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Abstract

Restricted non-monotonicity has been
shown beneficial for the projective arc-
eager dependency parser in previous re-
search, as posterior decisions can repair
mistakes made in previous states due to the
lack of information. In this paper, we pro-
pose a novel, fully non-monotonic trans-
ition system based on the non-projective
Covington algorithm. As a non-monotonic
system requires exploration of erroneous
actions during the training process, we de-
velop several non-monotonic variants of
the recently defined dynamic oracle for the
Covington parser, based on tight approx-
imations of the loss. Experiments on data-
sets from the CoNLL-X and CoNLL-XI
shared tasks show that a non-monotonic
dynamic oracle outperforms the mono-
tonic version in the majority of languages.

1 Introduction

Greedy transition-based dependency parsers are
widely used in different NLP tasks due to their
speed and efficiency. They parse a sentence from
left to right by greedily choosing the highest-
scoring transition to go from the current parser
configuration or state to the next. The resulting se-
quence of transitions incrementally builds a parse
for the input sentence. The scoring of the trans-
itions is provided by a statistical model, previously
trained to approximate an oracle, a function that
selects the needed transitions to parse a gold tree.

Unfortunately, the greedy nature that grants
these parsers their efficiency also represents their
main limitation. McDonald and Nivre (2007)
show that greedy transition-based parsers lose ac-
curacy to error propagation: a transition erro-
neously chosen by the greedy parser can place it

in an incorrect and unknown configuration, caus-
ing more mistakes in the rest of the transition se-
quence. Training with a dynamic oracle (Goldberg
and Nivre, 2012) improves robustness in these
situations, but in a monotonic transition system,
erroneous decisions made in the past are perman-
ent, even when the availability of further informa-
tion in later states might be useful to correct them.

Honnibal et al. (2013) show that allowing some
degree of non-monotonicity, by using a limited
set of non-monotonic actions that can repair past
mistakes and replace previously-built arcs, can in-
crease the accuracy of a transition-based parser. In
particular, they present a modified arc-eager trans-
ition system where the Left-Arc and Reduce trans-
itions are non-monotonic: the former is used to
repair invalid attachments made in previous states
by replacing them with a leftward arc, and the
latter allows the parser to link two words with a
rightward arc that were previously left unattached
due to an erroneous decision. Since the Right-Arc
transition is still monotonic and leftward arcs can
never be repaired because their dependent is re-
moved from the stack by the arc-eager parser and
rendered inaccessible, this approach can only re-
pair certain kinds of mistakes: namely, it can fix
erroneous rightward arcs by replacing them with
a leftward arc, and connect a limited set of un-
attached words with rightward arcs. In addition,
they argue that non-monotonicity in the training
oracle can be harmful for the final accuracy and,
therefore, they suggest to apply it only as a fall-
back component for a monotonic oracle, which is
given priority over the non-monotonic one. Thus,
this strategy will follow the path dictated by the
monotonic oracle the majority of the time. Hon-
nibal and Johnson (2015) present an extension of
this transition system with an Unshift transition al-
lowing it some extra flexibility to correct past er-
rors. However, the restriction that only rightward
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arcs can be deleted, and only by replacing them
with leftward arcs, is still in place. Furthermore,
both versions of the algorithm are limited to pro-
jective trees.

In this paper, we propose a non-monotonic
transition system based on the non-projective Cov-
ington parser, together with a dynamic oracle to
train it with erroneous examples that will need to
be repaired. Unlike the system developed in (Hon-
nibal et al., 2013; Honnibal and Johnson, 2015),
we work with full non-monotonicity. This has
a twofold meaning: (1) our approach can repair
previous erroneous attachments regardless of their
original direction, and it can replace them either
with a rightward or leftward arc as both arc trans-
itions are non-monotonic;1 and (2) we use exclus-
ively a non-monotonic oracle, without the inter-
ferences of monotonic decisions. These modi-
fications are feasible because the non-projective
Covington transition system is less rigid than the
arc-eager algorithm, as words are never deleted
from the parser’s data structures and can always
be revisited, making it a better option to exploit
the full potencial of non-monotonicity. To our
knowledge, the presented system is the first non-
monotonic parser that can produce non-projective
dependency analyses. Another novel aspect is
that our dynamic oracle is approximate, i.e., based
on efficiently-computable approximations of the
loss due to the complexity of calculating its ac-
tual value in a non-monotonic and non-projective
scenario. However, this is not a problem in prac-
tice: experimental results show how our parser
and oracle can use non-monotonic actions to repair
erroneous attachments, outperforming the mono-
tonic version developed by Gómez-Rodrı́guez and
Fernández-González (2015) in a large majority of
the datasets tested.

2 Preliminaries

2.1 Non-Projective Covington Transition
System

The non-projective Covington parser was origin-
ally defined by Covington (2001), and then recast
by Nivre (2008) under the transition-based parsing
framework.

1The only restriction is that parsing must still proceed in
left-to-right order. For this reason, a leftward arc cannot be
repaired with a rightward arc, because this would imply going
back in the sentence. The other three combinations (replacing
leftward with leftward, rightward with leftward or rightward
with rightward arcs) are possible.

