
Proceedings of NAACL-HLT 2018, pages 693–700
New Orleans, Louisiana, June 1 - 6, 2018. c©2018 Association for Computational Linguistics

Non-Projective Dependency Parsing with Non-Local Transitions

Daniel Fernández-González and Carlos Gómez-Rodrı́guez
Universidade da Coruña

FASTPARSE Lab, LyS Research Group, Departamento de Computación
Campus de Elviña, s/n, 15071 A Coruña, Spain

d.fgonzalez@udc.es, carlos.gomez@udc.es

Abstract

We present a novel transition system,
based on the Covington non-projective
parser, introducing non-local transitions
that can directly create arcs involving
nodes to the left of the current focus po-
sitions. This avoids the need for long se-
quences of No-Arc transitions to create
long-distance arcs, thus alleviating error
propagation. The resulting parser outper-
forms the original version and achieves
the best accuracy on the Stanford Depend-
encies conversion of the Penn Treebank
among greedy transition-based parsers.

1 Introduction

Greedy transition-based parsers are popular in
NLP, as they provide competitive accuracy with
high efficiency. They syntactically analyze a sen-
tence by greedily applying transitions, which read
it from left to right and produce a dependency tree.

However, this greedy process is prone to er-
ror propagation: one wrong choice of transition
can lead the parser to an erroneous state, causing
more incorrect decisions. This is especially cru-
cial for long attachments requiring a larger number
of transitions. In addition, transition-based pars-
ers traditionally focus on only two words of the
sentence and their local context to choose the next
transition. The lack of a global perspective favors
the presence of errors when creating arcs involving
multiple transitions. As expected, transition-based
parsers build short arcs more accurately than long
ones (McDonald and Nivre, 2007).

Previous research such as (Fernández-González
and Gómez-Rodrı́guez, 2012) and (Qi and Man-
ning, 2017) proves that the widely-used projective
arc-eager transition-based parser of Nivre (2003)
benefits from shortening the length of transition

sequences by creating non-local attachments. In
particular, they augmented the original transition
system with new actions whose behavior en-
tails more than one arc-eager transition and in-
volves a context beyond the traditional two focus
words. Attardi (2006) and Sartorio et al. (2013)
also extended the arc-standard transition-based al-
gorithm (Nivre, 2004) with the same success.

In the same vein, we present a novel unrestric-
ted non-projective transition system based on the
well-known algorithm by Covington (2001) that
shortens the transition sequence necessary to parse
a given sentence by the original algorithm, which
becomes linear instead of quadratic with respect
to sentence length. To achieve that, we propose
new transitions that affect non-local words and
are equivalent to one or more Covington actions,
in a similar way to the transitions defined by Qi
and Manning (2017) based on the arc-eager parser.
Experiments show that this novel variant signific-
antly outperforms the original one in all datasets
tested, and achieves the best reported accuracy for
a greedy dependency parser on the Stanford De-
pendencies conversion of the WSJ Penn Treebank.

2 Non-Projective Covington Parser

The original non-projective parser defined by Cov-
ington (2001) was modelled under the transition-
based parsing framework by Nivre (2008). We
only sketch this transition system briefly for space
reasons, and refer to (Nivre, 2008) for details.

Parser configurations have the form c =
〈λ1, λ2, B,A〉, where λ1 and λ2 are lists of par-
tially processed words, B a list (called buffer)
of unprocessed words, and A the set of depend-
ency arcs built so far. Given an input string
w1 · · ·wn, the parser starts at the initial configura-
tion cs(w1 . . . wn) = 〈[], [], [1 . . . n], ∅〉 and runs
transitions until a terminal configuration of the

693

Covington: Shift: 〈λ1, λ2, j|B,A〉 ⇒ 〈λ1 · λ2|j, [], B,A〉
No-Arc: 〈λ1|i, λ2, B,A〉 ⇒ 〈λ1, i|λ2, B,A〉
Left-Arc: 〈λ1|i, λ2, j|B,A〉 ⇒ 〈λ1, i|λ2, j|B,A ∪ {j → i}〉

only if @x | x→ i ∈ A (single-head) and i→∗ j 6∈ A (acyclicity).
Right-Arc: 〈λ1|i, λ2, j|B,A〉 ⇒ 〈λ1, i|λ2, j|B,A ∪ {i→ j}〉

only if @x | x→ j ∈ A (single-head) and j →∗ i 6∈ A (acyclicity).

