
Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pages 4092–4099
July 5 - 10, 2020. c©2020 Association for Computational Linguistics

4092

Enriched In-Order Linearization for Faster Sequence-to-Sequence
Constituent Parsing

Daniel Fernández-González and Carlos Gómez-Rodrı́guez
Universidade da Coruña, CITIC
FASTPARSE Lab, LyS Group

Depto. de Ciencias de la Computación y Tecnologı́as de la Información
Campus de Elviña, s/n, 15071 A Coruña, Spain

d.fgonzalez@udc.es, carlos.gomez@udc.es

Abstract

Sequence-to-sequence constituent parsing re-
quires a linearization to represent trees as se-
quences. Top-down tree linearizations, which
can be based on brackets or shift-reduce ac-
tions, have achieved the best accuracy to
date. In this paper, we show that these
results can be improved by using an in-
order linearization instead. Based on this
observation, we implement an enriched in-
order shift-reduce linearization inspired by
Vinyals et al. (2015)’s approach, achieving
the best accuracy to date on the English PTB
dataset among fully-supervised single-model
sequence-to-sequence constituent parsers. Fi-
nally, we apply deterministic attention mech-
anisms to match the speed of state-of-the-
art transition-based parsers, thus showing that
sequence-to-sequence models can match them,
not only in accuracy, but also in speed.

1 Introduction

Sequence-to-sequence (seq2seq) neural architec-
tures have proved useful in several NLP tasks, with
remarkable success in some of them such as ma-
chine translation, but they lag behind the state of
the art in others. In constituent parsing, seq2seq
models still need to improve to be competitive in ac-
curacy and efficiency with their main competitors:
transition-based constituent parsers (Dyer et al.,
2016; Liu and Zhang, 2017b; Fernández-González
and Gómez-Rodrı́guez, 2019).

Vinyals et al. (2015) laid the first stone in
seq2seq constituent parsing, proposing a lineariza-
tion of phrase-structure trees as bracketed se-
quences following a top-down strategy, which can
be predicted from the input sequence of words by
any off-the-shelf seq2seq framework. While this
approach is very simple, its accuracy and efficiency
are significantly behind the state of the art in the
fully-supervised single-model scenario.

Most attempts to improve this approach fo-
cused on modifying the neural network architec-
ture, while keeping the top-down linearization strat-
egy. As exceptions, Ma et al. (2017) and Liu and
Zhang (2017a) proposed linearizations based on se-
quences of transition-based parsing actions instead
of brackets. Ma et al. (2017) tried a bottom-up lin-
earization, but they obtained worse results than top-
down approaches.1 Liu and Zhang (2017a) kept
the top-down strategy, but using transitions of the
top-down transition system of Dyer et al. (2016)
instead of a bracketed linearization, achieving a
higher performance.

In transition-based constituent parsing, an in-
order algorithm has recently proved superior to
the bottom-up and top-down approaches (Liu and
Zhang, 2017b), but we know of no applications of
this approach in seq2seq parsing.

Contributions In this paper, we advance the un-
derstanding of linearizations for seq2seq parsing,
and improve the state of the art, as follows: (1)
we show that the superiority of a transition-based
top-down linearization over a bracketing-based one
observed by Liu and Zhang (2017a) does not hold
when both are tested under the same framework.
In fact, we show that the additional information
provided by the larger vocabulary in the lineariza-
tion of Vinyals et al. (2015) is beneficial to seq2seq
predictions. (2) We implement a novel in-order
transition-based linearization, based on the in-order
transition system by Liu and Zhang (2017b), and
manage to notably increase parsing accuracy with
respect to previous approaches. (3) We enhance the
in-order representation of parse trees by adding ex-
tra information following the shift-reduce version
of the (Vinyals et al., 2015) linearization, obtaining
state-of-the-art accuracy among seq2seq parsers

1We also tested empirically that a bottom-up linearization
is not suitable for seq2seq parsing and discarded that option.