The transition system that defines this parser
is as follows: each parser configuration is of the
form c = 〈λ1, λ2, B,A〉, such that λ1 and λ2 are
lists of partially processed words, B is another
list (called the buffer) containing currently unpro-
cessed words, and A is the set of dependencies
that have been built so far. Suppose that our in-
put is a string w1 · · ·wn, whose word occurrences
will be identified with their indices 1 · · ·n for sim-
plicity. Then, the parser will start at an initial
configuration cs(w1 . . . wn) = 〈[], [], [1 . . . n], ∅〉,
and execute transitions chosen from those in Fig-
ure 1 until a terminal configuration of the form
{〈λ1, λ2, [], A〉 ∈ C} is reached. At that point,
the sentence’s parse tree is obtained from A.2

These transitions implement the same logic as
the double nested loop traversing word pairs in the
original formulation by Covington (2001). When
the parser’s configuration is 〈λ1|i, λ2, j|B,A〉, we
say that it is considering the focus words i and j,
located at the end of the first list and at the begin-
ning of the buffer. At that point, the parser must
decide whether these two words should be linked
with a leftward arc i ← j (Left-Arc transition),
a rightward arc i → j (Right-Arc transition), or
not linked at all (No-Arc transition). However,
the two transitions that create arcs will be disal-
lowed in configurations where this would cause
a violation of the single-head constraint (a node
can have at most one incoming arc) or the acyc-
licity constraint (the dependency graph cannot
have cycles). After applying any of these three
transitions, i is moved to the second list to make
i − 1 and j the focus words for the next step. As
an alternative, we can instead choose to execute a
Shift transition which lets the parser read a new
input word, placing the focus on j and j + 1.

The resulting parser can generate any possible
dependency tree for the input, including arbit-
rary non-projective trees. While it runs in quad-
ratic worst-case time, in theory worse than linear-
time transition-based parsers (e.g. (Nivre, 2003;
Gómez-Rodrı́guez and Nivre, 2013)), it has been
shown to outspeed linear algorithms in practice,
thanks to feature extraction optimizations that can-
not be implemented in other parsers (Volokh and
Neumann, 2012). In fact, one of the fastest de-
pendency parsers ever reported uses this algorithm

2In general A is a forest, but it can be converted to a tree
by linking headless nodes as dependents of an artificial root
node at position 0. When we refer to parser outputs as trees,
we assume that this transformation is being implicitly made.
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Shift: 〈λ1, λ2, j|B,A〉 ⇒ 〈λ1 · λ2|j, [], B,A〉
No-Arc: 〈λ1|i, λ2, B,A〉 ⇒ 〈λ1, i|λ2, B,A〉
Left-Arc: 〈λ1|i, λ2, j|B,A〉 ⇒ 〈λ1, i|λ2, j|B,A ∪ {j → i}〉

only if @k | k → i ∈ A (single-head) and i→∗ j 6∈ A (acyclicity).
Right-Arc: 〈λ1|i, λ2, j|B,A〉 ⇒ 〈λ1, i|λ2, j|B,A ∪ {i→ j}〉

only if @k | k → j ∈ A (single-head) and j →∗ i 6∈ A (acyclicity).

Figure 1: Transitions of the monotonic Covington non-projective dependency parser. The notation i→∗
j ∈ A means that there is a (possibly empty) directed path from i to j in A.

(Volokh, 2013).

2.2 Monotonic Dynamic Oracle
A dynamic oracle is a function that maps a config-
uration c and a gold tree tG to the set of transitions
that can be applied in c and lead to some parse tree
t minimizing the Hamming loss with respect to tG
(the amount of nodes whose head is different in t
and tG). Following Goldberg and Nivre (2013),
we say that an arc set A is reachable from con-
figuration c, and we write c A, if there is some
(possibly empty) path of transitions from c to some
configuration c′ = 〈λ1, λ2, B,A′〉, with A ⊆ A′.
Then, we can define the loss of configuration c as

`(c) = min
t|c t

L(t, tG),

and therefore, a correct dynamic oracle will return
the set of transitions

od(c, tG) = {τ | `(c)− `(τ(c)) = 0},

i.e., the set of transitions that do not increase con-
figuration loss, and thus lead to the best parse (in
terms of loss) reachable from c. Hence, imple-
menting a dynamic oracle reduces to computing
the loss `(c) for each configuration c.

Goldberg and Nivre (2013) show a straightfor-
ward method to calculate loss for parsers that are
arc-decomposable, i.e., those where every arc set
A that can be part of a well-formed parse verifies
that if c  (i → j) for every i → j ∈ A (i.e.,
each of the individual arcs of A is reachable from
a given configuration c), then c  A (i.e., the set
A as a whole is reachable from c). If this holds,
then the loss of a configuration c equals the num-
ber of gold arcs that are not individually reachable
from c, which is easy to compute in most parsers.