NL-Covington: Shift: 〈λ1, λ2, j|B,A〉 ⇒ 〈λ1 · λ2|j, [], B,A〉
Left-Arck: 〈λ1|ik|...|i1, λ2, j|B,A〉 ⇒ 〈λ1, ik|...|i1|λ2, j|B,A ∪ {j → ik}〉

only if @x | x→ ik ∈ A (single-head) and ik →∗ j 6∈ A (acyclicity).
Right-Arck: 〈λ1|ik|...|i1, λ2, j|B,A〉 ⇒ 〈λ1, ik|...|i1|λ2, j|B,A ∪ {ik → j}〉

only if @x | x→ j ∈ A (single-head) and j →∗ ik 6∈ A (acyclicity).

Figure 1: Transitions of the non-projective Covington (top) and NL-Covington (bottom) dependency
parsers. The notation i→∗ j ∈ A means that there is a (possibly empty) directed path from i to j in A.

form 〈λ1, λ2, [], A〉 is reached: at that point, A
contains the dependency graph for the input.1

The set of transitions is shown in the top half
of Figure 1. Their logic can be summarized as
follows: when in a configuration of the form
〈λ1|i, λ2, j|B,A〉, the parser has the chance to cre-
ate a dependency involving words i and j, which
we will call left and right focus words of that con-
figuration. The Left-Arc and Right-Arc transitions
are used to create a leftward (i ← j) or rightward
arc (i → j), respectively, between these words,
and also move i from λ1 to the first position of λ2,
effectively moving the focus to i − 1 and j. If no
dependency is desired between the focus words,
the No-Arc transition makes the same modifica-
tion of λ1 and λ2, but without building any arc.
Finally, the Shift transition moves the whole con-
tent of the list λ2 plus j to λ1 when no more at-
tachments are pending between j and the words
of λ1, thus reading a new input word and placing
the focus on j and j + 1. Transitions that create
arcs are disallowed in configurations where this
would violate the single-head or acyclicity con-
straints (cycles and nodes with multiple heads are
not allowed in the dependency graph). Figure 3
shows the transition sequence in the Covington
transition system which derives the dependency
graph in Figure 2.

The resulting parser can generate arbitrary non-
projective trees, and its complexity is O(n2).

3 Non-Projective NL-Covington Parser

The original logic described by Covington (2001)
parses a sentence by systematically traversing

1Note that, in general, A is a forest, but it can be conver-
ted to a tree by linking headless nodes as dependents of an
artificial root node at position 0.

1 2 3 4 5

Figure 2: Dependency tree for an input sentence.

Tran. λ1 λ2 Buffer Arc

[] [] [1, 2, 3, 4, 5]
SH [1] [] [2, 3, 4, 5]
RA [] [1] [2, 3, 4, 5] 1→ 2

SH [1, 2] [] [3, 4, 5]
NA [1] [2] [3, 4, 5]
RA [] [1, 2] [3, 4, 5] 1→ 3

SH [1, 2, 3] [] [4, 5]
SH [1, 2, 3, 4] [] [5]
LA [1, 2, 3] [4] [5] 4← 5

NA [1, 2] [3, 4] [5]
NA [1] [2, 3, 4] [5]
RA [] [1, 2, 3, 4] [5] 1→ 5

SH [1, 2, 3, 4, 5] [] []

Figure 3: Transition sequence for parsing
the sentence in Figure 2 using the Coving-
ton parser (LA=LEFT-ARC, RA=RIGHT-ARC,
NA=NO-ARC, SH=SHIFT).

every pair of words. The Shift transition, intro-
duced by Nivre (2008) in the transition-based ver-
sion, is an optimization that avoids the need to ap-
ply a sequence of No-Arc transitions to empty the
list λ1 before reading a new input word.

However, there are still situations where se-
quences of No-Arc transitions are needed. For ex-
ample, if we are in a configuration C with focus
words i and j and the next arc we need to create

694

goes from j to i − k (k > 1), then we will need
k − 1 consecutive No-Arc transitions to move the
left focus word to i and then apply Left-Arc. This
could be avoided if a non-local Left-Arc transition
could be undertaken directly at C, creating the re-
quired arc and moving k words to λ2 at once. The
advantage of such approach would be twofold: (1)
less risk of making a mistake at C due to consid-
ering a limited local context, and (2) shorter trans-
ition sequence, alleviating error propagation.

