
Proceedings of the 2012 Joint Conference on Empirical Methods in Natural Language Processing and Computational Natural
Language Learning, pages 308–319, Jeju Island, Korea, 12–14 July 2012. c©2012 Association for Computational Linguistics

Improving Transition-Based Dependency Parsing with Buffer Transitions

Daniel Fernández-González
Departamento de Informática

Universidade de Vigo
Campus As Lagoas, 32004

Ourense, Spain
danifg@uvigo.es

Carlos Gómez-Rodrı́guez
Departamento de Computación

Universidade da Coruña
Campus de Elviña, 15071

A Coruña, Spain
carlos.gomez@udc.es

Abstract

In this paper, we show that significant im-
provements in the accuracy of well-known
transition-based parsers can be obtained, with-
out sacrificing efficiency, by enriching the
parsers with simple transitions that act on
buffer nodes.

First, we show how adding a specific tran-
sition to create either a left or right arc of
length one between the first two buffer nodes
produces improvements in the accuracy of
Nivre’s arc-eager projective parser on a num-
ber of datasets from the CoNLL-X shared
task. Then, we show that accuracy can also be
improved by adding transitions involving the
topmost stack node and the second buffer node
(allowing a limited form of non-projectivity).

None of these transitions has a negative im-
pact on the computational complexity of the
algorithm. Although the experiments in this
paper use the arc-eager parser, the approach is
generic enough to be applicable to any stack-
based dependency parser.

1 Introduction

Dependency parsing has become a very active re-
search area in natural language processing in re-
cent years. The dependency representation of syn-
tax simplifies the syntactic parsing task, since no
non-lexical nodes need to be postulated by the
parsers; while being convenient in practice, since
dependency representations directly show the head-
modifier and head-complement relationships which
form the basis of predicate-argument structure. This

has led to the development of various data-driven
dependency parsers, such as those by Yamada and
Matsumoto (2003), Nivre et al. (2004), McDonald
et al. (2005), Martins et al. (2009), Huang and Sagae
(2010) or Tratz and Hovy (2011), which can be
trained directly from annotated data and produce ac-
curate analyses very efficiently.

Most current data-driven dependency parsers can
be classified into two families, commonly called
graph-based and transition-based parsers (Mc-
Donald and Nivre, 2011). Graph-based parsers (Eis-
ner, 1996; McDonald et al., 2005) are based on
global optimization of models that work by scoring
subtrees. On the other hand, transition-based parsers
(Yamada and Matsumoto, 2003; Nivre et al., 2004),
which are the focus of this work, use local training
to make greedy decisions that deterministically se-
lect the next parser state. Among the advantages of
transition-based parsers are the linear time complex-
ity of many of them and the possibility of using rich
feature models (Zhang and Nivre, 2011).

In particular, many transition-based parsers
(Nivre et al., 2004; Attardi, 2006; Sagae and Tsujii,
2008; Nivre, 2009; Huang and Sagae, 2010; Gómez-
Rodrı́guez and Nivre, 2010) are stack-based (Nivre,
2008), meaning that they keep a stack of partially
processed tokens and an input buffer of unread to-
kens. In this paper, we show how the accuracy of
this kind of parsers can be improved, without com-
promising efficiency, by extending their set of avail-
able transitions with buffer transitions. These are
transitions that create a dependency arc involving
some node in the buffer, which would typically be
considered unavailable for linking by these algo-

308

rithms. The rationale is that buffer transitions con-
struct some “easy” dependency arcs in advance, be-
fore the involved nodes reach the stack, so that the
classifier’s job when choosing among standard tran-
sitions is simplified.

To test the approach, we use the well-known arc-
eager parser by (Nivre, 2003; Nivre et al., 2004) as
a baseline, showing improvements in accuracy on
most datasets of the CoNLL-X shared task (Buch-
holz and Marsi, 2006). However, the techniques dis-
cussed in this paper are generic and can also be ap-
plied to other stack-based dependency parsers.

The rest of this paper is structured as follows:
Section 2 is an introduction to transition-based
parsers and the arc-eager parsing algorithm. Section
3 presents the first novel contribution of this paper,
projective buffer transitions, and discusses their
empirical results on CoNLL-X datasets. Section 4
does the same for a more complex set of transitions,
non-projective buffer transitions. Finally, Section
5 discusses related work and Section 6 sums up the
conclusions and points out avenues for future work.

2 Preliminaries

We now briefly present some basic definitions for
transition-based dependency parsing; a more thor-
ough explanation can be found in (Nivre, 2008).

2.1 Dependency graphs
Let w = w1 . . . wn be an input string. A depen-
dency graph forw is a directed graphG = (Vw, A);
where Vw = {0, 1, . . . , n} is a set of nodes, and
A ⊆ Vw × L × Vw is a set of labelled arcs. Each
node in Vw encodes the position of a token in w,
where 0 is a dummy node used as artificial root. An
arc (i, l, j) will also be called a dependency link la-
belled l from i to j. We say that i is the syntactic
head of j and, conversely, that j is a dependent of
i. The length of the arc (i, l, j) is the value |j − i|.

Most dependency representations of syntax do not
allow arbitrary dependency graphs. Instead, they re-
quire dependency graphs to be forests, i.e., acyclic
graphs where each node has at most one head. In this
paper, we will work with parsers that assume depen-
dency graphs G = (Vw, A) to satisfy the following
properties:

• Single-head: every node has at most one in-

coming arc (if (i, l, j) ∈ A, then for every
k 6= i, (k, l′, j) 6∈ A).

• Acyclicity: there are no directed cycles in G.

• Node 0 is a root, i.e., there are no arcs of the
form (i, l, 0) in A.

A dependency forest with a single root (i.e., where
all the nodes but one have at least one incoming arc)
is called a tree. Every dependency forest can triv-
ially be represented as a tree by adding arcs from
the dummy root node 0 to every other root node.