Gómez-Rodrı́guez and Fernández-González
(2015) show that the non-projective Covington
parser is not arc-decomposable because sets of
individually reachable arcs may form cycles
together with already-built arcs, preventing them

from being jointly reachable due to the acyclicity
constraint. In spite of this, they prove that a
dynamic oracle for the Covington parser can be
efficiently built by counting individually unreach-
able arcs, and correcting for the presence of such
cycles. Concretely, the loss is computed as:

`(c) = |U(c, tG)|+ nc(A ∪ I(c, tG))

where I(c, tG) = {x → y ∈ tG | c  (x → y)}
is the set of individually reachable arcs of tG
from configuration c; U(c, tG) is the set of indi-
vidually unreachable arcs of tG from c, com-
puted as tG\I(c, tG); and nc(G) denotes the num-
ber of cycles in a graph G.

Therefore, to calculate the loss of a configur-
ation c, we only need to compute the two terms
|U(c, tG)| and nc(A ∪ I(c, tG)). To calculate the
first term, given a configuration cwith focus words
i and j (i.e., c = 〈λ1|i, λ2, j|B,A〉), an arc x→ y
will be in U(c, tG) if it is not in A, and at least one
of the following holds:

• j > max(x, y), (i.e., we have read too far in
the string and can no longer get max(x, y) as
right focus word),
• j = max(x, y) ∧ i < min(x, y), (i.e., we

have max(x, y) as the right focus word but
the left focus word has already moved left
past min(x, y), and we cannot go back),
• there is some z 6= 0, z 6= x such that z →
y ∈ A, (i.e., we cannot create x→ y because
it would violate the single-head constraint),
• x and y are on the same weakly connected

component of A (i.e., we cannot create x →
y due to the acyclicity constraint).

The second term of the loss, nc(A ∪ I(c, tG)),
can be computed by first obtaining I(c, tG) as
tG \ U(c, tG). Since the graph I(c, tG) has in-
degree 1, the algorithm by Tarjan (1972) can then
be used to find and count the cycles in O(n) time.

290



Algorithm 1 Computation of the loss of a config-
uration in the monotonic oracle.
1: function LOSS(c = 〈λ1|i, λ2, j|B,A〉, tG)
2: U ← ∅ . Variable U is for U(c, tG)
3: for each x→ y ∈ (tG \A) do
4: left ← min(x, y)
5: right ← max(x, y)
6: if j > right ∨
7: (j = right ∧ i < left)∨
8: (∃z > 0, z 6= x : z → y ∈ A)∨
9: WEAKLYCONNECTED(A, x, y) then

10: U ← u ∪ {x→ y}
11: I ← tG \U . Variable I is for I(c, tG)
12: return |U |+ COUNTCYCLES(A ∪ I )

Algorithm 1 shows the resulting loss calcula-
tion algorithm, where COUNTCYCLES is a func-
tion that counts the number of cycles in the given
graph and WEAKLYCONNECTED returns whether
two given nodes are weakly connected in A.

3 Non-Monotonic Transition System for
the Covington Non-Projective Parser

We now define a non-monotonic variant of the
Covington non-projective parser. To do so, we al-
low the Right-Arc and Left-Arc transitions to cre-
ate arcs between any pair of nodes without restric-
tion. If the node attached as dependent already
had a previous head, the existing attachment is dis-
carded in favor of the new one. This allows the
parser to correct erroneous attachments made in
the past by assigning new heads, while still enfor-
cing the single-head constraint, as only the most
recent head assigned to each node is kept.

To enforce acyclicity, one possibility would be
to keep the logic of the monotonic algorithm,
forbidding the creation of arcs that would cre-
ate cycles. However, this greatly complicates the
definition of the set of individually unreachable
arcs, which is needed to compute the loss bounds
that will be used by the dynamic oracle. This is
because a gold arc x → y may superficially seem
unreachable due to forming a cycle together with
arcs in A, but it might in fact be reachable if there
is some transition sequence that first breaks the
cycle using non-monotonic transitions to remove
arcs from A, to then create x → y. We do not
know of a way to characterize the conditions un-
der which such a transition sequence exists, and
thus cannot estimate the loss efficiently.

Instead, we enforce the acyclicity constraint
in a similar way to the single-head constraint:
Right-Arc and Left-Arc transitions are always al-
lowed, even if the prospective arc would create a

cycle in A. However, if the creation of a new arc
x→ y generates a cycle in A, we immediately re-
move the arc of the form z → x from A (which
trivially exists, and is unique due to the single-
head constraint). This not only enforces the acyc-
licity constraint while keeping the computation of
U(c, tG) simple and efficient, but also produces
a straightforward, coherent algorithm (arc trans-
itions are always allowed, and both constraints are
enforced by deleting a previous arc) and allows us
to exploit non-monotonicity to the maximum (we
can not only recover from assigning a node the
wrong head, but also from situations where pre-
vious errors together with the acyclicity constraint
prevent us from building a gold arc, keeping with
the principle that later decisions override earlier
ones).

In Figure 2, we can see the resulting non-
monotonic transition system for the non-projective
Covington algorithm, where, unlike the monotonic
version, all transitions are allowed at each con-
figuration, and the single-head and acyclicity con-
straints are kept in A by removing offending arcs.

