of the dependent word
d (h, d ∈ [1, n]) and l a dependency label. Additionally, a

dependency tree is classified as projective if we can find a directed
path from wh to all words wi between words wh and wd for every
dependency link (wh, wd, l). If this does not hold, it is considered
a non-projective dependency tree, as the one with crossing arcs
depicted in Fig. 1(e).

2.2. Constituent-to-dependency conversion

Fernández-González and Martins [23] designed an encoding
technique to represent a unariless constituent tree with m words
as a set of m − 1 labeled dependency arcs with enriched in-
formation (plus an arc from root), where discontinuous phrase
structures are encoded as non-projective dependency trees and
continuous structures as projective trees, as shown in Fig. 1(b)
and (e) for constituent trees in Fig. 1(a) and (d), respectively. To
that end, for each constituent (X, S, wh) with head word wh, each
child node wd (different from wh) is encoded into the unlabeled
dependency link (wh, wd). Please note that a constituent’s non-
head child nodes wd might be a word or another constituent
(Y , G, wd) with wd as head word. Additionally, these dependen-
cies are augmented with an arc label that includes the non-
terminal name X concatenated with an index k that indicates
the hierarchical order in which non-terminal nodes are built in
the tree, resulting in labeled dependency arcs with the form
(wh, wi, X#k). Index k was included for those cases where several
constituents share the same head word, but they are placed in
the tree at a different level. For instance, constituent (S, {Darüber,
muß, nachgedacht, werden}, muß) in Fig. 1(d) is represented as the
augmented dependency arc (muß, werden, S#1) in Fig. 1(e); and
constituent (VROOT, {Darüber, muß, nachgedacht, werden, .}, muß)
is encoded as (muß, ., VROOT#2). Both share head word muß, but
the latter is built on top of the former and this must be encoded
by hierarchical orders 1 and 2; otherwise, after the deconversion,
the resulting structure would be a single constituent (named S or
VROOT) that spans all the sentence.

Finally, unary constituents are not directly supported by this
encoding strategy. While Fernández-González and Martins [23]
proposed to remove all unary nodes and recover them in a post-
processing step, we decided to incorporate unary constituents
into the resulting augmented dependency tree by collapsing non-
leaf unary chains (for instance, ROOT from Fig. 1(a) into ROOT+S)
and saving leaf unary nodes lost after the encoding by assigning
them to words (as can be seen in Fig. 1(b) for NP, ADVP and ADJP).

2.3. Constituent trees recovery

The original unariless constituent trees can be decoded from
augmented dependency trees by, following a post order traversal,
building constituents from the set of dependencies composed of
each head word together with its dependents and following the
hierarchical order dictated by the index k and non-terminal name
X encoded into each of the dependency labels. Due to erroneous
predictions, it might be the case that heads or dependency labels
are mistakenly assigned in the resulting augmented dependency
tree; however, Fernández-González and Martins [23]’s technique
guarantees that the output is a well-formed constituent tree
(which, of course, will differ from the gold tree). For instance,
imagine that the word cautious in Fig. 1(b) is erroneously attached
to the word still (instead of being connected to the verb is), then,
instead of a single flat VP with three child nodes, the resulting
3

constituents would be two VPs (the first would have as child
nodes the word is and a second VP, which would group the words
still and cautious). We can also find different scenarios where
dependency labels are erroneously predicted, requiring ad-hoc
heuristics during the recovery to deal with some inconsistencies:

• Same indices, but different non-terminal names: Note that
dependency labels with the same head and at the same
level (same index k) should share the same non-terminal
name so that a flat constituent can be recovered. If this
does not hold, then the dependency label of the dependent
closer to the head will be the one chosen for tagging the
resulting constituent. For instance, if the arcs is→still and
is→cautious in Fig. 1(b) were tagged with labels VP#1 and
(incorrect) NP#1, respectively; then we would use non-
terminal label VP for naming the output flat constituent and
NP would be discarded. Alternatively, we could consider that
the non-terminal name is correct and index k was wrongly
predicted: in our running example, we might think that the
non-terminal name of dependency label NP#1 is correct, but
the resulting constituent NP should be in a higher level (with
the correct label being NP#2, for instance). This heuristic
would lead us to build a constituent NP with a nested VP.
However, Fernández-González and Martins [23] decided to
follow a more conservative strategy that tends to produce
flatter structures.