For reasons of computational efficiency, many de-
pendency parsers are restricted to work with forests
satisfying an additional restriction called projectiv-
ity. A dependency forest is said to be projective
if the set of nodes reachable by traversing zero or
more arcs from any given node k corresponds to a
continuous substring of the input (i.e., is an interval
{x ∈ Vw | i ≤ x ≤ j}). For trees with a dummy
root node at position 0, this is equivalent to not al-
lowing dependency links to cross when drawn above
the nodes (planarity).

2.2 Transition systems
A transition system is a nondeterministic state ma-
chine that maps input strings to dependency graphs.
In this paper, we will focus on stack-based transi-
tion systems. A stack-based transition system is a
quadruple S = (C, T, cs, Ct) where

• C is a set of parser configurations. Each con-
figuration is of the form c = (σ, β,A) where σ
is a list of nodes of Vw called the stack, β is a
list of nodes of Vw called the buffer, and A is a
set of dependency arcs,

• T is a finite set of transitions, each of which is
a partial function t : C → C,

• cs is an initialization function, mapping a sen-
tence w1 . . . wn to an initial configuration
cs = ([0], [1, . . . , n], ∅),

• Ct is the set of terminal configurations Ct =
(σ, [], A) ∈ C.

Transition systems are nondeterministic devices,
since several transitions may be applicable to the
same configuration. To obtain a deterministic parser

309

from a transition system, a classifier is trained to
greedily select the best transition at each state. This
training is typically done by using an oracle, which
is a function o : C → T that selects a single transi-
tion at each configuration, given a tree in the training
set. The classifier is then trained to approximate this
oracle when the target tree is unknown.

2.3 The arc-eager parser
Nivre’s arc-eager dependency parser (Nivre, 2003;
Nivre et al., 2004) is one of the most widely known
and used transition-based parsers (see for example
(Zhang and Clark, 2008; Zhang and Nivre, 2011)).
This parser works by reading the input sentence
from left to right and creating dependency links as
soon as possible. This means that links are created in
a strict left-to-right order, and implies that while left-
ward links are built in a bottom-up fashion, a right-
ward link a → b will be created before the node b
has collected its right dependents.

The arc-eager transition system has the following
four transitions (note that, for convenience, we write
a stack with node i on top as σ|i, and a buffer whose
first node is i as i|β):

• SHIFT : (σ, i|β,A)⇒ (σ|i, β, A).

• REDUCE : (σ|i, β, A) ⇒ (σ, β,A). Precondi-
tion: ∃k, l′ | (k, l′, i) ∈ A.

• LEFT-ARCl : (σ|i, j|β,A) ⇒ (σ, j|β,A ∪
{(j, l, i)}). Preconditions: i 6= 0 and 6 ∃k, l′ |
(k, l′, i) ∈ A (single-head)

• RIGHT-ARCl :
(σ|i, j|β,A)⇒ (σ|i|j, β,A ∪ {(i, l, j)}).

The SHIFT transition reads an input word by re-
moving the first node from the buffer and placing it
on top of the stack. The REDUCE transition pops
the stack, and it can only be executed if the topmost
stack node has already been assigned a head. The
LEFT-ARC transition creates an arc from the first
node in the buffer to the node on top of the stack,
and then pops the stack. It can only be executed if
the node on top of the stack does not already have
a head. Finally, the RIGHT-ARC transition creates
an arc from the top of the stack to the first buffer
node, and then removes the latter from the buffer
and moves it to the stack.

The arc-eager parser has linear time complex-
ity. In principle, it is restricted to projective depen-
dency forests, but it can be used in conjunction with
the pseudo-projective transformation (Nivre et al.,
2006) in order to capture a restricted subset of non-
projective forests. Using this setup, it scored as one
of the top two systems in the CoNLL-X shared task.

3 Projective buffer transitions

In this section, we show that the accuracy of stack-
based transition systems can benefit from adding one
of a pair of new transitions, which we call projective
buffer transitions, to their transition sets.

3.1 The transitions

The two projective buffer transitions are defined as
follows:

• LEFT-BUFFER-ARCl :
(σ, i|j|β,A)⇒ (σ, j|β,A ∪ {(j, l, i)}).

• RIGHT-BUFFER-ARCl :
(σ, i|j|β,A)⇒ (σ, i|β,A ∪ {(i, l, j)}).

The LEFT-BUFFER-ARC transition creates a left-
ward dependency link from the second node to
the first node in the buffer, and then removes the
first node from the buffer. Conversely, the RIGHT-
BUFFER-ARC transition creates a rightward depen-
dency link from the first node to the second node
in the buffer, and then removes the second node.
We call these transitions projective buffer transitions
because, since they act on contiguous buffer nodes,
they can only create projective arcs.

Adding one (or both) of these transitions to a
projective or non-projective stack-based transition
system does not affect its correctness, as long as
this starting system cannot generate configurations
(σ, β,A) where a buffer node has a head in A1: it
cannot affect completeness because we are not re-
moving existing transitions, and therefore any de-
pendency graph that the original system could build

1Most stack-based transition systems in the literature disal-
low such configurations. However, in parsers that allow them
(such as those defined by Gómez-Rodrı́guez and Nivre (2010)),
projective buffer transitions can still be added without affecting
correctness if we impose explicit single-head and acyclicity pre-
conditions on them. We have not included these preconditions
by default for simplicity of presentation.

310

will still be obtainable by the augmented one; and it
cannot affect soundness (be it for projective depen-
dency forests or for any superset of them) because
the new transitions can only create projective arcs
and cannot violate the single-head or acyclicity con-
straints, given that a buffer node cannot have a head.

The idea behind projective buffer transitions is to
create dependency arcs of length one (i.e., arcs in-
volving contiguous nodes) in advance of the stan-
dard arc-building transitions that need at least one of
the nodes to get to the stack (LEFT-ARC and RIGHT-
ARC in the case of the arc-eager transition system).