4 Non-Monotonic Approximate Dynamic
Oracle

To successfully train a non-monotonic system, we
need a dynamic oracle with error exploration, so
that the parser will be put in erroneous states and
need to apply non-monotonic transitions in or-
der to repair them. To achieve that, we modify
the dynamic oracle defined by Gómez-Rodrı́guez
and Fernández-González (2015) so that it can deal
with non-monotonicity. Our modification is an ap-
proximate dynamic oracle: due to the extra flexib-
ility added to the algorithm by non-monotonicity,
we do not know of an efficient way of obtaining an
exact calculation of the loss of a given configura-
tion. Instead, we use upper or lower bounds on the
loss, which we empirically show to be very tight
(less that 1% relative error with respect to the real
loss) and are sufficient for the algorithm to provide
better accuracy than the exact monotonic oracle.

First of all, we adapt the computation of the set
of individually unreachable arcs U(c, tG) to the
new algorithm. In particular, if c has focus words
i and j (i.e., c = 〈λ1|i, λ2, j|B,A〉), then an arc
x → y is in U(c, tG) if it is not in A, and at least
one of the following holds:
• j > max(x, y), (i.e., we have read too far in

the string and can no longer get max(x, y) as
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Shift: 〈λ1, λ2, j|B,A〉 ⇒ 〈λ1 · λ2|j, [], B,A〉
No-Arc: 〈λ1|i, λ2, B,A〉 ⇒ 〈λ1, i|λ2, B,A〉
Left-Arc: 〈λ1|i, λ2, j|B,A〉 ⇒ 〈λ1, i|λ2, j|B, (A ∪ {j → i})

\{x→ i ∈ A} \ {k → j ∈ A | i→∗ k ∈ A}〉
Right-Arc: 〈λ1|i, λ2, j|B,A〉 ⇒ 〈λ1, i|λ2, j|B,A ∪ {i→ j}

\{x→ j ∈ A} \ {k → i ∈ A | j →∗ k ∈ A}〉

Figure 2: Transitions of the non-monotonic Covington non-projective dependency parser. The notation
i→∗ j ∈ A means that there is a (possibly empty) directed path from i to j in A.

right focus word),
• j = max(x, y) ∧ i < min(x, y) (i.e., we

have max(x, y) as the right focus word but
the left focus word has already moved left
past min(x, y), and we cannot move it back).

Note that, since the head of a node can change
during the parsing process and arcs that produce
cycles in A can be built, the two last conditions
present in the monotonic scenario for comput-
ing U(c, tG) are not needed when we use non-
monotonicity and, as a consequence, the set of
individually reachable arcs I(c, tG) is larger:
due to the greater flexibility provided by non-
monotonicity, we can reach arcs that would be un-
reachable for the monotonic version.

Since arcs that are in this new U(c, tG) are
unreachable even by the non-monotonic parser,
|U(c, tG)| is trivially a lower bound of the loss
`(c). It is worth noting that there always exists
at least one transition sequence that builds every
arc in I(c, tG) at some point (although not all
of them necessarily appear in the final tree, due
to non-monotonicity). This can be easily shown
based on the fact that the non-monotonic parser
does not forbid transitions at any configuration.
Thanks to this, we can can generate one such se-
quence by just applying the original Covington
(2001) criteria (choose an arc transition whenever
the focus words are linked in I(c, tG), and oth-
erwise Shift or No-Arc depending on whether the
left focus word is the first word in the sentence
or not), although this sequence is not necessar-
ily optimal in terms of loss. In such a transition
sequence, the gold arcs that are missed are (1)
those in U(c, tG), and (2) those that are removed
by the cycle-breaking in Left-Arc and Right-Arc
transitions. In practice configurations where (2) is
needed are uncommon, so this lower bound is a
very close approximation of the real loss, as will
be seen empirically below.

This reasoning also helps us calculate an up-

per bound of the loss: in a transition sequence
as described, if we only build the arcs in I(c, tG)
and none else, the amount of arcs removed by
breaking cycles (2) cannot be larger than the num-
ber of cycles in A ∪ I(c, tG). This means that
|U(c, tG)|+nc(A∪I(c, tG)) is an upper bound of
the loss `(c). Note that, contrary to the monotonic
case, this expression does not always give us the
exact loss, for several reasons: firstly, A∪I(c, tG)
can have non-disjoint cycles (a node may have
different heads in A and I since attachments are
not permanent, contrary to the monotonic ver-
sion) and thus removing a single arc may break
more than one cycle; secondly, the removed arc
can be a non-gold arc of A and therefore not in-
cur loss; and thirdly, there may exist alternative
transition sequences where a cycle in A∪I(c, tG)
is broken early by non-monotonic configurations
that change the head of a wrongly-attached node
in A to a different (and also wrong) head,3 remov-
ing the cycle before the cycle-breaking mechanism
needs to come into play without incurring in extra
errors. Characterizing the situations where such an
alternative exists is the main difficulty for an exact
calculation of the loss.