4093

and on par with some well-known transition-based
approaches. (4) We bridge the remaining gap with
transition-based parsers - parsing speed - by apply-
ing a new variant of deterministic attention (Kami-
gaito et al., 2017; Ma et al., 2017) to restrict the
hidden states used to compute the attention vec-
tor, doubling the system’s speed. The result is a
seq2seq parser2 that, for the first time, matches the
speed and accuracy of transition-based parsers im-
plemented under the same neural framework. (5)
Using the neural framework of Dyer et al. (2015)
as testing ground, we perform a homogeneous com-
parison among different seq2seq linearizations and
widely-known transition-based parsers.

2 Enriched Linearizations

To cast constituent parsing as seq2seq prediction,
each parse tree needs to be represented as a se-
quence of symbols that can be predicted from an
input sentence. Initially, Vinyals et al. (2015) pro-
posed a top-down bracketed linearization of con-
stituent trees, where opening and closing brack-
ets include non-terminal labels and POS tags are
normalized by replacing them with a tag XX. An
example is shown in linearization a of Figure 1.

As an alternative, Liu and Zhang (2017a) pre-
sented a shift-reduce linearization based on the top-
down transition system defined for constituent pars-
ing by Dyer et al. (2016) (example b in Figure 1).
This provides three transitions that can be used on
a stack and a buffer to build a constituent tree: a
Shift transition to push words from the buffer into
the stack, a Non-Terminal-X transition to push a
non-terminal node X into the stack, and a Reduce
transition to pop elements from the stack until a
non-terminal node is found and create a new sub-
tree with all these elements as its children, pushing
this new constituent into the stack.

Following Vinyals et al. (2015)’s lineariza-
tion where closing brackets also include the non-
terminal label, we define an equivalent shift-reduce
variant, where the Reduce transition is also parame-
terized with the non-terminal on top of the resulting
subtree (Reduce-X). In that way, we can one-to-one
map opening brackets to Non-Terminal-X transi-
tions, closing brackets to Reduce-X actions and
XX-tags to Shift transitions as shown in example c
of Figure 1 . This enriched version will enlarge the
vocabulary, but will also add some extra informa-

2Source code available at https://github.com/
danifg/InOrderSeq2seq.

tion that, as we will see below, improves parsing
accuracy.

As an alternative to the top-down parser of (Dyer
et al., 2016), Liu and Zhang (2017b) define a tran-
sition system based on in-order traversal, as in left-
corner parsing (Rosenkrantz and Lewis, 1970): the
non-terminal node on top of the tree being built is
only considered after the first child is completed
in the stack, building each subtree in a bottom-up
manner, but choosing the non-terminal node on top
before the new constituent is reduced. Transitions
are the same as in the top-down algorithm (plus a
Finish transition to terminate the parsing process),
but the effect of applying a Reduce transition is
different: it pops all elements from the stack until
the first non-terminal node is found, which is also
popped together with the preceding element in the
stack to build a new constituent with all of them as
children of the non-terminal node.3

This algorithm pushed state-of-the-art accura-
cies in shift-reduce constituent parsing; and, as we
show in Section 4, it can be succesfully applied as
a linearization method for seq2seq constituent pars-
ing. Sequence d in Figure 1 exemplifies in-order
linearization.

Similarly to the enriched top-down variant, we
also extend the in-order shift-reduce linearization
by parametrizing Reduce transitions. Additionally,
we can also add extra information to Shift tran-
sitions. (Suzuki et al., 2018) leaves POS tags of
punctuation symbols out of the normalization pro-
posed by Vinyals et al. (2015) without further ex-
planation, but possibly they consider it can help
seq2seq models. We adapt this idea to our novel
enriched in-order linearization and lexicalize Shift
transitions when a “.” or a “,” are pushed into the
stack as “Shift.” and “Shift,”, respectively.4 In our
experiments, we see that lexicalizing Shift transi-
tions has indeed an impact on parsing performance.
In Figure 1 and sequence e, we include an example
of this linearization technique.

Note that, although we use a transition-based
linearization of parse trees, our approach is agnos-
tic to the stack structure and the parsing process is
performed by a simple seq2seq model that straight-
forwardly translates input sequences of words into
sequences of shift-reduce actions.

3See Appendix A for more details about the top-down and
in-order transition systems.