We present a novel transition system called NL-
Covington (for “non-local Covington”), described
in the bottom half of Figure 1. It consists in a
modification of the non-projective Covington al-
gorithm where: (1) the Left-Arc and Right-Arc
transitions are parameterized with k, allowing the
immediate creation of any attachment between j
and the kth leftmost word in λ1 and moving k
words to λ2 at once, and (2) the No-Arc transition
is removed since it is no longer necessary.

This new transition system can use some re-
stricted global information to build non-local de-
pendencies and, consequently, reduce the number
of transitions needed to parse the input. For in-
stance, as presented in Figure 4, the NL-Covington
parser will need 9 transitions, instead of 12 tradi-
tional Covington actions, to analyze the sentence
in Figure 2.

In fact, while in the standard Covington al-
gorithm a transition sequence for a sentence of
length n has length O(n2) in the worst case (if all
nodes are connected to the first node, then we need
to traverse every node to the left of each right fo-
cus word); for NL-Covington the sequence length
is alwaysO(n): one Shift transition for each of the
n words, plus one arc-building transition for each
of the n − 1 arcs in the dependency tree. Note,
however, that this does not affect the parser’s time
complexity, which is still quadratic as in the ori-
ginal Covington parser. This is because the al-
gorithm hasO(n) possible transitions to be scored
at each configuration, while the original Coving-
ton has O(1) transitions due to being limited to
creating local leftward/rightward arcs between the
focus words.

The completeness and soundness of NL-
Covington can easily be proved as there is a map-
ping between transition sequences of both parsers,
where a sequence of k − 1 No-Arc and one arc
transition in Covington is equivalent to a Left-Arck
or Right-Arck in NL-Covington.

Tran. λ1 λ2 Buffer Arc

[] [] [1, 2, 3, 4, 5]
SH [1] [] [2, 3, 4 , 5]
RA1 [] [1] [2, 3, 4 , 5] 1→ 2

SH [1, 2] [] [3, 4, 5]
RA2 [] [1, 2] [3, 4, 5] 1→ 3

SH [1, 2, 3] [] [4, 5]
SH [1, 2, 3, 4] [] [5]
LA1 [1, 2, 3] [4] [5] 4← 5

RA3 [] [1, 2, 3, 4] [5] 1→ 5

SH [1, 2, 3, 4, 5] [] []

Figure 4: Transition sequence for parsing the sen-
tence in Figure 2 using the NL-Covington parser
(LA=LEFT-ARC, RA=RIGHT-ARC, SH=SHIFT).

4 Experiments

4.1 Data and Evaluation

We use 9 datasets2 from the CoNLL-X (Buch-
holz and Marsi, 2006) and all datasets from the
CoNLL-XI shared task (Nivre et al., 2007). To
compare our system to the current state-of-the-
art transition-based parsers, we also evaluate it
on the Stanford Dependencies (de Marneffe and
Manning, 2008) conversion (using the Stanford
parser v3.3.0)3 of the WSJ Penn Treebank (Mar-
cus et al., 1993), hereinafter PT-SD, with stand-
ard splits. Labelled and Unlabelled Attachment
Scores (LAS and UAS) are computed excluding
punctuation only on the PT-SD, for comparability.
We repeat each experiment with three independ-
ent random initializations and report the average
accuracy. Statistical significance is assessed by a
paired test with 10,000 bootstrap samples.

4.2 Model

To implement our approach we take advantage of
the model architecture described in Qi and Man-
ning (2017) for the arc-swift parser, which ex-
tends the architecture of Kiperwasser and Gold-
berg (2016) by applying a biaffine combination
during the featurization process. We implement
both the Covington and NL-Covington parsers un-
der this architecture, adapt the featurization pro-
cess with biaffine combination of Qi and Manning
(2017) to these parsers, and use their same training

2We excluded the languages from CoNLL-X that also ap-
peared in CoNLL-XI, i.e., if a language was present in both
shared tasks, we used the latest version.