However, it is possible to obtain a closer upper
bound to the real loss if we consider the following:
for each cycle in A ∪ I(c, tG) that will be broken
by the transition sequence described above, we
can determine exactly which is the arc removed by
cycle-breaking (if x → y is the arc that will close
the cycle according to the Covington arc-building
order, then the affected arc is the one of the form
z → x). The cycle can only cause the loss of a
gold arc if that arc z → x is gold, which can be
trivially checked. Hence, if we call cycles where
that holds problematic cycles, then the expression

3Note that, in this scenario, the new head must also be
wrong because otherwise the newly created arc would be an
arc of I(c, tG) (and therefore, would not be breaking a cycle
in A ∪ I(c, tG)). However, replacing a wrong attachment
with another wrong attachment need not increase loss.
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average value relative difference to loss
Language lower loss pc upper upper lower pc upper upper
Arabic 0.66925 0.67257 0.67312 0.68143 0.00182 0.00029 0.00587
Basque 0.58260 0.58318 0.58389 0.62543 0.00035 0.00038 0.02732
Catalan 0.58009 0.58793 0.58931 0.60644 0.00424 0.00069 0.00961
Chinese 0.56515 0.56711 0.57156 0.62921 0.00121 0.00302 0.03984
Czech 0.57521 0.58357 0.59401 0.62883 0.00476 0.00685 0.02662
English 0.55267 0.56383 0.56884 0.59494 0.00633 0.00294 0.01767
Greek 0.56123 0.57443 0.57983 0.61256 0.00731 0.00296 0.02256
Hungarian 0.46495 0.46672 0.46873 0.48797 0.00097 0.00114 0.01165
Italian 0.62033 0.62612 0.62767 0.64356 0.00307 0.00082 0.00883
Turkish 0.60143 0.60215 0.60660 0.63560 0.00060 0.00329 0.02139
Bulgarian 0.61415 0.62257 0.62433 0.64497 0.00456 0.00086 0.01233
Danish 0.67350 0.67904 0.68119 0.69436 0.00291 0.00108 0.00916
Dutch 0.69201 0.70600 0.71105 0.74008 0.00709 0.00251 0.01862
German 0.54581 0.54755 0.55080 0.58182 0.00104 0.00208 0.02033
Japanese 0.60515 0.60515 0.60515 0.60654 0.00000 0.00000 0.00115
Portuguese 0.58880 0.60063 0.60185 0.61780 0.00651 0.00067 0.00867
Slovene 0.56155 0.56860 0.57135 0.60373 0.00396 0.00153 0.01979
Spanish 0.58247 0.59119 0.59277 0.61273 0.00487 0.00089 0.01197
Swedish 0.57543 0.58636 0.58933 0.61104 0.00585 0.00153 0.01383
Average 0.59009 0.59656 0.59954 0.62416 0.00355 0.00176 0.01513

Table 1: Average value of the different bounds and the loss, and of the relative differences from each
bound to the loss, on CoNLL-XI (first block) and CoNLL-X (second block) datasets during 100,000
transitions. For each language, we show in boldface the average value and relative difference of the
bound that is closer to the loss.

|U(c, tG)|+npc(A∪I(c, tG)), where “pc” stands
for problematic cycles, is a closer upper bound to
the loss `(c) and the following holds:

|U(c, tG)| ≤ `(c) ≤ |U(c, tG)|+npc(A∪I(c, tG))

≤ |U(c, tG)|+ nc(A ∪ I(c, tG))

As mentioned before, unlike the monotonic ap-
proach, a node can have a different head in A
than in I(c, tG) and, as a consequence, the result-
ing graph A ∪ I(c, tG) has maximum in-degree 2
rather than 1, and there can be overlapping cycles.
Therefore, the computation of the non-monotonic
terms nc(A ∪ I(c, tG)) and npc(A ∪ I(c, tG)) re-
quires an algorithm such as the one by Johnson
(1975) to find all elementary cycles in a directed
graph. This runs in O((n + e)(c + 1)), where
n is the number of vertices, e is the number of
edges and c is the number of elementary cycles in
the graph. This implies that the calculation of the
two non-monotonic upper bounds is less efficient
than the linear loss computation in the monotonic
scenario. However, a non-monotonic algorithm
that uses the lower bound as loss expression is the
fastest option (even faster than the monotonic ap-
proach) as the oracle does not need to compute
cycles at all, speeding up the training process.

Algorithm 2 shows the non-monotonic vari-
ant of Algorithm 1, where COUNTRELEVANT-
CYCLES is a function that counts the number of
cycles or problematic cycles in the given graph,

Algorithm 2 Computation of the approximate loss
of a non-monotonic configuration.
1: function LOSS(c = 〈λ1|i, λ2, j|B,A〉, tG)
2: U ← ∅ . Variable U is for U(c, tG)
3: for each x→ y ∈ (tG \A) do
4: left ← min(x, y)
5: right ← max(x, y)
6: if j > right ∨
7: (j = right ∧ i < left) then
8: U ← u ∪ {x→ y}
9: I ← tG \U . Variable I is for I(c, tG)

10: return |U |+ COUNTRELEVANTCYCLES(A ∪ I )

depending on the upper bound implemented, and
will return 0 in case we use the lower bound.