4We do not lexicalize Shift transitions on the enriched
shift-reduce top-down variant to perform a fair comparison
against the original linearization by Liu and Zhang (2017a).

https://github.com/danifg/InOrderSeq2seq
https://github.com/danifg/InOrderSeq2seq


4094

S

.VP

ADJP

cautious

ADVP

still

is

NP

publicThe

Top-down linearizations

a) Bracketed: (S (NP XX XX )NP (V P XX (ADV P XX )ADV P (ADJP XX )ADJP )V P XX )S

b) Shift-reduce: NTS NTNP SH SH RE NTV P SH NTADV P SH RE NTADJP SH RE RE SH RE

c) Enriched SH-RE: NTS NTNP SH SH RENP NTV P SH NTADV P SH READV P NTADJP SH READJP REV P

SH RES

In-order linearizations

d) Shift-reduce: SH NTNP SH RE NTS SH NTV P SH NTADV P RE SH NTADJP RE RE SH RE FI

e) Enriched SH-RE: SH NTNP SH RENP NTS SH NTV P SH NTADV P READV P SH NTADJP READJP REV P

SH. RES FI

Figure 1: Top-down and in-order linearizations for a constituent tree taken from English PTB. SH = Shift, NTX =
Non-Terminal-X, RE = Reduce, REX = Reduce-X and FI = Finish.

3 Seq2seq Neural Network

Baseline Model In our experiments, we test all
proposed linearizations in the seq2seq neural ar-
chitecture designed by Liu and Zhang (2017a) and
implemented on the framework developed by Dyer
et al. (2015). This architecture proved to outper-
form the majority of seq2seq approaches, even
without implementing beam search (which penal-
izes parsing speed). The difference with respect
to the vanilla seq2seq configuration (Vinyals et al.,
2015) is that two separate attention models are used
to cover two different and variable segments of the
input. This provides improvements in accuracy,
regardless of the linearization method used.

More specifically, Liu and Zhang (2017a) follow
the common practice in stack-LSTM-based shift-
reduce parsers (Dyer et al., 2015, 2016; Liu and
Zhang, 2017b) that uses a concatenation of pre-
trained word embeddings (e∗wi

) and randomly ini-
tialized word (ewi) and POS tag embeddings (epi)
to derive (through a ReLu non-linear function) the
final representation xi of the ith input word:

xi = relu(Wenc[e
∗
wi
, ewi , epi ] + benc)

where Wenc and benc are model parameters, and
wi and pi represent the form and the POS tag of
the ith input word.

This representation xi is fed into the encoder
(implemented by a BiLSTM) to output an encoder
hidden state hi:

hi = [hli ;hri ] = BiLSTM(xi).

As a decoder, a LSTM generates a sequence
of decoder hidden states from which a sequence
of actions is predicted. Concretely, the current
decoder hidden state dj is computed by:

dj = relu(Wdec[dj−1, lattj , rattj ] + bdec)

where Wdec and bdec are model parameters, dj−1

is the previous decoder hidden state, and lattj and
rattj are the resulting attention vectors over the left
and right segments, respectively, of encoder hidden
states h1 . . .hn. These two segments of the input
are defined by index p, which is initialized to the
beginning of the sentence and moves one position
to the right each time a Shift transition is applied.
Therefore, lattj and rattj are computed at timestep
j as:

lattj =
p∑
i=1

αijhi, rattj =
n∑

i=p+1

αijhi,

where αij =
exp(βij)∑n

k=1
exp(βkj)

and

βij = UT tanh(Watt[hi;dj−1] + batt)

Then, the current token yj is predicted from dj as:

p(yj |dj) = softmax(Wpred ∗ dj + bpred),

where Watt, batt, Wpred and bpred are parame-
ters. In Figure 2, we graphically describe the neural
architecture.

Note that current state-of-the-art transition-based
parsers, which rely on stack-LSTMs to represent



4095

Figure 2: Sequence-to-sequence neural architecture proposed by Liu and Zhang (2017a).

the stack structure, are also implemented under the
framework by Dyer et al. (2015) and, therefore, our
approach can be fairly compared to them in terms
of accuracy and speed.

Deterministic Attention Previous work (Kami-
gaito et al., 2017; Ma et al., 2017; Liu et al., 2018)
claims that using deterministic attention mecha-
nisms instead of the standard probabilistic variant
leads to accuracy and speed gains. We propose a
simple and effective procedure to implement de-
terministic attention in the architecture by Liu and
Zhang (2017a), substantially reducing the time con-
sumed by the decoder to predict the next token.