3https://nlp.stanford.edu/software/
lex-parser.shtml

695

Covington NL-Covington
Language UAS LAS UAS LAS
Arabic 66.67 53.24 68.69 54.59
Basque 74.31 66.18 75.45 67.61
Catalan 91.93 86.12 92.60 86.99
Chinese 83.87 76.19 85.25 77.56
Czech 84.27 77.91 86.26 79.95
English 89.94 88.74 91.51 90.47
Greek 79.91 72.65 80.61 73.41
Hungarian 76.80 65.21 78.57 67.51
Italian 82.03 75.87 83.63 78.03
Turkish 80.29 70.68 81.30 71.28
Bulgarian 81.78 76.23 83.65 78.40
Danish 86.56 81.18 88.40 82.77
Dutch 86.19 82.24 87.45 83.76
German 85.72 82.28 87.24 83.92
Japanese 92.20 90.41 93.63 91.65
Portuguese 86.69 82.19 87.89 83.69
Slovene 76.07 66.81 77.83 69.74
Spanish 74.67 69.41 76.58 71.60
Swedish 74.65 64.67 75.62 65.95
Average 81.82 75.17 83.27 76.78

Table 1: Parsing accuracy (UAS and LAS, in-
cluding punctuation) of the Covington and NL-
Covington non-projective parsers on CoNLL-XI
(first block) and CoNLL-X (second block) data-
sets. Best results for each language are shown in
bold. All improvements in this table are statistic-
ally significant (α = .05).

setup. More details about these model parameters
are provided in Appendix A.

Since this architecture uses batch training, we
train with a static oracle. The NL-Covington al-
gorithm has no spurious ambiguity at all, so there
is only one possible static oracle: canonical trans-
ition sequences are generated by choosing the
transition that builds the shortest pending gold arc
involving the current right focus word j, or Shift
if there are no unbuilt gold arcs involving j.

We note that a dynamic oracle can be obtained
for the NL-Covington parser by adapting the one
for standard Covington of Gómez-Rodrı́guez and
Fernández-González (2015). As NL-Covington
transitions are concatenations of Covington ones,
their loss calculation algorithm is compatible with
NL-Covington. Apart from error exploration,
this also opens the way to incorporating non-
monotonicity (Fernández-González and Gómez-
Rodrı́guez, 2017). While these approaches have
shown to improve accuracy under online training
settings, here we prioritize homogeneous compar-
ability to (Qi and Manning, 2017), so we use batch
training and a static oracle, and still obtain state-
of-the-art accuracy for a greedy parser.

Parser Type UAS LAS
(Chen and Manning, 2014) gs 91.8 89.6
(Dyer et al., 2015) gs 93.1 90.9
(Weiss et al., 2015) greedy gs 93.2 91.2
(Ballesteros et al., 2016) gd 93.5 91.4
(Kiperwasser and Goldberg, 2016) gd 93.9 91.9
(Qi and Manning, 2017) gs 94.3 92.2
This work gs 94.5 92.4
(Weiss et al., 2015) beam b(8) 94.0 92.1
(Alberti et al., 2015) b(32) 94.2 92.4
(Andor et al., 2016) b(32) 94.6 92.8
(Shi et al., 2017) dp 94.5 -
(Kuncoro et al., 2017) (constit.) c 95.8 94.6

Table 2: Accuracy comparison of state-of-the-
art transition-based dependency parsers on PT-SD.
The “Type” column shows the type of parser: gs
is a greedy parser trained with a static oracle, gd a
greedy parser trained with a dynamic oracle, b(n)
a beam search parser with beam size n, dp a parser
that employs global training with dynamic pro-
gramming, and c a constituent parser with conver-
sion to dependencies.

4.3 Results

Table 1 presents a comparison between the Cov-
ington parser and the novel variant developed here.
The NL-Covington parser outperforms the ori-
ginal version in all datasets tested, with all im-
provements statistically significant (α = .05).

Table 2 compares our novel system with other
state-of-the-art transition-based dependency pars-
ers on the PT-SD. Greedy parsers are in the first
block, beam-search and dynamic programming
parsers in the second block. The third block shows
the best result on this benchmark, obtained with
constituent parsing with generative re-ranking and
conversion to dependencies. Despite being the
only non-projective parser tested on a practically
projective dataset,4 our parser achieves the highest
score among greedy transition-based models (even
above those trained with a dynamic oracle).