5 Evaluation of the Loss Bounds

To determine how close the lower bound
|U(c, tG)| and the upper bounds |U(c, tG)| +
npc(A∪I(c, tG)) and |U(c, tG)|+nc(A∪I(c, tG))
are to the actual loss in practical scenarios, we use
exhaustive search to calculate the real loss of a
given configuration, to then compare it with the
bounds. This is feasible because the lower and up-
per bounds allow us to prune the search space: if
an upper and a lower bound coincide for a con-
figuration we already know the loss and need not
keep searching, and if we can branch to two con-
figurations such that the lower bound of one is
greater or equal than an upper bound of the other,
we can discard the former as it will never lead to
smaller loss than the latter. Therefore, this ex-
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Unigrams
L0w; L0p; L0wp; L0l; L0hw; L0hp; L0hl; L0l′w; L0l′p;
L0l′ l; L0r′w; L0r′p; L0r′ l; L0h2w; L0h2p; L0h2l; L0lw;
L0lp; L0ll; L0rw; L0rp; L0rl; L0wd; L0pd; L0wvr ; L0pvr ;
L0wvl; L0pvl; L0wsl; L0psl; L0wsr ; L0psr ; L1w; L1p;
L1wp; R0w; R0p; R0wp; R0hw; R0hp;R0hl; R0h2w;
R0h2p; R0l′w; R0l′p; R0l′ l; R0lw; R0lp; R0ll; R0wd;
R0pd; R0wvl; R0pvl; R0wsl; R0psl; R1w; R1p; R1wp;
R2w; R2p; R2wp; CLw; CLp; CLwp; CRw; CRp; CRwp;
Pairs
L0wp+R0wp; L0wp+R0w; L0w+R0wp; L0wp+R0p;
L0p+R0wp; L0w+R0w; L0p+R0p; R0p+R1p; L0w+R0wd;
L0p+R0pd;
Triples
R0p+R1p+R2p; L0p+R0p+R1p; L0hp+L0p+R0p;
L0p+L0l′p+R0p; L0p+L0r′p+R0p; L0p+R0p+R0l′p;
L0p+L0l′p+L0lp; L0p+L0r′p+L0rp; L0p+L0hp+L0h2p;
R0p+R0l′p+R0lp;

Table 2: Feature templates. L0 and R0 denote
the left and right focus words; L1, L2, . . . are the
words to the left of L0 and R1, R2, . . . those to the
right of R0. Xih means the head of Xi, Xih2 the
grandparent, Xil and Xil′ the farthest and closest
left dependents, and Xir and Xir′ the farthest and
closest right dependents, respectively. CL and
CR are the first and last words between L0 andR0

whose head is not in the interval [L0, R0]. Finally,
w stands for word form; p for PoS tag; l for de-
pendency label; d is the distance between L0 and
R0; vl, vr are the left/right valencies (number of
left/right dependents); and sl, sr the left/right label
sets (dependency labels of left/right dependents).

haustive search with pruning guarantees to find the
exact loss.

Due to the time complexity of this process, we
undertake the analysis of only the first 100,000
transitions on each dataset of the nineteen lan-
guages available from CoNLL-X and CoNLL-XI
shared tasks (Buchholz and Marsi, 2006; Nivre
et al., 2007). In Table 1, we present the average
values for the lower bound, both upper bounds
and the loss, as well as the relative differences
from each bound to the real loss. After those
experiments, we conclude that the lower and the
closer upper bounds are a tight approximation of
the loss, with both bounds incurring relative er-
rors below 0.8% in all datasets. If we compare
them, the real loss is closer to the upper bound
|U(c, tG)| + npc(A ∪ I(c, tG)) in the majority of
datasets (12 out of 18 languages, excluding Ja-
panese where both bounds were exactly equal to
the real loss in the whole sample of configura-
tions). This means that the term npc(A∪I(c, tG))
provides a close approximation of the gold arcs
missed by the presence of cycles in A. Regard-
ing the upper bound |U(c, tG)|+nc(A∪I(c, tG)),

it presents a more variable relative error, ranging
from 0.1% to 4.0%.

Thus, although we do not know an algorithm to
obtain the exact loss which is fast enough to be
practical, any of the three studied loss bounds can
be used to obtain a feasible approximate dynamic
oracle with full non-monotonicity.

6 Experiments

To prove the usefulness of our approach, we im-
plement the static, dynamic monotonic and non-
monotonic oracles for the non-projective Coving-
ton algorithm and compare their accuracies on
nine datasets4 from the CoNLL-X shared task
(Buchholz and Marsi, 2006) and all datasets from
the CoNLL-XI shared task (Nivre et al., 2007).
For the non-monotonic algorithm, we test the three
different loss expressions defined in the previous
section. We train an averaged perceptron model
for 15 iterations and use the same feature tem-
plates for all languages5 which are listed in detail
in Table 2.

6.1 Results

The accuracies obtained by the non-projective
Covington parser with the three available oracles
are presented in Table 3, in terms of Unlabeled
(UAS) and Labeled Attachment Score (LAS). For
the non-monotonic dynamic oracle, three variants
are shown, one for each loss expression implemen-
ted. As we can see, the novel non-monotonic or-
acle improves over the accuracy of the monotonic
version on 14 out of 19 languages (0.32 in UAS
on average) with the best loss calculation being
|U(c, tG)| + nc(A ∪ I(c, tG)), where 6 of these
improvements are statistically significant at the .05
level (Yeh, 2000). The other two loss calculation
methods also achieve good results, outperforming
the monotonic algorithm on 12 out of 19 datasets
tested.