Apart from dividing the sequence of encoder hid-
den states into segments, Liu and Zhang (2017a)
provide explicit alignment between the input word
sequence and the output transition sequence by
keeping the index p that indicates a correspondence
between input words and Shift transitions. This
information can be used to force the model to fo-
cus on those encoder hidden states that are more
informative for decoding at each timestep, avoid-
ing going through the whole input to compute the
attention vector, and thus considerably reducing
decoding time.

To gain some insight on what input words are
most relevant, we study on the dev set the atten-
tion values assigned by the model to each encoder
hidden state and the frequency with which each of
them achieves the highest value at each timestep.
Surprisingly, we found out that, for the top-down
parser, almost 90% of the time the highest attention
values were assigned to the words in positions p

and p+1 by a wide margin. For the in-order parser,
words in those positions also received considerable
attention values, but they were determinant only
75% of the time. Following these results, we pro-
pose a computation of lattj and rattj where only
the encoder hidden states in the rightmost position
(p) of the left segment and in the leftmost position
(p+ 1) of the right segment are considered:

lattj = βpjhp, rattj = βp+1jhp+1

This change avoids calculating the weight αij for
each encoder hidden state, as needed in probabilis-
tic attention. Attention vectors are computed in
constant time, notably reducing running time while
keeping the accuracy, as shown in our experiments.

4 Experiments

We test the proposed approaches on the PTB tree-
bank (Marcus et al., 1993) with standard splits.5

Table 1 compares parsing accuracy of all lin-
earizations proposed in Section 2 to state-of-the-art
fully-supervised transition-based constituent pars-
ing models. The results show that our enriched in-
order linearization is the most suitable option imple-
mented so far for seq2seq constituent parsing, out-
performing all existing seq2seq approaches (even
without beam-search decoding) and matching some
transition-based models. We also demonstrate that
the enriched top-down variant (equivalent to the
bracketed (Vinyals et al., 2015)’s linearization) out-
performs the regular top-down approach of Liu and
Zhang (2017a). A trend that can also be seen in the

5Settings are detailed in Appendix A.3.



4096

Parser Beam Strat F1
Transition-based

(Cross and Huang, 2016a) n bu 90.0
(Cross and Huang, 2016b) n bu 91.3
(Liu and Zhang, 2017b) n bu 91.3
(Fernández-G and Gómez-R, 2019)∗ n bu 91.7
(Dyer et al., 2016)∗ n td 91.2
(Fernández-G and Gómez-R, 2018)∗ n td 91.7
(Liu and Zhang, 2017b)∗ n in 91.8
(Fernández-G and Gómez-R, 2018)∗ n in 92.0
(Zhu et al., 2013) y bu 90.4
(Watanabe and Sumita, 2015) y bu 90.7
(Liu and Zhang, 2017c) y bu 91.7
(Fried and Klein, 2018) y in 92.2

Seq2seq
(Vinyals et al., 2015) y td 88.3
(Ma et al., 2017) y bu 88.6
(Kamigaito et al., 2017) y td 89.5
(Liu et al., 2018) y td 91.2
(Suzuki et al., 2018) y td 91.2
(Liu and Zhang, 2017a)∗ (baseline) n td 90.5
Top-down SH-RE w/ det. attention∗ n td 90.7
Enriched top-down SH-RE∗ n td 90.7
In-order SH-RE∗ n in 90.9
Enriched in-order SH-RE∗ n in 91.3

w/o lexicalized SH transition∗ n in 91.2
w/ det. attention∗ n in 91.2
w/ beam-search∗ y in 91.6

Chart-based
(Stern et al., 2017) n bu 91.8
(Gaddy et al., 2018) n bu 92.1
(Kitaev and Klein, 2018) n bu 93.6

Table 1: Accuracy comparison on PTB test set with
greedy (n) or beam-search (y) decoding and with dif-
ferent strategies followed to parse or to linearize the in-
put sentence (bu=bottom-up, td=top-down and in=in-
order). Systems marked with ∗ are implemented under
the same framework.