We even slightly outperform the arc-swift sys-
tem of Qi and Manning (2017), with the same
model architecture, implementation and train-
ing setup, but based on the projective arc-eager
transition-based parser instead. This may be be-
cause our system takes into consideration any per-
missible attachment between the focus word j and
any word in λ1 at each configuration, while their
approach is limited by the arc-eager logic: it al-

4Only 41 out of 39,832 sentences of the PT-SD training
dataset present some kind of non-projectivity.

696

Arc-swift NL-Covington
Language UAS LAS UAS LAS
Arabic 67.54 53.65 68.69∗ 54.59∗

Basque 74.88 67.44 75.45 67.61
Catalan 92.98 87.51∗ 92.60 86.99
Chinese 84.96 77.34 85.25 77.56
Czech 85.92 79.82 86.26 79.95
English 91.41 90.43 91.51 90.47
Greek 81.64∗ 74.56∗ 80.61 73.41
Hungarian 78.70 69.27∗ 78.57 67.51
Italian 83.29 78.60∗ 83.63 78.03
Turkish 79.56 70.22 81.30∗ 71.28∗

Bulgarian 83.28 78.19 83.65 78.40
Danish 87.86 82.58 88.40∗ 82.77
Dutch 83.27 80.14 87.45∗ 83.76∗

German 86.28 82.97 87.24∗ 83.92∗

Japanese 93.64 91.92 93.63 91.65
Portuguese 87.01 83.09 87.89∗ 83.69∗

Slovene 77.89 69.37 77.83 69.74
Spanish 75.55 70.62 76.58∗ 71.60∗

Swedish 75.00 65.66 75.62 65.95
Average 82.67 76.49 83.27 76.78

Table 3: Parsing accuracy (UAS and LAS, with
punctuation) of the arc-swift and NL-Covington
parsers on CoNLL-XI (1st block) and CoNLL-X
(2nd block) datasets. Best results for each lan-
guage are in bold. * indicates statistically signi-
ficant improvements (α = .05).

lows all possible rightward arcs (possibly fewer
than our approach as the arc-eager stack usually
contains a small number of words), but only one
leftward arc is permitted per parser state. It is also
worth noting that the arc-swift and NL-Covington
parsers have the same worst-case time complex-
ity, (O(n2)), as adding non-local arc transitions to
the arc-eager parser increases its complexity from
linear to quadratic, but it does not affect the com-
plexity of the Covington algorithm. Thus, it can be
argued that this technique is better suited to Cov-
ington than to arc-eager parsing.

We also compare NL-Covington to the arc-
swift parser on the CoNLL datasets (Table 3).
For fairness of comparison, we projectivize (via
maltparser5) all training datasets, instead of filter-
ing non-projective sentences, as some of the lan-
guages are significantly non-projective. Even do-
ing that, the NL-Covington parser improves over
the arc-swift system in terms of UAS in 14 out of
19 datasets, obtaining statistically significant im-
provements in accuracy on 7 of them, and statist-
ically significant decreases in just one.

Finally, we analyze how our approach reduces
the length of the transition sequence consumed by

5http://www.maltparser.org/

Covington NL-Covington
Language trans./sent. trans./sent.
Arabic 194.80 78.22
Basque 46.74 30.13
Catalan 117.35 60.07
Chinese 19.12 14.95
Czech 60.62 33.03
English 78.01 46.75
Greek 89.23 48.77
Hungarian 68.54 37.66
Italian 63.67 40.93
Turkish 53.53 30.08
Bulgarian 51.35 29.81
Danish 66.77 36.34
Dutch 42.78 28.93
German 61.16 31.89
Japanese 24.30 16.11
Portuguese 76.14 40.74
Slovene 56.15 31.79
Spanish 109.70 55.28
Swedish 48.59 29.07
PTB-SD 81.65 46.92
Average 70.51 38.37

Table 4: Average transitions executed per sentence
(trans./sent.) when analyzing each dataset by the
original Covington and NL-Covington algorithms.

the original Covington parser. In Table 4 we re-
port the transition sequence length per sentence
used by the Covington and the NL-Covington al-
gorithms to analyze each dataset from the same
benchmark used for evaluating parsing accuracy.
As seen in the table, NL-Covington produces not-
ably shorter transition sequences than Covington,
with a reduction close to 50% on average.