The loss expression |U(c, tG)| + nc(A ∪
I(c, tG)) obtains greater accuracy on average than
the other two loss expressions, including the more
adjusted upper bound that is provably closer to the
real loss. This could be explained by the fact that

4We excluded the languages from CoNLL-X that also ap-
peared in CoNLL-XI, i.e., if a language was present in both
shared tasks, we used the latest version.

5No feature optimization is performed since our priority
in this paper is not to compete with state-of-the-art systems,
but to prove, under uniform experimental settings, that our
approach outperforms the baseline system.
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dynamic dynamic non-monotonic
static monotonic lower pc upper upper

Language UAS LAS UAS LAS UAS LAS UAS LAS UAS LAS
Arabic 80.67 66.51 82.76∗ 68.48∗ 83.29∗ 69.14∗ 83.18∗ 69.05∗ 83.40† 69.29†

Basque 76.55 66.05 77.49† 67.31† 74.61 65.31 74.69 65.18 74.27 64.78
Catalan 90.52 85.09 91.37∗ 85.98∗ 90.51 85.35 90.40 85.30 90.44 85.35
Chinese 84.93 80.80 85.82 82.15 86.55∗ 82.53∗ 86.29∗ 82.27∗ 86.60∗ 82.51∗

Czech 78.49 61.77 80.21∗ 63.52∗ 81.32† 64.89† 81.33† 64.81† 81.49† 65.18†

English 85.35 84.29 87.47∗ 86.55∗ 88.44† 87.37† 88.23† 87.22† 88.50† 87.55†
Greek 79.47 69.35 80.76 70.43 80.90 70.46 80.84 70.34 81.02∗ 70.49∗
Hungarian 77.65 68.32 78.84∗ 70.16∗ 78.67∗ 69.83∗ 78.47∗ 69.66∗ 78.65∗ 69.74∗

Italian 84.06 79.79 84.30 80.17 84.38 80.30 84.64 80.52 84.47 80.32
Turkish 81.28 70.97 81.14 71.38 80.65 71.15 80.80 71.29 80.60 71.07
Bulgarian 89.13 85.30 90.45∗ 86.86∗ 91.36† 87.88† 91.33† 87.89† 91.73† 88.26†
Danish 86.00 81.49 86.91∗ 82.75∗ 86.83∗ 82.63∗ 86.89∗ 82.74∗ 86.94∗ 82.68∗

Dutch 81.54 78.46 82.07 79.26 82.78∗ 79.64∗ 82.80∗ 79.68∗ 83.02† 79.92†
German 86.97 83.91 87.95∗ 85.17∗ 87.31 84.37 87.18 84.22 87.48 84.54
Japanese 93.63 92.20 93.67 92.33 94.02 92.68 94.02 92.68 93.97 92.66
Portuguese 86.55 82.61 87.45∗ 83.62∗ 87.17∗ 83.47∗ 87.12∗ 83.45∗ 87.40∗ 83.71∗

Slovene 76.76 63.53 77.86 64.43 80.39† 67.04† 80.56† 67.10† 80.47† 67.10†
Spanish 79.20 76.00 80.12∗ 77.24∗ 81.36∗ 78.30∗ 81.12∗ 77.99∗ 81.33∗ 78.16∗

Swedish 87.43 81.77 88.05∗ 82.77∗ 88.20∗ 83.02∗ 88.09∗ 82.87∗ 88.36∗ 83.16∗

Average 83.48 76.75 84.46 77.92 84.67 78.18 84.63 78.12 84.74 78.24

Table 3: Parsing accuracy (UAS and LAS, including punctuation) of the Covington non-projective parser
with static, and dynamic monotonic and non-monotonic oracles on CoNLL-XI (first block) and CoNLL-
X (second block) datasets. For the dynamic non-monotonic oracle, we show the performance with the
three loss expressions, where lower stands for the lower bound |U(c, tG)|, pc upper for the upper bound
|U(c, tG)| + npc(A ∪ I(c, tG)), and upper for the upper bound |U(c, tG)| + nc(A ∪ I(c, tG)). For
each language, we run five experiments with the same setup but different seeds and report the averaged
accuracy. Best results for each language are shown in boldface. Statistically significant improvements
(α = .05) of both dynamic oracles are marked with ∗ if they are only over the static oracle, and with † if
they are over the opposite dynamic oracle too.

identifying problematic cycles is a difficult task
to learn for the parser, and for this reason a more
straightforward approach, which tries to avoid all
kinds of cycles (regardless of whether they will
cost gold arcs or not), can perform better. This also
leads us to hypothesize that, even if it were feas-
ible to build an oracle with the exact loss, it would
not provide practical improvements over these ap-
proximate oracles; as it appears difficult for a stat-
istical model to learn the situations where repla-
cing a wrong arc with another indirectly helps due
to breaking prospective cycles.

