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ABSTRACT
Dependency distance minimization (DDm) is a word order principle favouring the
placement of syntactically related words close to each other in sentences. Massive
evidence of the principle has been reported for more than a decade with the help
of syntactic dependency treebanks where long sentences abound. However, it has
been predicted theoretically that the principle is more likely to be beaten in short
sequences by the principle of surprisal minimization (predictability maximization).
Here we introduce a simple binomial test to verify such a hypothesis. In short sen-
tences, we find anti-DDm for some languages from different families. Our analysis
of the syntactic dependency structures suggests that anti-DDm is produced by star
trees.

Keywords: dependency syntax; dependency distance minimization; word
order; graph theory; treebanks

1. Introduction

Dependency distance minimization (DDm) is a word order principle favouring the
placement of syntactically related words close to each other in sentences (Liu, Xu, &
Liang, 2017). Massive evidence of the principle has been reported for more than a
decade with the help of syntactic dependency treebanks where long sentences abound
(Ferrer-i-Cancho, 2004; Ferrer-i-Cancho & Liu, 2014; Futrell, Mahowald, & Gibson,
2015; Liu, 2008). Sometimes short sentences are excluded from the analyses (e.g.,
Jiang and Liu (2015)). See Liu et al. (2017) for an overview of the cognitive origins of
DDm.

It has been argued theoretically that the principle would be easier to beat by other
word order principles in at least two conditions: short sequences (Ferrer-i-Cancho,
2014) and short words (Ferrer-i-Cancho, 2015), as dependency distances shorten and
then the cognitive costs associated to them reduce, thus diminishing the pressure for
DDm. The aim of this article is to verify empirically the prediction that DDm should
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be beaten in short sequences. DDm is also known as dependency length minimization
(Futrell et al., 2015), but the term distance allows one to see DDm as particular
case of a general principle of distance minimization, crucial for the construction of a
parsimonious theory of language and cognition in general (Ferrer-i-Cancho, 2017d).

A competitor of DDm is Sm, surprisal minimization, or PM, predictability maxi-
mization (Ferrer-i-Cancho, 2017b; Levy, 2008). Surprisal minimization is a less techni-
cal name for the principle of entropy minimization (Ferrer-i-Cancho, 2017b). Through-
out this article we use m for minimization (as in Sm or DDm) and M for maximization
(as in PM). When deciding the placement of a head and its dependents a particular con-
flict between word order principles arises theoretically. In single-head structures, the
head should be put at the center according to the DDm principle whereas, according to
the Sm or PM principles, the head should be put at one of the ends (Ferrer-i-Cancho,
2014, 2017b). For simplicity, Sm and PM are considered to be equivalent in this article
but some subtle differences have been discussed theoretically (Ferrer-i-Cancho, 2017b).

Focusing on the ordering of the verb (head) and its dependents (subject and object),
such a conflict has been linked to the diversity of word orders, the existence of lan-
guages lacking a dominant word order, word order reversions in evolution, alternative
word orders with the head at the center and the preference for head last in simple
sequences and its loss in more complex sequences (Ferrer-i-Cancho, 2014). As for the
latter, the rationale is that DDm would be more likely to win in long sequences lead-
ing to central head placements while Sm (or PM) would be more likely to win in very
short sequences leading to non-central head placements. A challenge for this argument
is that DDm effects have also been found in short spans (such as noun phrases), cast-
ing doubts on the grounding of this effect in memory limitations (Gulordava, Merlo,
& Crabbé, 2015). Here we aim to verify the prediction that DDm is more likely to be
beaten in short sequences with the help of real data with 75 languages from about 20
families.

Anti-DDm have been investigated in depth in the cognitive science or psycholinguis-
tics community under the umbrella of anti-locality effects (Rajkumara, van Schijndel,
White, & Schuler, 2016; Vasishth & Lewis, 2006). However, such a research relies on
psychological experiments suffering from a small set of languages and a limited range
of set-ups or phenomena (Liu et al., 2017) in addition to considering only some but
not all dependency distances (Ferrer-i-Cancho, 2017d). Here we adopt a big data (Liu
et al., 2017) and nomothetic (Roberts & Winters, 2013) approach where set-ups and
languages are only limited by the growing collection of syntactic dependency treebanks
employed.

Following our hypothesis, we focus on sentences of n words with small n. n = 3
is a critical sentence length for a theory of word order because of DDm (Ferrer-i-
Cancho, 2008). When n < 2 there is no word order problem at all. When n = 2, the
distance between head and dependent is not affected by the order (Ferrer-i-Cancho,
2008, 2014). Therefore, n ≥ 3 is needed for the conflict between word orders above
(Ferrer-i-Cancho, 2017b). Here we focus on the two smallest values of n where such a
conflict exists: n = 3 and n = 4. We exclude sentences of length from n = 5 onwards
for simplicity and also because DDm is more likely to manifest in longer sequences
(Ferrer-i-Cancho, 2014).

Although syntactic dependency structures are directed graphs (Mel’čuk, 1988), here
we consider them as undirected for two reasons: dependency direction is not relevant
in the calculation of dependency distances and it simplifies the analysis of the kinds of
syntactic dependency structures. When n ∈ {3, 4} the only structures that are possible
are linear and star trees. A linear tree is a tree where the maximum degree is 2 whereas
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a star tree is a tree where the maximum degree is n−1, the maximum possible degree
(Ferrer-i-Cancho, 2017c). Fig. 1 shows some linear and star trees. When n = 3 the
tree is both a linear tree and a star tree. Star trees correspond to the single-head
structures where a conflict between DDm and Sm (or PM) has been demonstrated
theoretically. The sum of dependency distances is maximized when the hub (the vertex
of degree n−1) is put at one of the ends of the linear arrangement, which coincides with
the arrangement minimizing surprisal (or maximizing predictability) (Ferrer-i-Cancho,
2014, 2017b).

If the theoretical arguments above are correct, one would expect to find dependen-
cies that are farther than expected by chance when n ∈ {3, 4} for two reasons: the
abundance of star trees on which the theoretical conflict above holds (Ferrer-i-Cancho,
2014) and also because of the smaller dependency distances that are expected as a side
effect of the short length of the sentences (Ferrer-i-Cancho, 2014). In its current state
of development, that theory has no specific predictions to make on linear trees.

We define chance with respect to some null models. Our core null model is a ran-
dom linear arrangement of the vertices where the syntactic dependency structure of
sentences remains constant (Ferrer-i-Cancho, 2004, 2019). When n = 3, the syntactic
dependency structure is always the same (a tree that is both a linear tree and a star
tree). As this does not happen when n = 4, we also consider an additional null model
for n = 4 where not only the order but also the syntactic dependency structure (a star
tree or a linear tree) is chosen at random.