• Non-nested indices in continuous parsing: When the reverse
conversion is restricted to continuous constituent trees,
erroneous dependency labels might lead to discontinuous
structures (even when the augmented dependency tree is
projective). For example, if the arcs is→still and is→cautious
were tagged with labels (incorrect) VP#2 and VP#1, respec-
tively; then the resulting constituent would be a discontin-
uous constituent VP with two child nodes: the word still
and a non-nested VP (with a discontinuous yield composed
of the words is and cautious). This would be a well-formed
phrase-structure tree in a discontinuous scenario; however,
to produce continuous structures, hierarchical indices of
dependent words closer to the head should always be the
same or lower than adjacent and more distant siblings, thus
ensuring that flat or nested continuous constituents will
be obtained. In our running example, if the arcs is→still
and is→cautious were erroneously tagged with labels VP#2
and VP#1, respectively; then we would decrease index 2 of
dependent word still until reaching the index of the adjacent
and more distant sibling (the word cautious). In this case, the
index is set to 1 and a flat constituent VP with three child
nodes is built.

With respect to unary recovery, it is worth noting that, while
Penn treebanks present a significant amount of unary
constituents, they are very uncommon in discontinuous datasets:
NEGRA has no unaries at all and TIGER contains less than 1%.
Therefore, we only perform unary recovery in Penn treebanks. To
do so, we simply uncollapse unary chains encoded in dependency
labels and, for recovering leaf unary nodes lost after the encoding,
we use a tagger in a post-processing step. More in detail, we
employ the neural sequence tagger developed by Yang and Zhang
[29] for assigning to each word a possible leaf unary node (or
a sequence of unaries collapsed into a single tag) seen in the
training dataset or the tag NONE (if there is no unary node above
that word).

2.4. Regular vs. augmented dependency trees

Although both the constituent-based and regular dependency
structures are directed trees of n nodes, each provides exclu-

sive information: span phrase information is included in arc
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abels of the augmented variants, and regular dependency la-
els provide additional semantic information not described in
hrase-structure trees. Furthermore, regular dependency trees
iffer from augmented ones, not only in the label set, but also
n the conversion process. Although dependency trees are of-
en generated from constituent trees, different head-rule sets
or marking head words and other transformations can be ap-
lied in that process. While a set of syntactic rules are used
or identifying head nodes when augmented dependency trees
re produced, a semantic-based transformation is applied for
hoosing the semantic heads necessary for generating regular
ependency structures. This is the reason why dependency struc-
ures in Fig. 1(b) and (e) are different from Fig. 1(c) and (f),
espectively: for the English example, we use the head-rule set
y Collins [30] in our constituent-to-dependency encoding, while
egular dependency trees were obtained following the Stanford
ependencies conversion [31]; and, for the German sentence, the
ugmented dependency tree requires a non-projective structure
o fully encode the discontinuous constituent tree, while the
egular dependency tree represents the syntax (and semantics) of
he sentence with just a projective structure. This will train the
arser across a broader variety of syntactic representations and
otations.

. Multitask neural architecture

To develop a neural network capable of producing state-of-
he-art, unrestricted constituent and dependency parses, we join
wo transition-based parsers recently presented under the same
rchitecture: Fernández-González and Gómez-Rodríguez [18] for
on-projective dependency parsing, and Fernández-González and
ómez-Rodríguez [21], an extension of the former that can pro-
uce discontinuous constituent trees. As explained before, we
dditionally extend the latter to also deal with continuous phrase
tructures and unary constituents.
Fernández-González and Gómez-Rodríguez [18] relies on

ointer Networks [24] to perform unlabeled dependency pars-
ng. After learning the conditional probability of a sequence of
umbers that represent positions from the input, these neural
etworks use a mechanism of attention [32] to select those
ositions during decoding. Unlike regular sequence-to-sequence
rchitectures, Pointer Networks do not require a fixed dictionary
ased on the whole training dataset, but the dictionary size is
pecifically defined by each input sequence length. Fernández-
onzález and Gómez-Rodríguez [18] adapt Pointer Networks
o implement a transition-based approach that, starting at the
irst word of a sentence of length n, sequentially attaches, from
eft to right, the current focus word to the pointed head word,
ncrementally building a well-formed dependency tree in just n
teps. This can be also seen as a sequence of n SHIFT-ATTACH-p
ransitions, each of which connects the current focus word to the
ead word in the pointed position p, and then moves the focus to
he next word. In addition, a biaffine classifier [16] jointly trained
s used for predicting dependency labels.

Inspired by Fernández-González and Gómez-Rodríguez [18],
e introduce a novel neural architecture with two task-specific
ecoders: each word of the input sentence is attached to its reg-
lar head by the first decoder, and to its augmented dependency
ead by the second decoder. Additionally, each decoder provides
biaffine classifier trained on its task-specific label set. Since both
ecoders are aligned, the resulting system requires just n steps to
ependency and constituent3 parse a sentence of length n, easily
llowing joint training.
More specifically, our neural architecture is composed of:

3 Constituent trees are obtained after decoding resulting augmented
ependency trees.
 c

4

Shared encoder. Each input sentence w1, . . . , wn is encoded by
BiLSTM-CNN architecture [33], word by word, into a sequence
f encoder hidden states h1, . . . ,hn. In particular, a Convolutional
eural Network (CNN) is used for extracting a character-level
epresentation of words (eci ) and this is concatenated with a word
embedding (ew

i ) to create the vector representation xi for each
nput word wi. Additionally, POS tag embeddings (epi ) are used
hen gold POS tags are available4:

i = eci ⊕ ew
i ⊕ epi

hen, the word representation xi is fed one-by-one into a BiLSTM
or generating vector representations hi, which encode context
nformation captured in both directions:

i = hli ⊕ hri = BiLSTM(xi)

dditionally,a special vector representation h0, denoting the
OOT node, is prepended at the beginning of the sequence of
ncoder hidden states.
Finally, we extend the encoder with deep contextualized word

mbeddings (eBERTi ) extracted from the pre-trained language
odel BERT [34] by directly concatenating them to the resulting
asic word representation xi before feeding the BiLSTM-based
ncoder:
′

i = xi ⊕ eBERTi ; hi = BiLSTM(x′

i)

ask-specific decoders. Each decoder d is implemented by a sepa-
ate LSTM that, at each time step t , receives as input the encoder
idden state hi of the current focus word wi and generates a
ecoder hidden state sdt 5:
d
t = LSTMd(hi)

dditionally, a pointer layer is implemented for each decoder
y an attention vector adt to perform unlabeled parsing. This
ector is generated by computing scores for all possible head-
ependent pairs between the current focus word (represented by
d
t ) and each word from the input (represented by encoder hidden
epresentations hj with j ∈ [0, n]). To that end, a scoring function
ased on the biaffine attention mechanism [16] is used and, then,
probability distribution over the input words is computed:
d
tj = score(sdt ,hj) = f1(sdt )

TWf2(hj) + UT f1(sdt ) + VT f2(hj) + b;

d
t = softmax(vdt )

here W is the weight matrix of the bi-linear term, U and V are
he weight tensors of the linear terms, b is the bias vector and
1(·) and f2(·) are two single-layer multilayer perceptrons (MLP)
ith ELU activation [16].
Each attention vector adt will serve as a pointer to the highest-

coring position p from the input, leading the parsing algorithm to
reate a dependency arc from the head word (wp) to the current
ocus word (wi). In case this dependency arc is forbidden since
t generates cycles in the already-created dependency tree, the
ext highest-scoring position in adt will be considered as output
nstead. Furthermore, the projectivity constraint is also enforced
hen processing continuous treebanks, discarding arcs that pro-
uce crossing dependencies. After the decoding process (where
ach word is attached to another word at each step), we obtain a

4 As noticed by Ma et al. [17] and Fernández-González and Gómez-Rodríguez
21], the usage of predicted POS tags does not lead to gains in accuracy.
herefore, we only use POS tags in experimental settings where they are gold.
5 Unlike [18], we do not use other encoder hidden states as extra feature

nformation for the decoder, since we noticed that practically the same accuracy
an be achieved with this simple framework.



D. Fernández-González and C. Gómez-Rodríguez Knowledge-Based Systems 236 (2022) 107760

c

w
(
n
h
c

m
d
c
w
s
p

u

w
l
g

s
p
f
v
o
f

M
w
b
e

o
P
g

Fig. 2. Simplified sketch of our multitask neural architecture and decoding steps to parse the sentence in Fig. 1(a). Decoder 0 and Decoder 1 perform
onstituent-based and regular dependency parsing, respectively.
ell-formed dependency tree where each word has a single head
except the artificial ROOT node that was not processed), with
o cycles and, as a consequence of satisfying both the single-
ead and acyclicity constraints, all words are guaranteed to be
onnected.
Finally, each decoder trains a labeler layer (implemented as a

ulti-class classifier) to predict arc labels and produce a labeled
ependency tree. In particular, after the pointer layer attaches the
urrent focus word wi (represented by sdt ) to the pointed head
ord wp in position p (represented by hp), this layer uses the
ame scoring function as the pointer to compute the score of each
ossible label for that arc and assign the highest-scoring one:
dl
tp = score(sdt ,hp, l) = g1(sdt )

TWlg2(hp)+UT
l g1(s

d
t )+VT

l g2(hp)+bl

here Wl, Ul, Vl and bl are parameters distinctly used for each
abel l ∈ {1, 2, . . . , L}, being L the number of labels. In addition,
1(·) and g2(·) are two single-layer MLPs with ELU activation.
The described transition-based algorithm can produce unre-

tricted non-projective dependency structures in O(n2) time com-
lexity, since each decoder d requires n attachments to success-
ully parse a sentence with nwords, and at each step the attention
ector adt is computed over the whole input. Fig. 2 depicts a sketch
f the multitask neural architecture and the decoding procedure
or parsing the sentence in Fig. 1(a).