Our hypothesis is that, as it is known that
short-distance dependencies are easier to learn for
transition-based parsers than long-distance ones
(McDonald and Nivre, 2007), handling these short
arcs in advance and removing their dependent nodes
will make it easier for the classifier to learn how
to make decisions involving the standard arc tran-
sitions.

Note that the fact that projective buffer transitions
create arcs of length 1 is not explicit in the defini-
tion of the transitions. For instance, if we add the
LEFT-BUFFER-ARCl transition only to the arc-eager
transition system, LEFT-BUFFER-ARCl will only be
able to create arcs of length 1, since it is easy to see
that the first two buffer nodes are contiguous in all
the accessible configurations. However, if we add
RIGHT-BUFFER-ARCl, this transition will have the
potential to create arcs of length greater than 1: for
example, if two consecutive RIGHT-BUFFER-ARCl

transitions are applied starting from a configuration
(σ, i|i + 1|i + 2|β,A), the second application will
create an arc i→ i+ 2 of length 2.

Although we could have added the length-1 re-
striction to the transition definitions, we have cho-
sen the more generic approach of leaving it to the
oracle instead. While the oracle typically used for
the arc-eager system follows the simple principle of
executing transitions that create an arc as soon as
it has the chance to, adding projective buffer transi-
tions opens up new possibilities: we may now have
several ways of creating an arc, and we have to de-
cide in which cases we train the parser to use one of
the buffer transitions and in which cases we prefer
to train it to ignore the buffer transitions and dele-
gate to the standard ones. Following the hypothe-
sis explained above, our policy has been to train the

parser to use buffer transitions whenever possible for
arcs of length one, and to not use them for arcs of
length larger than one. To test this idea, we also
conducted experiments with the alternative policy
“use buffer transitions whenever possible, regardless
of arc length”: as expected, the obtained accuracies
were (slightly) worse.

The chosen oracle policy is generic and can be
plugged into any stack-based parser: for a given
transition, first check whether it is possible to build a
gold-standard arc of length 1 with a projective buffer
transition.2 If so, choose that transition, and if not,
just delegate to the original parser’s oracle.

3.2 Experiments

To empirically evaluate the effect of projective
buffer transitions on parsing accuracy, we have con-
ducted experiments on eight datasets of the CoNLL-
X shared task (Buchholz and Marsi, 2006): Arabic
(Hajič et al., 2004), Chinese (Chen et al., 2003),
Czech (Hajič et al., 2006), Danish (Kromann, 2003),
German (Brants et al., 2002), Portuguese (Afonso et
al., 2002), Swedish (Nilsson et al., 2005) and Turk-
ish (Oflazer et al., 2003; Atalay et al., 2003).

As our baseline parser, we use the arc-eager pro-
jective transition system by Nivre (2003). Table 1
compares the accuracy obtained by this system alone
with that obtained when the LEFT-BUFFER-ARC

and RIGHT-BUFFER-ARC transitions are added to
it as explained in Section 3.1.

Accuracy is reported in terms of labelled (LAS)
and unlabelled (UAS) attachment score. We used
SVM classifiers from the LIBSVM package (Chang
and Lin, 2001) for all languages except for Chinese,
Czech and German. In these, we used the LIB-
LINEAR package (Fan et al., 2008) for classifica-
tion, since it reduces training time in these larger
datasets. Feature models for all parsers were specif-
ically tuned for each language.3

2In this context, “possible” means that we can create the arc
without losing the possibility of creating other gold-standard
arcs. In the case of RIGHT-BUFFER-ARC, this involves check-
ing that the candidate dependent node has no dependents in the
gold-standard tree (if it has any, we cannot remove it from the
stack or it would not be able to collect its dependents, so we do
not use the buffer transition).

3All the experimental settings and feature models used are
included in the supplementary material and also available at
http://www.grupolys.org/˜cgomezr/exp/.

311

NE NE+LBA NE+RBA
Language LAS UAS LAS UAS LAS UAS
Arabic 66.43 77.19 67.78 78.26 63.87 74.63
Chinese 86.46 90.18 82.47 86.14 86.62 90.64
Czech 77.24 83.40 78.70 84.24 78.28 83.94
Danish 84.91 89.80 85.21 90.20 82.53 87.35
German 86.18 88.60 84.31 86.50 86.48 88.90
Portug. 86.60 90.20 86.92 90.58 85.55 89.28
Swedish 83.33 88.83 82.81 88.03 81.66 88.03
Turkish 63.77 74.35 57.42 66.24 64.33 74.73

Table 1: Parsing accuracy (LAS and UAS, excluding punctuation) of Nivre’s arc-eager parser without modification
(NE), with the LEFT-BUFFER-ARC transition added (NE+LBA) and with the RIGHT-BUFFER-ARC transition added
(NE+RBA). Best results for each language are shown in boldface.

As can be seen in Table 1, adding a projective
buffer transition improves the performance of the
parser in seven out of the eight tested languages. The
improvements in LAS are statistically significant at
the .01 level4 in the Arabic and Czech treebanks.

Note that the decision of which buffer transition
to add strongly depends on the dataset. In the
majority of the treebanks, we can see that when
the LEFT-BUFFER-ARC transition improves perfor-
mance the RIGHT-BUFFER-ARC transition harms it,
and vice versa. The exceptions are Czech, where
both transitions are beneficial, and Swedish, where
both are harmful. Therefore, when using projective
buffer transitions in practice, the language and anno-
tation scheme should be taken into account (or tests
should be made) to decide which one to use.