When trying to shed light on the origins of anti-DDm in languages, various comple-
mentary approaches are possible, e.g., psychological experiments or traditional linguis-
tic analyses based on the properties of the vertices (e.g., their part-of-speech) or the
type of the dependencies. Here we adopt a graph theoretic approach that abstracts
away from these properties to allow one to maximize the generality and parsimony
of potential explanations. Indeed, we will show that the kind of graph structure ap-
parently determines the possibility that anti-DDm emerges in short sequences. Our
graph theoretic approach is radical in the sense that we focus on aspects of the graph
structure that can be analyzed independently from the linear ordering of the vertices.
Common features in research on dependency syntax such as dependency distance,
branching direction or adjacency (e.g., Jiang and Liu (2015)) depend on that order-
ing. Examples of features that do not depend on it are hubiness (Ferrer-i-Cancho, 2013;
Ferrer-i-Cancho, Gómez-Rodŕıguez, & Esteban, 2018), hierarchical distance (Jing &
Liu, 2015) or whether the syntactic dependency structure is a star tree or a linear tree
(in this article).

When investigating DDm, many researchers have considered a stronger null model
where, for instance, dependency crossings are not allowed. A popular example of this
tradition is the recent work by Futrell et al. (2015). However, we have argued that this
could shadow the very effects of DDm (Ferrer-i-Cancho & Gómez-Rodŕıguez, 2016).
It is crucial for our study to use a null model that does not introduce a bias for or
against DDm. Thus, the only constraint of our null model for a given sentence is that
all n! possible orderings are equally likely, as in the pioneering research of one of us
(Ferrer-i-Cancho, 2004), and as expected from the maximum entropy principle without
constraints (Kesavan, 2009).

The remainder of the article is organized as follows. Section 2 presents the syn-
tactic dependency treebanks, i.e. collections of sentences with syntactic dependency
annotations, that we used to investigate biases against DDm. By the conflict above,
evidence of anti-DDM can be interpreted as Sm (or PM) beating DDm in star trees at
least. Therefore, when we use the term anti-DDm we are not referring to a cognitive
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Figure 1. Examples of trees with 3 and 4 vertices. Edge labels indicate edge distances. Top. A tree with 3

vertices that is both a linear tree and a star tree. Center: a linear tree with 4 vertices. Bottom: a star tree with

4 vertices.

principle or a principle of word order but rather to a statistical phenomenon that can
be attributed to the Sm (or PM) principle.

Section 3 presents the statistical methods used, introducing a new binomial test
that allows one to detect biases against or for DDm. To detect anti-DDm, the test ex-
amines the number of sentences where the sum of dependency distances is above the
expected value in a random linear arrangement. If that number is significantly large,
the test concludes that there is evidence of anti-DDm. Similarly, to detect DDm, the
test examines the number of sentences where the sum of dependency distances is be-
low the expected value in a random linear arrangement. If that number is significantly
large, the test concludes that there is evidence of DDm. Section 3 shows that if depen-
dency crossings were not allowed, the tests would lose statistical power (they would
become more conservative) when n = 4 (crossings for n ≤ 3 are impossible (Ferrer-i-
Cancho, 2013)), shadowing either the effects of DDm or the effects of biases against
DDm, supporting previous arguments for the case of DDm (Ferrer-i-Cancho & Gómez-
Rodŕıguez, 2016). Section 4 shows that some languages from different families exhibit
an anti DDm effect even after controlling for multiple comparisons. Interestingly, we
find anti-locality in languages for which anti-locality effects have never been reported
before based on traditional psychological experiments. Furthermore, our analysis of
trees of four vertices suggests that anti-DDm is produced by star trees.

2. Data

In order to provide results on a wide range of languages of various families, while also
controlling for the possible effects of differences in syntactic annotation criteria, we
analyze two different collections of treebanks:

• Universal Dependencies (UD) 2.3 (Nivre et al., 2018), the largest and most di-
verse dependency treebank collection that is currently available. It is comprised
of 129 treebanks of 76 languages, annotated following the Universal Dependen-
cies guidelines.
• HamleDT 2.0 (Rosa et al., 2014), a collection of treebanks from 30 languages,

each of them annotated with two different sets of guidelines: Universal Stan-
ford dependencies (de Marneffe et al., 2014) and Prague dependencies (Hajič et
al., 2006). In tables, we will simply write Prague and Stanford to refer to the
HamleDT collection with Prague and Stanford annotation, respectively.

Universal Stanford dependencies are closely related to UD, as the latter evolved out
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of the former, which in turn are a multilingual adaptation of the Stanford Dependen-
cies for English (de Marneffe & Manning, 2008), based on lexical-functional grammar
(Bresnan, 2000). However, Prague dependencies provide significantly different struc-
tural representations, based on the functional generative description (Sgall, 1969) of
the Praguian linguistic tradition (Hajicova, 1995). In terms of tree structure, the most
relevant differences are the annotation of conjunctions and adpositions (Passarotti,
2016).

Note that for many languages, there are UD and HamleDT treebanks with over-
lapping source material. Thus, our main goal in including HamleDT 2.0 is to provide
results with different annotation formalisms, rather than to provide more data or lan-
guages with respect to using only UD. In this respect, it is also worth noting that,
while a more recent version of HamleDT exists (3.0), it abandoned the dual annotation
and adopted Universal Dependencies (version 1.1) as its only annotation style, so this
newer version is not interesting for our purposes.

For our analysis, punctuation tokens are removed from the treebanks, following
common practice in research on statistical properties of dependency structures. Nodes
that do not represent words, such as the null elements present in the Bengali, Hindi
and Telugu HamleDT corpora and the empty nodes in various Universal Dependencies
treebanks, are also removed. To preserve the integrity of dependency structures, non-
deleted nodes whose head has been deleted are reattached as dependents of their
nearest non-deleted ancestor.

Table 1 summarizes the linguistic diversity of our collections of treebanks. Bengali
is the only language in the HamleDT collection that is not present in UD.

The UD collection contains sentences in 76 languages, belonging to 18 families.
However, we exclude Yoruba from our analysis because its treebank does not contain
any sentences of length 3 or 4. The remaining 75 languages belong to 17 families.
Among these languages, there are a few special cases. One is Naija, an English-based
pidgin language spoken in Nigeria, to which we assign the family Other. There is
also a treebank of the Swedish Sign Language, which we associate with a family Sign
Language for being the only non-vocal language in the sample. Finally, one of the
corpora corresponds to a code-switching variety (Hindi-English), which belongs to the
Indo-European family that is common to both languages.