in-order linearization, where the addition of more
tokens (parametrized Reduce and lexicalized Shift
transitions) to the vocabulary benefits model per-
formance (a gain of 0.4 F-score points), meaning
that seq2seq models make use of this additional in-
formation. In fact, we analysed the average length
of output sequences and noticed that enriched vari-
ants with larger vocabulary tend to produce shorter
sequences. We hypothesize that the extra informa-
tion is helping the model to better contextualize
tokens in the sequence during training, minimizing
the prediction of wrong tokens at decoding time.
Finally, we extend the implementation by Liu and
Zhang (2017a) with 10-beam-search decoding and
increase F-score by 0.3 points.

We also evaluate parsing speeds under the ex-
act same conditions among our approach and the
top-down (Dyer et al., 2016) and in-order (Liu
and Zhang, 2017b) transition-based constituent
parsers, implemented in the framework by Dyer

Parser sent./s.
Transition-based

(Dyer et al., 2016) (top-down) 38.78
(Liu and Zhang, 2017b) (in-order) 33.34

Seq2seq
(Liu and Zhang, 2017a) (top-down SH-RE) 16.65
Top-down SH-RE w/ det. attention 37.93
Enriched in-order SH-RE 16.54
Enriched in-order SH-RE w/ det. attention 35.12

Table 2: Speed comparison on PTB test set.

et al. (2015).6 Table 2 shows how the proposed
deterministic attention technique doubles the speed
of the baseline model, putting it on par with stack-
LSTM-based shift-reduce systems, which are con-
sidered one of the most efficient approaches for
constituent parsing. We can also see from Table 1
that the presented mechanism is more beneficial
in terms of accuracy for the top-down algorithm
(increasing 0.2 points in F-score) than the in-order
variant (suffering a drop of 0.1 points in F-score),
as could be expected from our previous analysis of
attention vectors.

Finally, at the bottom of Table 1, we show cur-
rent state-of-the-art chart-based parsers. These ap-
proaches, while more accurate, are significantly
slower than seq2seq and transition-based parsers,
being less appealing for downstream applications
where the speed is crucial.

5 Conclusion

We present significant accuracy and speed im-
provements in seq2seq constituent parsing. The
proposed linearization techniques can be used by
any off-the-self seq2seq model without building
a specific algorithm or structure. In addition, any
advances in seq2seq neural architectures or pre-
trained transformer-based language models (Devlin
et al., 2019) can be directly used to enhance our
approach.

Acknowledgments

This work has received funding from the Euro-
pean Research Council (ERC), under the Euro-
pean Union’s Horizon 2020 research and innova-
tion programme (FASTPARSE, grant agreement
No 714150), from the ANSWER-ASAP project
(TIN2017-85160-C2-1-R) from MINECO, and
from Xunta de Galicia (ED431B 2017/01, ED431G
2019/01).

6Please note that the implementation by Dyer et al. (2015)
is not optimized for speed, but it can be used as a common
framework to compare different approaches.



4097

References
James Cross and Liang Huang. 2016a. Incremental

parsing with minimal features using bi-directional
LSTM. In ACL (2). The Association for Computer
Linguistics.

James Cross and Liang Huang. 2016b. Span-based
constituency parsing with a structure-label system
and provably optimal dynamic oracles. In EMNLP,
pages 1–11. The Association for Computational Lin-
guistics.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference
of the North American Chapter of the Association
for Computational Linguistics: Human Language
Technologies, Volume 1 (Long and Short Papers),
pages 4171–4186, Minneapolis, Minnesota. Associ-
ation for Computational Linguistics.

Chris Dyer, Miguel Ballesteros, Wang Ling, Austin
Matthews, and Noah A. Smith. 2015. Transition-
based dependency parsing with stack long short-
term memory. In Proceedings of the 53rd An-
nual Meeting of the Association for Computational
Linguistics, ACL 2015, July 26-31, 2015, Beijing,
China, Volume 1: Long Papers, pages 334–343.

Chris Dyer, Adhiguna Kuncoro, Miguel Ballesteros,
and Noah A. Smith. 2016. Recurrent neural network
grammars. In HLT-NAACL, pages 199–209. The As-
sociation for Computational Linguistics.