5 Conclusion

We present a novel variant of the non-projective
Covington transition-based parser by incorporat-
ing non-local transitions, reducing the length of
transition sequences from O(n2) to O(n). This
system clearly outperforms the original Coving-
ton parser and achieves the highest accuracy on
the WSJ Penn Treebank (Stanford Dependencies)
obtained to date with greedy dependency parsing.

Acknowledgments

This work has received funding from the European
Research Council (ERC), under the European
Union’s Horizon 2020 research and innovation
programme (FASTPARSE, grant agreement No
714150), from the TELEPARES-UDC (FFI2014-
51978-C2-2-R) and ANSWER-ASAP (TIN2017-
85160-C2-1-R) projects from MINECO, and from
Xunta de Galicia (ED431B 2017/01).

697

References

Chris Alberti, David Weiss, Greg Coppola, and Slav
Petrov. 2015. Improved transition-based parsing and
tagging with neural networks. In Proceedings of
the 2015 Conference on Empirical Methods in Nat-
ural Language Processing, EMNLP 2015, Lisbon,
Portugal, September 17-21, 2015. pages 1354–1359.
http://aclweb.org/anthology/D/D15/D15-1159.pdf.

Daniel Andor, Chris Alberti, David Weiss, Aliaksei
Severyn, Alessandro Presta, Kuzman Ganchev, Slav
Petrov, and Michael Collins. 2016. Globally nor-
malized transition-based neural networks. In Pro-
ceedings of the 54th Annual Meeting of the Associ-
ation for Computational Linguistics, ACL 2016, Au-
gust 7-12, 2016, Berlin, Germany, Volume 1: Long
Papers. http://aclweb.org/anthology/P/P16/P16-
1231.pdf.

Giuseppe Attardi. 2006. Experiments with a multil-
anguage non-projective dependency parser. In Pro-
ceedings of the 10th Conference on Computational
Natural Language Learning (CoNLL). pages 166–
170.

Miguel Ballesteros, Yoav Goldberg, Chris Dyer, and
Noah A. Smith. 2016. Training with explora-
tion improves a greedy stack-lstm parser. CoRR
abs/1603.03793. http://arxiv.org/abs/1603.03793.

Piotr Bojanowski, Edouard Grave, Armand Joulin,
and Tomas Mikolov. 2016. Enriching word vec-
tors with subword information. arXiv preprint
arXiv:1607.04606 .

Sabine Buchholz and Erwin Marsi. 2006. CoNLL-X
shared task on multilingual dependency parsing. In
Proceedings of the 10th Conference on Computa-
tional Natural Language Learning (CoNLL). pages
149–164. http://www.aclweb.org/anthology/W06-
2920.

Danqi Chen and Christopher Manning. 2014. A fast
and accurate dependency parser using neural net-
works. In Proceedings of the 2014 Conference
on Empirical Methods in Natural Language Pro-
cessing (EMNLP). Doha, Qatar, pages 740–750.
http://www.aclweb.org/anthology/D14-1082.

Michael A. Covington. 2001. A fundamental algorithm
for dependency parsing. In Proceedings of the 39th
Annual ACM Southeast Conference. ACM, New
York, NY, USA, pages 95–102.

Marie-Catherine de Marneffe and Christopher D.
Manning. 2008. The stanford typed depend-
encies representation. In Coling 2008: Pro-
ceedings of the Workshop on Cross-Framework
and Cross-Domain Parser Evaluation. Associ-
ation for Computational Linguistics, Strouds-
burg, PA, USA, CrossParser ’08, pages 1–8.
http://dl.acm.org/citation.cfm?id=1608858.1608859.

Chris Dyer, Miguel Ballesteros, Wang Ling, Austin
Matthews, and Noah A. Smith. 2015. Transition-
based dependency parsing with stack long short-
term memory. In Proceedings of the 53rd An-
nual Meeting of the Association for Computa-
tional Linguistics and the 7th International Joint
Conference on Natural Language Processing of
the Asian Federation of Natural Language Pro-
cessing, ACL 2015, July 26-31, 2015, Beijing,
China, Volume 1: Long Papers. pages 334–343.
http://aclweb.org/anthology/P/P15/P15-1033.pdf.