The Prague and the Stanford HamleDT collections have 30 languages from 7 fami-
lies.

Tables 3 and 4 show that the original number of languages (75) reduces to some
number l0 depending on the level of analysis in UD. When n = 3, the number of
languages drops from 75 to 73 (there are two languages without sentences of length
3). When n = 4, the number of languages remains unchanged at the level of linear
trees (l0 = 75) while it drops from 75 to 72 at the level of star trees (there are three
languages lacking star trees of 4 vertices). In the other collections, l0 matches the
original number (30) in all cases.

3. Methods

3.1. Graph theory

A leaf is a vertex of degree 1 and an internal vertex is a vertex of degree greater
than 1. We use the term hub to refer to the vertex of a tree having the largest degree
(Ferrer-i-Cancho, 2013). In a star tree, the are n−1 leaves and the only internal vertex
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Table 1. The languages in every collection sorted by family. The counts attached to the collection names

indicate the number of different families and the number of different languages. The counts attached to family
names indicate the number of different languages.

Collection Family Languages
UD (18, 76) Afro-Asiatic (6) Akkadian Amharic Arabic Coptic Hebrew Maltese

Altaic (3) Kazakh Turkish Uyghur
Austro-Asiatic (1) Vietnamese
Austronesian (2) Indonesian Tagalog
Basque (1) Basque
Dravidian (2) Tamil Telugu
Indo-European (44) Afrikaans Ancient Greek Armenian Belarusian Breton Bulgarian

Catalan Croatian Czech Danish Dutch English Faroese French
Galician German Gothic Greek Hindi Hindi English Irish Ital-
ian Kurmanji Latin Latvian Lithuanian Marathi Norwegian Old
Church Slavonic Old French Persian Polish Portuguese Roma-
nian Russian Sanskrit Serbian Slovak Slovenian Spanish Swedish
Ukrainian Upper Sorbian Urdu

Japanese (1) Japanese
Korean (1) Korean
Mande (1) Bambara
Mongolic (1) Buryat
Niger-Congo (1) Yoruba
Other (1) Naija
Pama-Nyungan (1) Warlpiri
Sign Language (1) Swedish Sign Language
Sino-Tibetan (2) Cantonese Chinese
Tai-Kadai (1) Thai
Uralic (6) Erzya Estonian Finnish Hungarian Komi Zyrian North Sami

Stanford (7, 30) Afro-Asiatic (1) Arabic
Altaic (1) Turkish
Basque (1) Basque
Dravidian (2) Tamil Telugu
Indo-European (21) Ancient Greek Bengali Bulgarian Catalan Czech Danish Dutch

English German Greek Hindi Italian Latin Persian Portuguese
Romanian Russian Slovak Slovenian Spanish Swedish

Japanese (1) Japanese
Uralic (3) Estonian Finnish Hungarian

Prague (7, 30) Afro-Asiatic (1) Arabic
Altaic (1) Turkish
Basque (1) Basque
Dravidian (2) Tamil Telugu
Indo-European (21) Ancient Greek Bengali Bulgarian Catalan Czech Danish Dutch

English German Greek Hindi Italian Latin Persian Portuguese
Romanian Russian Slovak Slovenian Spanish Swedish

Japanese (1) Japanese
Uralic (3) Estonian Finnish Hungarian
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n Unlabelled Labelled

3 2 1 3 1 2 3 1 3 2

4 2 1 3 4 1 2 3 4

1 3 2 4 1 4 2 3

1 2 3 4 1 2 4 3 2 1 3 4

1 3 2 4 1 4 2 3 2 3 1 4

1 3 4 2 2 1 4 3 3 1 2 4

1 4 3 2 2 4 1 3 3 2 1 4

Figure 2. All the distinct labelled and unlabelled trees of 3 and 4 vertices. The enumeration for n = 4 is

adapted from Longani (2008).

is the hub.
When deciding when two trees are the same, standard theory provides two well-

known criteria. One is when the vertices of a tree are labelled with n distinct numbers,
playing the role of a vertex identifiers. In this case, the trees are said to be labelled.
The other criterion is when the vertices are unlabelled (they have no identifier). Figure
2 shows the distinct trees for each of the two criteria. When n = 3 there is only one
possible unlabelled tree but three labelled trees. Each distinct labelled tree is defined
by the label assigned to the internal vertex. By symmetry, exchanging the identifiers
of the leaves does not produce another labelled tree. A distinct tree is only produced
when the labels of a leaf and an internal vertex are exchanged. When n = 4, there
are two unlabelled trees and 16 labelled trees. The unlabelled trees are a star tree and
a linear tree. The unlabelled star tree yields 4 different labelled star trees that are
determined by the label of the hub. As before, exchanging the labels of the leaves does
not produce a new labelled tree. A distinct tree is only obtained swapping the label
of the hub with that of another vertex. The unlabelled linear tree yields 12 different
labelled linear trees that are determined by all the permutations of the four labels and
the fact that each permutation and its reverse correspond to the same labelled linear
tree, therefore there are 4!/2 = 12 distinct labelled linear trees.

Unlabelled trees are the most abstract criterion to define what a distinct tree is.
Labelled trees define a level of abstraction that is intermediate between that of unla-
belled trees and the linear arrangement of vertices. Notice that the labels of a labelled
tree can be interpreted as vertex positions and thus define a linear arrangement of the
vertices. However, the labellings in all the labelled trees of a given unlabelled tree do
not cover all possible linear arrangements. For instance, Figure 2 shows that a star
tree of 4 vertices has 4 different labelled trees but there are actually 4! = 24 possible
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linear arrangements of a star tree. In particular, each labelled star tree of 4 vertices
can be arranged linearly in 3! different ways once the hub is placed in the position
defined by its label.

In the context of trees whose vertices are assigned distinct positions in a linear
arrangement (thus defining a particular labelled tree where labels indicate vertex po-
sitions), we define the distance of an edge as the distance in vertices between the linked
vertices forming the edge (consecutive vertices are at distance 1, vertices separated by
a vertex are at distance 2 and so on) (Ferrer-i-Cancho, 2004). Suppose that D is the
sum of edge distances of a syntactic dependency tree (Ferrer-i-Cancho, 2016), i.e.

D =

n−1∑
i=1

di,

where di is the distance of the i-th edge. In Fig. 1, the tree of 3 vertices has D =
1 + 1 = 2, the linear tree of 4 vertices has D = 1 + 1 + 1 = 3 and the star tree of 4
vertices has D = 1 + 1 + 2 = 4.