Daniel Fernández-González and Carlos Gómez-
Rodrı́guez. 2018. Dynamic oracles for top-down
and in-order shift-reduce constituent parsing. In
Proceedings of the 2018 Conference on Empirical
Methods in Natural Language Processing, pages
1303–1313, Brussels, Belgium. Association for
Computational Linguistics.

Daniel Fernández-González and Carlos Gómez-
Rodrı́guez. 2019. Faster shift-reduce constituent
parsing with a non-binary, bottom-up strategy.
Artificial Intelligence, 275:559 – 574.

Daniel Fried and Dan Klein. 2018. Policy gradient as
a proxy for dynamic oracles in constituency parsing.
In Proceedings of the 56th Annual Meeting of the As-
sociation for Computational Linguistics, ACL 2018,
Melbourne, Australia, July 15-20, 2018, Volume 2:
Short Papers, pages 469–476.

David Gaddy, Mitchell Stern, and Dan Klein. 2018.
What’s going on in neural constituency parsers?
an analysis. In Proceedings of the 2018 Confer-
ence of the North American Chapter of the Associ-
ation for Computational Linguistics: Human Lan-
guage Technologies, NAACL-HLT 2018, New Or-
leans, Louisiana, USA, June 1-6, 2018, Volume 1
(Long Papers), pages 999–1010.

Hidetaka Kamigaito, Katsuhiko Hayashi, Tsutomu
Hirao, Hiroya Takamura, Manabu Okumura, and
Masaaki Nagata. 2017. Supervised attention for
sequence-to-sequence constituency parsing. In Pro-
ceedings of the Eighth International Joint Confer-
ence on Natural Language Processing (Volume 2:
Short Papers), pages 7–12, Taipei, Taiwan. Asian
Federation of Natural Language Processing.

Diederik P. Kingma and Jimmy Ba. 2014. Adam:
A method for stochastic optimization. Cite
arxiv:1412.6980Comment: Published as a confer-
ence paper at the 3rd International Conference for
Learning Representations, San Diego, 2015.

Nikita Kitaev and Dan Klein. 2018. Constituency pars-
ing with a self-attentive encoder. In Proceedings of
the 56th Annual Meeting of the Association for Com-
putational Linguistics, ACL 2018, Melbourne, Aus-
tralia, July 15-20, 2018, Volume 1: Long Papers,
pages 2675–2685.

Jiangming Liu and Yue Zhang. 2017a. Encoder-
decoder shift-reduce syntactic parsing. In Proceed-
ings of the 15th International Conference on Parsing
Technologies, IWPT 2017, Pisa, Italy, September 20-
22, 2017, pages 105–114.

Jiangming Liu and Yue Zhang. 2017b. In-order
transition-based constituent parsing. Transactions
of the Association for Computational Linguistics,
5:413–424.

Jiangming Liu and Yue Zhang. 2017c. Shift-reduce
constituent parsing with neural lookahead features.
TACL, 5:45–58.

Lemao Liu, Muhua Zhu, and Shuming Shi. 2018. Im-
proving sequence-to-sequence constituency parsing.
In AAAI Conference on Artificial Intelligence.

Chunpeng Ma, Lemao Liu, Akihiro Tamura, Tiejun
Zhao, and Eiichiro Sumita. 2017. Deterministic
attention for sequence-to-sequence constituent pars-
ing. In AAAI Conference on Artificial Intelligence.

Mitchell P. Marcus, Beatrice Santorini, and Mary Ann
Marcinkiewicz. 1993. Building a large annotated
corpus of English: The Penn Treebank. Computa-
tional Linguistics, 19:313–330.

D. J. Rosenkrantz and P. M. Lewis. 1970. Determin-
istic left corner parsing. In Proceedings of the 11th
Annual Symposium on Switching and Automata The-
ory (Swat 1970), SWAT ’70, pages 139–152, Wash-
ington, DC, USA. IEEE Computer Society.