ultitask training. Following a multitask learning strategy [22],
e jointly train a single neural model for more than one task
y optimizing the sum of their objectives and sharing a common
ncoder representation.
As both tasks use a dependency representation, the training

bjective of the pointer of each decoder is to learn the probability
θ (y|x), where y is the correct unlabeled dependency tree for a
iven sentence x: P (y|x). This probability can be factorized to the
θ

5

sequence of Shift-Attach-p transitions to build y (this is basically
the sequence of indices pi):

Pθ (y|x) =

n∏
i=1

Pθ (pi|p<i, x)

where p<i represents previous predicted indices following the
left-to-right order. We minimize the negative log of the proba-
bility of choosing the correct sequence of indices p implemented
as cross-entropy loss:

Ld
pointer = −

n∑
i=1

logPθ (pi, p<i, x)

Additionally, the labeler of each decoder is trained with softmax
cross-entropy to minimize the negative log likelihood of tagging
with the correct label li a given dependency arc defined between
the head word in position pi and the dependent word in the ith
position:

Ld
labeler = −

n∑
i=1

logPθ (li|pi, i)

Then, the whole neural model is jointly trained by summing
the pointer and labeler losses of each decoder:

L = Lconst
pointer + Lconst

labeler + Ldep
pointer + Ldep

labeler

Finally, since both are considered main tasks and our goal is
to train exclusively a single model, we neither use weights nor
perform auxiliary-task training.
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. Experiments

.1. Data

To test our approach, we focus on parallel data, where both
onstituent and dependency representations are available. In
articular, we conduct experiments on well-known continuous
atasets: the English Penn Treebank (PTB) [25] and its Stanford
ependencies [31] conversion (using the Stanford parser v3.3.0)6
ith standard splits; and the Chinese Penn Treebank 5.1 [26] and

ts converted dependency variant [35] with gold POS tags and two
ifferent splits: ZCTB [35], for dependency parsing, and LCTB [36],
ommonly used for constituent parsing. In addition, we undertake
urther experiments on two broadly-used discontinuous German
reebanks and their available non-projective dependency repre-
entations: NEGRA [27] with standard splits [37] and TIGER [28]
ith the split provided in the SPMRL14 shared task [38,39]. For
oth datasets, we report results with and without gold POS tags.
For the constituent-to-dependency encoding, we identify head

ords on German constituents by applying the head-rule set
efined by Rehbein [40] and, on English and Chinese structures,
y using those developed by Collins [30] and Zhang and Clark
35], respectively. The resulting augmented dependencies match
egular variants by around 70% in all languages, except for Chi-
ese where the unlabeled augmented and regular dependency
rees are exactly the same.

Following standard practice, we discard punctuation for eval-
ating on both Penn treebanks, using the EVALB script to report
onstituent accuracy. Furthermore, while all tokens are con-
idered when reporting dependency performance on German
atasets, we employ discodop7 [41] and ignore punctuation and
oot symbols for evaluating on discontinuous constituent tree-
anks.

.2. Settings

Word vectors are initialized with pre-trained structured-
kipgram embeddings [42] for all languages and character and
OS tag embeddings are randomly initialized. All of them are
ine-tuned during training. POS tag embeddings are only enabled
hen gold information is used.
Additionally, we report accuracy gains by augmenting our

odel with the pre-trained language model BERT [34]. Although
ifferent approaches to initialize deep contextualized word em-
eddings from BERT can be found, we proceed with weights ex-
racted from one or several layers for each token as a word-level
epresentation. In addition, since BERT is trained on subwords,
e take the vector of each subword of an input token wi and use
he average embedding as the final representation eBERTi . In par-
ticular, we use in our experiments the pre-trained cased German
and Chinese BERTBASE models with 12 768-dimensional hidden
vectors; and uncased BERTLARGE with 24 1024-dimensional layers
for English. Depending on the specific task, some layers proved
to be more beneficial than others, which is especially crucial
when the resulting embeddings are not fine-tuned during train-
ing. In order to check which layers are more suitable for our
tasks, we test on development sets the combination of different
layers. In Table 1, we compare, for the English pre-trained model
BERTLARGE, the accuracy obtained by averaging several groups
of four consecutive layers (from last layer 24 to layer 13) and
by just using weights from the second-to-last hidden layer (the
simplest and commonly-used strategy, since it is less biased than
the last layer to the target objectives used to train BERT). As can

6 https://nlp.stanford.edu/software/lex-parser.shtml.
7 https://github.com/andreasvc/disco-dop.
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Table 1
Accuracy comparison on regular and augmented dependency trees of the PTB
development set by using weights from different BERT layers.