There are n! linear arrangements of the vertices of the dependency tree. Dmin and
Dmax, are the minimum and the maximum value of D in a random linear arrangement.
A uniformly random linear arrangement is one whose probability is 1/n!. The expected
value of D in a uniformly random linear arrangement (rla) of a given graph is (Ferrer-
i-Cancho, 2004, 2016)

Drla =
n2 − 1

3
. (1)

3.2. A simple binomial test

Suppose that f(D > Drla) is the number of sentences where D exceeds Drla. We wish
to test when f(D > Drla), is larger than expected by chance. If f(D > Drla) is larger
than expected by chance then we conclude that there is evidence of anti-DDm.

We define Null hypothesis 1 as a two-fold null model on sentences of length n
from an individual treebank:

(1) The syntactic dependency trees are the same as in the original treebank.
(2) Although the tree structure of every sentence is the same as in the original

dataset, vertices are ordered according to a uniformly random linear arrange-
ment. Linear arrangements are independent.

The null model can be applied to a subset of the trees of length n, e.g., all star trees
of n vertices.

Next subsections analyze the case of sentences of three words and four words (n = 3
and n = 4), presenting derivations of binomial distributions from the Null hypothesis
1 or a variant that can help one to find evidence of anti-DDm.

3.2.1. n = 3

When n = 3, D = 2 when the hub is put at the center and D = 3 when it is not (Figure
3). Obviously, Dmin = 2 and Dmax = 3. The probability that D = 2 in a uniformly
random linear arrangement is p(D = 2) = 1/3. To see it, notice that only two orderings
have the hub at the center (the non-hub vertex that is put first gives the two orderings;
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D = 2 1 2 3 3 2 1

D = 3 1 3 2 2 1 3

2 3 1 3 1 2

Figure 3. All the linear arrangements of a tree with n = 3 classified by D (the sum of edge distances).

For each value of D, the arrangements are sorted in ascending lexicographic order according to the sequence
defined by vertex labels.

Figure 3) and that there are 3! possible orderings. Thus, p(D = 2) = 2/3! = 1/3. Then
p(D = 3) = 1− 1/3 = 2/3.

When n = 3, Eq. 1 gives Drla = 8/3. Thus, satisfying D > Drla in a sentence is
equivalent to satisfying D = Dmax. We define an indicator variable I[D = Dmax] such
that

I[D = Dmax] =

{
1 if D = Dmax

0 otherwise

in a dependency tree of n vertices. Interestingly, I[D = Dmax] follows a Bernoulli
distribution because I[D = Dmax] = 1 with probability 2/3 and I[D = Dmax] = 0
with probability 1/3.

Suppose that f(D = Dmax) is the number of syntactic dependency trees where D =
Dmax and f(n = 3) is the number of syntactic dependency trees where n = 3. Under
Null hypothesis 1, it turns out that f(D = Dmax) follows a binomial distribution
with parameters f(n = 3) and 2/3. Then, one can test if f(D = Dmax) is significantly
large, in favour of anti-DDm, with a binomial test (Conover, 1999).

We will check the probabilities above applying the general definition of Drla, namely

Drla =

Dmax∑
D′=Dmin

p(D = D′)D′. (2)

When n = 3, the general formula gives

Drla = 2p(D = 2) + 3p(D = 3)

= 2
1

3
+ 3

2

3
= 8/3

as expected by Eq. 1.

3.2.2. n = 4

When n = 3, there is only one possible unlabelled tree, that is both a linear tree and
a star tree (Figure 2). When n = 4, there are only two possible unlabelled trees: a star
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D = 4 2 1 3 4 2 1 4 3 2 3 1 4

2 4 1 3 3 1 2 4 3 1 4 2

3 2 1 4 3 4 1 2 4 1 2 3

4 1 3 2 4 2 1 3 4 3 1 2

D = 6 1 2 3 4 1 2 4 3 1 3 2 4

1 3 4 2 1 4 2 3 1 4 3 2

2 3 4 1 2 4 3 1 3 2 4 1

3 4 2 1 4 2 3 1 4 3 2 1

Figure 4. All the linear arrangements of a star tree with n = 4 classified by D (the sum of edge distances).

The hub is labelled with 1. For each value of D, the arrangements are sorted in ascending lexicographic order
according to the sequence defined by vertex labels.

tree and a linear tree (Figure 2). We will investigate each kind of tree separately.
In a star tree with n = 4, there are only two possible values of D: D = 4, when

the hub is placed in one of the two central positions, and D = 6, when the hub is
placed in one of the two ends (Fig. 4). Obviously, Dmin = 4 and Dmax = 6. ps(D = 4),
the probability that D = 4 in a uniformly random linear arrangement of a star tree,
is 1/2. To see it, notice that there are six orderings where the hub is placed in the
1st central position, i.e., the 2nd position (permuting the positions of the non-hub
vertices gives 6 configurations). There are six more orderings where the hub is placed
2nd central position, i.e., the 3rd position. Thus, ps(D = 4) = (6 + 6)/4! = 1/2. Then
ps(D = 6) = 1− 1/2 = 1/2.

When n = 4, Eq. 1 gives Drla = 5. Thus, ps(D > Drla), the probability that
D exceeds Drla in a random linear arrangement of a star tree with n = 4, matches
ps(D = Dmax). Applying the same arguments for the case n = 3, we obtain that, under
Null hypothesis 1, f(D = Dmax) follows a binomial distribution with parameters
fs(n = 4) and 1/2, where fs(n = 4) is the number of star trees of 4 vertices.

We will check the probabilities above applying the general definition of Drla in Eq.

10



2. For a star tree with n = 4, the general formula gives

Drla = 4ps(D = 4) + 6ps(D = 6)

= 4
1

2
+ 6

1

2
= 5

as expected by Eq. 1.
In a linear tree with n = 4, there are only five possible values of D: 3, 4, 5, 6 and 7.

Fig. 5 shows all the permutations giving each of the values of D for a total of 4! = 24.
Therefore, the probabilities of the values of D in a linear tree are

• pl(D = 3) = pl(D = 7) = 2/4! = 1/12.
• pl(D = 4) = pl(D = 6) = 4/4! = 1/6.
• pl(D = 5) = 12/4! = 1/2.

Applying the probabilities above to the general definition of Drla in Eq. 2 one obtains

Drla = (3 + 7)
1

12
+ (4 + 6)

1

6
+ 5

1

2
= 5

as expected by Eq. 1. Thus, the probability that D exceeds Drla in a random linear
arrangement of a linear tree with n = 4 is

pl(D > Drla) = pl(D ∈ {6, 7}).