Table 2 hints at the reason for this treebank-
sensitiveness. By analyzing the relative frequency
of leftward and rightward dependency links (and,
in particular, of leftward and rightward links of
length 1) in the different treebanks, we see a rea-
sonably clear tendency: the LEFT-BUFFER-ARC

transition works better in treebanks that contain a
large proportion of rightward arcs of length 1, and
the RIGHT-BUFFER-ARC transition works better in
treebanks with a large proportion of leftward arcs of
length 1. Note that, while this might seem coun-
terintuitive at a first glance, it is coherent with the
hypothesis that we formulated in Section 3.1: the

4Statistical significance was assessed using Dan Bikel’s ran-
domized parsing evaluation comparator: http://www.cis.
upenn.edu/˜dbikel/software.html#comparator

Language L% R% L1% R1% Best PBT
Arabic 12.3 87.7 6.5 55.1 LBA
Chinese 58.4 41.6 35.8 15.1 RBA
Czech 41.4 58.6 22.1 24.9 LBA*
Danish 17.1 82.9 10.9 43.0 LBA
German 39.8 60.2 20.3 19.9 RBA
Portug. 32.6 67.4 22.5 26.9 LBA
Swedish 38.2 61.8 24.1 21.8 LBA*
Turkish 77.8 22.2 47.2 10.4 RBA

Table 2: Analysis of the datasets used in the experiments
in terms of: percentage of leftward and rightward links
(L%, R%), percentage of leftward and rightward links
of length 1 (L1%, R1%), and which projective buffer
transition works better for each dataset according to the
results in Table 1 (LBA = LEFT-BUFFER-ARC, RBA
= RIGHT-BUFFER-ARC). Languages where both tran-
sitions are beneficial (Czech) or harmful (Swedish) are
marked with an asterisk.

advantage of projective buffer transitions is not that
they build arcs more accurately than standard arc-
building transitions (in fact the opposite might be
expected, since they work on nodes while they are
still on the buffer and we have less information about
their surrounding nodes in our feature models), but
that they make it easier for the classifier to decide
among standard transitions. The analysis on Table
2 agrees with that explanation: LEFT-BUFFER-ARC

improves performance in treebanks where it is not
used too often but it can filter out leftward arcs of
length 1, making it easier for the parser to be accu-
rate on rightward arcs of length 1; and the converse
happens for RIGHT-BUFFER-ARC.

312

NE NE+LBA NE+RBA NE+LBA+RBA
Language LA RA LA* RA LBA LA RA* RBA LA* RA* LBA RBA
Arabic 58.28 67.77 42.61 68.65 77.46 55.88 60.63 79.70 37.40 62.28 66.78 75.94
Chinese 85.69 85.79 80.92 84.19 89.00 85.96 84.77 88.01 81.08 79.46 87.72 86.33
Czech 85.73 76.44 80.79 78.34 91.07 86.25 76.62 82.58 79.49 75.98 90.26 81.97
Danish 89.47 83.92 88.65 84.16 91.72 86.27 78.04 92.30 90.23 77.52 88.79 92.10
German 89.15 87.11 83.75 87.23 94.30 89.55 84.38 95.98 79.26 81.60 91.66 90.73
Portuguese 94.77 84.91 90.83 85.11 97.07 93.84 81.86 92.29 88.72 79.86 96.02 89.26
Swedish 87.75 80.74 84.62 81.30 92.83 87.12 74.77 90.73 78.10 72.50 90.86 89.89
Turkish 59.68 74.21 53.02 74.01 72.78 60.23 69.23 73.91 49.34 48.48 65.57 41.94

Table 3: Labelled precision of the arcs built by each transition of Nivre’s arc-eager parser without modification (NE),
with a projective buffer transition added (NE+LBA, NE+RBA) and with both projective buffer transitions added
(NE+LBA+RBA). We mark a standard LEFT-ARC (LA) or RIGHT-ARC (LA) transition with an asterisk (LA*, RA*)
when it is acting only on a “hard” subset of leftward (rightward) arcs, and thus its precision is not directly comparable
to that of (LA, RA). Best results for each language and transition are shown in boldface.

To further test this idea, we computed the la-
belled precision of each individual transition of the
parsers with and without projective buffer transi-
tions, as shown in Table 3. As we can see, projec-
tive buffer transitions achieve better precision than
standard transitions, but this is not surprising since
they act only on “easy” arcs of length 1. There-
fore, this high precision does not mean that they ac-
tually build arcs more accurately than the standard
transitions, since it is not measured on the same set
of arcs. Similarly, adding a projective buffer tran-
sition decreases the precision of its corresponding
standard transition, but this is because the standard
transition is then dealing only with “harder” arcs of
length greather than 1, not because it is making more
errors. A more interesting insight comes from com-
paring transitions that are acting on the same tar-
get set of arcs: we see that, in the languages where
LEFT-BUFFER-ARC is beneficial, the addition of
this transition always improves the precision of the
standard RIGHT-ARC transition; and the converse
happens with RIGHT-BUFFER-ARC with respect to
LEFT-ARC. This further backs the hypothesis that
the filtering of “easy” links achieved by projective
buffer transitions makes it easier for the classifier to
decide among standard transitions.

We also conducted experiments adding both tran-
sitions at the same time (NE+LBA+RBA), but the
results were worse than adding the suitable transi-
tion for each dataset. Table 3 hints at the reason: the
precision of buffer transitions noticeably decreases
when both of them are added at the same time, pre-
sumably because it is difficult for the classifier to

NE+LBA/RBA NE+PP (CoNLL X)

Language LAS UAS LAS UAS
Arabic 67.78 78.26 66.71 77.52
Chinese 86.62 90.64 86.92 90.54
Czech 78.70 84.24 78.42 84.80
Danish 85.21 90.20 84.77 89.80
German 86.48 88.90 85.82 88.76
Portug. 86.92 90.58 87.60 91.22
Swedish 82.81 88.03 84.58 89.50
Turkish 64.33 74.73 65.68 75.82

Table 4: Comparison of the parsing accuracy (LAS
and UAS, excluding punctuation) of Nivre’s arc-eager
parser with projective buffer transitions (NE+LBA/RBA)
and the parser with the pseudo-projective transformation
(Nivre et al., 2006)

decide between both with the restricted feature in-
formation available for buffer nodes.