Regular Augmented

UAS LAS UAS LAS

Layer 23 96.73 94.98 96.06 94.55
Layers 21–24 96.69 94.99 96.03 94.61
Layers 17–20 96.88 95.13 96.19 94.75
Layers 13–16 96.71 94.97 96.08 94.68

Table 2
Accuracy comparison on regular and augmented dependency trees of the NEGRA
development set by using weights from different BERT layers.

Regular Augmented

UAS LAS UAS LAS

Layer 11 96.41 95.56 95.04 94.48
Layers 9–12 96.40 95.57 95.02 94.50
Layers 5–8 96.31 95.50 94.89 94.40

be seen, the combination of layers from 17 to 20 achieves the
highest accuracy on both tasks and, therefore, this setup is used
in our experiments on the PTB. Regarding the pre-trained models
BERTBASE for German and Chinese, we noticed that comparable
accuracies can be obtained by just using weights from the second-
to-last layer instead of combining the four last layers as can be
seen, for instance, in Table 2 for the NEGRA dataset. Therefore,
we decided to follow the simplest configuration and use the
second-to-last layer in all experiments on German and Chinese
languages. We discarded other combinations such as the concate-
nation of several layers to avoid increasing the dimension of BERT
embeddings. Finally, by adapting BERT-based embeddings to our
specific tasks, our approach would certainly obtain some gains
in accuracy; however, we consider that the amount of resources
necessary to that end will not justify the expensive fine-tuning of
parameter-heavy BERT layers.

In each training epoch, we use the same number of examples
from each task and choose the multitask model with the highest
harmonic mean among Labeled Attachment Scores on augmented
and regular development sets. In addition, average accuracy over
3 repetitions is reported due to random initializations.

Finally, for parameter optimization and hyper-parameter se-
lection, we follow Ma et al. [17] and Dozat and Manning [16] and
these are detailed in Table 3. Please note that we use for the mul-
titask variant the exact same hyper-parameters as the single-task
baselines. By optimizing them to our specific multitask model,
we could certainly increase performance; however, we decided
to keep the same settings for a fair comparison.

4.3. Results

In Table 4, we compare our own implementation of the single-
task dependency and constituent parsers by Fernández-González
and Gómez-Rodríguez [18] and Fernández-González and Gómez-
Rodríguez [21] to the proposed multitask approach. In all datasets
tested, training a single model of the multi-representational
parser across both syntactic representations leads to accuracy
gains on both tasks.

In order to further put our approach into context, we also
provide a comparison against state-of-the-art models. In Table 6,
we show how our approach outperforms the best dependency
parsers to date on the PTB and ZCTB with regular pre-trained
word embeddings. Moreover, although some of the included
parsers use several parameter-heavy layers of BERT and addition-
ally perform a task-specific adaptation via expensive fine-tuning,
our approach achieves similar performance on PTB and improves

https://nlp.stanford.edu/software/lex-parser.shtml
https://github.com/andreasvc/disco-dop
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odel hyper-parameters.
Architecture hyper-parameters

BiLSTM encoder layers 3
BiLSTM encoder size 512
LSTM decoders layers 1
LSTM decoders size 512
LSTM layers dropout 0.33
CNN window size 3
CNN number of filters 50
Word/POS/Character embedding dimension 100
English BERT embedding dimension 1024
German BERT embedding dimension 768
Chinese BERT embedding dimension 768
Embeddings dropout 0.33
MLP layers 1
MLP activation function ELU
Arc MLP size 512
Label MLP size 128
UNK replacement probability 0.5
Beam size 10
Optimizer Adam [43]
Initial learning rate 0.001
β1 , β2 0.9
Batch size 32
Decay rate 0.75
Gradient clipping 5.0

Table 4
Accuracy comparison of single-task baseline parsers to the proposed multi-
representational approach in both constituent and dependency parsing. We
report Labeled Attachment Scores (LAS) and Unlabeled Attachment Scores (UAS)
for dependency parsing and, for constituent parsing, the LAS on the augmented
dependency trees and F-score on the post-decoding constituent structure. The
corresponding standard deviations over 3 runs for each score are reported in
Table 5.
Treebank Single-dep. Single-const. Multi-representational

UAS LAS F1 (LAS) UAS LAS F1 (LAS)

PTBnoPOS 96.06 94.50 93.29 (93.57) 96.25 94.64 93.67 (93.93)
LCTBgold 93.26 92.67 88.28 (88.49) 93.40 92.88 88.65 (88.61)
ZCTBgold 90.61 89.51 86.01 (84.38) 90.79 89.69 86.09 (84.43)
NEGRAgold 94.71 93.87 86.42 (92.22) 94.80 94.05 87.30 (92.68)
NEGRAnoPOS 94.20 93.19 85.65 (91.36) 94.33 93.33 86.78 (91.85)
TIGERgold 94.24 92.86 86.74 (91.81) 94.31 92.90 87.25 (92.22)
TIGERnoPOS 93.73 92.27 85.96 (90.89) 93.85 92.35 86.61 (91.36)