Applying the same arguments for the case n = 3 or n = 4 for star trees, we obtain
that, under Null hypothesis 1, fl(D > Dmax), the number of linear arrangements
of linear trees of 4 vertices, follows a binomial distribution with parameters fl(n = 4)
and 1/4, where fl(n = 4) is the number of linear trees of 4 vertices and 1/4 = p(D =
6) + p(D = 7).

Above, we have distinguished linear trees from star trees. Now we consider an ar-
bitrary tree, which leads to Null hypothesis 2, an additional three-fold null model
(differences with respect to Null model 1 are marked in boldface):

(1) The number of sentences of the target length is the same as in the
original treebank.

(2) The tree structure of every sentence is chosen from a given statistical
ensemble. Trees are independent.

(3) The vertices of each sentence are ordered according to a uniformly random linear
arrangement. Linear arrangements are independent.

Null hypothesis 2 becomes testable when a statistical ensemble is chosen.
We will consider three statistical ensembles: real trees, uniformly random labelled

trees, i.e. all labelled trees with the same n are equally likely, and uniformly random
unlabelled trees, i.e. all unlabelled trees with the same n are equally likely (Figure
2). The choice of uniformity for the two last ensembles can be justified based on the
maximum entropy principle without constraints (Kesavan, 2009). In such additional
null model, ps is determined by the statistical ensemble.

Under Null hypothesis 2, f(D > Drla), the number of linear arrangements of
arbitrary trees of 4 vertices where D exceeds Drla, follows a binomial distribution
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D = 3 1 2 3 4 4 3 2 1

D = 4 1 2 4 3 2 1 3 4 3 4 2 1

4 3 1 2

D = 5 1 3 2 4 1 4 2 3 1 4 3 2

2 1 4 3 2 3 1 4 2 3 4 1

3 2 1 4 3 2 4 1 3 4 1 2

4 1 2 3 4 1 3 2 4 2 3 1

D = 6 1 3 4 2 2 4 3 1 3 1 2 4

4 2 1 3

D = 7 2 4 1 3 3 1 4 2

Figure 5. All the linear arrangements of a linear tree with n = 4 classified by D (the sum of edge distances).
For each value of D, the arrangements are sorted in ascending lexicographic order according to the sequence

defined by vertex labels.
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with parameters f(n = 4) and p(D > Drla). Suppose that ps is the probability that
a tree of 4 vertices is a star tree and pl the same for a linear tree. As ps + pl = 1,
p(D > Drla) can be derived noting that

p(D > Drla) = ps(D > Drla)ps + pl(D > Drla)pl

= ps(D > Drla)ps + pl(D > Drla)(1− ps)
= [ps(D > Drla)− pl(D > Drla)]ps + pl(D > Drla). (3)

Recalling that ps(D > Drla) = 1/2 and pl(D > Drla) = 1/4, Eq. 3 becomes

p(D > Drla) =
1

4
(ps + 1). (4)

When considering the statistical ensemble of real trees, ps is the proportion of
star trees (with n = 4) in a treebank. Knowing that there are only two possible
unlabelled trees with n = 4, star trees and linear trees (Figure 2), we obtain ps = 1/2
for uniformly random labelled trees. Knowing that there are 16 labelled trees with
n = 4, of which 4 are star trees (Figure 2), we obtain ps = 4/16 = 1/4 for uniformly
random labelled trees. Therefore, Eq. 4 gives p(D > Drla) = 3/8 for uniformly random
unlabelled trees and p(D > Drla) = 5/16 for uniformly random labelled trees. The
fact that 3/8 = 0.375 > 5/16 = 0.3125 allows one to predict that anti-DDm should
surface more clearly with uniformly random labelled trees than with uniformly random
unlabelled trees.

To sum up, the case of arbitrary trees with n = 4 will be investigated with the help
of various binomial tests, based on the fact that f(D > Drla) is binomially distributed
with parameters f(n = 4) and p(D > Drla) under a null model.

3.2.3. Simple binomial tests for DDm

Applying the same methodology, it is possible do derive binomial tests for the case
of DDm. The distribution under the null model turns out to be the same as that of
anti-DDm by symmetry. When n = 3, f(D < Drla) follows a binomial distribution
with parameters f(n = 3) and 1/3. When n = 4,

• fs(D < Drla) follows a binomial distribution with parameters fs(n = 4) and
1/2.
• fl(D < Drla) follows a binomial distribution with parameters fl(n = 4) and 1/4.
• f(D < Drla) follows a binomial distribution with parameters f(n = 4) and

probability (ps + 1)/4, that becomes 5/16 in uniformly random labelled trees
and 3/8 in uniformly random unlabelled trees. This is easy to see noting that
Eq. 3 gives

p(D < Drla) = [ps(D < Drla)− pl(D < Drla)]ps + pl(D < Drla) (5)

by symmetry.

3.2.4. Minimum sample size

Here we aim to investigate when the sample size s, namely the number of sentences
involved in a certain binomial test, is too small to allow one to reject the null hypothe-
sis. Suppose a random variable f that follows a binomial distribution with parameters

13



Table 2. s∗ the minimum sample size to achieve significance for each binomial test.

n Kind s∗

3 DLM 3
anti-DLM 8

4 unlabelled 4
labelled 3
star 5
linear 3

s and p. In our binomial tests, the p-value is the probability that f equals or exceeds
a certain value g, i.e.

p-value =

s∑
f=g

(
s

f

)
pf (1− p)s−f .

As all the summands are positive, the smallest p-value is obtained when g = s and
then the p-value is ps. A necessary condition for significance is then

ps ≤ α.

Taking logarithms on both sides of the inequality (and noting this will change the sign
of left and the right hand side because 0 < p, α ≤ 1), one obtains

s ≥ s∗ (6)

with

s∗ =

⌈
logα

log p

⌉
.

Table 2 shows the value of s∗ for the different tests except for the case of real trees
with n = 4, where p depends on the proportion of star trees. When Eq. 6 is not
satisfied, the binomial tests suffer from undersampling (Eq. 6 provides a necessary but
not sufficient condition for sufficient sampling).

3.2.5. Summary

We have shown above that we can test DDm or dependency distance maximization
(anti-DDm) with the help of one-tailed binomial tests (Conover, 1999). When n = 3,
f(D < Drla) follows a binomial distribution with parameters f(n = 3) and 1/3 whereas
f(D > Drla) follows a binomial distribution with parameters f(n = 3) and 2/3. When
n = 4,

• fs(D < Drla) and fs(D > Drla) follow a binomial distribution with parameters
fs(n = 4) and 1/2.
• fl(D < Drla) and fl(D > Drla) follow a binomial distribution with parameters
fl(n = 4) and 1/4.
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• f(D < Drla) and f(D > Drla) follow a binomial distribution with parameters
f(n = 4) and probability (ps + 1)/4, that becomes 5/16 in uniformly random
labelled trees and 3/8 in uniformly random unlabelled trees.