To further put the obtained results into context,
Table 4 compares the performance of the arc-eager
parser with the projective buffer transition most suit-
able for each dataset with the results obtained by the
parser with the pseudo-projective transformation by
Nivre et al. (2006) in the CoNLL-X shared task, one
of the top two performing systems in that event. The
reader should be aware that the purpose of this ta-
ble is only to provide a broad idea of how our ap-
proach performs with respect to a well-known refer-
ence point, and not to make a detailed comparison,
since the two parsers have not been tuned in homo-
geneous conditions: on the one hand, we had access
to the CoNLL-X test sets which were unavailable

313

System Arabic Danish
Nivre et al. (2006) 66.71 84.77
McDonald et al. (2006) 66.91 84.79
Nivre (2009) 67.3 84.7
Gómez-Rodrı́guez and Nivre (2010) N/A 83.81
NE+LBA/RBA 67.78 85.21

Table 5: Comparison of the Arabic and Danish LAS ob-
tained by the arc-eager parser with projective buffer tran-
sitions in comparison to other parsers in the literature that
report results on these datasets.

for the participants in the shared task; on the other
hand, we did not fine-tune the classifier parameters
for each dataset like Nivre et al. (2006), but used de-
fault values for all languages.

As can be seen in the table, even though the
pseudo-projective parser is able to capture non-
projective syntactic phenomena, the algorithm with
projective buffer transitions (which is strictly pro-
jective) outperforms it in four of the eight treebanks,
including non-projective treebanks such as the Ger-
man one.

Furthermore, to our knowledge, our LAS results
for Arabic and Danish are currently the best pub-
lished results for a single-parser system on these
datasets, not only outperforming the systems partic-
ipating in CoNLL-X but also other parsers tested on
these treebanks in more recent years (see Table 5).

Finally, it is worth noting that adding projective
buffer transitions has no negative impact on effi-
ciency, either in terms of computational complex-
ity or of empirical runtime. Since each projective
buffer transition removes a node from the buffer, no
more than n such transitions can be executed for
a sentence of length n, so adding these transitions
cannot increase the complexity of a transition-based
parser. In the particular case of the arc-eager parser,
using projective buffer transitions reduces the aver-
age number of transitions needed to obtain a given
dependency forest, as some nodes can be dispatched
by a single transition rather than being shifted and
later popped from the stack. In practice, we ob-
served that the training and parsing times of the arc-
eager parser with projective buffer transitions were
slightly faster than without them on the Arabic, Chi-
nese, Swedish and Turkish treebanks, and slightly
slower than without them on the other four tree-
banks, so adding these transitions does not seem to

noticeably degrade (or improve) practical efficiency.

4 Non-projective buffer transitions

We now present a second set of transitions that still
follow the idea of early processing of some depen-
dency arcs, as in Section 3; but which are able to
create arcs skipping over a buffer node, so that they
can create some non-projective arcs. For this reason,
we call them non-projective buffer transitions.

4.1 The transitions

The two non-projective buffer transitions are defined
as follows:

• LEFT-NONPROJ-BUFFER-ARCl :
(σ|i, j|k|β,A) ⇒ (σ, j|k|β,A ∪ {(k, l, i)}).
Preconditions: i 6= 0 and 6 ∃m, l′ | (m, l′, i) ∈
A (single-head)

• RIGHT-NONPROJ-BUFFER-ARCl :
(σ|i, j|k|β,A)⇒ (σ|i, j|β,A ∪ {(i, l, k)}).

The LEFT-NONPROJ-BUFFER-ARC transition
creates a leftward arc from the second buffer node
to the node on top of the stack, and then pops the
stack. It can only be executed if the node on top of
the stack does not already have a head. The RIGHT-
NONPROJ-BUFFER-ARC transition creates an arc
from the top of the stack to the second node in the
buffer, and then removes the latter from the buffer.
Note that these transitions are analogous to projec-
tive buffer transitions, and they use the second node
in the buffer in the same way, but they create arcs
involving the node on top of the stack rather than
the first buffer node. This change makes the pre-
condition that checks for a head necessary for the
transition LEFT-NONPROJ-BUFFER-ARC to respect
the single-head constraint, since many stack-based
parsers can generate configurations where the node
on top of the stack has a head.

We call these transitions non-projective buffer
transitions because, as they act on non-contiguous
nodes in the stack and buffer, they allow the creation
of a limited set of non-projective dependency arcs.
This means that, when added to a projective parser,
they will increase its coverage.5 On the other hand,

5They may also increase the coverage of parsers allowing
restricted forms of non-projectivity, but that depends on the par-

314

NE NE+LNBA NE+RNBA
Language LAS UAS LAS UAS LAS UAS
Arabic 66.43 77.19 67.13 77.90 67.21 77.92
Chinese 86.46 90.18 87.71 91.39 86.98 90.76
Czech 77.24 83.40 78.88 84.72 78.12 83.78
Danish 84.91 89.80 85.17 90.10 84.25 88.92
German 86.18 88.60 86.96 88.98 85.56 88.30
Portug. 86.60 90.20 86.78 90.34 86.07 89.92
Swedish 83.33 88.83 83.55 89.30 83.17 88.59
Turkish 63.77 74.35 63.04 73.99 65.01 75.70

Table 6: Parsing accuracy (LAS and UAS, excluding punctuation) of Nivre’s arc-eager parser without modifica-
tion (NE), with the LEFT-NONPROJ-BUFFER-ARC transition added (NE+LNBA) and with the RIGHT-NONPROJ-
BUFFER-ARC transition added (NE+RNBA). Best results for each language are shown in boldface.

adding these transitions to a stack-based transition
system does not affect soundness under the same
conditions and for the same reasons explained for
projective buffer transitions in Section 3.1.