Table 5
Standard deviations of scores in Table 4 over 3 runs.
Treebank Single-Dep. Single-Const. Multi-Representational

UAS LAS F1 (LAS) UAS LAS F1 (LAS)

PTBnoPOS ±0.03 ±0.04 ±0.06 (±0.04) ±0.04 ±0.04 ±0.05 (±0.03)
LCTBgold ±0.08 ±0.09 ±0.06 (±0.04) ±0.07 ±0.08 ±0.09 (±0.07)
ZCTBgold ±0.07 ±0.05 ±0.07 (±0.06) ±0.08 ±0.06 ±0.07 (±0.05)
NEGRAgold ±0.03 ±0.06 ±0.06 (±0.04) ±0.02 ±0.03 ±0.04 (±0.02)
NEGRAnoPOS ±0.04 ±0.04 ±0.05 (±0.03) ±0.06 ±0.04 ±0.06 (±0.03)
TIGERgold ±0.04 ±0.05 ±0.06 (±0.04) ±0.03 ±0.05 ±0.04 (±0.02)
TIGERnoPOS ±0.07 ±0.05 ±0.06 (±0.06) ±0.05 ±0.04 ±0.07 (±0.05)

over all models on ZCTB. We also outperform the single-task
dependency parser by Fernández-González and Gómez-Rodríguez
[18] with BERT, providing evidence that our multitask neural
architecture is learning extra syntactic information that is not
encoded in the pre-trained model BERT. Furthermore, Table 7
shows that our novel parser obtains competitive accuracies on
constituent PTB and LCTB without BERT (best F-score to date
on the latter), while being more efficient than O(n3) and O(n5)
pproaches such as [14,44]. Finally, in Table 8 we show how
ur novel neural architecture outperforms all existing single-task
arsers on the discontinuous NEGRA and TIGER datasets with
egular word embeddings.
7

able 6
ccuracy comparison of state-of-the-art dependency parsers on PTB and ZCTB.
ince in the original work [18] performance with BERT was not reported,
e run our own implementation of the single-task dependency parser en-
anced with BERT-based embeddings and include it in the second block as
‘Fernández-González and Gómez-Rodríguez [18]’’.
Parser PTB ZCTB

UAS LAS UAS LAS

Wang and Chang [45] 94.08 91.82 87.55 86.23
Cheng et al. [46] 94.10 91.49 88.1 85.7
Kuncoro et al. [47] 94.26 92.06 88.87 87.30
Zhang et al. [48] 93.42 91.29 87.65 86.17
Zhang et al. [49] 94.10 91.90 87.84 86.15
Ma and Hovy [50] 94.88 92.96 89.05 87.74
Dozat and Manning [16] 95.74 94.08 89.30 88.23
Li et al. [51] 94.11 92.08 88.78 86.23
Ma et al. [17] 95.87 94.19 90.59 89.29
Ji et al. [52] 95.97 94.31 – –
Fernández-González and Gómez-Rodríguez [18] 96.04 94.43 – –
Zhou and Zhao [14] 96.09 94.68 – –
Li et al. [53] 95.83 94.54 90.47 89.44
Zhang et al. [54] 96.14 94.49 – –
This work 96.25 94.64 90.79 89.69
+BERT
Fernández-González and Gómez-Rodríguez [18] 96.91 95.35 92.58 91.42
Li et al. [53] 96.44 94.63 90.89 89.73
Li et al. [53]a 96.57 95.05 – –
Zhou and Zhao [14]a 97.00 95.43 91.21 89.15

This work 96.97 95.46 92.78 91.65
aModels that fine-tune BERT.

Table 7
F-score comparison of state-of-the-art constituent parsers on PTB and LCTB.
Parser PTB LCTB

Dyer et al. [55] 91.2 84.6
Cross and Huang [56] 91.3 –
Liu and Zhang [36] 91.7 85.5
Liu and Zhang [57] 91.8 86.1
Fernández-González and Gómez-Rodríguez [58] 92.0 86.6
Stern et al. [59] 91.8 –
Stern et al. [60] 92.56 –
Shen et al. [61] – 86.5
Fried and Klein [62] 92.2 87.0
Gaddy et al. [63] 92.08 –
Teng and Zhang [64] 92.4 87.3
Kitaev and Klein [44] 93.55 –
Zhou and Zhao [14] 93.78 –
This work 93.67 88.65
+BERT
Kitaev et al. [65]a 95.59 91.75
Zhou and Zhao [14]a 95.84 92.18
This work 95.23 90.20

aModels that fine-tune BERT.

4.4. Analysis

In order to obtain insight into why the multi-representational
variant is outperforming single-task parsers in both tasks,8 we
conduct an error analysis relative to structural factors.