Given a treebank from a certain language, we consider six levels of application of
the binomial test:

• All with n = 3, i.e. any tree with n = 3.
• All with n = 4, i.e. any tree with n = 4 using real trees for reference (ps is

borrowed from real trees with n = 4).
• Unlabelled, i.e. any tree with n = 4 using random unlabelled trees with n = 4

for reference (ps is borrowed from random unlabelled trees with n = 4).
• Labelled, i.e., any tree with n = 4 using random labelled trees with n = 4 for

reference (ps is borrowed from random unlabelled trees with n = 4).
• Star trees with n = 4.
• Linear trees with n = 4.

The binomial tests were carried out with the function binom.test from the R
programming language (R Core Team, 2018).

3.3. The risks of disallowing edge crossings

Here we will consider the effect of disallowing crossings for each of the six levels of
application of the binomial tests. The ban does not have any impact for n = 3 or
star trees with n = 4, because crossings are impossible for star trees (Ferrer-i-Cancho,
2013). As for star trees with n = 4, Fig. 5 allows one to see that 8 out of 4! arrangements
contain crossings: 6 permutations with crossings with D = 5 and 2 permutations with
crossings with D = 7. Then, the number of relevant linear arrangements drops from
4! to 4!− 8 = 16 non-crossing linear arrangements and Drla, the expected value of D
in non-crossing linear arrangements, can be calculated as the average value of D over
these arrangements based on Fig. 5 as

Drla =
1

16
(2 · 3 + 4 · 4 + 6 · 5 + 4 · 6 + 0 · 7) .

=
19

4
= 4.75.

Accordingly,

pl(D > Drla) =
6 + 4

16

=
5

8

and

pl(D < Drla) =
2 + 4

16

=
3

8
.

When banning crossings,
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• pl(D > Drla) grows from 1/4 to 5/8, implying that the test of anti-DDm for
linear trees is more likely to make type II errors.
• pl(D < Drla) grows from 1/4 to 3/8, implying that the test of DDm for linear

trees is also more likely to make type II errors.

At the level of n = 4, the application of ps(D > Drla) = 1/2 and pl(D > Drla) = 5/8
to Eq. 3 gives that the value of p(D > Drla) in non-crossing (nc) configurations is

pnc(D > Drla) =
1

8
(5− 3ps). (7)

It is easy to see that pnc(D > Drla) ≥ p(D > Drla) and then the binomial tests of
anti-DDm when crossings are banned are conservative also at the level of all trees with
n = 4, labelled trees and unlabelled trees.

A similar conclusion is reached for the tests of DDm. The application of ps(D <
Drla) = 1/2 and pl(D < Drla) = 3/8 to Eq. 5 gives

pnc(D < Drla) =
1

8
(ps + 3). (8)

It is easy to see that pnc(D < Drla) ≥ p(D < Drla) and then the binomial tests of
DDm when crossings are banned is conservative also at the level of all trees with n = 4,
labelled trees and unlabelled trees. When n = 4, we conclude that banning crossings
precludes the detection of anti-DDm and also DDm, consistent with previous argu-
ments for the case of DDm in a general context (Ferrer-i-Cancho & Gómez-Rodŕıguez,
2016).

3.4. Additional methods on top of the binomial test

For each level of analysis, we apply a binomial test to check anti-DDm and another to
check DDm. To control for multiple comparisons within each level and target (anti-
DDm or DDm), we apply a Holm correction, that does not assume independence
between p-values (Goeman & Solari, 2014). This point is crucial in our case because
languages in our sample are not independent, a well-known problem since Galton
(Naroll, 1965). See (Goeman & Solari, 2014) for a detailed analysis of the minimal
assumptions of the correction and how to calculate it.

Notice that we are applying the correction globally, for all languages available for a
certain level of analysis, and then checking if the null hypothesis is rejected in different
families to fight against Galton’s problem. To control for the relatedness of languages,
a simple, although conservative test is to run the analysis within each language family
(Roberts & Winters, 2013). Accordingly, we may also apply the correction within
each family, but this would imply a less effective control for multiple comparisons.
This is easy to see mathematically from the standpoint of the Bonferroni correction,
the precursors of Holm’s correction (Goeman & Solari, 2014). Bonferroni’s original
correction consists of multiplying the p-value by m, the number of languages. As m is
always smaller within a family, that means that applying the correction within family
reduces the penalty for multiple comparisons.
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Table 3. For every collection and every level of analysis, we show l0, the number of languages, l, the number

of languages where the number of sentences available reaches s∗, f , the number of languages where the binomial
test rejects the null hypothesis in favour of anti-DDm at a significance level of 0.05, fH , the same as f after

applying the Holm correction to the languages counted in f . The number attached to the language name

indicates the magnitude of the corrected p-value. It is obtained after rounding −log10(p-value) to leave just
one decimal digit. Then the significance level gives 1.3.

Collection n Kind l0 l f fH Family Languages
UD 3 all 73 64 9 6 Austronesian (1) Tagalog1.5

Dravidian (1) Telugu1.8

Indo-European (3) English4.6 Old French7.2

Slovak6.2

Japanese (1) Japanese42.9

4 all 75 70 1 0 — —
4 unlabelled 75 70 1 1 Pama-Nyungan (1) Warlpiri2.4

4 labelled 75 71 10 2 Indo-European (1) English1.9

Pama-Nyungan (1) Warlpiri3.4

4 star 72 64 19 11 Dravidian (1) Telugu7

Indo-European (9) Bulgarian5.1 Czech3.8

English4.2 Faroese2 French5.5

Old French17 Portuguese1.8

Russian2 Slovak5.7

Mande (1) Bambara1.3

4 linear 75 68 0 0 — —
Stanford 3 all 30 29 7 5 Dravidian (1) Telugu8.2

Indo-European (3) Czech4.2 German5.2 Slovak12

Japanese (1) Japanese25.5

4 all 30 29 1 0 — —
4 unlabelled 30 29 1 0 — —
4 labelled 30 30 5 3 Dravidian (1) Telugu2.5