Mitchell Stern, Jacob Andreas, and Dan Klein. 2017. A
minimal span-based neural constituency parser. In
Proceedings of the 55th Annual Meeting of the As-
sociation for Computational Linguistics, ACL 2017,
Vancouver, Canada, July 30 - August 4, Volume 1:
Long Papers, pages 818–827.

https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
http://aclweb.org/anthology/P/P15/P15-1033.pdf
http://aclweb.org/anthology/P/P15/P15-1033.pdf
http://aclweb.org/anthology/P/P15/P15-1033.pdf
https://www.aclweb.org/anthology/D18-1161
https://www.aclweb.org/anthology/D18-1161
https://doi.org/https://doi.org/10.1016/j.artint.2019.07.006
https://doi.org/https://doi.org/10.1016/j.artint.2019.07.006
https://aclanthology.info/papers/P18-2075/p18-2075
https://aclanthology.info/papers/P18-2075/p18-2075
https://aclanthology.info/papers/N18-1091/n18-1091
https://aclanthology.info/papers/N18-1091/n18-1091
https://www.aclweb.org/anthology/I17-2002
https://www.aclweb.org/anthology/I17-2002
http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1412.6980
https://aclanthology.info/papers/P18-1249/p18-1249
https://aclanthology.info/papers/P18-1249/p18-1249
https://aclanthology.info/papers/W17-6315/w17-6315
https://aclanthology.info/papers/W17-6315/w17-6315
https://www.transacl.org/ojs/index.php/tacl/article/view/1199
https://www.transacl.org/ojs/index.php/tacl/article/view/1199
https://www.aaai.org/ocs/index.php/AAAI/AAAI18/paper/view/16347
https://www.aaai.org/ocs/index.php/AAAI/AAAI18/paper/view/16347
https://aaai.org/ocs/index.php/AAAI/AAAI17/paper/view/14317
https://aaai.org/ocs/index.php/AAAI/AAAI17/paper/view/14317
https://aaai.org/ocs/index.php/AAAI/AAAI17/paper/view/14317
https://doi.org/10.1109/SWAT.1970.5
https://doi.org/10.1109/SWAT.1970.5
https://doi.org/10.18653/v1/P17-1076
https://doi.org/10.18653/v1/P17-1076


4098

Jun Suzuki, Sho Takase, Hidetaka Kamigaito, Makoto
Morishita, and Masaaki Nagata. 2018. An empirical
study of building a strong baseline for constituency
parsing. In Proceedings of the 56th Annual Meet-
ing of the Association for Computational Linguis-
tics (Volume 2: Short Papers), pages 612–618, Mel-
bourne, Australia. Association for Computational
Linguistics.

Oriol Vinyals, Lukasz Kaiser, Terry Koo, Slav Petrov,
Ilya Sutskever, and Geoffrey Hinton. 2015. Gram-
mar as a foreign language. In Proceedings of the
28th International Conference on Neural Informa-
tion Processing Systems - Volume 2, NIPS’15, pages
2773–2781, Cambridge, MA, USA. MIT Press.

Taro Watanabe and Eiichiro Sumita. 2015. Transition-
based neural constituent parsing. In Proceedings of
the 53rd Annual Meeting of the Association for Com-
putational Linguistics, ACL 2015, 26-31 July 2015,
Bejing, China, Volume 1: Long Papers, pages 1169–
1179.

Muhua Zhu, Yue Zhang, Wenliang Chen, Min Zhang,
and Jingbo Zhu. 2013. Fast and accurate shift-
reduce constituent parsing. In Proceedings of the
51st Annual Meeting of the Association for Computa-
tional Linguistics, ACL 2013, 4-9 August 2013, Sofia,
Bulgaria, Volume 1: Long Papers, pages 434–443.

A Appendices

A.1 Top-down Transition System
In the top-down transition system defined by Dyer
et al. (2016), parser configurations have the form
c = 〈Σ, B〉, where Σ is a stack of constituents and
B is the buffer that contains words from the input
sentence. The top-down algorithm also provides
three transitions (described in Figure 3) that can
be used on the stack and the buffer (that initially
contains the whole unparsed sentence) to build the
final constituent tree. Concretely:

• a Shift transition is used to push words from
the buffer into the stack,

• a Non-Terminal-X transition to push a non-
terminal node X into the stack,

• and a Reduce transition to pop elements from
the stack until a non-terminal node is found
and create a new subtree with all these ele-
ments as its children, pushing this new con-
stituent into the stack.