For the dependency parsing task, we show in Fig. 3(a) the
F-score relative to dependency displacements (i.e., signed dis-
tances) on the PTB and on the concatenation of all datasets,9
Fig. 3(b) reports the performance on common dependency rela-
tions on PTB and Fig. 3(c) shows the accuracy of both approaches
relative to sentence lengths on PTB and on all datasets together.

8 Apart from the widely-proven benefits of using multitask learning as a
egularization method to avoid overfitting.
9 We discard German datasets with gold PoS tags.
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rom these results, we can point out that the multitask parser
s performing better on longer leftward dependency arcs (with
ositive displacement) and on longer sentences, improving over
he single-task system in all frequent dependency relations.

Regarding constituent parsing, we specifically analyze perfor-
ance on both discontinuous German datasets together, where

he multi-representational model significantly outperforms the
ingle-task approach. Firstly, we report in Table 8 an F-score
xclusively measured on discontinuous constituents (DF1), show-
ng a notable performance on discontinuous structures (probably
hanks to the joint training with regular non-projective depen-
ency structures). Additionally, Fig. 3(d) plots the F-score on span
dentification for different lengths, Fig. 3(e) shows the perfor-
ance by span labels and Fig. 3(f) measures the accuracy of both
pproaches on different sentence length cutoffs. It can be noticed
hat the multitask variant achieves higher performance when
pans are larger and sentences tend to be longer, being only less
ccurate than the single-task parser on Coordinated Noun Phrases
CNP), where, in this particular case, a disagreement in notation
etween constituent and dependency representations10 might be
isleading the multitask approach.
All this provides some evidences that learning across syntactic

epresentations is tackling the main weakness of the transition-
ased sequential decoding: the impact of error propagation on
he performance on large constituents and long sentences. More-
ver, the information exclusively encoded by each formalism
span phrase information in constituent trees and semantic re-
ations in dependency structures) may complete each other and
rovide an additional guidance not only in final decoding steps
where the parser is more prone to make a mistake due to error
ropagation), but also in creating those structures that are less
requent in some of the two representations (as happens with
ong leftward dependency arcs in languages such as English).

It is also worth mentioning that even on Chinese datasets
where augmented and regular dependencies are the same) our
pproach benefits from learning across both structures, meaning
hat both constituent-based and regular dependency label sets
rovide useful syntactic information.
Finally, the multitask approach achieves lower accuracies on

ontinuous constituent datasets since the encoding technique
y Fernández-González and Martins [23] cannot directly handle
nary nodes (which are collapsed or, in case of leaf unary nodes,
ssigned with a regular sequence tagger), losing some accuracy in
ontinuous treebanks where the amount of this kind of structures
s significant: 19.69% and 19.09% of the constituents on the PTB
raining and development sets, respectively, are unary nodes.
ne consequence of encoding unaries by collapsing them is that,
hile the labeler on regular dependency trees deals with 47
ifferent dependency labels on the PTB, the labeler on augmented
ependency structures manages 188 different tags (104 of them
eing generated for encoding unary nodes). On the contrary,
n discontinuous datasets such as TIGER (where unary nodes
re discarded due to their low frequency), the regular label set
ize is 45 and the augmented version has 83. This significant
ncrease on augmented dictionary sizes for processing continuous
atasets might penalize the labeler’s performance and affect final
ccuracy, especially in an encoding technique where dependency
abels have a crucial role during constituent recovery. Addition-
lly, the recovery of leaf unary nodes (the 73.55% of total unaries
rom PTB development set for example) lost after the constituent-
o-dependency conversion has a greater impact on final accuracy.

10 In the regular dependency version, a CNP structure is represented by
ttaching the second noun to the conjunction and the latter to the first noun,
hile in the augmented variant, the first noun and the conjunction are both
ttached to the second noun.
8

Table 8
F-score and Discontinuous F-score (DF1) comparison of state-of-the-art
discontinuous constituent parsers on NEGRA and TIGER.
Parser NEGRA TIGER

F1 DF1 F1 DF1

(Predicted/Without PoS tags)
Fernández-González and Martins [23] 77.0 – 77.3 –
Versley [66] – – 79.5 –
Stanojević and G. Alhama [67] – – 77.0 –
Coavoux and Crabbé [68] – – 79.3 –
Coavoux et al. [20] 83.2 54.6 82.7 55.9
Coavoux and Cohen [19] 83.2 56.3 82.5 55.9
Stanojević and Steedman [69] 83.6 50.7 83.4 53.5
Vilares and Gómez-Rodríguez [70] 75.6 34.6 77.5 39.5
Fernández-González and Gómez-Rodríguez [21] 85.7 58.6 85.7 60.4
Corro [71] 86.3 56.1 85.2 51.2
This work 86.8 69.5 86.6 62.6
+BERT
Vilares and Gómez-Rodríguez [70]a 83.9 45.6 84.6 51.1
Corro [71]a 91.6 66.1 90.0 62.1
Fernández-González and Gómez-Rodríguez [72]a 90.4 66.5 88.5 62.7
This work 91.0 76.6 89.8 71.0