Indo-European (2) English2.1 Ancient Greek8.5

4 star 30 29 11 9 Dravidian (1) Telugu11.2

Indo-European (8) Bengali3 Bulgarian1.5 Czech3

English3.7 Ancient Greek3.2

Latin1.8 Portuguese2.7

Slovak16.1

4 linear 30 29 0 0 — —
Prague 3 all 30 29 3 2 Dravidian (1) Telugu13.8

Indo-European (1) Persian14.7

4 all 30 29 3 2 Dravidian (1) Telugu2.7

Indo-European (1) Ancient Greek2

4 unlabelled 30 29 2 2 Dravidian (1) Telugu4

Indo-European (1) Ancient Greek2.4

4 labelled 30 30 3 2 Dravidian (1) Telugu9.8

Indo-European (1) Ancient Greek10.1

4 star 30 28 5 4 Dravidian (1) Telugu22.8

Indo-European (3) Bengali2.3 Ancient Greek6.4

Persian16.4

4 linear 30 29 0 0 — —

17



4. Results

Table 3 summarizes the analysis of anti-DDm within each collection showing the num-
ber of languages for where the binomial test rejects the null hypothesis at a significance
level of 0.05. The null hypothesis is impossible to reject due to undersampling only in
a few languages (the difference between l0 and l is small, if any). After controlling for
multiple comparisons, anti-DDm is found in some languages (as indicated by the value
of fH in Table 3). For instance, at the level of n = 3 with UD dependencies, anti-DDm
is found in f = 9 languages but after controlling for multiple comparisons it survives
in fH = 6 languages. When n = 4, it turns out that anti-DDm is never found in linear
trees but found in star trees. Star trees with n = 4 are the level of analysis with the
highest support for anti-DDm (fH is the highest in each collection according to Table
3).

Two findings reduce the chance that the results are due to a common descent
(Roberts & Winters, 2013). First, the languages where anti-DDm is found belong to
different families. Second, the anti-locality does not cover a whole family if the family is
represented by more than one language a priori according to Table 1. For instance, at
the level of n = 3 with UD dependencies, the fH = 6 languages with evidence of anti-
DDm are three Indo-European languages out of 44 (English, French and Slovak), one
Austronesian language out of 2 (Tagalog), one Dravidian language out of 2 (Telugu)
and one isolate (Japanese).

Table 3 confirms the prediction that anti-DDm should surface more clearly when
the uniformly random trees are labelled trees instead of unlabelled trees (Figure 2)
are used for reference. At the level of n = 4 with UD dependencies, anti-DDm is
found in f = 10 languages before controlling for multiple comparisons and fH = 2
languages after controlling for that when random labelled trees are used for reference.
In contrast, anti-DDm is found in only one language before and after controlling for
multiple comparisons when random unlabelled trees are used for reference.

Given these findings, we aim to evaluate the scope of DDm using the same kind
of binomial tests. Table 4 shows a broader support for DDm. The weakest support is
found at the levels n = 3 and star trees with n = 4 according to the value of fH in
Table 4. Indeed, Table 4 shows an opposite behavior with respect to Table 3: when
n = 4, support for DDm is stronger in linear trees than star trees (fH is greater in
linear trees).

5. Discussion

We have confirmed the theoretical prediction that anti-DDm should be found in short
sequences (Ferrer-i-Cancho, 2014): we have found evidence of anti-DDm in short se-
quences in languages from different families suggesting that anti-DDm is not lineage
specific. The fact that anti-DDm is found in all annotation formalisms and that some
languages show anti-DDm for more than one formalism (Telugu shows anti-DDm in all
formalisms; in addition Ancient Greek shows anti-DDm in both Prague and Stanford
dependencies) suggests that differences in annotation criteria cannot explain exclu-
sively our findings. Interestingly, we have found anti-DDm in Telugu, Tagalog, French,
Slovak in UD for n = 3 (Table 3) that are languages for which anti-locality effects
have never been reported before based on traditional psychological experiments as far
as we know. Similar arguments can be made for n = 4. These discoveries illustrate the
power of our statistical approach.
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Table 4. For every collection and every level of analysis, we show l0, the number of languages, l, the number

of languages where the number of sentences available reaches s∗, f , the number of languages where the binomial
test rejects the null hypothesis in favour of DDm at a significance level of 0.05, fH , the same as f after applying

the Holm correction to the languages counted in f . The number attached to the language family indicates the

number of languages of the family with a corrected p-value below the significance level. Full names of languages
are not shown due to pressure of space.

Collection n Kind l0 l f fH Families
UD 3 all 73 69 28 16 Afro-Asiatic (3) Altaic (1) Basque (1) Indo-European

(6) Mande (1) Sino-Tibetan (1) Uralic (3)
4 all 75 70 60 50 Afro-Asiatic (4) Altaic (3) Austro-Asiatic (1)

Austronesian (1) Basque (1) Indo-European (29)
Japanese (1) Korean (1) Mongolic (1) Other (1) Sino-
Tibetan (2) Uralic (5)

4 unlabelled 75 70 59 49 Afro-Asiatic (4) Altaic (3) Austro-Asiatic (1)
Austronesian (1) Basque (1) Indo-European (28)
Japanese (1) Korean (1) Mongolic (1) Other (1) Sino-
Tibetan (2) Uralic (5)

4 labelled 75 71 61 59 Afro-Asiatic (4) Altaic (3) Austro-Asiatic (1) Aus-
tronesian (1) Basque (1) Dravidian (1) Indo-
European (35) Japanese (1) Korean (1) Mande (1)
Mongolic (1) Other (1) Sign Language (1) Sino-
Tibetan (2) Uralic (5)

4 star 72 64 21 15 Afro-Asiatic (2) Altaic (1) Austro-Asiatic (1) Basque
(1) Indo-European (5) Sino-Tibetan (2) Uralic (3)

4 linear 75 68 61 54 Afro-Asiatic (4) Altaic (3) Austro-Asiatic (1) Aus-
tronesian (1) Basque (1) Dravidian (1) Indo-
European (31) Japanese (1) Korean (1) Mande (1)
Mongolic (1) Other (1) Sino-Tibetan (2) Uralic (5)

Stanford 3 all 30 30 8 6 Altaic (1) Basque (1) Indo-European (3) Uralic (1)
4 all 30 29 24 24 Afro-Asiatic (1) Altaic (1) Basque (1) Indo-European

(17) Japanese (1) Uralic (3)
4 unlabelled 30 29 24 24 Afro-Asiatic (1) Altaic (1) Basque (1) Indo-European

(17) Japanese (1) Uralic (3)
4 labelled 30 30 29 28 Afro-Asiatic (1) Altaic (1) Basque (1) Dravidian (1)