Daniel Fernández-González and Carlos Gómez-
Rodrı́guez. 2012. Improving transition-based
dependency parsing with buffer transitions. In Pro-
ceedings of the 2012 Joint Conference on Empirical
Methods in Natural Language Processing and Com-
putational Natural Language Learning. Association
for Computational Linguistics, pages 308–319.
http://aclweb.org/anthology/D/D12/D12-1029.pdf.

Daniel Fernández-González and Carlos Gómez-
Rodrı́guez. 2017. A full non-monotonic transition
system for unrestricted non-projective parsing. In
Proceedings of the 55th Annual Meeting of the
Association for Computational Linguistics (Volume
1: Long Papers). Association for Computational
Linguistics, Vancouver, Canada, pages 288–298.
http://aclweb.org/anthology/P17-1027.

Carlos Gómez-Rodrı́guez and Daniel Fernández-
González. 2015. An efficient dynamic oracle
for unrestricted non-projective parsing. In Pro-
ceedings of the 53rd Annual Meeting of the
Association for Computational Linguistics and
the 7th International Joint Conference on Nat-
ural Language Processing (ACL-IJCNLP 2015).
Volume 2: Short Papers. Association for Computa-
tional Linguistics, Beijing, China, pages 256–261.
http://www.aclweb.org/anthology/P15-2042.

Alex Graves and Jürgen Schmidhuber. 2005. Frame-
wise phoneme classification with bidirectional lstm
and other neural network architectures. Neural Net-
works pages 5–6.

Eliyahu Kiperwasser and Yoav Goldberg.
2016. Simple and accurate dependency
parsing using bidirectional LSTM feature
representations. TACL 4:313–327. ht-
tps://transacl.org/ojs/index.php/tacl/article/view/885.

Adhiguna Kuncoro, Miguel Ballesteros, Ling-
peng Kong, Chris Dyer, Graham Neubig, and
Noah A. Smith. 2017. What do recurrent
neural network grammars learn about syn-
tax? In Proceedings of the 15th Conference
of the European Chapter of the Association for
Computational Linguistics: Volume 1, Long Pa-
pers. Association for Computational Linguistics,
pages 1249–1258. http://aclanthology.coli.uni-
saarland.de/pdf/E/E17/E17-1117.pdf.

Mitchell P. Marcus, Beatrice Santorini, and Mary Ann
Marcinkiewicz. 1993. Building a large annotated

698

corpus of English: The Penn Treebank. Computa-
tional Linguistics 19:313–330.

Ryan McDonald and Joakim Nivre. 2007. Character-
izing the errors of data-driven dependency parsing
models. In Proceedings of the 2007 Joint Confer-
ence on Empirical Methods in Natural Language
Processing and Computational Natural Language
Learning (EMNLP-CoNLL). pages 122–131.

Joakim Nivre. 2003. An efficient algorithm for pro-
jective dependency parsing. In Proceedings of the
8th International Workshop on Parsing Technologies
(IWPT 03). ACL/SIGPARSE, pages 149–160.

Joakim Nivre. 2004. Incrementality in deterministic
dependency parsing. In Proceedings of the Work-
shop on Incremental Parsing: Bringing Engineering
and Cognition Together (ACL). pages 50–57.

Joakim Nivre. 2008. Algorithms for Determ-
inistic Incremental Dependency Parsing.
Computational Linguistics 34(4):513–553.
https://doi.org/10.1162/coli.07-056-R1-07-027.

Joakim Nivre, Johan Hall, Sandra Kübler, Ryan
McDonald, Jens Nilsson, Sebastian Riedel,
and Deniz Yuret. 2007. The CoNLL 2007
shared task on dependency parsing. In Pro-
ceedings of the CoNLL Shared Task Session
of EMNLP-CoNLL 2007. pages 915–932.
http://www.aclweb.org/anthology/D/D07/D07-
1096.pdf.

Jeffrey Pennington, Richard Socher, and Chris-
topher D. Manning. 2014. Glove: Global vectors for
word representation. In Empirical Methods in Nat-
ural Language Processing (EMNLP). pages 1532–
1543. http://www.aclweb.org/anthology/D14-1162.