Note that the fact that non-projective buffer tran-
sitions are able to create non-projective dependency
arcs does not mean that all the arcs that they build
are non-projective, since an arc on non-contiguous
nodes in the stack and buffer may or may not cross
other arcs. This means that non-projective buffer
transitions serve a dual purpose: not only they
increase coverage, but they also can create some
“easy” dependency links in advance of standard
transitions, just like projective buffer transitions.

Contrary to projective buffer transitions, we do
not impose any arc length restrictions on non-
projective buffer transitions (either as a hard con-
straint in the transitions themselves or as a policy in
the training oracle), since we would like the increase
in coverage to be as large as possible. We wish to
allow the parsers to create non-projective arcs in a
straightforward way and without compromising effi-
ciency. Therefore, to train the parser with these tran-
sitions, we use an oracle that employs them when-
ever possible, and delegates to the original parser’s
oracle otherwise.

4.2 Experiments

We evaluate the impact of non-projective buffer tran-
sitions on parsing accuracy by using the same base-

ticular subset of non-projective structures captured by each such
parser.

line parser, datasets and experimental settings as for
projective buffer transitions in Section 3.2. As can
be seen in Table 6, adding a non-projective buffer
transition to the arc-eager parser improves its per-
formance on all eight datasets. The improvements in
LAS are statistically significant at the .01 level (Dan
Bikel’s comparator) for Chinese, Czech and Turk-
ish. Note that the Chinese treebank is fully projec-
tive, this means that non-projective buffer transitions
are also beneficial when creating projective arcs.

While with projective buffer transitions we ob-
served that each of them was beneficial for about
half of the treebanks, and we related this to the
amount of leftward and rightward links of length 1 in
each; in the case of non-projective buffer transitions
we do not observe this tendency. In this case, LEFT-
NONPROJ-BUFFER-ARC works better than RIGHT-
NONPROJ-BUFFER-ARC in all datasets except for
Turkish and Arabic.

As with the projective transitions, we gathered
data about the individual precision of each of the
transitions. The results were similar to those for
the projective transitions, and show that adding a
non-projective buffer transition improves the preci-
sion of the standard transitions. We also experimen-
tally checked that adding both non-projective buffer
transitions at the same time (NE+LNBA+RNBA)
achieved worse performance than adding only the
most suitable transition for each dataset.

Table 7 compares the performance of the arc-
eager parser with the best non-projective buffer tran-
sition for each dataset with the results obtained by

315

NE+LNBA/RNBA NE+PP (CoNLL X)

Language LAS UAS LAS UAS
Arabic 67.21 77.92 66.71 77.52
Chinese 87.71 91.39 86.92 90.54
Czech 78.88 84.72 78.42 84.80
Danish 85.09 89.98 84.77 89.80
German 86.96 88.98 85.82 88.76
Portug. 86.78 90.34 87.60 91.22
Swedish 83.55 89.30 84.58 89.50
Turkish 65.01 75.70 65.68 75.82

Table 7: Comparison of the parsing accuracy (LAS
and UAS, excluding punctuation) of Nivre’s arc-
eager parser with non-projective buffer transitions
(NE+LNBA/RNBA) and the parser with the pseudo-
projective transformation (Nivre et al., 2006).

System PP PR NP NR
NE 80.40 80.76 - -
NE+LNBA/RNBA 80.96 81.33 58.87 15.66
NE+PP (CoNLL-X) 80.71 81.00 50.72 29.57

Table 8: Comparison of the precision and recall for pro-
jective (PP, PR) and non-projective (NP, NR) arcs, av-
eraged over all datasets, obtained by Nivre’s arc-eager
parser with and without non-projective buffer transitions
(NE+LNBA/RNBA, NE) and the parser with the pseudo-
projective transformation (Nivre et al., 2006).

the parser with the pseudo-projective transformation
by Nivre et al. (2006) in the CoNLL-X shared task.
Note that, like the one in Table 4, this should not
be interpreted as a homogeneous comparison. We
can see that the algorithm with non-projective buffer
transitions obtains better LAS in five out of the eight
treebanks. Precision and recall data on projective
and non-projective arcs (Table 8) show that, while
our parser does not capture as many non-projective
arcs as the pseudo-projective transformation (unsur-
prisingly, as it can only build non-projective arcs in
one direction: that of the particular non-projective
buffer transition used for each dataset); it does so
with greater precision and is more accurate than that
algorithm in projective arcs.

Like projective buffer transitions, non-projective
transitions do not increase the computational com-
plexity of stack-based parsers. The observed train-
ing and parsing times for the arc-eager parser with
non-projective buffer transitions showed a small

overhead with respect to the original arc-eager
(7.1% average increase in training time, 17.0% in
parsing time). For comparison, running the arc-
eager parser with the pseudo-projective transforma-
tion (Nivre et al., 2006) on the same machine pro-
duced a 23.5% increase in training time and a 87.5%
increase in parsing time.

5 Related work

The approach of adding an extra transition to a
parser to improve its accuracy has been applied in
the past by Choi and Palmer (2011). In that pa-
per, the LEFT-ARC transition from Nivre’s arc-eager
transition system is added to a list-based parser.
However, the goal of that transition is different
from ours (selecting between projective and non-
projective parsing, rather than building some arcs in
advance) and the approach is specific to one algo-
rithm while ours is generic – for example, the LEFT-
ARC transition cannot be added to the arc-standard
and arc-eager parsers, or to extensions of those like
the ones by Attardi (2006) or Nivre (2009), because
these already have it.

The idea of creating dependency arcs of length 1
in advance to help the classifier has been used by
Cheng et al. (2006). However, their system creates
such arcs in a separate preprocessing step rather than
dynamically by adding a transition to the parser, and
our approach obtains better LAS and UAS results on
all the tested datasets.