It is also worth mentioning that the non-
monotonic dynamic oracle with the best loss ex-
pression accomplishes an average improvement
over the static version (1.26 UAS) greater than that
obtained by the monotonic oracle (0.98 UAS), res-
ulting in 13 statistically significant improvements
achieved by the non-monotonic variant over the
static oracle in comparison to the 12 obtained by
the monotonic system. Finally, note that, despite
this remarkable performance, the non-monotonic
version (regardless of the loss expression imple-
mented) has an inexplicable drop in accuracy in
Basque in comparison to the other two oracles.

6.2 Comparison

In order to provide a broader contextualization
of our approach, Table 4 presents a comparison
of the average accuracy and parsing speed ob-
tained by some well-known transition-based sys-
tems with dynamic oracles. Concretely, we in-
clude in this comparison both monotonic (Gold-
berg and Nivre, 2012) and non-monotonic (Hon-
nibal et al., 2013) versions of the arc-eager parser,
as well as the original monotonic Covington sys-
tem (Gómez-Rodrı́guez and Fernández-González,
2015). The three of them were ran with our
own implementation so the comparison is homo-
geneous. We also report the published accuracy
of the non-projective Attardi algorithm (Gómez-
Rodrı́guez et al., 2014) on the nineteen datasets
used in our experiments. From Table 4 we can
see that our approach achieves the best average
UAS score, but is slightly slower at parsing time
than the monotonic Covington algorithm. This can
be explained by the fact that the non-monotonic
parser has to take into consideration the whole set
of transitions at each configuration (since all are
allowed), while the monotonic parser only needs
to evaluate a limited set of transitions in some con-
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Average value
Algorithm UAS LAS sent./s.
G&N 2012 84.32 77.68 833.33
G-R et al. 2014* 83.78 78.64 -
G-R&F-G 2015 84.46 77.92 335.63
H et al. 2013 84.28 77.68 847.33
This work 84.74 78.24 236.74

Table 4: Comparison of the average Unlabeled
and Labeled Attachment Scores (including punc-
tuation) achieved by some widely-used transition-
based algorithms with dynamic oracles on nine
CoNLL-X datasets and all CoNLL-XI datatsets,
as well as their average parsing speed (sen-
tences per second across all datasets) measured
on a 2.30GHz Intel Xeon processor. The first
block corresponds to monotonic parsers, while the
second gathers non-monotonic parsers. All al-
gorithms are tested under our own implementa-
tion, except for the system developed by Gómez-
Rodrı́guez et al. (2014) (marked with *) where we
report the published results.

figurations, speeding up the parsing process.

6.3 Error Analysis

We also carry out some error analysis to provide
some insights about how non-monotonicity is im-
proving accuracy with respect to the original Cov-
ington parser. In particular, we notice that non-
monotonicity tends to be more beneficial on pro-
jective than on non-projective arcs. In addi-
tion, the non-monotonic algorithm presents a not-
able performance on long arcs (which are more
prone to error propagation): average precision
on arcs with length greater than 7 goes from
58.41% in the monotonic version to 63.19% in
the non-monotonic parser, which may mean that
non-monotonicity is alleviating the effect of er-
ror propagation. Finally, we study the effective-
ness of non-monotonic arcs (i.e., those that break
a previously-created arc), obtaining that, on aver-
age across all datasets tested, 36.86% of the arc
transitions taken were non-monotonic, replacing
an existing arc with a new one. Out of these trans-
itions, 60.31% created a gold arc, and only 5.99%
were harmful (i.e., they replaced a previously-built
gold arc with an incorrect arc), with the remain-
ing cases creating non-gold arcs without introdu-
cing extra errors (replacing a non-gold arc with
another). These results back up the usefulness of
non-monotonicity in transition-based parsing.

7 Conclusion

We presented a novel, fully non-monotonic vari-
ant of the well-known non-projective Covington
parser, trained with a dynamic oracle. Due to
the unpredictability of a non-monotonic scenario,
the real loss of each configuration cannot be com-
puted. To overcome this, we proposed three differ-
ent loss expressions that closely bound the loss and
enable us to implement a practical non-monotonic
dynamic oracle.

On average, our non-monotonic algorithm ob-
tains better performance than the monotonic ver-
sion, regardless of which of the variants of the
loss calculation is used. In particular, one of the
loss expressions developed proved very promising
by providing the best average accuracy, in spite
of being the farthest approximation from the ac-
tual loss. On the other hand, the proposed lower
bound makes the non-monotonic oracle the fastest
one among all dynamic oracles developed for the
non-projective Covington algorithm.

To our knowledge, this is the first im-
plementation of non-monotonicity for a non-
projective parsing algorithm, and the first approx-
imate dynamic oracle that uses close, efficiently-
computable approximations of the loss, showing
this to be a feasible alternative when it is not prac-
tical to compute the actual loss.

While we used a perceptron classifier for our ex-
periments, our oracle could also be used in neural-
network implementations of greedy transition-
based parsing (Chen and Manning, 2014; Dyer
et al., 2015), providing an interesting avenue for
future work. We believe that gains from both tech-
niques should be complementary, as they apply to
orthogonal components of the parsing system (the
scoring model vs. the transition system), although
we might see a ”diminishing returns”effect.
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