Peng Qi and Christopher D. Manning. 2017. Arc-
swift: A novel transition system for dependency
parsing. In Proceedings of the 55th Annual Meet-
ing of the Association for Computational Linguist-
ics, ACL 2017, Vancouver, Canada, July 30 - Au-
gust 4, Volume 2: Short Papers. pages 110–117.
https://doi.org/10.18653/v1/P17-2018.

Francesco Sartorio, Giorgio Satta, and Joakim Nivre.
2013. A transition-based dependency parser us-
ing a dynamic parsing strategy. In Proceedings
of the 51st Annual Meeting of the Association
for Computational Linguistics (Volume 1: Long
Papers). Association for Computational Linguist-
ics, pages 135–144. http://aclanthology.coli.uni-
saarland.de/pdf/P/P13/P13-1014.pdf.

Tianze Shi, Liang Huang, and Lillian Lee. 2017.
Fast(er) exact decoding and global training
for transition-based dependency parsing via a
minimal feature set. CoRR abs/1708.09403.
http://arxiv.org/abs/1708.09403.

David Weiss, Chris Alberti, Michael Collins, and Slav
Petrov. 2015. Structured training for neural net-
work transition-based parsing. In Proceedings of

the 53rd Annual Meeting of the Association for
Computational Linguistics and the 7th International
Joint Conference on Natural Language Processing
of the Asian Federation of Natural Language Pro-
cessing, ACL 2015, July 26-31, 2015, Beijing,
China, Volume 1: Long Papers. pages 323–333.
http://aclweb.org/anthology/P/P15/P15-1032.pdf.

A Model Details

We provide more details of the neural network ar-
chitecture used in this paper, which is taken from
Qi and Manning (2017).

The model consists of two blocks of 2-layered
bidirectional long short-term memory (BiLSTM)
networks (Graves and Schmidhuber, 2005) with
400 hidden units in each direction. The first block
is used for POS tagging and the second one, for
parsing. As the input of the tagging block, we use
words represented as word embeddings, and BiL-
STMs are employed to perform feature extraction.
The resulting output is fed into a multi-layer per-
ceptron (MLP), with a hidden layer of 100 recti-
fied linear units (ReLU), that provides a POS tag
for each input token in a 32-dimensional repres-
entation. Word embeddings concatenated to these
POS tag embeddings serve as input of the second
block of BiLSTMs to undertake the parsing stage.
Then, the output of the parsing block is fed into a
MLP with two separate ReLU hidden layers (one
for deriving the representation of the head, and
the other for the dependency label) that, after be-
ing merged and by means of a softmax function,
score all the feasible transitions, allowing to greed-
ily choose and apply the highest-scoring one.

Moreover, we adapt the featurization process
with biaffine combination described in Qi and
Manning (2017) for the arc-swift system to be
used on the original Covington and NL-Covington
parsers. In particular, arc transitions are featurized
by the concatenation of the representation of the
head and dependent words of the arc to be created,
the No-Arc transition is featurized by the right-
most word in λ1 and the leftmost word in the buf-
fer B and, finally, for the Shift transition only the
leftmost word in B is used. Unlike Qi and Man-
ning (2017) do for baseline parsers, we do not use
the featurization method detailed in Kiperwasser
and Goldberg (2016)6 for the original Covington
parser, as we observed that this results in lower

6For instance, Kiperwasser and Goldberg (2016) featurize
all transitions of the arc-eager parser in the same way by con-
catenating the representations of the top 3 words on the stack
and the leftmost word in the buffer.

699

scores and then the comparison would be unfair
in our case. We implement both systems under
the same framework, with the original Covington
parser represented as the NL-Covington system
plus the No-Arc transition and with k limited to
1. A thorough description of the model architec-
ture and featurization mechanism can be found in
Qi and Manning (2017).

Our training setup is exactly the same used by
Qi and Manning (2017), training the models dur-
ing 10 epochs for large datasets and 30 for small
ones. In addition, we initialize word embeddings
with 100-dimensional GloVe vectors (Pennington
et al., 2014) for English and use 300-dimensional
Facebook vectors (Bojanowski et al., 2016) for
other languages. The other parameters of the
neural network keep the same values.

The parser’s source code is freely avail-
able at https://github.com/danifg/
Non-Local-Covington.

700