The projective buffer transitions presented here
bear some resemblance to the easy-first parser by
Goldberg and Elhadad (2010), which allows cre-
ation of dependency arcs between any pair of con-
tiguous nodes and is based on the idea of “easy” de-
pendency links being created first. However, while
the easy-first parser is an entirely new O(n log(n))
algorithm, our approach is a generic extension for
stack-based parsers that does not increase their com-
plexity (so, for example, applying it to the arc-eager
system as in the experiments in this paper yields
O(n) complexity).

Non-projective transitions that create dependency
arcs between non-contiguous nodes have been used
in the transition-based parser by Attardi (2006).
However, the transitions in that parser do not use
the second buffer node, since they are not intended

316

to create some arcs in advance. The non-projective
buffer transitions presented in this paper can also be
added to Attardi’s parser.

6 Discussion

We have presented a set of two transitions, called
projective buffer transitions, and showed that adding
one of them to Nivre’s arc-eager parser improves its
accuracy in seven out of eight tested datasets from
the CoNLL-X shared task. Furthermore, adding one
of a set of non-projective buffer transitions achieves
accuracy improvements in all of the eight datasets.
The obtained improvements are statistically signif-
icant for several of the treebanks, and the parser
with projective buffer transitions surpassed the best
published single-parser LAS results on two of them.
This comes at no cost either on computational com-
plexity or (in the case of projective transitions) on
empirical training and parsing times with respect to
the original parser.

While we have chosen Nivre’s well-known arc-
eager parser as our baseline, we have shown that
these transitions can be added to any stack-based de-
pendency parser, and we are not aware of any spe-
cific property of arc-eager that would make them
work better in practice on this parser than on others.
Therefore, future work will include an evaluation of
the impact of buffer transitions on more transition-
based parsers. Other research directions involve in-
vestigating the set of non-projective arcs allowed
by non-projective buffer transitions, defining dif-
ferent variants of buffer transitions (such as non-
projective buffer transitions that work with nodes lo-
cated deeper in the buffer) or using projective and
non-projective buffer transitions at the same time.

Acknowledgments

This research has been partially funded by the
Spanish Ministry of Economy and Competitive-
ness and FEDER (projects TIN2010-18552-C03-01
and TIN2010-18552-C03-02), Ministry of Educa-
tion (FPU Grant Program) and Xunta de Galicia
(Rede Galega de Recursos Lingüı́sticos para unha
Sociedade do Coñecemento).

References
Susana Afonso, Eckhard Bick, Renato Haber, and Diana

Santos. 2002. “Floresta sintá(c)tica”: a treebank for
Portuguese. In Proceedings of the 3rd International
Conference on Language Resources and Evaluation
(LREC 2002), pages 1968–1703, Paris, France. ELRA.

Nart B. Atalay, Kemal Oflazer, and Bilge Say. 2003. The
annotation process in the Turkish treebank. In Pro-
ceedings of EACL Workshop on Linguistically Inter-
preted Corpora (LINC-03), pages 243–246, Morris-
town, NJ, USA. Association for Computational Lin-
guistics.

Giuseppe Attardi. 2006. Experiments with a multilan-
guage non-projective dependency parser. In Proceed-
ings of the 10th Conference on Computational Natural
Language Learning (CoNLL), pages 166–170.

Sabine Brants, Stefanie Dipper, Silvia Hansen, Wolfgang
Lezius, and George Smith. 2002. The tiger treebank.
In Proceedings of the Workshop on Treebanks and Lin-
guistic Theories, September 20-21, Sozopol, Bulgaria.

Sabine Buchholz and Erwin Marsi. 2006. CoNLL-X
shared task on multilingual dependency parsing. In
Proceedings of the 10th Conference on Computational
Natural Language Learning (CoNLL), pages 149–164.

Chih-Chung Chang and Chih-Jen Lin, 2001. LIBSVM: A
Library for Support Vector Machines. Software avail-
able at http://www.csie.ntu.edu.tw/∼cjlin/libsvm.

K. Chen, C. Luo, M. Chang, F. Chen, C. Chen, C. Huang,
and Z. Gao. 2003. Sinica treebank: Design criteria,
representational issues and implementation. In Anne
Abeillé, editor, Treebanks: Building and Using Parsed
Corpora, chapter 13, pages 231–248. Kluwer.

Yuchang Cheng, Masayuki Asahara, and Yuji Mat-
sumoto. 2006. Multi-lingual dependency parsing at
NAIST. In Proceedings of the Tenth Conference on
Computational Natural Language Learning, CoNLL-
X ’06, pages 191–195, Stroudsburg, PA, USA. Asso-
ciation for Computational Linguistics.

Jinho D. Choi and Martha Palmer. 2011. Getting the
most out of transition-based dependency parsing. In
Proceedings of the 49th Annual Meeting of the Asso-
ciation for Computational Linguistics: Human Lan-
guage Technologies: short papers - Volume 2, HLT
’11, pages 687–692, Stroudsburg, PA, USA. Associ-
ation for Computational Linguistics.

Jason M. Eisner. 1996. Three new probabilistic models
for dependency parsing: An exploration. In Proceed-
ings of the 16th International Conference on Compu-
tational Linguistics (COLING), pages 340–345.

R.-E. Fan, K.-W. Chang, C.-J. Hsieh, X.-R. Wang, and
C.-J. Lin. 2008. LIBLINEAR: A library for large lin-
ear classification. Journal of Machine Learning Re-
search, 9:1871–1874.

317

Yoav Goldberg and Michael Elhadad. 2010. An effi-
cient algorithm for easy-first non-directional depen-
dency parsing. In Human Language Technologies:
The 2010 Annual Conference of the North American
Chapter of the Association for Computational Linguis-
tics (NAACL HLT), pages 742–750.

Carlos Gómez-Rodrı́guez and Joakim Nivre. 2010. A
transition-based parser for 2-planar dependency struc-
tures. In Proceedings of the 48th Annual Meeting of
the Association for Computational Linguistics, ACL
’10, pages 1492–1501, Stroudsburg, PA, USA. Asso-
ciation for Computational Linguistics.