Indo-European (20) Japanese (1) Uralic (3)
4 star 30 29 8 7 Afro-Asiatic (1) Basque (1) Indo-European (4) Uralic

(1)
4 linear 30 29 28 28 Afro-Asiatic (1) Altaic (1) Basque (1) Dravidian (1)

Indo-European (20) Japanese (1) Uralic (3)
Prague 3 all 30 30 20 19 Afro-Asiatic (1) Altaic (1) Basque (1) Indo-European

(13) Japanese (1) Uralic (2)
4 all 30 29 23 23 Afro-Asiatic (1) Altaic (1) Basque (1) Indo-European

(16) Japanese (1) Uralic (3)
4 unlabelled 30 29 24 23 Afro-Asiatic (1) Altaic (1) Basque (1) Indo-European

(16) Japanese (1) Uralic (3)
4 labelled 30 30 26 25 Afro-Asiatic (1) Altaic (1) Basque (1) Indo-European

(18) Japanese (1) Uralic (3)
4 star 30 28 15 11 Basque (1) Indo-European (8) Uralic (2)
4 linear 30 29 28 28 Afro-Asiatic (1) Altaic (1) Basque (1) Dravidian (1)

Indo-European (20) Japanese (1) Uralic (3)
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Following a classic view of memory, it could be argued that DDm is not activated
in short sentences because they do not exhaust the capacity of short-term memory.
Sentences of length 3 and 4 have a number of words that fits into the magical number
4 in short-term memory (Cowan, 2001). That memory limit has been has been argued
to have been confirmed by the fact that mean dependency distance is below 4 (Jing &
Liu, 2015) but such a limit could be directly related to the breakpoint in the decay of
the probability of dependency distance that is found at distance 4-5 (Ferrer-i-Cancho,
2004, 2017a). Tentatively, if DDm were the only word order principle, one would expect
an arbitrary ordering of words (a random ordering), but it has been shown that order
in short sequences is lawful (e.g. Goldin-Meadow, So, Özyürek, and Mylander (2008);
Langus and Nespor (2010)). Such a lawfulness is confirmed by our finding of DDm and,
to a lower degree, of anti-DDm. A reason for finding DDm even in short sentences could
be some version of the Performance-Grammar Correspondence Hypothesis (PGCH):
“grammars have conventionalized syntactic structures in proportion to their degree
of preference in performance, as evidenced by patterns of selection in corpora and
by ease of processing in psycholinguistic experiments” (Hawkins, 2004, 3). From an
evolutionary standpoint, it could be that languages have undergone general adaptions
consistent with DDm even in short sentences. But then, why should there be anti-DDm
in short sequences as we have found? The conflict between Sm and DDm could explain
it (short-term memory and DDm alone cannot): if short-term memory is not a problem
any more, if would be easier for Sm to surface leading to a placement of the heads at one
of the ends of the sequence (Ferrer-i-Cancho, 2017b). It has been argued theoretically
that pressure for DDm should be smaller in short sequences (Ferrer-i-Cancho, 2014),
which could explain why the conflict between Sm and DDm (Ferrer-i-Cancho, 2017b)
is resolved in favour of DDm in short sentences (in the absence of general adaptations
for DDm across all scales). Similar arguments can be used to shed light on experiments
on unconventional gestural communication with short sequences where the head tends
to be put at the end, against DDm (Ferrer-i-Cancho, 2017b).

Our investigation of the effect of tree structure, linear tree versus star trees, is a
further step into understanding lawfulness in short sequences. Indeed, our analysis of
the case n = 4 clarifies the nature of anti-DDm: anti-DDm is never found in linear
trees but found in star trees (Table 3) whereas DDm is much stronger on linear trees
than star trees (Table 4). This provides indirect empirical support for the theoretical
conflict between DDm and Sm in the simple setup where it was proposed: one head
and n − 1 dependents, which implies star trees. When DDm wins the head should
be put at the center; when Sm over heads wins, the head should be put last; when
Sm over dependents wins, the head should be put first (Ferrer-i-Cancho, 2017b). We
hypothesize that anti-DDm is never found in linear trees with n = 4 because the
conflict between Sm and DDm reduces or disappears completely, namely the optima
of DDm and Sm are closer or even coincide for linear trees. The fact that a star
tree does not imply a single head with n − 1 dependents (the root of the syntactic
dependency structure may not be the hub, the most connected node) suggests that
directed syntactic dependency structures should be the subject of future research. Here
we have chosen undirected structures for simplicity as the first step of a new research
line.

Another reason to not find anti-DDm in linear trees is that DDm may not be acting
only at the level of the ordering of the words of the sentence but also at the level of
the tree structures. The fact that Dmin, the minimum value of D for a given tree, is
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minimized by linear trees (Ferrer-i-Cancho, 2013), where

Dmin = n− 1,

and maximized by star trees (Esteban, Ferrer-i-Cancho, & Gómez-Rodŕıguez, 2016),
where

Dmin =
n2 − n mod 2

4
,

suggests that DDm could be favouring the choice of linear trees to ease the optimization
problem.

It has been argued that nomothetic studies (statistical analyses of large-scale, cross-
cultural data) like ours should be seen as hypothesis generating tools rather than as
standalone studies due to the inter-connectedness of cultural traits (Roberts & Win-
ters, 2013). Ideally, hypotheses should be generated from theory (Roberts & Winters,
2013). In our case, we have used cross-linguistic data to test a prior theoretical hy-
pothesis on the competition between word order principles in short sequences. Based
on our analysis of the origins of the findings, we would like to invite researchers to
confirm by means of lab experiments that anti-locality effects are practically missing
in linear trees while found in star trees.

Here we have investigated anti-DDm in short sentences. The same methodology
could be applied to phrases or constituents that are also short (Gulordava et al.,
2015). This could help to find anti-DDm in more languages.
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(ÚFAL), Faculty of Mathematics and Physics, Charles University)

Passarotti, M. C. (2016). How far is Stanford from Prague (and vice versa)? comparing
two dependency-based annotation schemes by network analysis. L’analisi Linguistica e
Letteraria, 1 , 21–46.

R Core Team. (2018). R: A language and environment for statistical computing [Computer
software manual]. Vienna, Austria. Retrieved from https://www.R-project.org/

Rajkumara, R., van Schijndel, M., White, M., & Schuler, W. (2016). Investigating locality
effects and surprisal in written English syntactic choice phenomena. Cognition, 155 , 204-
232.

Roberts, S., & Winters, J. (2013, 08). Linguistic diversity and traffic accidents: Lessons from
statistical studies of cultural traits. PLOS ONE , 8 , 1-13.
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