A.2 In-order Transition System
Liu and Zhang (2017b) define a transition system
that builds a phrase structure tree in an in-order
traversal order: the non-terminal node on top of

Shift: 〈Σ, wi|B〉 ⇒ 〈Σ|wi, B〉

NT-X: 〈Σ, B〉 ⇒ 〈Σ|X,B〉

Reduce: 〈Σ|X|sk| . . . |s0, B, 〉 ⇒ 〈Σ|Xsk...s0 , B〉

Figure 3: Transitions available in a top-down transition
system (NT-X = Non-Terminal-X).

Shift: 〈Σ, wi|B, false〉 ⇒ 〈Σ|wi, B, false〉

NT-X: 〈Σ, B, false〉 ⇒ 〈Σ|s0|X,B, false〉

Reduce: 〈Σ|sk|X|sk−1| . . . |s0, B, false〉
⇒ 〈Σ|Xsk...s0 , B, false〉

Finish: 〈Σ, B, false〉 ⇒ 〈Σ, B, true〉

Figure 4: Transitions available in an in-order transition
system (NT-X = Non-Terminal-X).

the tree being built is only considered after the
first child node is completed in the stack, building
each subtree in a bottom-up manner, but choos-
ing the non-terminal node on top before the new
constituent is reduced. This transition system has
parser configurations with the stack-buffer form
c = 〈Σ, B〉 and uses the following actions (de-
scribed in Figure 4):

• a Shift transition to move words from the
buffer to the stack,

• a Non-Terminal-X transition to push a non-
terminal node X into the stack as long as the
first child of the future constituent is on top of
the stack,

• a Reduce transition to pop all elements from
the stack until the first non-terminal node is
found, which is also popped together with the
preceding element in the stack to build a new
constituent with all of them as children of the
non-terminal node,

• and, finally, a Finish transition to terminate
the parsing process.

The in-order transition system is a combination
of the classic bottom-up and the new top-down
algorithms, providing advantages of both of them:
the access to information from partial parses from
the bottom-up approach, and the non-local outlook
of the top-down approach.

https://www.aclweb.org/anthology/P18-2097
https://www.aclweb.org/anthology/P18-2097
https://www.aclweb.org/anthology/P18-2097
http://dl.acm.org/citation.cfm?id=2969442.2969550
http://dl.acm.org/citation.cfm?id=2969442.2969550
http://aclweb.org/anthology/P/P13/P13-1043.pdf
http://aclweb.org/anthology/P/P13/P13-1043.pdf


4099

Hyper-parameters
BiLSTM encoder layers 2
BiLSTM encoder input size 100
BiLSTM encoder hidden size 200
LSTM decoder layers 1
LSTM decoder hidden size 400
POS tag embedding dimension 6
Pretrained word embedding dimension 100
Word embedding dimension 64
Label embedding dimension 20
Action embedding dimension 40
Attention hidden size 50
Initial learning rate 0.001
β1, β2 0.9
λ 10−6

Table 3: Model hyper-parameters.

A.3 Data and Settings
Following common practice, we test the proposed
approaches on the Wall Street Journal sections of
the English Penn Treebank (Marcus et al., 1993)
with standard splits: sections 2-21 are used as train-
ing data, section 22 for development and section
23 for testing.

We adopt stochastic gradient descent with Adam
(Kingma and Ba, 2014) and hyper-parameter selec-
tion as (Liu and Zhang, 2017a), detailed in Table 3.
In addition, we use predicted POS tags and pre-
trained word embeddings (generated on the AFP
portion of English Gigaword) as (Dyer et al., 2016;
Liu and Zhang, 2017a,b).

All neural models are trained by minimizing the
following cross-entropy loss objective with an l2
regularization term:

L(θ) = −
∑
i

∑
j

log pyij +
λ

2
||θ||2

where θ is the set of parameters, pyij is the proba-
bility of the jth token in the ith training example
given by the model and λ is a regularization hyper-
parameter. For further details about the neural ar-
chitecture, the reader can refer to (Liu and Zhang,
2017a).

For our executions, we report the average accu-
racy and speed over 3 runs with random initializa-
tion and on a single CPU core.