Jan Hajič, Otakar Smrž, Petr Zemánek, Jan Šnaidauf, and
Emanuel Beška. 2004. Prague Arabic Dependency
Treebank: Development in data and tools. In Proceed-
ings of the NEMLAR International Conference on Ara-
bic Language Resources and Tools.

Jan Hajič, Jarmila Panevová, Eva Hajičová, Jarmila
Panevová, Petr Sgall, Petr Pajas, Jan Štěpánek, Jiřı́
Havelka, and Marie Mikulová. 2006. Prague Depen-
dency Treebank 2.0. CDROM CAT: LDC2006T01,
ISBN 1-58563-370-4. Linguistic Data Consortium.

Liang Huang and Kenji Sagae. 2010. Dynamic program-
ming for linear-time incremental parsing. In Proceed-
ings of the 48th Annual Meeting of the Association
for Computational Linguistics, ACL ’10, pages 1077–
1086, Stroudsburg, PA, USA. Association for Compu-
tational Linguistics.

Matthias T. Kromann. 2003. The Danish dependency
treebank and the underlying linguistic theory. In Pro-
ceedings of the 2nd Workshop on Treebanks and Lin-
guistic Theories (TLT), pages 217–220, Växjö, Swe-
den. Växjö University Press.

Andre Martins, Noah Smith, and Eric Xing. 2009. Con-
cise integer linear programming formulations for de-
pendency parsing. In Proceedings of the Joint Confer-
ence of the 47th Annual Meeting of the ACL and the 4th
International Joint Conference on Natural Language
Processing of the AFNLP (ACL-IJCNLP), pages 342–
350.

Ryan McDonald and Joakim Nivre. 2007. Charac-
terizing the errors of data-driven dependency parsing
models. In Proceedings of the 2007 Joint Conference
on Empirical Methods in Natural Language Process-
ing and Computational Natural Language Learning
(EMNLP-CoNLL), pages 122–131.

Ryan McDonald and Joakim Nivre. 2011. Analyzing
and integrating dependency parsers. Comput. Lin-
guist., 37:197–230.

Ryan McDonald, Fernando Pereira, Kiril Ribarov, and
Jan Hajič. 2005. Non-projective dependency pars-
ing using spanning tree algorithms. In Proceedings
of the Human Language Technology Conference and

the Conference on Empirical Methods in Natural Lan-
guage Processing (HLT/EMNLP), pages 523–530.

Ryan McDonald, Kevin Lerman, and Fernando Pereira.
2006. Multilingual dependency analysis with a two-
stage discriminative parser. In Proceedings of the
10th Conference on Computational Natural Language
Learning (CoNLL), pages 216–220.

Jens Nilsson, Johan Hall, and Joakim Nivre. 2005.
MAMBA meets TIGER: Reconstructing a Swedish
treebank from Antiquity. In Peter Juel Henrichsen, ed-
itor, Proceedings of the NODALIDA Special Session
on Treebanks.

Joakim Nivre, Johan Hall, and Jens Nilsson. 2004.
Memory-based dependency parsing. In Proceedings
of the 8th Conference on Computational Natural Lan-
guage Learning (CoNLL-2004), pages 49–56, Morris-
town, NJ, USA. Association for Computational Lin-
guistics.

Joakim Nivre, Johan Hall, Jens Nilsson, Gülsen Eryiğit,
and Svetoslav Marinov. 2006. Labeled pseudo-
projective dependency parsing with support vector ma-
chines. In Proceedings of the 10th Conference on
Computational Natural Language Learning (CoNLL),
pages 221–225.

Joakim Nivre. 2003. An efficient algorithm for projec-
tive dependency parsing. In Proceedings of the 8th In-
ternational Workshop on Parsing Technologies (IWPT
03), pages 149–160. ACL/SIGPARSE.

Joakim Nivre. 2008. Algorithms for Deterministic Incre-
mental Dependency Parsing. Computational Linguis-
tics, 34(4):513–553.

Joakim Nivre. 2009. Non-projective dependency parsing
in expected linear time. In Proceedings of the Joint
Conference of the 47th Annual Meeting of the ACL and
the 4th International Joint Conference on Natural Lan-
guage Processing of the AFNLP (ACL-IJCNLP), pages
351–359.

Kemal Oflazer, Bilge Say, Dilek Zeynep Hakkani-Tür,
and Gökhan Tür. 2003. Building a Turkish treebank.
In Anne Abeillé, editor, Treebanks: Building and Us-
ing Parsed Corpora, pages 261–277. Kluwer.

Kenji Sagae and Jun’ichi Tsujii. 2008. Shift-reduce de-
pendency DAG parsing. In Proceedings of the 22nd
International Conference on Computational Linguis-
tics (COLING), pages 753–760.

Stephen Tratz and Eduard Hovy. 2011. A fast, accurate,
non-projective, semantically-enriched parser. In Pro-
ceedings of the 2011 Conference on Empirical Meth-
ods in Natural Language Processing, pages 1257–
1268, Edinburgh, Scotland, UK., July. Association for
Computational Linguistics.

Hiroyasu Yamada and Yuji Matsumoto. 2003. Statisti-
cal dependency analysis with support vector machines.

318

In Proceedings of the 8th International Workshop on
Parsing Technologies (IWPT), pages 195–206.

Yue Zhang and Stephen Clark. 2008. A tale of two
parsers: Investigating and combining graph-based and
transition-based dependency parsing. In Proceedings
of the Conference on Empirical Methods in Natural
Language Processing (EMNLP), pages 562–571.

Yue Zhang and Joakim Nivre. 2011. Transition-based
dependency parsing with rich non-local features. In
Proceedings of the 49th Annual Meeting of the Asso-
ciation for Computational Linguistics: Human Lan-
guage Technologies: short papers - Volume 2, HLT
’11, pages 188–193, Stroudsburg, PA, USA. Associ-
ation for Computational Linguistics.

319