(Gold PoS tags)
Maier [73] 77.0 19.8 74.7 18.8
Fernández-González and Martins [23] 80.5 – 80.6 –
Maier and Lichte [74] – – 76.5 –
Corro et al. [75] – – 81.6 –
Stanojević and G. Alhama [67] 82.9 – 81.6 –
Coavoux and Crabbé [68] 82.2 50.0 81.6 49.2
Gebhardt [76] – – 75.1 –
Mörbitz and Ruprecht [77] 82.8 52.9 81.8 54.6
Vilares and Gómez-Rodríguez [70] 77.1 36.5 79.2 40.1
Fernández-González and Gómez-Rodríguez [21] 86.1 59.9 86.3 60.7
This work 87.3 71.0 87.3 64.2

aModels that fine-tune BERT.

The tagger in charge of that has to face a complex task, since
the amount of words with unary constituents on top is scarce
on the training set (88.85% of words are tagged with NONE and,
since a sequence of leaf unaries is collapsed into a single tag as
done for non-leaf unary nodes, the model has to deal with a large
dictionary size of 54 tags), hindering the adequate training of the
tagger. While it achieves a good overall accuracy (for instance,
98.65% on the PTB development set), a worse performance is ob-
tained when only considering words with attached unary nodes
(just the 10.59% of total words): 92.56% recall, 91.82% precision
and 92.19% F-score on the PTB development set. It might seem
that this performance is good enough; however, it means that
tagging errors are more than 5 times as frequent in words as-
sociated with unary nodes compared to the overall error rate,
and its impact on the final parsing accuracy is significant taking
into account that scores on Penn treebanks are remarkably high.
Despite all that, our approach obtains the best accuracy to date
among all existing transition-based parsers in both continuous
and discontinuous constituent structures, and it is on par with
state-of-the-art models such as [44] and [14].

5. Related work

It is known that parsers based on lexicalized grammar are
trained using both constituent and unlabeled dependency in-
formation. This includes classic chart parsers [78] as well as
lexicalized parsers that build dependencies with reduce transi-
tions, such as [79], which can generate both structures. These
are restricted to dependencies that are directly inferred from the
lexicalized constituent trees. In this sense, the multitask approach
is more flexible, as it does not have that limitation and one can
use dependencies and constituents from different sources.
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Fig. 3. Parsing performance of the single-task and the multi-representational parsers relative to length and structural factors.
,

In the deep learning era, there have been a few recent at-
empts to jointly train a neural model across constituent and
ependency trees, producing, during decoding, both syntactic
epresentations from a single model.

In particular, Strzyz et al. [15] propose a multitask sequence
abeling architecture that, by representing constituent and de-
endency trees as linearizations [80,81], can learn and perform
arsing in both formalisms as joint tasks. While being a linear
nd fast parser, the parsing accuracy provided by this approach is
otably behind the state of the art (even training separate models
y performing an auxiliary-task learning for each formalism) and
he linearization strategy used for constituent parsing is restricted
o continuous structures.

Zhou and Zhao [14] also explore the benefits of training a
odel across syntactic representations. They propose to integrate
ependency and constituent information into a simplified variant
f the Head-Driven Phrase Structure Grammar formalism (HPSG).
hen, to implement a HPSG parser, they modify the constituent
hart-based parser by Kitaev and Klein [44] that employs a O(n5)
CKY-style algorithm [60] for decoding.11 Although their approach
can produce both syntactic structures at the same time and
achieve state-of-the-art accuracies on PTB and CTB treebanks,
their parser is bounded to produce continuous and projective
structures with a high runtime complexity.

Our approach can handle any kind of constituent and depen-
dency structures and provides an efficient runtime complexity,
crucial for some downstream applications.

6. Conclusions and future work

We propose a novel encoder–decoder neural architecture
based on Pointer Networks that, after being jointly trained on
regular and constituent-based dependency trees, can syntactically
parse a sentence to both constituent and dependency trees.
Apart from just requiring to train a single model, our approach
can produce not only the simplest continuous/projective trees,
but also discontinuous/non-projective structures in just O(n2)
runtime. We test our parser on the main dependency and con-
stituent benchmarks, obtaining competitive results in all cases
and reporting state-of-the-art accuracies in several datasets.

11 They also propose a O(n3) decoding method that achieves worse accuracy.
9

As future work, we plan to perform auxiliary-task learning and
train a separate model for each task, testing different weights for
the loss computation. This will lose the advantage of training a
single model to undertake both tasks, but will certainly lead to
further improvements in accuracy.
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